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Abstract. Consider a linear partial differential equation in C**! P(z,d)u(z) = f(2),
where u(z) and f(z) admit singularities on the surface {zp =0}. We assume
that | f(z)] < A|zo|“ in some sectorial region with respect to zp. We can give an exponent
y* > 0 for each operator P(z,0) and show for those satisfying some conditions that if
Ve > 03C, such that |u(z)| < Cyexp(e|zo|™”") in the sectorial region, then |u(z)| < Clzo|*
for some constants ¢’ and C.

§0. Introduction.

Let P(z,0) be a linear partial differential operator with holomorphic coefficients
in a neighbourhood Q of z=0 in C?*! and K = {z) = 0}. In the present paper we
consider

P(z,0)u(z) = f(2),

where f(z) is holomorphic except on K. The purpose of the present paper is to study
behaviours of singular solutions near K. First we remark that for given P(z,0) we can
define an exponent y* > 0 called minimal irregularity with respect to K and y* plays an
important role in the present paper.

This paper follows Ouchi [11]. In the present paper we treat a wider class of
operators than in [1I]. As stated in Abstract, the main result in this paper is the
following.

If u(z) grows at most some exponential order near zo =0, that is, for any &> 0,
u(z)| < Cyexp(elzo| ™) and f(z) is slowly increasing near K, that is, |f(z)| < A|zo| in a
sectorial region Q(0), then the singularities of u(z) are also slowly increasing.

The main Theorem in [I1], where we considered a class of operators containing of
the normal form with respect to 0/0zy as a typical example, was the following.

If u(z) grows at most some exponential order near zo =0, that is, for any & >0,
u(z)| < Coexp(elzo| ") and f(z) has a Gevrey type asymptotic expansion f(z) ~

o L2zl as zo — 0 in a sectorial region Q(0), where |f,(z')| < AB"I'(n/y* + 1),
then u(z) has also an asymptotic expansion like f(z) as zo tends to 0.
It was an extension of the main result of [8] and [9], where we had used an integral
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representation of solutions with singularities on K. We did not use it in but we
proved the main result there, by estimating the derivatives (0/0z9)"u(z). The proof was
much simpler and completely different from [8] and [9].

The class of operators considered here is wider than in [1I]. So the main result
in this paper becomes somewhat different from that in as above and even if f(z)
has a Gevrey type asymptotic expansion, u(z) does not necessarily have. We show the
main result in this paper by constructing a parametrix. If P(z,0) belongs to the class
in [11], then we can show the results in from those in the present paper, which will
be discussed in the forthcoming paper.

Finally we comment about singular solutions. As for the existence of solutions
with singularities on K, it was investigated in Hamada, Leray and Wagschal [2],
Kashiwara and Schapira [3], Ouchi [7], Persson and other papers cited in those
papers. The behaviours of singular solutions were also studied in Ouchi [4] and [5] by
using the integral representation. We considered some singular solutions in [4] and
and obtained results such as Stokes phenomenon, that is, they grow really with some
exponential order as z tends to K in a region and behave mildly as z tends to K in
another region.

§1. Notations and results.

In this section we give notations and definitions in order to state results more
precisely. The coordinates of CY*! are denoted by z= (z0,z1,...,24) = (20,2') €
Cx C? |zl =max{|z|;0 <i<d} and |z/| = max{|z];1 <i<d}. Its dual variables
are &= (&,&) = (&,¢1,...,¢). N is the set of all nonnegative integers N =
{0,1,2,...}. The differentiation is denoted by 0; = 0/0z;, and 0 = (0o, 0y,...,04) =
(89,0"). For a multi-index o= (0p,0') e N x N9, || = o9 + |o/| = Zfio ;. Define
0" =12, 0%. We often denote 8'* =T[[%, 0% by 0"

Let us define spaces of holomorphic functions in some regions. Let Q = Q) x Q'
be a polydisk with Qy={zpe C';|z0| < R} and Q' ={z'e C’;|z'| < R} for some
positive constant R. Put Qy(0) = {zy € Qy — {0};]argzo| < 0} and Q(0) = Qy(0) x Q.
0(Q)(0(Q"),0(2(0))) is the set of all holomorphic functions on Q (resp. Q',Q(0)).
0(22(0)) contains multi-valued functions, if 0 > .

Now let P(z,0) be an m-th order linear partial differential operator with coefficients
in 0(Q),

(1.1) P(z,0) = ) ay(2)0”.

lo] <m

Let j, be the valuation of a,(z) with respect to zp. Hence a,(z) :zé”ca(z), where
¢4(0,2") # 0 for a,(z) # 0 and j, = 400 for a,(z) =0. Let us define some quantities for
P(z,0):

(12) {e* =min{j, —ap;ae N A :={ae N j —ay=e,}

k* := max{|a|; o € 4}.

We define minimal irregularity used in [6] and [10].
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DreriNITION 1.1.

jor| — K+
y* := 400 if k*=m.

1) {y* — min{m; xe N || > k*} if k* <m,

We rewrite P(z,0) in another form for later calculations. Put §:=z¢dp. It
follows from the identity zJ'0% = zJ* ™ (2000%) =z ™ H(9 — 1) --- (8 — ji, + ot — 1)0*
that we can write P(z,0) in the following form
(1.4) P(z,0) = Y z§by(2) 970",

o] <m
where e, € Z, by(z) = >, % bun(2')z8 and b, (z") # 0 for b,(z) 0. We put e, = + o0
if b,(z) =0. We remark that the quantities defined by do not depend on the
representations, that is,

Lemma 1.2, The following equalities hold: e, = min{e,;oe NV and A=
{ae Nt e, =e,}.

Lemma 1.3, If k* <m,

(1.5) y* —mm{|e|_k**, e N1 |oc|>k*}.

The proofs of Lemmas and are easy. So we omit them. Put

(1.6) = " zby0(z)970",

aed

which plays an important role in this paper.
We introduce O, (2(0)) and Asyy,4(2(0)), which are subspaces of (/(2(6)) and are
fundamental function spaces in this paper.

DEFINITION 1.4, 0, (2(0))(0 < x < +00) is the set of all u(z) € O((0)) such that
for any ¢ >0 and any 0 with 0 <6 <0

(1.7) lu(z)| < Cexp(e|zo| ™) for ze Q(0)

holds for a constant C = C(e,0'). We put O(;.)(2(0)) = 0(2(0)) for k= +o0.
DEFINITION 1.5, Oy (2(0))(c € R) is the set of all u(z) e O(2(0)) such that for

any 0" with 0 < 0’ <0

(1.8) lu(z)| < Clzo|¢ zeQ(0")

holds for a constant C = C(0").

We say that u(z) € 0(Q(0)) is regular singular or slowly increasing or tempered in Q(0),
if u(z UM ctop Oreg.c(2(0)).  We proceed to introduce conditions on P(z, ).

ConpITION 0. If o = (a9,0') € 4, then o' = (0,0,...,0).
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Suppose that P(z,0) satisfies Condition 0. Then (£*,0,0,...,0) € 4 and B(z,0) is
an ordinary differential operator

(1.9) B(z,0) = z5 bao(z) 9.

aed

Define the indicial polynomial yp(z’,4) of B(z,0) by

(1.10) ap(2'0) =" byo(z))i".

aed

The following condition is stronger than Condition 0.
ConpITION 1. P(z,0) satisfies Condition 0 and by o0...0)(0) # 0.

If P(z,0) satisfies Condition 1, then yp(z’,1) is a polynomial in /4 with degree k*.
So yp(z’,2) =0 has k* roots, by shrinking R, and we choose real numbers ag,a; and
by so that all roots of the algebraic equation yp(z’, 1) =0 for |z'| < R are contained in
{AeC;ap < RA<a;,|32 <bp}. The main results are the following.

TueoREM 1.6.  Suppose that P(z,0) satisfies Condition 1. Let u(z) € U,-)(L2(0)) be
a solution of P(z,0)u(z) = f(z), where f(z) € Oy ((R2(0)). Then there is a polydisk U
centered at z =0 such that for any ¢’ < min{c —e.,ap}, u(z) € Oy (U(0)).

TueoreM 1.7. Suppose that P(z,0) satisfies Condition 0. Let u(z) € O(,-)(2(0)) be
a solution of P(z,0)u(z) = f(z), where f(z) € Oy, o(R2(0)). Then there is a polydisk U
centered at z =0 and a constant c" such that u(z) € Oy »(U(0)).

We give some examples satisfying Condition 1:
(a) Operators of normal type with respect to 0o,

o+ Z a,(z)0”.

og<k*

More concretely
& +z07 (m>k") B0 =0 v =(+k)/(m-k),
0y + 0103 +0] WB(z,0)=0; y=1/3.

(b) Operators of Fuchsian type defined in Baouendi-Goulaouic [1|, where

(c) Other concrete examples are

0y + 2205 +y B(z,0) =0 " =1/2,
and

33 + 2005 +a(2)00 + b(z) B(z,0) = 2005 +a(0,2)0y y* = 1.
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§2. Construction of parametrix and proof of theorems.

In order to show we construct a left parametrix of P(z,0),

P(z,0) = 3 z&b,(2)9%0% (8 = z00),

o <m

(2.1) .
by(z) = ]z::() b%h(z’)zé’

We find the parametrix of the form for 0 < y* < +oo:

A—e—p” B
(2.2) Gs(z,w) = 221 L ZOW i diJ exp(—(z,” ) U(z,w', 4,8) d¢,
where 0 > 0 is a small constant. When y* = +o0, the form of the parametrix is slightly
different. This section consists of 3 subsections. The form of the parametrix Gjs(z,w)
implies that the construction of it is to determine U(z,w’,{, 1), which is done in §2.1.
By integrating it, we construct Gs(z,w) in §2.2. We give the proofs of Theorems
and [L7 in §2.3. The proofs of Propositions 2.1 and 2.2 and are not given
in this section but in §3 and §4.

§2.1. Construction of Parametrix 1.
We assume Condition 1 in this subsection. We need the transposed operator
P(z,0) to construct a left parametrix of P(z,0),

(2.3) P(z,0) = Y (—1)(I+1)°z50% (bu(2) ).
o] <m

Recall

(2.4) = by ()"

and we have

(2.5) 22 2) =Y (=)™l o (") (A + e + 1)

aeA

'P(z,0) also satisfies Condition 1. We have chosen ag,a; and by so that all the roots
of algebraic equation yp(z’,1) =0 for |z/| < R are contained in {A;ay <R <aq,
|JA| < bo}. Hence it follows from this assumption that all the roots of y,p(z',1) =0
for |z'| < R are contained in {A€ C;—a; —e. — 1 <RI < —ap — e, — 1,|34] < by}

First suppose 7y* < +o0. Let wus introduce an integro-differential operator
‘P(z,2,(,0-,0¢);

(2.6) 'P(z,,0,0.,0;)

= 3 (D) Ca; + 2000+ 4+ 17057 (by(2) ),

lo| <m

where d; = 0/0( and the operator d;° (s >0) is defined as follows:
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B Ca é:a—‘rs
2.7 0" = fi > 0.
2.7 CTa+) Ta+st1) 9=
We determine U(z,w',4,{) so as to satisfy
1

(2.8) '‘P(2,2,(,0,,0)U(z,w', 1,{) =

b

(2mi) " TI (7 — w))

where w' = (wy,wp,...,wg). We try to find a solution of of the form

o0 nfy
! _ ZOC / /
(2.9) U(z,w', 2,{) = I;OF(I—{_ DI/ + l)uz,n(z JWA).

By substituting U(z,w’, 4,{) into [2.8), we have the following recursion formula,

(2.10) ( S (=D by o)A+ +n+ 1)“0) (2" W', 2)
{ae 4}

(=D G+ 1+ n+ 10

' {(,h); ea—es+h>0} (I =h) O (= Yithierve (s W', 1)
1
_J @m) ! TIL (2 — wy) () = 0.0
0 (I,n) #(0,0).

Thus we can determine u; ,(z',w’ /1) successively by (2.10) and it is a rational
function in 2, whose poles are in {A; [T, “o xp(z', A+ i —e.) =0}, which are contained in
{hi—ay —1—=(I+n) <RA< —ap — 1, |34 < by}

Suppose y* = +o00. Then we put

(2.11) ‘Pz, ), 0:)

= 3 (1) 000 + 2+ 12570 (ba(2) ),

lo] <m
which is independent of { and J;. We determine U(z,w’, 1) so as to satisty

1

2.12 'P(z,0,0.)U(z,w', }) =
. e Trae

and find a solution of (2.12) of the form

(2.13) Ulz,w',2) =

o0
=0 F

We have
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(2.14) ( Y (=) b0 (A+1+ 1)“0) wi(z',w', A)
{a e 4}

I ) -
0% (by 1 (V1 se (2 W'
+{(1h)'ez—;+h>0} (I —ex+e.—h) (b (2 )tt1—e, e (', W', 2))

01,0
(2mi)* Hf'[:l (zj — wj)

and can determine u;(z',w’;A) successively by (2.14) and it is a rational
function in A, whose poles are in {4; Hfzo xp(z',A+1i—e,) =0}, which are contained in
{A;—a1 —1 -1 <RA< —ag— 1,32 < by}

We need the estimate of u; ,(z',w’,4) (u(z’,w’,4)) to show the convergence of
U(z,w',2,{) (resp. U(z,w’,1)). For this purpose we introduce notations of regions.
Let 0 <r <r, <r3 <R. Define regions X'(r,r,r3) in (z',w’)-space and A(a,b) in
A-space,

(2.15) X' (ri,r2,m3) = {(Z,w);Iwi| < ri,m < |zi| <13 for 1 <i<d},
(2.16) A(a,b) = {4 RA < a,|IA| < b}.

PROPOSITION 2.1. Let a’ < ay and by < b'. Then there are positive constants A =
A(a',b"), B= B(b') and small constants 0 < r; < ry < r3 such that the following estimates
hold for (z',w') e X'(r1,r2,1r3) and A ¢ A(—a' —1,b"): if y* < 400,

Q1) fua(Z oW, < AB(A + T+ D)+ Ty +1))
for all I,ne N and if y* = +o0,

(2.18) (=", w', A)| < AB'(|A)" + (1 + 1))

for all e N.

We have the following proposition from |[Proposition 2.1l.

PrOPOSITION 2.2. Let a’ < ay and by < b’ and suppose that (z',w') € X'(r1,r2,13)
and A ¢ A(—a' —1,b").

(1) If y* < 400, then there exist positive constants ry and oy such that the series
U(z,w', 2,() defined by (2.9) converges for |zo| < ry and |{| < dy, and

(2.19) |U(z,w', 2,0) < Aexp(c(|zo] + [<])]A])

for some constants A = A(a',b") and ¢ = c¢(b').
(2) If y* =40, then there exists a positive constant ry such that the series
U(z,w', X) defined by (2.13) converges for |zo| < ro and

(2.20) |U(z,w', 2)] < Aexp(c|zo| |2])

for some constants A = A(a',b") and ¢ = c(b').



774 S. OucHl

The proofs of Propositions 2.1 and are given in §3.

§2.2. Construction of parametrix II.

In this subsection we assume that P(z,0) satisfies Condition 1. The constants
c=c(b"), oo and r; (0 <i <3) are those in Propositions 2.1 and in §2.1. Now
suppose y* < +oo. Let us construct a parametrix Gj(z,w) with a parameter J, by
integrating U(z,w’,1,{). Let 0 be a constant with 0 <J <dy. Define

5

(2.21) Ks(z,w', A) = zae*_y*J exp(—(z,” ) U(z,w', 4,8) dC
0

and a region Xy(ro,r1,r2,73) in (z,w’)-space

(222) Xg(?’o,}’l,rz,}’3) = {0 < |Z()| < 19, |argzo| < 0} X X’(V],I’z,l@).

We have

THEOREM 2.3. Suppose y* < +oo. Let a' and b’ be constants with a' < ay and
b' > by. Then

(1) Ks(z,w', A) is holomorphic on X (ro,r1,r2,13) X (C — A(—a’ —1,b")).

(2) For any 0< 0 < m/(2y*) there exist constants co = co(b’') > c(b') and A =
A(a' b, 0) such that
(2.23) Kz, ', )] < Alzo] ™ expleolfz0] + )]
for (z,w') € Xo(ro,r1,12,13) and L ¢ A(—a’ — 1,b").

(3) It holds that

z}

(i) T (5 = w)
where Kf(z,w' 1) is holomorphic in (z,w') € Xo0(ro,r1,12,13) and A¢ A(—a’ —1,b").

Moreover for any 0 < 0 < n/(2y*) there are positive constants ¢y = co(b'), ¢1 = ¢1(60,0)
and A = A(a',b’,0) such that

(2.24) 'P(z,0)(z{ Ks(z,w', ) = + zf KR (z, W', 2),

(2.25) K (2w, )] < AL+ 7)™ exp(—cilz0] ™ + col|z0] +)[4))

for (z,w') € Xo(ro,r1,12,13) and L ¢ A(—a’ —1,b").
The constant ¢y in (2) and (3) is independent of 0 and o.

The proof of is given in §4. Define

i
(2.26) Gs(z,w) = %mj Z)—OHK;(Z,W/J) da,
where % :=%(¢) (|¢| <n) is an infinite path in C — A(—a’ —1,b") starting at A=
oo exp(i¢) and ends at A = —a — 1(a < a’ < ap). More precisely if |¢| < /2, €(¢) is a
half line connecting oo exp(ig) with —a — 1, if 1/2 < p <7 (- < ¢ < —1/2), €(¢) is a
broken line through oo exp(i¢), —a — 1 + bi (resp. —a — 1 — bi) and —a — 1, where by <
b’ < b. Define
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1 20 g R /
(2.27) Ro(zw) = 5 L ke A

Now let us proceed to study Gs(z,w) and Rs(z,w). By putting

Gy(t,2, ') = ij exp(At)Ks(z, W', 2) di,
(g

 2ni
(2.28) |
Rs(t,z,w') == —J exp(A) K (z,w', 2) dA,
27U %
we have
Gs(z,w) = Gs(log zg — log wy, z, w') /wo,
(2.29)

R&(Zv W) = R5<log20 - log Wo, Z, W,)/W()v
where logzy and logwy are principal valued.

PROPOSITION 2.4. Let 0<0<n/(2y*). For any 0<e <n/2 Gs(t,z,w') and
Rs(t,z,w') are holomorphic in {t;—n/2+e)<argt<5m/2—e, |t|siney—co(|z0|+J) >0} x
Xy(ro,r1,r2,13) and there are constants A = A(0,0) and c| := ¢1(0,0) such that

(2.30) 1Go(t, 20| < Aezp(—(a+l)9%t+b|\sz|)’
|20 (|#] sin gy — co(|z0] +9))

Aexp(—(a+ DRt + b3t — e1]z0]7)
(|7] sin ey — co(|z0] + )™

(2.31) |Rs(t,2,w")] <

Proor. Let (z,w') € Xy(ro,r1,12,1r3) and —7n/2 + ¢ < argt < 5n/2 —&. Then we
can choose /4 so that |argd| < 7 and |arg )+ argt — n| < /2 —&. Hence by
23

+0o0
|G§(l, z) W/)l < A|ef(a+1)int+b\3t|zae*| J e(\t| cos(arg A+arg 1)+co(|zo|+0))|A| dlM

< Ale VRO e /(4] sin gy — co(|z0] +6))-
By the same method we have the holomorphy and the estimate of Rs(t,z,w’).

Define a region Y o(ro,¢) in (zo, wo)-space,

Yy g(ro,e) = {(zo,wo);O < |z0| < ro, largzo| < O, wy # 0, |argwo| < 0,

i

larg (log zo—logwy) — 7| < 5

¢, [log zo—log wo| sine—co(|zo|4+0) >O}.

Then we have from (2.29)

ProposITION 2.5. Let 0<60<m/(2y*). For any 0<eg <n/2, Gs(z,w) and
Rs(z,w) are holomorphic in Y, y(ro,e0) X X'(r1,72,13) and satisfy
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ZI)(Z? 8>G5(Z7 W) = 5<Zu W) + R5(27 W)J
2.32 a
(2.32) 5z, w) = ld x w( _
(2mi)* z5* (log zo — logwo) [Ti=; (2 — wy)

and there are constants A= A(0,0',6) and ¢; = ¢|(0,6) such that

A|W0|a/|20|a+e*+l

2.33 G = i
( ) | §(Z7W)| = |10g20_10gw0|81n8()—CO(|ZO|+5)
and
A|W0|aeicl |Zo|7}r$
(2.34) |Rs(z,w)| < e

(logzo — logwo| sinegy — ¢o(|zo| +9))
Proor. It follows from that

'P(z,0)Gs(z,w) = (z,w) + Rs(z, w),

where

1
oz,w) = (2mi) ! L pas| d’IH

Wo

1 y W
T )™z (log zo — log wo) [Tz —w)

The estimates [(2.33) and [2.34) follow from [Proposition 2.4

Let us define integral operators with kernel Gs(z, w) and Rs(z, w) respectively. Put
(2.35)  W(O') = {wo;0 < |wo| < 7o/2,|argwo| < 0"} x {w' e C%jwi| < (1 <i<d)},
Z(0) = {20;0 < |z0| < 270, |argze| < 0} x {z' e C%;|z| <13 (1 <i<d)},

where 0 < 0" < 0, 0 < 27y < ro and 7y will be chosen so small. Define a chain S(wp)
in z-space. Let wy with 0 < |wy| < /2 and |argwy| < 6'. Put for small 0 < ¢ < 6 — 6’

( So.1(wo) = {z0 = foe ;0 < 5 < 1}
So,2(wo) = {z0 = (1 = 5)foe " + s(wo + ewole’#"); 0 < s < 1}
(2.36) So.3(wo) = {z0 = wo + (g]wole’™€"0)e™;0 < 5 < 2n}
So.a(wo) = {z0 = (1 — 5)(wp + &|wp|e"¥8"0) + sige’@8™0: 0 < s < 1}
[ So,5(wp) = {z0 = Roe’ 1728w, 0 < s < 1},

Put So(wo) := So,1(wo) + So,2(wo) + So,3(wo) + So,4(wo) 4+ So,5(wo).  So(wo) is a path in
{20;0 < |z0| < r,|argzo| < O}, which starts at 7, encloses wy once on the circle |zy — wy|
= ¢wo| and ends at 7. For 1 <i<d put S;={z;=(r +r;3)e"*/2; 0 <s<2n} and
S(wo) = So(wo) x [TIZ, Si.
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Let 0 <0 <0<n/(2y*). Let f(z) e O(Z(0)). Define

(2.37) (Gof ) (w) 1= J F(2)Go(zw) e,

S(wo)

(2.38) (Rs.f)(w) ::J f(2)Rs(z,w) dz.

S(wo)

Now we can choose a small ¢ := 80(9’) > 0, which 1s independent of 7, such that
for Zy € So(W())

larg (logzo — logwy) — 7| < 37/2 — &
and fix it. We note for zy € Sp(wo)

llogzo —logwo| > inf |log (wg + &|wo|e’“T38"0)) — logwy| > 3¢/4.
0<s<2n

Hence for zp € S(wp) and small & ¢ > 0
llog zo — logwy| siney — ¢o(|zo] +J) = (3esiney)/4 — co(Fo + ).
Finally we choose 7y and J > 0 so small that 0 < 7),0 < (esingy)/4cy and
llogzg — logwy|siney — ¢o(|zo| +J) = (esing) /4.
Hence on z e S(wy)

Alwo|“
a+e.+17

|Go(z, )] < (esineg)|zo|
(2.39)

Alwo|“exp(—ci]zo| ™)
[Rs(z,w)| < — ]
(esing)
We have chosen positive constants ¢,&,7) and ¢ and fix these constants and omit the
suffix 0. Thus we can construct integral operators (Gf)(w) and (Rf)(w) and these
operators have the following properties.

THEOREM 2.6. Suppose y* < +c0. Leta < ayand 0 < 0" <0 <n/(2y*). Let Z(0)
and W(0') be sectorial domains defined by (2.35) and f(z) € O(Z(0)). Then

(1) (Gf)(w) and (Rf)(w) are holomorphic in W(0")

(2)  f(2) € Orey. o (R(0)), then (Gf)(Ww) € Opey (W (0")), where ¢’ = min{c — e.,a}.

(3) If f(z) € Oy(Q0)), then |(Rf)(w)| < Alwo|* in W(0").

(4) Let u(z) e 0(R2(0)) and P(z,0)u(z) = f(z). Then (Gf)(w) = u(w) + (Ru)(w) +
(Iu)(w) and |(Iu)(w)| < Alwo|* in W(0").

Proor. Though the integral path S(wg) depends on wy, we can take locally a fixed
path. So (Gf)(w) and (Rf)(w) are holomorphic in W (0"). Let us show (2) and (3).
We have

(G w)] < j /()G (=) |dz] <

Alwo|* J |20/ |
S(wo) (ESiIlE;()) So

(wo) |20 “T !
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Since

|d20’ —(a+e,—c)
a+e,—c = C(l—i-’W()’ ' )?
JSO(ilf’o) |Z()| Fee +1

we have |(Gf)(w)| < A(a,eo)]w0|‘", ¢’ =min{a,c —e,}. Similarly we have

A|W0|a
)m+l

((RF)(w)| < J [F(2)R(z,w)] |dz] <

: J exp(—cilzo| 7 /2)|dz0] < Clwo|“.
S(wo) (8 S1n &y So(wo)

Finally we show (4). Let P(z,0)u(z) = f(z). Then

(Gf)(w) = (P(z,0)u(2))G(z,w) dz

JS(wo)

= u(z)'P(z,0)G(z,w)dz + I(w) (by intergrations by parts)
JS(wp)

= u(z)o(z,w) dz + J u(z)R(z,w) dz + I(w)
S(wo) S(wo)

= u(w) + (Ru)(w) + 1(w),

where I(w) is determined by the values of 0”u(z) and 02G(z,w)(Ja| <m) at {(7,z);
z'e [1L,S;}. Hence |[I(w)| < A|wo|“.

Let us consider the case y* = +o0. Define
(2.40) K(z,w' 1) =z, U(z,w', 1),
which does not contain a parameter . We have, instead of Theorem 2.3,

THEOREM 2.7. Let a’' and b’ be constants with a’ < ay and b’ > by. Then
(1) K(z,w', 1) is holomorphic on Xy (ro,r1,r2,13) X (C — A(—a’ — 1,b")) and there
exist constants ¢y = c(b") and A = A(a’,b") such that

(241) IK(z,w', )| < Alzo| ™ expleolzol 12]):
(2) It holds that

7
2ai) T (z —w)

Proor. The statement (1) follows from [Proposition 2.2, We have

(2.42) 'P(z, 8)(261]((2, w' ) =

'P(z,0)(z{K(z,w', 1))
= (=) + 24 10280 (by(2)z,¢ Uz, w', 1))
o] <m
z3

(2mi) I (25— wy)

=zl 'P(;z,0)U(z,w', 2) =
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Define

1 Zé ,
(2.43) Glzw) = 5 L LK 2 i
where € := €(¢)(|¢| < m) is an infinite path in C — A(—a’ — 1,b’) that is the same as in
(2.26), and an integral operator with kernel G(z,w) for f(z) e O(Z(9)),

2.44) @0)= | 1E6E

wo
where S(wy) is the same path as in (2.37). By repeating the similar method to the case
y* < o0, we have

THEOREM 2.8. Suppose y* =+oo. Let a<ay and 0<0' <0. Let Z(0) and
W (0') be sectorial domains defined by (2.35) and f(z) € O(Z(0)). Then

(1) (Gf)(w) is holomorphic in W(0").
(2)  f(2) € Orey.o(2(0)), then (Gf)(W) € Urey o (W(0')), where ¢’ = min{c — e,,a}.

(3) Let u(z) e O(R2(0)) and P(z,0)u(z) = f(z). Then (Gf)(w)=u(w)+ (fu)(w)
and |(Iu)(w)| < Alwo|® in W(0").

§2.3. Proof of Theorems 1.6 and 1.7.

PrOOF OF THEOREM 1.6. Suppose 7* < +oo0. is valid for any
0<6' <0<n/(2y*) and we note that we can choose a <ay as close to ay as
possible. So if 6 < r/(2y*), then we have easily from [Theorem 2.6
Otherwise let —0 =0y <0, <--- <0, =0 such that 0; — 0;,_y <=n/y* for i=1,2,...,
n. Put ¢, =(0;+0;-1)/2. By rotating the variable z), let us consider u;(z) =
u(zoe,z') (i=1,2,...,n). Then, by applying to wu;(z), we have
Theorem 1.6 for any 6. If y* = +o0, we have from MTheorem 2.8.

PrROOF OF THEOREM 1.7. Put b(z') := by+ .. 0(z'). Condition 0 means b(z") # 0.
So there is a polycircle M = Hl.dzl{z,-; |zil = p;} such that b(z') #0 on M. For z'e M
there is a neighbourhood of U of (0,Z’) such that |u(z)| < C. y|z0 Y in U.(6') for
any 0 < 0’ < 0. Since M is compact, there are a constant ¢” and a neighbourhood Uy,
of {0} x M such that |u(z)] < Cl|zo|*" in {z € Uy |argzo| < 6'}. Hence it follows from
the maximal principle of holomorphic functions that there is a neighbourhood U of z =
0 such that |u(z)| < Cylzo|*" in U(#'). This means u(z) e Oreg. e (U(0)).

§3. Estimate of u; ,(z',w’, A) and u;(z',w', 7).

In this section we give the proofs of Propositions 2.1 and 2.2. First let y* < 400
and let us estimate the coefficient u; ,(z',w’,1)’s of

© lpnfy”
/ ! _ ZOC ! I
(3.1) uiz',w,1,0) = l_nEZOF(H‘ DL + 1)uljn(z S W A).

Recall what we need in this section. We assume P(z,0) satisfies Condition 1. Choose
R > 0 so that by(0,z") #0, a = (k*,0,0,...,0) on {z' € Cd;|z’] < R}. Let ap, a; and
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by be real numbers such that all the roots of algebraic equation yp(z’,1) =0
for {z';]z'| < R} are contained in {A;ap < RA<ay,|I4 <by}. So all the roots of
yp(z',A—e,) =0 for {|z'| < R} are contained in Ay,

(3.2) AO:{AGC;—al—ISER/IS—a0—1,|3/1|£b0},

by the relation yp(z',4) = yp(z/, =1 —e. — 1).
The recursion formula of u; ,(z',w’, 1) is

(3.3) xpz's A+ 1+n—eu(z',w',A)

NI n»n
+ Z ( ) ( Tlrnt ) 0* (b17]1(2/>ul—h,n—ea+e*(Z,ale;{))

(0 h) (I —h)!
ey—e+h>0
1
_ ) en) T 5 - w) (1,m) = (0,0),
0 (1,n) # (0,0).

By the above formula, we can determine u; ,(z’,w’, 1) successively and it is a rational
function in A, whose poles are in {/; Hl.[:g)(tp(z’,/l+i— e.) = 0}.

We have introduced regions X'(ry,ry,r3) in (z',w’)-space and A(a,b) in J-space.
Let 0<rp<r<r3s <R and a,be R. Then they were defined by

(3.4) X'(ri,r2,m3) = {(Z, W) |wi| <, < |zi) <13 for 1 <i<d},
(3.5) A(a,b) = {24, RA < a,|34| < b}.

For our purpose, to estimate functions, the method of majorant functions is
available. Let A(x) =Y, 4,(x —x)" and B(x) =Y, B,(x — X)” be formal power series
of N-variables x centered at x = x. Then A(x) > 0 means 4, > 0 for all « and 4(x) «
B(x) means |4,| < B, for all x. We give elementary properties of majorant power series.

LemmAa 3.1.  Let 0(t) be a formal power series of one variable t centered at =0
such that 0(t) >0 and (r — 0)0(t) > 0. Then for the derivatives 0Y)(¢) = (d/di)’0(1),
j=0,1,..., we have

56 r—00Y (1) >0, Y1) > 09 (1),
3.6
=00V 1) < (' =170V for ¥ > 1

For the proof of [Lemma 3.1 we refer to [13]. Let 0(s) = 1/(r — ). Then 0V (1) =
LG+ 1)/(r—10)’"" for j>0. We have

LemmA 3.2. Suppose 0 <r < 1. Then

(m1) (n2)
(3.7) 0 741!([) < 0 nzl(l) for ny <

and if 0 <my<m, 0 <Ny <N and N' >0,
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0(n1N0+N’+m0) (I) e(mN-f—N’)

(38) (mN())' < (Wl(No + 1))mo (mN)' ‘

Proor. The first inequality is obvious. Since
I'(mNo+ N'+my+1) (mN)!
I'mN+ N'"+1) (mNp)!

- (mN)(mN —1)---(mNy+ 1)
~ mN+N')mN+N'"—1)---(mNy+ N'+my+1)

< (mNo +my) - - (mNy + 1) < (m(No + 1))™,

we have the second.

Now let us proceed to estimate u; ,(z’,w’,A). Let Z' = (£,2),...,Z)) be a point

(',
with [Z//| = (rn+1r3)/2 and ' = (r3 —1y)/3. Put = Zjd:l(zj — %) and A(zZ') <.z

B(z') means as formal power series of (z' —Zz’). Let d(4,4y) be the distance of 1 and
the set Ay (see [(3.2)). First we have from the location of the zeros of y,(z/,1 — e.)

/l

LemMA 3.3. Let a' < ay and by < b’ and (z',w') € X'(r1,r2,13).  Then the following
inequalities hold.

(1) d(A+i,40) <|A|+|ao+ 1| +i for i >0.

(2) There is a positive constant C such that

C 1
3.9 p(Z 4i—e) « _ .
( ) XP( ) o131 d(i—i—l,/lo)k r/ _[

(3) There is a positive constant C such that for ¢ A(—a’ —1,b")

N N
|/1|—|—\a0—|—1|—i—z) N+1
3.10 < NV

Proor. We have d(A+i, Ay) < |A+i—ap—1| < |A| + |ap+1| + i, which means (1).
Let 4;(z)(1 <i<k*) be roots of yp(z';4) =0 such that ay < Ri(z') < Ri(2)
< o < RA(2) <ar. Then yp(z,2) = b3(0,2) [T, (A — 4(2) and by yp(z/, 1) =
xp(z',—A—e,—1) there exists By > 0 such that

k*
(2 it s — ) = [ba(0, ) T 14+ 4i(z) + s+ 1
i=1

> Bod (A + s, 49)"

from which the estimate follows.

Let us show (3). First we note that Ay = A(—a’ —1,b") = A(—a’,b"). 1If i'¢
A(—a',b"), then d(1', Ag) > min{b’ — by,1}. So there is a constant By = Bi(b’) such
that (|A'| +1)/d(A', 49) < B;. Hence if A¢ A(—a’ —1,b") and i>1, we have A +i¢
A(=a',b") and |A+i|+1 < Bid(A+1i,49). So for A¢ A(—a’ —1,b")
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N N N A\ K
4] + |ao + 1] + i v YT AL+ a0 + 1] +i
3.11 <|B
(3.11) H( d(A+i,4) B IH A+ +1

i=1

We note the inequality,

N . N
Hw+|ao+1|+z - H|/1|+\a0+1|+z

for all .
A+ +1 a1 el foralliec

Hence we only have to show that there is a constant B such that ¢(s) < BY for all
s>0. Let s>2N. Then there is a constant B, such that for 1 <i <N

s+la+1+i s+la+1+N 1+ (ao+1]+N)/s
- < < <hBb
s—i+1 s—N+1 14+ (1 —=N)/s

and ¢(s) <BY. For N<s<2N we have [[Y,(s—i+1) =TI ,(s—i+1)=

[[.;(N—i+1)=N! and for 0<s<N there exists 0<B3<1 such that

[T (s =il + 1) = TLL 6 =i+ DI g = s+ 1) = TIL (s = i+ DT g (= [8)
= [sJI(N — [s])! = BYN!. Hence if 0 <s< 2N,

N . N :

IR (LR TR R VAR R R

< BY.
ls—i+1 — BYN! -

i-1
Thus we have the desired inequality.
Let 0(7) = (r—¢)~" with 0 < r < min{r’,1}, where +' = (r; —r,)/3. We have

PROPOSITION 3.4. Let a' < ay, b’ > by and (z',w") € X'(ry,r2,r3). Then there are
positive constants A and B such that for 1. ¢ A(—a’ — 1,b")

3.12) w2 w' ) « AB”" .
(312 ( )% (m(I+m)! (|A|+1) d(2, 40)* 11

for all I;ne N, where t = ij{:l(zj - ).

) (1) D(|A 4+ 1+n/y* 1) TF (12 Flaog+1]+1\©
! d(2+i, Ay)

Proor. We show the estimate by induction on N =/+n. We have ug o(z',w’, 1)
&zi_2 Ad(%, 49) ¥ 0(r) for some constant 4 = A(a’,b'). Assume the estimate (3.12)
holds for /+n < N. Tt follows from Lemmas 3.1 and B.2 that

aw (bog,h (Z/)e(m(l+nfex+e*fh)) (l))
(m(l+n—ey,+e.—h))!

0(m(l+n—ea+e*—h)+|a’\) (t)

ht1
~/<<-/C (m(l+n—ey,+e. —h))!
0 m(l+n)) (l)
o —h 1'“‘—.
”/<_<7,C (l+n—e,+e.—h+1) CHET)]

Hence
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)

(I~ h) 0 (ba (2" Ui hn-e,ve. (', W', 2))

e(m(l-i-n))(t)ﬂ
ABaneaJre*fh h+1
S S =

‘(l-i-n—e,x—l—e*—h—l—l)l“/'

QA+ I—ht(n—exte)/y +1) ”"ﬁ“(m +ag + 1] + i)k*
T2+ 1) d(, A9)* L d(+ i, 4p)
Q(M(Prn))(t)

<<A ABl—&-n—eﬁ-e*—h C1h+1

e CETRARARE

I[+n—e,+e,—h

T(A4+1+(n—e,+e)/y +1) A+ |ao + 1] + A\
) ke H d(A+i, A
L(|4] + 1) d(4, Ao) palt) (4 +1i,4p)

We have, by using (e, —e.)/y* = |o| — k*,

F+n+ DV A+ 1+ n+ D T(A + 1+ (n—ey+e)/7" +1)
<GUA+T+n)" (A +1+n+ D) KT +1+(n—ey+e)/y* +1)
S GA+T+m)  T(A+1+ (n—ex+e)/y* + o — k" +1)

<GUA+1+n " T(A+1+n/y*+1)

and by Lemmas and 3.3,

(3.13)

(A T+ n+ 110" (by y(2) )ty re, (2, W', 1))

(I=h)yp(z', A+ 1+n—e,)
« aghneenont 0" OL (2 4 L+ nfy* + )M (Lo, 2)
z/—5! (m(l + )T (|2 + 1) d (2, 49)* ’

where

d(2+1+n,A4) d(L+1i, Ay)

- ﬁ |/1|+|a0—.kl|+i "*.
LI\™ a0+ 1)

M(l,n,o, ) = <

i=1

Thus we have

ua(z,w' A) = Z

(=D G 14 n 4+ 1 100% (by (21— pnee, e (2!, W, 1))
(I=M)yp(z A+ 1+n+e,)

(o,1)
e,—e,+h>0

<

#=2 (m(l+n)ld (4, 40) T2+ 1)

k*
ABH=19n D) (N P(A + 14 n/y* + 1) (ﬁ 4] + lao + 1] + 1)

- N(l,n),
1 d(A+i,4) (4n)
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where N(I,n) =3 (5 B “te"1C"1. We may assume that C > 1 and B > 2C.
Then ey—e,+h>0

1 ey—e+h—1
N(my<C* Y (B/o)y o« < ) (5) <C

(o, ) (o, 1)
ey—e+h>0 ey—e,+h>0

Thus, by choosing B > C’, the estimate (3.12) holds for (/,n) with /4+n = N.
Now we give the proofs of Propositions 2.1 and 2.2 First let y* < +o0.

PrROOF OF ProposITION 2.1. Let a’' < ag, by <b', 2 ¢ A(—a’ —1,b") and 1" <r<
r'"=(r3; —r2)/3. Suppose Ejil lzi— % <r". Then |0 (1)/N!| < CM! for NeN.
It follows from (3) in that there exist constants 4 = A4(a’,b’) and B = B(b")
such that

(Al +1+n/y*+1)

o I+n
(3.14) (', W', )| < AB R

The above estimate holds for all ' = (Zy,...,Z;) with |Z;| = (r2+r3)/2. Therefore
there are rj and r§ with 5 < (r +r3)/2 <r} such that the estimate holds on
{z' = (z1,20,...,24) e C%; 1y < |z!| < ry for i=1,2,...,d}. By the formula I'(z+1) =
z['(z) and the Stirling’s formula, there is a constant Cp such that

2 +1+nfy+1) [ o LU+t =y + 1)
T+ 1) ‘( 1} (AT nfy =) T+ 1)

I+[n/y*]-1 . )
< Co( [T (a+i1+np —z'>)<w +nfy" = [nfy ",
i=0
Hence there are constants C; and C, such that
I+[n/y*]-1 . )
I (A +1+n/ =440/ = [nfy "0
i=0
CH NP+ nfy + 1) for |4 < I+ n/y",
cHl g el for |A| >1+n/y*

and

T(|A|+1+n/y"+1) < Cl+n/y*+1

£ I+n/y*
F(|/1|—{—1) = V1 (F(l—l—l’l/y + )_I_M‘ )

< G D+ AN (/4 D+ ).
Thus there are constants 4 = A(a’,b’) and B = B(b’) such that

(2 W', 2)| < AB™(D(1+ 1) + A" (F (/™ + 1) + [A]"7).
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PrROOF OF ProposiTION 2.2. We have by [Proposition 2.]|

o0 Ly g 1n/y*
Uiz' - w'. i < |ZO||C| nll/l
VE OIS D s i e )

<A§:Bl+n|Zo|l|C|n/y* - |i|1 - |i|n/y*
A5 r(l+1) L(nfy*+1))

Let |zo] <79 < B~' and |{| <y < B~7". The constant B = B(b') depends only on b'.
So there is a constant ¢ = ¢(b’) > 0 such that

U, w', 2,0 < Cexp(c(|zo] + [D)A))-

Secondly suppose y* = +oco0 and consider

(3.15) uiz',w' ) = ZF (z',w' A).

By repeating the preceding arguments, we have

T(|Al+1+1) 1(|z|+1ao+1|+i>"*

0" (1)
(316)  w(z\w',A) < AB' d(i+ i, Ay)

~2 (mD! T4l + 1) d(4, 40)* i1
and

B,F(M|+l+ 1)

(3.17) lu (2, w', A)| < 4 X(IE

and we can show Propositions 2.1 and for y* = +o0.

§4. Proof of Theorem 2.3.

In this section we give the proof of [Theorem 2.3. First we prepare lemmas.

o va(A)zhe
Lemma 4.1. Let V(z,4,() = ;1 T+ 1) (Z/,H_ 1)

functions in A defined on a domain A = C such that

where v ,(4)’s are

(4.1) 010 (A)] < AB™(I(1 4+ 1) + [A) (T (n/xc + 1) + [2]").

_1 . +oo Uln (/1) (l) 1 - N Un<ZOa/1)Cn/K
Let |z0| <ry < B~ and v,(z0,4) =, TU+1) Put Vy(20,4,0) = anoif(n/x—l— 0
and VI%,(ZO,/I,C) V(zo,4,¢) — (zo,i (). Let 0<d<dy<B™. Then there exist
constants ¢ = c¢(B) and A, = Al(do) such that if |{| > d,

[V (20,4, O)] < Ay exple(|zo] + d)|2]) d=N¢ M,

(42) ; A1 ex —N/i|p|(N+h) /K
% 1exp(e(|zo| +d)|A]) d/FC]
9,7V o, 2,0l < I'(hfx+1) ’

and if || < d,
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(V3 (20,4, O)] < Ay exp(e(|zo] + d)|2]) d =NV,

Ay exp(c(|zo| + d)[A]) d~V /g M
T(hjx+1) ’

A exp(e(|zo] + )| A)IE""
I'(h/k+1) ’

and there are constants ¢'(B, p,q) and A(dy, p,q) such that for || < d

(4.3) 0. Vi (20,2, 0)| <

|6gh/KV(zo,i,C)| <

(4.4) [(2000)" (1L0¢) (0, V (20,2, )| < Az exp(c’(|zo] + d)]2).

Proor. It holds that

[04(20, )| ; 2" - 12/
Tt 1)~ 8 (1 T+ 1)) (;BZ|ZO|1<1 T 1)))

n/k
: . ||
< A'exp(c|zo| |A])B (1 + Tk + 1)).

Let |{| >d. Then we have

N n/k
| : NN g (AT
Va0 < 4 explelzl 111 1 (1 I e 1)>

N
< A"exp(c|zol []) d V||V " (dV<B)"
n=0

N n/k
A
< A" exp(c|zo] [) d NI YRS (@ e By (1 n ’7)
; Tk +1)

d I'(n/kx+1)

< Ay exp(c(|zo| + d)|A]) d~N /< ||V,

Let |{| <d. Then

+00 n/k
2 | N
Vi, D] < A explelal ) 32 5K (1 T et 1))

+0 MH/K
<Al y) (N+1)/x Bn (n—N-1)/x 1 |
< A"exp(c|zof |4]) ] nZNH ] )

/ Z: (N+1)/k +oo y C (n—N-1)/x M’n/K
< A’ exp(clzo| [2) |2 S (@) QT
d WS d I'(n/k+1)

, ¢ (N+1)/x f y |i|l’l/lc
< A’ explelzo| 1A% @14
d Rl I'(n/k+1)

< Ay exp(c(|zo| + d)|A) d=N /< || NTE,
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We have
+ 00

(4.5) OV (20,0,0) =Y vulz0, NI D ((n + ) Jx + 1),
n=0

Hence we have for |{| > d

10,V ¥ (20, 2, 0)] < A" explc|zo |2])[¢] N/~

% N (n—N) /xc I'(n/k+1) 17|"*
nE—:oB . (F((n+h)/ic+1)+F<(n+h)/x+ 1))

< A/exp(C|Zo| |i|)|C|(N+h)/KzN:Bn|é|(n—N)/K 1 + |j‘|n/’€
- I'(h/k+1) — I'(n/kx+1)

< Ay exp(c(|zo| + d)|A|) d—N/K|C|(N+h)/K
N I'(h/k+1)

and for |{| <d

10,V 2 (20,2, 0)| < A" expl(c|zo| [ 2])|g| NI

+o0 Nk I 1 /ln/;c
< Y B W( wfetl) , M )

WS I'(n+h)/k+1) I'((n+h)/c+1)

- A’ exp(c|zo| |/1|)|C|(N+h+l)/K Ji Bn|C|(n—N—1)/x 14 |/1|n/x
- I'(h/kx+1) I'(n/x+1)

n=N+1

A exp(c(|zo] + d)|A])| ¢ N
= dN/<T(h/K + 1)

and similarly

Ay exp(e(|zo] + d)|A])|¢""

10,V (z0,2,0)| <

T(h/x+1)
We have
I [ #(n+h)/xc
(46) (ZOaO)p(KCag)q(ﬁgh/K V(ZO7 j'7 C)) = Z lp(n h h)ql)[’n(i)zoc

n,l:oF(H' DI((n+h)/k+1)

and by the same way as above

[(2000)" (kC0:) (0, V (20,4, 0)))

B LA HE N <l

= TU+DI((n+h)/rc+1)
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- IP(n+ h)"(C(1+ 1) + 2 (U (/i + 1) + 12]"")
oy I'l+O)r((n+h)/xk+1)

— P M'l - n q| ¢ (n+h)/x M|n/K
SA(;BZZ |Z°|l(1+r(l+1)>> (;B (1)l <1+F((n+h)/zc+1)

’ZO| llé‘(n+/1)/K

< Ay exp(c’(|zo] + d)|A]).

B Ul i Z[é/n/K
LemMA 4.2, Let V(z0,4,0) =07 F(IJ: 1()11(?’1/K+ 1)

4.1. Let 0<dy < B™ and e e Z and define for 0 < d < d

be the same as in Lemma

A~

d
(4.7) Va(zo, A) = Zaé_’c Jo exp(—{z,") V(zo, 4, () dC.

Suppose he Z with h>é, e N and 0 <0 <n/(2x). Let zg € {|z0| < ro;|argzo| < 0},

4.8)  Viu(d;zo,4) == (9 + A+ 1)z8V(z0,2)

d A
—z" JO exp(—(zg") (k0 + 9+ A+ 1) 0, "y (z9,2,0) dC

and L be a fixed positive integer. Then there are positive constants 0 < ko < 1, co which
are independent of d,0 and h and A' = A'(0,h) such that for 0 <[/ <L

(4.9) \Vin(d;z0,2)| < A'(1 + MDIeXp(—kodCOS(K0)|Z()|_K + co(|zo| + d)|A))-

ProOF. By replacing 1 —é by h, we may assume é=0. Let V3(z,4,{) and
V2 (z0,4,() be those in the proof of Lemma 4.1. We show (4.9) by induction on /.
We note

+00
| exp(=ga) el o) = o D) =0

Hence

Vo.n(d; 20, 2)

d

d
= o L exp(—Lz5™)V (20, 7, 0) d — =" JO exp(—Lz5)3 "V (20,4, 0) dC

I (z0,4) D(zo,7)

-

7 7

+00 K +oo
——A | el Goad ezt | eI R 0 e

d d
+ z{}KJ exp(—{zy") V5 (20,4, 0) dl — 7 J exp(~Lz,)0; """ Vi (20, 4,0 dL
0 0

(. J (. /

13 (Z(),;v) 14 (ZQ, ).)

We estimate I;(zp,4). Put B; = (d cosx@)l/ * Ar = A>(0,h) means various constants
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depending on 0 and %, and C means various absolute constants. We have from
4.1

—+0o0
11 (z0,4)| < Ald_N/K|zo|h_K exp(c(|zo| + d)|4]) L exp(—cos(zc@)\zol_KC)CN/" d¢

< 4> By exp(c(|z0] + d)|2])|z0) "N T (N /1 + 1),

By the same method we have |L(z,4) < 42B7" exp(c(|zol + d)|A])|zo) -
I'((N+h)/k+1)/T(h/k+1). As for I3(zp,2) and I4(zo,2) we have

d
30, )| < Ard N explelfzo + D]zl [ expl—cos(t)lzo "0 de
0

< A, BV 20| exp(c(|zo| + d)|A) (N /K + 1)

and |I4(z0, 4)| < 4B exp(c(|zo| + d)|A])|zo| " T (N + h) /x + 1)/ T (h/xc + 1).
Hence

M;

|Vo.n(d; 20, 2 Ii(zo, A

i=1

I'((N+h)/k+1)
I'(h/k+1)

N
Z
g 4A2\201h]3%\ explc(lzo] + d)12])

N
< 4ds|zo|" CM V|2 exp(e(|zol + d) )T (N /K + 1)

By
holds for all N e N. This implies
Jo.(d; 20, 2 N
(4.10) hV°’h< 70, 4) < 44,20 N
(Czo)" exp(c(|zo| + d)[4]) B

for all NeN. The left hand side of [4.I0] does not depend on N. Let
11+ N)* < Clz|/B; < e 'N-V/*, where recall B; = (dcosxf)'/*. Then there is
a constant 0 < k' < 1 such that

Clza\V
(4.11) (%) NNE <N = ! =HN) < Cexp(—k'd cos(k0)|zo| ™).
1

So it follows from (4.10) and (4.11) that there is a constant 4" = A’(6,h) such that

(4.12) |Vo.n(d; 20, 2)| < A" exp(—k'd cos(x0)|zo| ™ + c(|z0| + d)| 1))
and (4.9) holds for / =0. Suppose

(4.13) \Vi_in(d; 2o, 2)| < A'(1 + |A]) " exp(—k'd cos(kB)|zo] ™ + ¢’ (|z0] + d)|A)).
We have
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(424 1) 20 Valz0,2) = (34 A+ D)(3+ 4+ 1) 20 Vi(z0, 2)

d

= (3+1+ 1){20’“J

exp(—{zy") (kL + 3+ A+ 1) 710V (20, 2,0) d(}
0

+ (8 + A+ DV (d; 20, 2)

and

d

(8+i+1){ngJ

exp(—(z") (k0 + 9+ 4+ 1) 710V (20,4,0) dg“}
0

d
s JO exp(—Czg ) (8 + 4+ 1 — k) (kC0c + 8+ 2+ 1) 8V (20, 2,)

d
+ 2" J exp(—Lzg" ez “Llo; + 8+ A+ 1) SV (20, 0,0)
0

by integration by parts

d
_ oo JO exp(—Czg) (8 + 4+ 1 — k) (k0c + 8+ 2+ 1) 8V (20, 2,0) e

d
ot J exp(—Czy WO L(C0: + 9+ A+ 1) 0TV (20, 1,0)) e
0
— rezg* d exp(—dzy ") { (kG0 + 9+ 2+ 1)V (20, 2,0}y
d
- J exp(~ Lz ) (KOs + 9+ 4+ 1)'6;" V(20,4 0)
0

- KZaKdeXp(_dZJK){(KCaC +3+A+ 1>l—lagh/’f V(ZO7 j“7 C)Hézd
Hence
(4.14)  Viu(d;20,2) = (9 + A+ D)V 1.4(d; 20, 2)

— k23" d exp(—dzg " ){ (kL0 + 9+ A+ 1) 0V (20,2, O Yy

It follows from (4.4) in [Lemma 4.1 that
Ikzg" d exp(—dzg" ) {(kC0; + 9+ 2+ 1) 0,V (20,4, 0}y
< A'(1+[2])" exp(—k'd cos(k0) |zo| ™ + ¢'(|z0| + d)|1])
and from the inductive hypothesis (4.13) and Cauchy’s integral formula that
(94 2+ 1) Vi1 a(dsz0,2)] < A'(1+ |4)) exp(—k” d cos(10) |z0] ™ + ¢"(|z0] + )| ])

for 0 < k” <k’ and ¢” > ¢’. Thus there are positive constants 0 < ky < k” and ¢y > ¢”
such that (4.9) holds for finite many / (0 </<L).
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Proor oF THEOREM 2.3. Recall

0

(4.15) Ks(z,w', 2) = 2,77 J exp(—(z,” ) U(z,w', 4,0) dC.
0

We note by [Proposition 2.2] that

(4.16) |U(z,w',2,0)| < Cexp(c(|zo] + [CDIA),

from which the statements (1) and (2) in follow if ¢ < ¢o. We proceed to
show (3). Let us calculate P(z,0)(z{Ks(z,w’,4)). We have

'P(z, 8)(2{}1{;(2, w' ) = zé“P(/l; z,0)Ks(z,w', 2),

where

(4.17) P(2z,0) = > (=)@ + 2+ 17028 (67 ba(2)).

lo| <m

We can write

(84 2+ 172807 (bu(2) Ks(z W, 2))

o . L
=z J exp(—Lzy” ) (p*C0; + 9+ A+ 1), 0% (by(2) Uz, w', 2, 0)) dC
0

+ K (2w, 2).

It follows from [Lemma 4.2 by putting é =e,, k =9*, d =90, | =0y, h=e¢, and
V(z0,2,0) = 0% (by(z)U(z,w', 4,0)), that if |argzo| < 0 < n/2y*,

K, (20", )] < A(1 + [2])™ exp(—kod(cos y0)|zo] 7 + co(|z0] +0)|2])

for a constant 4 = A(f). Therefore we have
(4.18)  'P(z,0)(z{Ks(z,w', A)) = z{'P(2; 2,0)Ks(z, W', A)

5

=5 | expl-t ) P2 0 UG 2.0 de
0
+ 2 ZK(;IL(Z, w', 4).
Since ‘2z, 2,(,0.,0)U(z,w', 2,0) = (2mi) ' T[{L, (= wy) " and 57" [ exp(—(zy" ) dl =
1 —exp(—dz,” ), we have
z

(i) TTj (2 = wy)

where Kt = (37, K, (z,w',2) — exp(—dz, ). Tt follows from the estimates of K,
given above that if |argzo| < 6 < n/2y*, there is a constant 4 = A() such that

4.19 z2EP(hsz, 0)Ks(z,w', ) = + z/KR(z,w', 1),
0 08
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(4.20) |K5R(z, w' A < A(1 + |A])™ exp(—kod(cos y*0)|zo|_y* + ¢o(|z0] + 9)|A])-
Thus we complete the proof of [Theorem 2.3.
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