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Abstract. We classify locally compact, geodesically complete, 2-dimensional

Hadamard spaces whose Tits ideal boundaries have the minimal diameter p. Further-

more, we classify the universal covering spaces of certain 2-dimensional nonpositively

curved spaces, which is an extension of the result obtained in the polyhedral case by

W. Ballmann, M. Brin, and S. BarreÂ.

§1. Introduction.

In Riemannian geometry, ever since the work of [BGS ], many results

regarding the asymptotic rigidity of Hadamard manifolds have been obtained. In

general, the problem is that of obtaining the rigid properties of the global structures of

certain Hadamard manifolds from information about their ideal boundaries.

Since Alexandrov's original study, the various properties of general metric spaces

with nonpositive curvature have been investigated (cf. [Al ], [ABN ], [Ba1], [Ba2]). In

particular, nonpositively curved 2-polyhedra have been studied in detail (cf. [BaBr],

[Bar]). In [BaBr], W. Ballmann and M. Brin obtain the following result:

Theorem 1 ([BaBr], Theorem 6.5). Let �X ;G� be a compact 2-dimensional orbi-

hedron without boundary and of nonpositive curvature. Assume that all links of X have

diameter p, that all faces of X are Euclidean triangles, and that all edges are geodesics.

Then X is either the product of two trees or a thick Euclidean building of dimension 2 of

type A2, B2, or G2.

Also, this result has been obtained later and independently by S. BarreÂ in [Bar].

According to [BaBr], this result is also related to the (unpublished) result of B. Kleiner

(1995): if every geodesic of an n-dimensional complete, simply connected space of X of

nonpositive curvature is contained in an n-¯at, then X is a Euclidean building or a

product of Euclidean buildings.

The main purpose of this paper is to study the asymptotic rigidity of more general

Hadamard spaces. In such general metric spaces, we must be careful to consider the

possibility of bifurcation of geodesics essentially di¨erent from those in the polyhedron

case. Furthermore, it was known by B. Kleiner that there is an example of a locally

compact, geodesically complete Hadamard space which admits no triangulation. We

will construct such an example in the next section (Example 2.7). This construction

yields precise information concerning the ideal boundary.
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A nonpositively curved space is a complete geodesic space with nonpositive curvature

in the sense of Alexandrov. A Hadamard space is a simply connected nonpositively

curved space. A locally compact nonpositively curved 2-space (respectively Hadamard

2-space) is a locally compact nonpositively curved space (respectively Hadamard space)

of dimH X � 2, where dimH is the Hausdor¨ dimension. We say that a nonpositively

curved space X is geodesically complete if an arbitrary geodesic in X can be extended

to a line. The asymptotic classes of rays in a Hadamard space X de®ne the ideal

boundary X �y� with the Tits metric Td, as in the smooth Riemannian case.

We consider the class of locally compact, geodesically complete Hadamard 2-spaces

whose ideal boundaries have the minimal diameter p with respect to the Tits metric.

Example 1. The following are examples whose ideal boundaries possess the

minimal diameter p.

(a) The product of two trees with interior metrics.

(b) A thick Euclidean building of dimension 2 of type A2;B2, or G2. (see [Bro1,

Chapter 4], [Bro2].)

On the other hand, there are many examples in which the ideal boundary has

a diameter greater than p. In Example 2.7, we construct an example of a locally

compact, geodesically complete Hadamard 2-space whose ideal boundary has diameter

p� e for any e > 0.

One of the main results of this paper is the following:

Theorem A. Let X be a locally compact, geodesically complete Hadamard 2-space

such that the diameter of �X�y�;Td� is equal to p. Then X is isometric to either the

product of two trees, the Euclidean cone over �X�y�;Td�, or a thick Euclidean building of

dimension 2 of type A2, B2, or G2.

We now introduce a concept corresponding to the rank 2 condition that appears in

[Ba2] and [Bar]. We say that a locally compact, geodesically complete nonpositively

curved 2-space X satis®es the Local Flat ConditionÐor brie¯y the LFCÐif X satis®es

the following:

(LFC) For any x A X there is a positive number s � s�x� > 0 such that for any unit

speed geodesic sx : R ! X with sx�0� � x there is a totally geodesic isometric

imbedding j : D��s� ! X satisfying j�t1; 0� � sx�t1� for t1 A �ÿs; s�.

Here D��s� :� f�t1; t2�jt2 V 0; t21 � t22 < s2g is a local half disk with the standard ¯at

metric.

Example 2. In the following, each X satis®es the LFC. Let ~X denote the

universal covering space of X.

(a) We consider two ¯at rectangles X1 and X2 isometric to each other. Let

ei; i � 1; 2, be sides of Xi such that e1 and e2 have the same length. We denote by X 0
i

the torus constructed by gluing the sides of Xi in the usual way. We de®ne X :�

X 0
16e1�e2

X 0
2, identifying e1 and e2 isometrically. Then ~X is isometric to the product of

a tree and a line.

(b) Let X be the product of two S1
4S1, where S1

4S1 is the one point union of

two circles with an interior metric. Then ~X is the product of two trees.
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The other main result of this paper is an extension of Theorem 1:

Theorem B. Let X be a locally compact, geodesically complete nonpositively curved

2-space satisfying the LFC. Then the universal covering space ~X of X is isometric to

either the product of two trees, the Euclidean cone over � ~X�y�;Td�, or a thick Euclidean

building of dimension 2 of type A2, B2, or G2.

The basic ideas of the proof of the main results are as follows: Let X be as in

Theorem A. Then X satis®es the LFC. First, for any x A X , we construct a local ¯at

(whole) disk around x containing a given geodesic through x. Then, a neighborhood of

x is the union of local ¯at disks. In order to understand how these ¯at disks meet each

other, we observe the following assertion ���, which is a key to the proof of Theorem A.

��� For any x A X and each direction at x there is a positive number r > 0 such

that the geodesics emanating from x directed by that direction coincide within

distance r from x. Moreover, such a positive number r > 0 can be chosen

independently of the choice of the directions at x.

The existence of local ¯at disks and ��� enable us to obtain a global ¯at plane

containing a given line. Also, we observe that, for any singular point x and an

arbitrary geodesic sx passing through x which is directed by two vertices of the space of

directions at x, every point on sx is also a singular point. By using the local properties

of X, we can determine the global structure of X. In this way, we obtain Theorem A.

Also, we obtain that the diameter of � ~X�y�;Td� is equal to p. Then, by applying

Theorem A, we conclude Theorem B. Several ideas in our approach are inspired by

arguments in [BaBr] and [Bar].

This paper is organized as follows: After presenting the basic concepts and

properties of Hadamard spaces in Section 2, we discuss splitting theorems for certain

Hadamard spaces, which are known in the smooth Riemannian case ([BGS ], [Oh]) in

Section 3. In Section 4, we discuss the local properties of nonpositively curved 2-spaces

with the LFC. In Section 5, we construct a ¯at plane in a Hadamard 2-space with the

LFC. We prove Theorems A and B in Section 6.

I would like to express my gratitude to Professor Takao Yamaguchi for his valuable

advice and constant encouragement. I am also grateful to Professors Katsuhiro

Shiohama and Takashi Shioya for their valuable comments.

§2. Preliminaries.

Throughout this paper we use Landau's symbol in the following sense: For a real-

valued function f : �0;y� ! R, we write f �t� � o�t� if limt!0 f �t�=t � 0. Also, in a

metric space �X ; d�, we denote by B�x; r� (respectively B�x; r�) the open (respectively

closed) metric ball centered at x A X with radius r > 0.

In this section we discuss some concepts and basic facts (mainly stated in [ABN ],

[Ba2], [Ot ], and [OT ]) which will be used in the following sections.

2.1. Metric spaces with curvature bounded above.

Let �X ; d� be a metric space. For an interval I, a curve s : I ! X is a geodesic if

there is a cV 0, called the speed of s, such that any t A I has a neighborhood JH I with

d�s�t1�; s�t2�� � cjt1 ÿ t2j for all t1; t2 A J. If this equality holds for all t1; t2 A I , then s
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is called a minimizing geodesic. Furthermore, for a minimizing geodesic s, if I � R,

then s is called a line, and if I � �0;y�, then s is called a ray. In this paper, we

assume that all geodesics have unit speed c � 1. X is a geodesic space if for any two

points in X there is a minimizing geodesic joining them.

From now on, we assume that X is a complete geodesic space. A (geodesic)

triangle h in X consists of three geodesics in X whose endpoints match in the usual

way. For some k A R, we denote by M 2�k� the model surface of constant Gaussian

curvature k. A comparison triangle h for hHX is a triangle in M 2�k� whose sides

have the same lengths as those of h. We say that a triangle h in X is CAT�k� if the

lengths of the sides of h satisfy the triangle inequality, and if the perimeter of h is less

than 2p=
���

k
p

in the case k > 0, and if d�x; y�U jx; yjk for every two points x; y in the

sides of h and the corresponding points x; y in h, where jÿ;ÿjk is the standard metric

on M 2�k�. A subset U HX is convex if each geodesic joining y and z is contained in U

for all y; z A U . A convex open subset U HX is a CAT�k�-domain if for any x; y A U

there is a minimizing geodesic sxy : �0; d�x; y�� ! U joining x and y, and if all triangles

in U are CAT�k�.
We say that X has curvature bounded above by k if there is a k A R so that every

point x A X has an open neighborhood Ux such that any triangle composed of three

points in Ux is CAT�k�. Note that if X has curvature bounded above by k, then for

any x A X there is a CAT�k�-domain U of x; in particular, for all y; z A U there is a

unique minimizing geodesic syz in U joining y and z, and syz depends continuously on y

and z in U. In U, we denote by h�x; y; z� the triangle with vertices x; y; z A U .

Let U HX be a CAT�k�-domain, and let s1; s2 : �0; e� ! U be geodesics in U

emanating from the same point x � si�0� A U for e > 0. The angle ex�s1; s2� (or

ex�s1�s0�; s2�t0�� for some s0; t0 A �0; e�) at x between s1 and s2 (respectively s1�s0� and

s2�t0�) is de®ned as lims; t!0 yk�s1�s�; s2�t��, where yk�s1�s�; s2�t�� is the corresponding

angle at x in the comparison triangle in M 2�k� for h�x; s1�s�; s2�t��. We have the

triangle inequality of angles and the formula

cos�ex�s1; s2�� � lim
s; t!0

s2 � t2 ÿ d 2�s1�s�; s2�t��
2st

:

Also, we have the claim concerning the (semi)continuity of angles:

lim sup
n!y

exn�yn; zn�Uex�y; z� � lim
n!y

ex�yn; zn�

for xn ! x, yn ! y, and zn ! z as n ! y with x A U and y; z A Unfxg. Note that

for a triangle hHU the angle at an arbitrary vertex of h is not greater than the

corresponding angle in h.

From this point on, we assume that X is locally compact and geodesically complete.

For x; y; z A U , two minimizing geodesics sxy and sxz extending from x to y and

from x to z, respectively, are called equivalent if and only if ex�sxy; sxz� � 0. Then we

denote by vxy (or brie¯y vy) the equivalence class representing sxy. De®ne Sx :�
fvxyjy A Xnfxgg. Then �Sx;ex� is a metric space. The space of directions at x A X is

the interior metric space �Sx; rx�, where rx is the interior metric induced from ex. In

general, �Sx; rx� is not connected. The tangent cone at x A X is the Euclidean cone over
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�Sx; rx� and is denoted by �Sx; rx� � �0;y�=
@
. Note that each connected component of

�Sx; rx� is a compact, geodesically complete geodesic space with curvature bounded

above by 1, and that the tangent cone at x is a locally compact, geodesically complete

geodesic space with curvature bounded above by 0. We also remark that, for any

x A U , there is a Lipschitz map

X IU C y 7! �vxy; d�x; y�� A Sx � �0;y�=
@

(where its image of x is the vertex of the cone).

Lemma 2.1. If ex�sxu; sxv� < p, where sxu and sxv are geodesics extending from x

directed by u; v A Sx, thenex�sxu; sxv� � rx�u; v�. Moreover, if rx�u; v� < p, then there is

a unique minimizing geodesic in Sx joining u and v; in other words, Sx has an injectivity

radius p.

For a point x A X and a positive number d > 0, we say that y A X is a d-branch

point of x if the diameter of the subset of Sy whose points are distance p from vyx A Sy

with respect to ey is not smaller than d. The following two lemmas are very useful in

the investigation of the local structure of X. For the sake of readers' convenience, we

give the proofs for them.

Lemma 2.2 ([OT ]). Fix x A X and d > 0. No sequence �yn� of d-branch points of x

converges to x.

Proof. For the simplicity, we discuss the argument below in a CAT�0�-domain.

Suppose that there is a sequence �yn� of d-branch points of x with yn ! x as n ! y.

Set tn :� d�x; yn�. Since X is locally compact, if necessary, taking a suitable subse-

quence, we can take zn and wn such that

(1) zn and wn converge to z0 and w0, respectively.

(2) d�x; zn� � d�x; yn� � d�yn; zn� � r and d�x;wn� � d�x; yn� � d�yn;wn� � r for

some r > 0.

(3) eyn�zn;wn� > d=2.

For any e > 0, consider zn and wn satisfying d�zn; z0�; d�wn;w0� < e for large n.

Let z 00 (respectively w 0
0) be the point on the geodesic joining x and z0 (respectively

joining x and w0) with d�x; z 00� � tn (respectively d�x;w 0
0� � tn). Now, ex�z

0
0;w

0
0�V

d=2. By comparison geometry, we obtain the following inequalities: d�z 00;w
0
0�=tn V

�������������������������������

2�1ÿ cos�d=2��
p

and d�yn; z
0
0�; d�yn;w

0
0� < tne=r. These inequalities yield a contra-

diction. r

Lemma 2.3 ([OT]). Let U be a CAT�k�-domain. Choose a point z lying on the

minimizing geodesic joining x and y such that z is not a d-branch point of x. Let w A U

be a point with 0 <ez�x;w� < p. Then we have

pUez�x;w� �ez�w; y� < p� d:

Proof. Let �wn� be a sequence of points on the geodesic joining z and w with

wn ! z as n ! y. And let yn be a point such that wn lies on the geodesic extending

from x to yn and d�x; yn� � d�x; y�. We assume that yn converges to some point y 0 for

a suitable subsequence. Now, limn!y�ez�x;w� �ez�w; yn��U p. Since z is not a
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d-branch point of x,ez�w; y� <ez�w; y
0� � d. Therefore, we obtainez�x;w� �ez�w; y�

< p� d. r

The following theorem, given in [Ot ] and [OT], is important for observing the

structure of a metric space with curvature bounded above.

Theorem 2.4 ([Ot ], Theorem 3.2, and [OT]). Let X be a locally compact, geo-

desically complete geodesic space with curvature bounded above. Then for any relatively

compact open set O of X there is an n A N such that 0 < H
n�O� < y, where H

n�ÿ� is

the n-dimensional Hausdor¨ measure.

If X is a locally compact, geodesically complete geodesic space of dimH X � 2 with

curvature bounded above, then we de®ne

SX :� fx A X jSx is isometric to neither S1�1� nor S0�1�g:

We call the points in SX singular points and the points in XnSX regular points. We

note that no regular point is a d-branch point of an arbitrary x A X for any d > 0.

Also, note that dimH Sx U 1 for any x A X in this case.

2.2. Hadamard spaces and their ideal boundaries.

Let �X ; d� be a Hadamard space; that is, a simply connected nonpositively curved

space. We have the Hadamard-Cartan theorem as in the smooth Riemannian case.

Theorem 2.5 (Hadamard-Cartan theorem) ([Gr]). Assume that X is a Hadamard

space. Then for any x; y A X there is a unique minimizing geodesic sxy : �0; d�x; y�� ! X

joining x and y.

Theorem 2.5 and the curvature condition reveal many properties of X.

Let h be a triangle in X. Then the sum of the three angles of h is not greater

than p. This sum is identically p if and only if h is ¯at; that is, if and only if h

bounds a convex region in X isometric to the triangular region bounded by h in the

¯at plane. Also, let s1; s2 : I ! X be two geodesics. Then d�s1�t�; s2�t�� is convex in

t A I . From the convexity of the distance function on X, we can de®ne the projection

map prC onto a closed convex subset CHX by requiring prC�x� to be the closest point

to x in C. This is a Lipschitz map with Lipschitz constant 1.

Two rays s1; s2 : �0;y� ! X are called asymptotic if d�s1�t�; s2�t�� is uniformly

bounded in t. This yields an equivalence relation on the set of rays in X. We denote

by X�y� the set of all asymptotic equivalence classes of rays in X. If s is a ray

belonging to x A X�y�, we write s�y� � x and say that s is a ray from s�0� to x.

Note that for any x A X and x A X �y� there is a unique ray sxx : �0;y� ! X from x

to x.

Next we de®ne the interior metric on X �y�. De®nee�x; h� :� supx AXex�x; h� for

x; h A X�y�. Then e is a metric on X �y�. The Tits metric on X �y�, denoted by

Td�ÿ;ÿ�, is the interior metric induced from e. Of course, Td�x; h�Ve�x; h� for any

x; h A X�y�.

The following statement is often useful for considering the geometry of X �y�.
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Theorem 2.6 ([Ba2], Theorem II.4.11). Assume that X is a locally compact Ha-

damard space. Then each connected component is a complete geodesic space with

curvature bounded above by 1. Furthermore, for x; h A X�y� the following hold:

(i) If there is no geodesic in X joining x and h, then Td�x; h� �e�x; h�U p.

(ii) If e�x; h� < p, then there is no geodesic in X joining x and h and there is a

unique minimizing geodesic in �X �y�;Td� joining x and h; in particular, any triangle in

�X �y�;Td� of perimeter < 2p is CAT�1�.

(iii) If there is a geodesic s in X joining x and h, then Td�x; h�V p, and equality

holds if and only if s bounds a ¯at half plane.

Example 2.7. We now construct an example of a Hadamard space which admits

no triangulation. This construction is essentially based on an idea of B. Kleiner.

For given e A �0; p�, we prepare a sequence �an� of positive numbers with
P

y

n�1�pÿ an� < e. Let �ln� be a sequence of positive numbers with
P

y

n�1 ln < y.

We ®rst construct a region C in R
2. Set x0 :� �0; 0�. Let h1 :� h1�x0; p1; x1�H

f�x; y�jxV 0; yV 0g be the unique equilateral triangle satisfying the following:

(1) The side joining x0 and x1 lies on the x-axis.

(2) jx0; p1j � jp1; x1j � l1.

(3) ep1�x0; x1� � a1.

We denote by c1 the broken line segment joining x0 and x1 through p1. Similarly, let

h2 :� h2�x1; p2; x2�H f�x; y�jxV 0; yV 0g be that equilateral triangle such that the

side joining x1 and x2 lies on the x-axis, jx1; p2j � jp2; x2j � l2, and ep2�x1; x2� � a2.

We denote by c2 the broken line segment joining x1 and x2 through p2. By continuing

this procedure inductively, we obtain the sequence of equilateral triangles hn :�

hn�xnÿ1; pn; xn�H f�x; y�jxV 0; yV 0g such that the side joining xnÿ1 and xn lies on

the x-axis, jxnÿ1; pnj � jpn; xnj � ln, andepn�xnÿ1; xn� � an. We denote by cn the broken

line segment joining xnÿ1 and xn through pn. De®ne x� :� limn!y xn. In this way, we

obtain a curve c as the concatenation 6y

n�1
cn extending from x0 to x�. Let c 0 be the

curve of the re¯ection of c centered on the x-axis. We denote by C the region

surrounded by c and c 0. And let s be the ray from x� to ��y; 0� and g the ray from x0
to �ÿy; 0�.

Next, we construct a region R̂ in a second R
2, distinct from that considered

above. First we set x̂0 :� �0; 0� and p̂1 :� �0; l1�. Then, let p̂2 be the point situated at

a distance l1 � l2 from p̂1 such that the two components of the vector
��!
p̂1p̂2 are positive

numbers, and that the angle â1 between
��!
p̂1p̂2 and the direction parallel to the positive y-

axis at p̂1 is equal to pÿ a1. We denote by x̂1 the point on the line segment joining p̂1
and p̂2 situated at a distance l1 from p̂1. Let p̂3 be the point situated at a distance

l2 � l3 from p̂2 such that the two components of the vector
��!
p̂2p̂3 are positive numbers,

and that the angle â2 between
��!
p̂2p̂3 and the direction parallel to the positive y-axis at p̂2

is equal to
P2

n�1�pÿ an�. We denote by x̂2 the point on the line segment joining p̂2
and p̂3 situated at a distance l2 from p̂2. By continuing this procedure inductively,

we obtain the points x̂0; p̂1; x̂1; p̂2; x̂2; . . . ; p̂n; x̂n; . . . : Now, let ĉn be the broken line

segment joining x̂nÿ1 and x̂n through p̂n. Note that âm �
Pm

n�1�pÿ an� and jx̂mÿ1; p̂mj �

jp̂m; x̂mj � lm. Then de®ne x̂� :� limn!y x̂n. In this way, we have the curve ĉ as the

concatenation 6y

n�1
ĉn extending from x̂0 to x̂�. Next, let ĝ be the ray from x̂0 to
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�0;ÿy� and ŝ the ray in f�x; y�jx > 0; y > 0g from x̂� such that the angle at x̂� between

ŝ and the direction parallel to the positive y-axis is equal to
Py

n�1�pÿ an�. We denote

by R̂ the region spanned by the concatenation ĝU ĉU ŝ containing f�0; y�jyV 0g.
We prepare such C0 :� g��0;y��UC U s��0;y�� and R̂i, 1U iU 4, spanned by ĝi,

ĉi, and ŝi. Now, we obtain the quotient space X of the disjoint union of C0; R̂1; R̂2; R̂3,

and R̂4, where the identi®cation is made by the relations ĉ1 � c � ĉ2, ĉ3 � c 0 � ĉ4, g � ĝi,

and s � ŝi, 1U iU 4. Then �X ; d� is a Hadamard space, where d is the interior metric

induced from the Euclidean structure of C and Ri. Of course, there is no triangulation

around x�. Furthermore, note that the diameter of X�y� is equal to p� e.

2.3. Graphs and Euclidean buildings.

In this paper, a graph G is a 1-simplicial complex with an interior metric jÿ;ÿjG.
We denote by V�G� the vertex set of G and by E�G� the edge set of G.

Next we introduce the following elementary concept for a complete geodesic space

�X ; d� with curvature bounded above by k.

Definition 2.8 (degenerate triangle). We say that a triangle h � h�x; y; z�HX

of perimeter < 2p=
���

k
p

is degenerate if h � h�x; y; z� satis®es the following: there is a

point w on the geodesic joining y and z such that d�x; y� � d�x;w� � d�w; y� and d�x; z�
� d�x;w� � d�w; z�.

This de®nition is independent of the con®guration of x; y, and z.

Lemma 2.9. Let X be a locally compact, geodesically complete geodesic space of

dimH X � 1 with curvature bounded above. Then X has the structure of a graph.

Proof. We discuss the argument below in a CAT�k�-domain U. First, note that

dimH Sx � 0 for any x A X . Hence, ex�y; z� � 0 or p for arbitrary distinct points

x; y; z A X .

To prove that any triangle h�x; y; z� of perimeter <2p=
���

k
p

is degenerate, it

su½ces to consider the case in which ex�y; z� �ey�z; x� �ez�x; y� � 0 for some

x; y; z A U . Let ŷ be the closest point to y on the geodesic joining x and z. Note that

ŷ0 x and ŷ0 z. Then eŷ�x; y� �eŷ�y; z� � p. This implies that h�x; y; z� is de-

generate, in particular, ŷ is a p-branch point of x; y, and z.

Here, we denote by V�X � the set of all p-branch points in X. By Lemma 2.2, for

any y A V�X �, B�y; r� contains no p-branch point of y for some r > 0. This implies

that X has the structure of a graph possessing the vertex set V�X �. r

Corollary 2.10. Let X be a locally compact, geodesically complete geodesic space

with curvature bounded above such that, for given x A X , dimH Ox � 2 for any neigh-

borhood Ox of x. Then each connected component of Sx has the structure of a graph.

The following lemma appears in [BaBr] as a characterization of graphs with certain

properties.

Lemma 2.11 ([BaBr], Lemma 6.1). Let G � �V�G�;E�G�� be a connected graph

such that the valencies of all vertices are at least 3, �G; jÿ;ÿjG� has diameter p, and the

injectivity radius of �G; jÿ;ÿjG� is equal to p (that is, for any x; h A G with jx; hjG < p
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there is a unique minimizing geodesic in G joining x and h). Then G satis®es the

following:

(i) Every geodesic in G of lengthU p is contained in a closed geodesic of length 2p.

(ii) If x A V�G�, then h A V�G� for any h A G with jx; hjG � p.

(iii) There is a positive integer k�G�V 1 such that every edge has the same length

p=k�G�.

(iv) If x; h B V�G� with jx; hjG � p, then there is a unique closed geodesic of length

2p containing x and h.

(v) If x; h A V�G� with jx; hjG � p and e1; e2 A E�G� are adjacent to h, then there is

a unique closed geodesic of length 2p containing x; h; e1, and e2.

Note that, if k�G�U 2, then G is a complete bipartive graph (if necessary, adding

suitable vertices).

We brie¯y mention the concept of Euclidean buildings. We refer to [Bro1] and

[Bro2] as references treating Euclidean buildings and their fundamental structures from a

geometric point of view. A (Tits) building is a simplicial complex B which is the union

of subcomplexes (called apartments) such that the following hold:

(B0) Each apartment is a Coxeter complex.

(B1) For any two simplices A and A 0 in B there is an apartment containing both

of them.

(B2) For any two simplices A, and A 0 in B and apartments F and F 0 containing

both A and A 0 there is an isomorphism F ! F 0 ®xing A and A 0 pointwise.

Note that two apartments are isomorphic; in particular, all apartments have the same

dimension. A chamber is a simplex of maximal dimension. Indeed we can replaced

(B2) by the following:

(B2 0) if arbitrary apartments F, and F 0 have a common chamber C, then there is

an isomorphism F ! F 0 ®xing the intersection of F and F 0 pointwise.

A chamber complex is thick if each simplex of codimension 1 is adjacent to at least three

chambers.

A building E is called a Euclidean building if E is a building and its apartments

are Euclidean Coxeter complexes. A Euclidean building E has a canonical piecewise

smooth metric dE associated with its Euclidean structure; in particular, �E; dE� is a

Hadamard space. Note that a subset F of E is an apartment if and only if F is convex

and isometric to R
2 with the standard ¯at metric. A Euclidean building of dimension

2 has type A2 (respectively B2 and G2) if the chambers have angles �p=3; p=3; p=3�

(respectively �p=2; p=4; p=4� and �p=2; p=3; p=6�).

§3. Splitting theorems for Hadamard spaces.

As shown in [BGS] and [Oh], splitting theorems hold for Hadamard manifolds

satisfying certain conditions. In this section, we will extend these results to more

general Hadamard spaces. Throughout this section, we assume that �X ; d� is a locally

compact, geodesically complete Hadamard space.

We say that a closed convex subset AHX is geodesically complete if any geodesic

in A can be extended to a line in A.
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Definition 3.1. We say that two lines s1; s2 : R ! X are parallel if d�s1�t�; s2�t��

is uniformly bounded in t A R, and that two closed, convex, geodesically complete

subsets A1;A2 HX are parallel if Hd�A1;A2� < y, where Hd�ÿ;ÿ� is the Hausdor¨

distance in X.

Note that, if two lines s1 and s2 are parallel, then s1 and s2 bound a ¯at strip

([Ba2]).

The next lemma has been proved in the smooth Riemannian case ([BGS]).

Since we can prove the next lemma by using the same argument as that appearing in

[BGS], we omit the proof.

Lemma 3.2 ([BGS]). Let Y1;Y2 HX be closed, convex, geodesically complete

subsets which are parallel. Set a :� Hd�Y1;Y2� < �y. Then there is an isometric

imbedding j : Y1 � �0; a� ! X such that j�Y1 � f0g� � Y1 and j�Y1 � fag� � Y2; in par-

ticular, j�Y1 � �0; a�� is convex.

The next lemma has also been proved for Hadamard manifolds in [BGS]. When

we prove our lemma, we need to modify the argument in [BGS].

Lemma 3.3. Let Y HX be a closed, convex, geodesically complete subset and PY

the union of all closed, convex, geodesically complete subsets parallel to Y. Then PY is

isometric to Y �N, where N is a closed, convex subset of X.

Proof. Set PY :� 6
l AL

Yl, where Yl is a closed, convex, geodesically complete

subset parallel to Y. Note that PY is closed and convex by Lemma 3.2.

Consider x A Yx HPY and Y1;Y2 HPY . Let pri be the projection map from PY

onto Yi. For some x 0 A Yx there are lines s in Yx through x and x 0 and si in Yi

through pri�x� and pri�x
0�. Note that s; s1, and s2 are parallel to each other. Set

s�0� � x and si�0� � pri�x�. Since

d�s2�Gt�; pr1�x�� ÿ tU d s2�Gt�; s G
t

2

� �� �

ÿ
t

2
� d s G

t

2

� �

; pr1�x�

� �

ÿ
t

2
;

and s and si bound a ¯at strip, we obtain

lim sup
t!y

d�s2�t�; pr1�x�� ÿ tU 0 and lim sup
t!y

d�s2�ÿt�; pr1�x�� ÿ tU 0:

Hence in the inequality

0U d�s2�ÿt�; pr1�x�� � d�pr1�x�; s2�t�� ÿ d�s2�ÿt�; s2�t��;

the right-hand side tends to 0 as t ! y. Since s1 and s2 bound a ¯at strip and since

this argument is independent of the choice of x 0 A Yx, it follows that pr2�x� is the closest

point to pr1�x�. Therefore pr2�x
0� � pr2 � pr1�x

0�, and similarly we have pr1�x
0� �

pr1 � pr2�x
0� for any x 0 A Yx.

For given x A Y , de®ne Nx :� fprl�x�jl A Lg, where prl is the projection map onto

Yl. We de®ne the map F from Y �Nx to PY as F�y; prl�x�� � prl�y�. The sur-

jectivity of F is clear from Lemma 3.2. Also, it follows from the above argument that

F is an isometry. Moreover, because PY is closed and convex, it is easily seen that Nx

is also closed and convex. This completes the proof of Lemma 3.3. r
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In the smooth case, the next proposition has been proved in [Oh].

Proposition 3.4. Assume that X is a locally compact, geodesically complete Hada-

mard space. Then X is isometric to a product X 0 � R if and only if X satis®es the

following:

(i) The diameter of �X�y�;Td� is equal to p.

(ii) There exists x A X�y� such that there is a unique point x 0 A X �y� satisfying

Td�x; x 0� � p.

Proof. It su½ces to apply arguments similar to those appearing in [Oh] by using

Theorem 2.6 and Lemma 3.3. r

The next proposition has also been proved in the smooth Riemannian case ([BGS]).

In our case, we must be careful to consider the possibility of bifurcation of geodesics.

Proposition 3.5. Assume that X is a locally compact, geodesically complete Hada-

mard space. Then X is isometric to a product X1 � X2 with X1�y� � A1 and X2�y� �

A2 if and only if A1;A2 HX �y� satisfy the following:

(i) If xi A Ai, i � 1; 2, then Td�x1; x2� � p=2.

(ii) For any x A X �y� there are x1 A A1 and x2 A A2 such that x lies on the

minimizing geodesic in �X�y�;Td� joining x1 and x2.

Proof. It is clear that if X is isometric to X1 � X2 with Xi�y� � Ai, then Ai

satis®es (i) and (ii).

Assume that there are A1;A2 HX �y� satisfying (i) and (ii). In this case, the

diameter of X �y� is equal to p. For x A X , de®ne

Fi�x� :� fsxxi�R� j xi A Aig;

where sxxi is a line through x with sxxi�y� � xi. Note that sxxi�ÿy� A Ai for any

xi A Ai.

First we show that Fi�x� is convex. For y; z A Fi�x�, let sxy (respectively sxz) be a

ray from x through y (respectively z) with h :� sxy�y� A Ai (respectively z :� sxz�y� A

Ai). Next, let w A X be an arbitrary point on the geodesic joining y and z. Suppose

that w B Fi�x�; that is, for any ray sxw from x through w, sxw�y� B Ai. Then by (ii),

there are xi A Ai and xj A Aj such that sxw�y� lies on the geodesic in X�y� joining xi
and xj . De®ne x 0

j :� sxxj �ÿy� A Aj, where sxxj is a line through x with sxxj �y� � xj.

It then follows from (i) and Theorem 2.6 that there is a ¯at half plane spanned by

sxxj and sxy (respectively sxz). Let bxxj : X ! R (respectively bxx 0
j
) be the Busemann

function based on the ray from x to xj (respectively x 0
j ). Then

C :� bxxj
ÿ1��ÿy; 0��V bxx 0

j

ÿ1��ÿy; 0��

is convex; in particular, w A C, since y; z A C. On the other hand, w B C by the as-

sumption regarding w. This is a contradiction, and hence Fi�x� must be convex.

Next we show that Fi�x� is closed. Consider a sequence �xn�HFi�x� with x0 :�

limn!y xn. De®ne xn :� sxxn�y� A Ai, where sxxn is a ray from x through xn with

sxxn�y� A Ai. Then, suppose that x0 B Fi�x�; that is, for any ray sxx0 from x through
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x0, x0 :� sxx0�y� B Ai. Now we may assume that x0 B Aj . By (ii), there are hi A Ai

and hj A Aj such that x0 lies on the geodesic joining hi and hj. De®ne h 0
j :� sxhj �ÿy�,

where sxhj is a line through x with sxhj �y� � hj. Then

ex�hj ; x0� � lim
n!y

ex�hj ; xn� �
p

2
and ex�h

0
j ; x0� � lim

n!y
ex�h

0
j ; xn� �

p

2
:

These yield Td�x0; hi� � 0, and hence we have a contradiction. Thus we obtain that

Fi�x� is a closed, convex, geodesically complete subset.

We can prove that Fi�x� is parallel to Fi�y� for arbitrary x; y A X by applying the

same argument as that appearing in the proof of Lemma 3.3. Hence, for any x A X ,

we have X � PFi�x�, where PFi�x� is the set of all closed, convex, geodesically complete

subsets parallel to Fi�x�. Also, clearly we have Fj�x� � fprFi�y��x�jy A Xg, since

Td�xi; xj� �ex�xi; xj� �
p

2

for any xi A Ai and xj A Aj, where prFi� y� is the projection map onto Fi�y�. Therefore

we obtain X � F1�x� � F2�x�. Now, the result is clear from the de®nition of Fi�x�.

This completes the proof of Proposition 3.5. r

§4. The local structure of certain Hadamard spaces.

Throughout this section, we assume that X is a locally compact, geodesically

complete nonpositively curved 2-space with the Local Flat Condition. The argument

below is given in the context of a CAT�0�-domain. Recall the de®nition of the Local

Flat Condition in Section 1. We denote by lH�x; s; sx� the image of the isometric

imbeddings j�D��s��HX in the de®nition of LFC. In this case, for any geodesic sx
through an arbitrary point x A X , there is a local ¯at half disk lH�x; s; sx� spanned by

sx�ÿs; s�. Hence, Sx is a connected ®nite graph with diameter p and injectivity radius

p, and hence it is a circle of length 2p or a connected ®nite graph with the properties

given in Lemma 2.11 for any x A X .

In this section, we prove the following proposition corresponding to the assertion

��� in Section 1, which plays a key role in investigating of the local structure of X.

Proposition 4.1. Let X be a locally compact, geodesically complete nonpositively

curved 2-space with the Local Flat Condition. Then, for any x A X , there is a positive

number r � r�x� > 0 such that for any u A Sx there is a unique point y � y�x; u; r� A

qB�x; r� such that u � vxy.

Remark and Definition 4.2. Proposition 4.1 implies that for any x A X and some

r > 0 we can de®ne the map

Sx � �0; r�=
@

C �u; t� 7! sxu�t� A B�x; r�HX ;

where sxu is a geodesic from x directed by u. We call such a metric ball B�x; r� in X a

regular neighborhood of x.

4.1. Existence of a local ¯at disk.

Now, for any x A X , B�x; s� is the union of local ¯at half disks for some s > 0. We

®rst observe how these local ¯at half disks meet each other.
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Lemma 4.3. For x A X , let ox HSx be a closed geodesic of length 2p, let

tx;1; tx;2 : �0; p� ! ox be geodesics such that tx;1��0; p��V tx;2��0; p��0q, and let gi,

i � 1; 2, be a geodesic with gi�0� � x directed by tx; i�0� and tx; i�p� at x. Assume that

there is a local ¯at half disk lHi � lHi�x; s; gi�HX such that tx; i corresponds to lHi.

Then for any direction u A tx;1��0; p��V tx;2��0; p�� there is a positive number r �

r�x; u; s1; s2� > 0 such that

s1�r� � s2�r�

for the geodesic si : �0; s� ! lHi, i � 1; 2, directed by u.

Proof. Suppose this claim is not true; that is, suppose that s1�t�0 s2�t� for any

t A �0; s�. Note that ex�s1; s2� � 0.

For small y A �0; p=2�, we denote by si;y; s
0
i;y : �0; s� ! lHi the two geodesics ex-

tending from x satisfying the following:

(1) ex�si;y; si� �ex�s
0
i;y; si� � y.

(2) ex�si;y; s
0
i;y� � 2y.

(3) ex�s1;y; s2;y� �ex�s
0
1;y; s

0
2;y� � 0.

Also, we denote by hi�y; t�H lHi the triangular ¯at region spanned by x, si;y�t=cos y�,

and s 0
i;y�t=cos y�. Then, by replacing u by another û A tx;1��0; p��V tx;2��0; p��nfug very

close to u, we may assume the following:

(4.3.1) There is a positive number y0 > 0 such that, for any t > 0, the relations

s1;y�t�0 s2;y�t� and s 0
1;y�t�0 s 0

2;y�t� hold for any y A �0; y0�.

This follows from the convexity of lH1 V lH2.

We write yi�t� :� si�t� A lHi, t > 0. Then, let ŷ1�t� A lH2 be the closest point to

y1�t�. Note that, for any small t > 0, ŷ1�t� A SX and ŷ1�t�0 x. For a su½ciently

small number d > 0, by Lemma 2.2 there is a positive number t0 � t0�x; d� > 0 such

that B�x; t0� does not contain a d-branch point of x. Now, consider su½ciently small

t A �0; t0�. Next, let w2�t� A lH2 be a point such that ŷ1�t� lies on the geodesic

extending from x to w2�t�. Note that p=2Ueŷ1�t�
�x; y1�t�� < p. Applying Lemma 2.3,

we obtain

eŷ1�t�
�x; y1�t�� �eŷ1�t�

�y1�t�;w2�t�� < p� d;

and hence we have

p

2
Ueŷ1�t�

�x; y1�t��; eŷ1�t�
�y1�t�;w2�t�� <

p

2
� d:�4:3:2�

Next, de®ne pi�t� :� si;y�t=cos y� and qi�t� :� s 0
i;y�t=cos y� for y > 0 satisfying

(4.3.1). Now d�y1�t�; y2�t�� � o�t�, since the angle between y1�t� and y2�t� at x is equal

to 0. Hence d�y2�t�; ŷ1�t�� � o�t�, since d�y1�t�; ŷ1�t��U d�y1�t�; y2�t��. This implies

that ŷ1�t� lies in the interior of h2�y; t� for su½ciently small t > 0. Next, let p 0
2�t� A lH2

(respectively q 0
2�t� A lH2) be the intersection point of s2;y��0; s�� (respectively s 0

2;y��0; s��)

and the geodesic on lH2 which is perpendicular to the geodesic extending from x to

w2�t� at ŷ1�t�. It follows from (4.3.2) and the structure of Sŷ1�t� that

pÿ dUeŷ1�t�
�y1�t�; p

0
2�t��; eŷ1�t�

�y1�t�; q
0
2�t��U p:�4:3:3�
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Now, d�p2�t�; p
0
2�t�� � o�t� by the properties of Euclidean geometry. Let p̂2�t� A lH1 be

the closest point to p2�t�. Then d�p1�t�; p̂2�t�� � o�t�, since d�p1�t�; p2�t�� � o�t� and

d�p2�t�; p̂2�t��U d�p1�t�; p2�t��. Let p̂ 0
2�t� A lH1 be the closest point to p 0

2�t�. Since

d�p1�t�; p̂
0
2�t��U d�p1�t�; p̂2�t�� � d�p̂2�t�; p̂

0
2�t��U d�p1�t�; p̂2�t�� � d�p2�t�; p

0
2�t��;

we have d�p1�t�; p̂
0
2�t�� � o�t�.

We will now ®nd an upper bound for ey1�t��p1�t�; ŷ1�t��. For an arbitrary e > 0,

we have ey1�t��p1�t�; p̂
0
2�t�� < e and jep̂ 0

2
�t��y1�t�; x� ÿep1�t��y1�t�; x�j < e for su½ciently

small t > 0 by the above argument. Therefore

p=2ÿ yÿ eUep̂ 0
2
�t��y1�t�; x�U p=2ÿ y� e:

Analogous to (4.3.3), we have ep̂ 0
2
�t��a1�t�; p

0
2�t��V pÿ d, where a1�t� is the point on s1

such that the geodesic extending from p̂ 0
2�t� to a1�t� is perpendicular to the geodesic from

x to p̂ 0
2�t�. Now

ep̂ 0
2
�t��y1�t�; a1�t�� �

p

2
ÿep̂ 0

2
�t��y1�t�; x�U y� e:

Applying the triangle inequality to angles at p̂ 0
2�t� and the above relations, we obtain

ep̂ 0
2
�t��y1�t�; p

0
2�t��V pÿ dÿ yÿ e:

Hence, considering the quadrangle consisting of y1�t�; ŷ1�t�; p
0
2�t�, and p̂ 0

2�t�, we have

ey1�t�� p̂
0
2�t�; ŷ1�t��U 2d� y� e. Thus by applying the triangle inequality to angles at

y1�t� we obtain

ey1�t��p1�t�; ŷ1�t�� < 2d� y� 2e:

Following an argument similar to that given above, for ey1�t��q1�t�; ŷ1�t��, we ®nd

the same upper bound 2d� y� 2e. Hence we obtain

pUey1�t��p1�t�; ŷ1�t�� �ey1�t��ŷ1�t�; q1�t��U 4d� 2y� 4e:

Since we may consider d; y, and e to be small, this is a contradiction, proving Lemma

4.3. r

Lemma 4.4. For any x A X , let u A Sx be an arbitrary direction at x. Then there

are no three points yi; zi, and wi distinct from x such that

(1) u is the direction to yi; zi, and wi at x.

(2) yi converges to x, and zi and wi converge to z0 and w0, respectively.

(3) d�x; zi� � d�x; yi� � d�yi; zi� � s and d�x;wi� � d�x; yi� � d�yi;wi� � s for some

s > 0.

(4) eyi�zi;wi� > 0.

Proof. Suppose this claim is not true. We then note that yi A SX by the structure

of Syi . Also, note that there is a positive number t0 � t0�x; d� > 0 such that B�x; t0�

contains no d-branch point of x by Lemma 2.2. In this case, k�Syi� ! y as i ! y,

since limi!yeyi�zi;wi� � 0.

Let oyi H �Syi ; ryi� be a closed geodesic of length 2p containing vyix; vyizi A Syi .
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Since k�Syi� ! y as i ! y, for su½ciently large i there are vi; v
0
i A oyi with vi; v

0
i A

V�Syi� such that ryi�vi; v
0
i � � p, and both ryi�vi; vyix� and ryi�v

0
i ; vyix� are very near p=2.

Then there is a geodesic tyi : �0; p� ! Syi joining vi and v 0i such that tyi��0; p��Voyi �

fvi; v
0
ig. Hence we can ®nd a direction ui A Syi for which ryi�ui; vyix� is equal to p, and

ryi�ui; vyizi� is very near p. This implies that, for some d 0 > 0, yi is a d 0-branch point of

x for su½ciently large i. This is a contradiction to Lemma 2.2, which completes the

proof of Lemma 4.4. r

The following lemma tells us that, for any x A X , there is a local ¯at (whole) disk

around x containing a given geodesic through x.

Lemma 4.5. For any x A X and any geodesic sx with sx�0� � x directed by

u0; u
0
0 A Sx at x there is a positive number s � s�x; sx� > 0 such that for any closed

geodesic ox HSx of length 2p containing u0 and u 0
0 there is a totally geodesic isometric

imbedding j : D�s� ! X satisfying

(i) j�t1; 0� � sx�t1� for t1 A �ÿs; s�, and

(ii) ox corresponds to j�D�s��,

where D�s� :� f�t1; t2�jt
2
1 � t22 < s2g with the standard ¯at metric.

Proof. Take a local ¯at half disk lH0 � lH0�x; s0; sx� spanned by sx��ÿs0; s0��.

Let tx : �0; p� ! �Sx; rx� be the geodesic corresponding to lH0. For a given closed

geodesic ox of length 2p in Sx containing u0 and u 0
0, we will construct a local ¯at

(whole) disk with radius s�ox� > 0 centered at x.

First we assume that u0; u
0
0 A V�Sx� and that tx��0; p��Vox � q. Let t 0x : �0; p� !

ox be a geodesic joining u0 and u 0
0 with tx��0; p��V t 0x��0; p�� � fu0; u

0
0g, and let o 0

x HSx

be the closed geodesic with o 0
x � tx��0; p��U t 0x��0; p��.

Now, we will verify the following claim:

(4.5.1) For o 0
x, there is a local ¯at disk with radius s�o 0

x� > 0 centered at x such

that o 0
x corresponds to this local ¯at disk.

For a point v1 A tx��0; p�� with v1 B V�Sx�, let v 01 A t 0x��0; p�� be the point with

rx�v1; v
0
1� � p. Then there is a geodesic s1 with s1�0� � x which is directed by v1 and v 01

at x such that s1��ÿs0; 0��H lH0. Since X satis®es the LFC, there is a local ¯at half

disk lH1 � lH1�x; s0; s1� spanned by s1��ÿs0; s0��. Let tx;1 : �0; p� ! Sx be the geodesic

joining v1 and v 01 corresponding to lH1. Note that tx;1��0; p��Ho 0
x and tx��0; p��V

tx;1��0; p��0q by the choice of v1.

In this case, without loss of generality, we may assume that u0 A tx;1��0; p��, and set

u1 :� u0. For a sequence �u1; i� with u1; i ! u1 and u1; i A tx��0; p��V tx;1��0; p��, there is

a positive number r1; i � r1; i�x; u1; i� > 0 such that the geodesics in lH0 and lH1 extending

from x directed by u1; i coincide over a distance r1; i, as seen by Lemma 4.3. Let r1; i > 0

be the supremum of r1; i satisfying the above. We show the following:

(4.5.2) For u1 there is a positive number r1 � r1�x; u1� > 0 such that the geodesics

in lH0 and lH1 extending from x directed by u1 coincide over a distance r1.

Suppose that r1; i tends to 0 as i ! y. Then for u1; i, if necessary, taking a suitable

subsequence, we obtain three points yi; zi, and wi distinct from x satisfying the condition
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listed in the statement in Lemma 4.4. Hence, by Lemma 4.4, we obtain a contra-

diction, which completes the proof of (4.5.2).

Let r1 > 0 be the supremum satisfying (4.5.2). In this way, we obtain, for some

y1 A �p; 2p� and some s1 A �0;minfs0; r1g�, a region lR1 � lR1�x; s1; y1; sx�HX corre-

sponding to the subarc of o 0
x of length y1 such that lR1 is the union of two local ¯at half

disks lH0�x; s1; sx� and lH1�x; s1; s1�. In particular, lR1 contains sx��ÿs1; s1�� and is

isometric to the sector in the ¯at plane with radius s1 and possessing inner angle y1 with

respect to the interior metric in themselves.

Next, for a point v2 A tx��0; p��V tx;1��0; p�� with v2 B V�Sx�, let v 02 A t 0x��0; p�� be

the point with rx�v2; v
0
2� � p. Then there is a geodesic s2 with s2�0� � x which is

directed by v2 and v 02 at x such that s2��ÿs1; 0��H lR1. Since X satis®es the LFC, there

is a local ¯at half disk lH2 � lH2�x; s0; s2�. In this way, continuing this procedure

inductively, for some yn with yn % 2p, we obtain un, rn, and a region lRn�x; sn; yn; sx�H

X with the same property as in the case of n � 1. Note that �sn� is non-increasing.

Suppose that we can not construct a local ¯at disk using ®nitely many procedures

and that sn tends to 0; that is, rn tends to 0. Then for unÐif necessary, taking a

suitable subsequenceÐwe obtain three points yn; zn, and wn distinct from x satisfying the

condition listed in Lemma 4.4. Hence, by Lemma 4.4, we obtain a contradiction.

Thus, we have completed the proof of the claim (4.5.1).

Similarly, for ox we obtain a local ¯at disk with radius s�ox� > 0 centered at x

containing sx��ÿs�ox�; s�ox��� such that ox corresponds to this local ¯at disk. Because

there are at most ®nitely many closed geodesics in Sx containing u0 and u 0
0, we obtain

Lemma 4.5.

If u0 and u 0
0 are not vertices of Sx, there is a unique closed geodesic ox HSx

containing u0 and u 0
0. Similarly to the case in which u0 and u 0

0 are vertices, we obtain

a local ¯at disk in the statement in Lemma 4.5. This completes the proof of

Lemma 4.5. r

Indeed we can consider the condition given in Section 1 to be the LFC in view of

Lemma 4.5. We denote j�D�s�� (respectively j�D�s��� in the statement of Lemma 4.5

by lF �x; s; s�HX (respectively lF �x; s; s�).

4.2. Proof of Proposition 4.1.

Lemma 4.6. For any x A X and u A Sx, let s1 and s2 be arbitrary geodesics em-

anating from x directed by u. Then there is a positive number r � r�x; u; s1; s2� > 0 such

that
s1�r� � s2�r�:

Proof. We now note that ex�s1; s2� � 0. For a u 0 A �Sx; rx� with rx�u; u
0� � p,

let ox HSx be a closed geodesic of length 2p containing u and u 0. Then we may

consider that both s1 and s2 are directed by u and u 0. It follows from Lemma 4.5 that

there are two local ¯at disks lF1�x; s; s1� and lF2�x; s; s2�. Then, by Lemma 4.3, there is

an r � r�x; u; s1; s2� > 0 such that s1�r� � s2�r�, which proves Lemma 4.6. r

Lemma 4.7. For any x A X and each u A Sx there is a positive number r � r�x; u�

> 0 such that s1�t� � s2�t� for any t A �0; r� and for arbitrary geodesics s1; s2 in X

emanating from x directed by u.
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Proof. Suppose this claim is not true; that is, suppose that there is a point x A X

and a direction u A Sx satisfying the following: for any tn & 0 there are two geodesics

sn;1 and sn;2 emanating from x directed by u such that sn;1�tn�0 sn;2�tn�. Now, de®ne

rn � rn�u; sn;1; sn;2� :� supft > 0jsn;1�t� � sn;2�t�g. Note that rn > 0 by Lemma 4.6,

and that rn tends to 0 as n ! y. Furthermore, we obtain three points yn :� sn;1�rn� �

sn;2�rn�, zn :� sn;1�r1�, and wn :� sn;2�r1�. Now, yn A SX and eyn�zn;wn� > 0. Then

we obtain a contradiction to Lemma 4.4, and hence we have proved Lemma

4.7. r

Proof of Proposition 4.1. De®ne r�u� :� supft > 0j����g, where ���� represents

the condition that su;1�t� � su;2�t� for arbitrary geodesics su;1 and su;2 emanating from

x directed by u. Note that r�u� > 0 by Lemma 4.7. Now, since Sx is compact, it

su½ces to prove that the function r�u� is lower semicontinuous. We do this by

considering a sequence �ui�HSx with ui ! u0. Note that in this case all rays sxu0 from

x directed by u0 coincide over a distance r�u0�.

Suppose that there is a positive number e > 0 such that r�ui� < r�u0� ÿ e for any i.

Then there is a point yi A X with ui � vxyi satisfying r�ui� � d�x; yi�. Let zi;wi A X be

the points for which ui � vxzi � vxwi
satisfying the following:

(1) eyi�zi;wi� > 0.

(2) The distance from each point to x is equal to r�u0�.

(3) yi lies on the geodesics joining x and these points.

Note that yi A SX . Then by the uniqueness of sxu0 j�0; r�u0�� and the choice of yi we may

assume that there are points y0; z0, and w0 on the geodesic sxu0 with yi ! y0; zi ! z0,

and wi ! w0 such that d�x; y0� < r�u0� ÿ e and d�x; z0� � d�x;w0� � r�u0� (if necessary,

taking a suitable subsequence). Then, note that

lim
i!y

eyi�zi;wi� �ey0�z0;w0� � 0:

This implies that k�Syi� ! y as i ! y. Now, applying the similar argument

appearing in the proof of Lemma 4.4, we obtain that yi is a d-branch point of y0 for

some d > 0, which contradicts Lemma 2.2. We have completed the proof of Prop-

osition 4.1. r

§5. Existence of a ¯at plane in certain Hadamard spaces.

Throughout this section, we assume that X is a locally compact, geodesically

complete nonpositively curved 2-spaces with the Local Flat Condition. Note that since

X is locally simply connected, X naturally has the universal covering space ~X . Then ~X

is a locally compact, geodesically complete Hadamard 2-space satisfying the LFC,

because ~X is locally isometric to X.

The next proposition provides a basic construction of a global ¯at plane in

the universal covering space ~X spanned by an arbitrary geodesic from the Local

Flat Condition. This proposition has been proved for some nonpositively curved 2-

polyhedra ([BaBr], [Bar]).

Proposition 5.1. Let X be a locally compact, geodesically complete nonpositively

curved 2-space satisfying the LFC, and let ~X be the universal covering space of X. For
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any x A ~X , let s � sx : R ! ~X be an arbitrary line with s�0� � x directed by u; u 0 A Sx at

x, and let ox HSx be a closed geodesic of length 2p containing u and u 0. Then there is a

¯at plane F � F�s;ox�H ~X such that s�R�HF and such that ox corresponds to F.

Proof. Fix a positive number b > 0. We will ®rst construct a ¯at strip of width

2b > 0 containing s��ÿb; b�� so that ox corresponds to this ¯at strip.

Let AH �0;y� be the set of nonnegative numbers aV 0 satisfying the condition that

there is a ¯at �2b� 2a�-rectangle R spanned by xa;b; xa;ÿb; xÿa;ÿb, and xÿa;b such that

(1) s��ÿb; b��HR.

(2) s�Gb� A R is the midpoint between xa;Gb and xÿa;Gb.

(3) The geodesic joining xGa;ÿb and xGa;b is parallel to s��ÿb; b��.

(4) ox corresponds to R at the center x � s�0� of R.

Then A is closed in �0;y�, since ~X is locally compact. Hence it su½ces to show that A

is open.

Assume that there is a ¯at �2b� 2a�-rectangle R spanned by xa;b; xa;ÿb; xÿa;ÿb, and

xÿa;b for a A A. Let sa and sÿa be lines with xGa;ÿb � sGa�ÿb� and xGa;b � sGa�b�.

Then, for c A �ÿb; b�, let gc : �ÿa; a� ! R be the geodesic with gc�Ga� � sGa�c�. Note

that x � g0�0�, where g0 : �ÿa; a� ! R is the geodesic with g0�Ga� � sGa�0�.

We will extend the ¯at �2b� 2a�-rectangle R beyond sa in the following manner.

Write x0 :� sa�0� � g0�a�. Let t0 : �0; p� ! Sx0 be the geodesic corresponding to

R, and let o0 HSx0 be a closed geodesic of length 2p containing t0��0; p��. Then

by Proposition 4.1 and Lemma 4.5 there exists a positive number s0 � s0�x0; sa� such

that there is a totally geodesic isometric imbedding j0 : D�s0� ! ~X (where D�s0� :�

f�t1; t2�jt
2
1 � t22 U s20g) which satis®es the following:

(1) j0�t1; 0� � sa�t1� for t1 A �ÿs0; s0�.

(2) j0�0;ÿt2� � g0�aÿ t2� for ÿt2 A �ÿs0; 0�.

(3) j0�D�s0�� is contained in a regular neighborhood of x0.

(4) j0�D�s0��VR � j0�f�t1; t2�jt2 U 0; t21 � t22 U s20g�.

We next de®ne lF 0 � lF 0�x0; s0; sa;R� :� j0�D�s0�� and lH0 � lH0�x0; s0; sa;R� :�

j0�f�t1; t2�jt2 V 0; t21 � t22 U s20g�. Note that RV lH0 � sa��ÿs0; s0��.

We extend R beyond sa toward xa;b � sa�b� � gb�a�.

Now, write x1 :� sa�s0�. Let t1 : �0; p� ! Sx1 be the geodesic corresponding to R

and e1 A E�Sx1� the edge corresponding to the subset of lH0 and which satis®es

vx1x0 A e1. Then there is a unique closed geodesic o1 HSx1 of length 2p containing e1
and t1��0; p��. It follows from Proposition 4.1 and Lemma 4.5 that there is a positive

number s1 :� s1�x1; sa;R; lH0� such that there is a totally geodesic isometric imbedding

j1 : D�s1� ! ~X for which we have:

(1) j1�t1; 0� � sa�s0 � t1� for t1 A �ÿs1; s1�.

(2) j1�0;ÿt2� � gs0�aÿ t2� for ÿt2 A �ÿs1; 0�.

(3) j1�D�s1�� is contained in a regular neighborhood of x1.

(4) j1�D�s1��VR � j1�f�t1; t2�jt2 U 0; t21 � t22 U s21g�.

(5) There is a point z1 A lH0 V lH1 such that d�x1; z1�U s1, z1 B sa��ÿb; b��, and

the direction to z1 at x1 is contained in e1.

Here we de®ne lF 1 � lF 1�x1; s1; sa;R; lH0� :� j1�D�s1�� and lH1 � lH1�x1; s1; sa;R; lH0�

:� j1�f�t1; t2�jt2 V 0; t21 � t22 U s21g�. Then there is a point w1 A sa��ÿb; b�� such that

K. Nagano716



h�x1;w1; z1�H lH0 V lH1 bounds a ¯at triangular region. This implies that R is ex-

tended by a ¯at rectangle around sa��ÿs0; s0 � s1��. Next, write x2 :� sa�s0 � s1�. By

continuing this procedure inductively, we obtain lHn; xn; sn, and so on.

Now let us show that we can take �sn� in the above manner such that there is a

®nite positive number N A N for which bU
PN

n�0 sn. Suppose that for any �sn� chosen

in the above manner,
PN

n�0 sn < b for any N. Let s� be the supremum of
Py

n�0 sn such

that �sn� satis®es the above condition, and de®ne p� :� sa�s��. Let t� be the geodesic in

Sp� corresponding to R. Then there are at most ®nitely many geodesics t�; i : �0; p� !

Sp� such that t� and t�; i compose of a closed geodesic of length 2p. Let o�; i HSp�

be the closed geodesic of length 2p composed by t� and t�; i. It then follows from

Proposition 4.1 and Lemma 4.5 that there is a positive number r�; i � r�; i�p�; sa;o�; i� > 0

such that B�p�; r�; i� is a regular neighborhood and contains the local ¯at disk with

radius r�; i centered at p� corresponding to o�; i. Next, de®ne r� :� mini r�; i. Now for

an arbitrary e > 0 there is a sequence �sn� which can be chosen in the above manner

such that s� < s� � e, where s� :�
Py

n�0 sn. Then there is a su½ciently large number N

such that s� ÿ
PN

n�0 sn < e. Let xN A sa��ÿb; b�� be the point corresponding to the

above N. Hence we may assume that lHN HB�p�; r��. Then there is a point yN in

the interior of lHN such that 0 <ep��xN ; yN� < p=k�Sp��. This implies that we can

extend R by a ¯at rectangle beyond p� in the above manner. This is a contradiction of

the de®nition of p�.

Considering the above construction, we can extend R beyond sa toward xa;ÿb �

sa�ÿb� � gÿb�a�. Also, we can extend R beyond sÿa. Thus A is open in �0;y�.

In this way, we obtain a ¯at strip of width 2b > 0 containing s��ÿb; b�� so that

ox corresponds to this ¯at strip at x for any b > 0. Hence, we obtain a ¯at plane

containing s�R� so that ox corresponds to this ¯at plane. This completes the proof of

Proposition 5.1. r

The following lemma helps us to determine the global structure of ~X .

Lemma 5.2. For a singular point x A S ~X , let sx be a line through x directed by two

vertices u; u 0 A V�Sx�. Then we have the following:

(i) sx�t� A S ~X for any t A R.

(ii) sx is directed by two vertices of Ssx�t� at sx�t� for any t A R.

Proof. By the structure of Sx there are (at least three) geodesics tx;1; tx;2; tx;3 :

�0; p� ! Sx joining u and u 0. Hence it follows from Proposition 5.1 that there is a

¯at half plane Hi � Hi�sx; tx; i�, 1U iU 3, spanned by sx such that tx; i corresponds to

Hi. In particular, there are ¯at planes H16sx�R�
H2, H26sx�R�

H3, and H36sx�R�
H1.

Note that 7
1U iU 3

Hi � sx�R�. Then for any t A R there is a geodesic tsx�t�; i : �0; p� !

Ssx�t�, 1U iU 3, corresponding to Hi. This completes the proof of (i) and (ii). r

Hereafter, we call a geodesic s : I ! ~X for which s�t� A S ~X for any t A I a singular

segment in ~X .

§6. A classi®cation of certain Hadamard spaces.

In this section we prove the following main theorem:
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Theorem 6.1. Let X be a locally compact, geodesically complete Hadamard 2-space

such that the diameter of �X�y�;Td� is equal to p. Then X is isometric to either

(1) the product of two trees,

(2) the Euclidean cone over �X�y�;Td�, or

(3) a thick Euclidean building of dimension 2 of type A2, B2, or G2.

If X is as in Theorem 6.1, then X satis®es the Local Flat Condition. Hence, we

can apply the propositions obtained in the previous sections to X.

Assume that for any x A X , x is a regular point. In this case, it is not di½cult to

show that X is isometric to R
2 with the standard ¯at metric. We will consider the case

of SX 0q.

Theorem 6.2. Let X be as in Theorem 6.1. Assume that for any x A SX ,

k�Sx� � 1. Then X is the product of a tree and a line.

Proof. For x A SX with k�Sx� � 1, let sx be a line through x directed by the two

vertices in Sx. By Proposition 5.1, there is a ¯at plane F � F�sx�HX satisfying

sx�R�HF . For y B F , there is the unique point p � p�y;F � A F closest to y. In fact,

p A SX with k�Sp� � 1. Let op;F HSp be the closed geodesic of length 2p corre-

sponding to F. Then there is a (unique) line sp in F through p directed by the two

vertices in op;F . Note that for any t A R, sp�t� and sx�t� are singular points with

k�Ssp�t��; k�Ssx�t�� � 1, as seen from Lemma 5.2. Therefore sp is parallel to sx: if this

were not the case, there would be a (unique) intersection point x 0 A SX of sp�R� and

sx�R� with k�Sx 0�V 2.

Now, there is a line s?p for which s?p �0� � p, s?p �d�p; y�� � y, and s?p ��ÿy; 0��

HF . By Proposition 5.1, there is a ¯at plane F 0 � F 0�s?p � such that s?p �R�HF 0. Let

op;F 0 HSp be the closed geodesic of length 2p corresponding to F 0. Then there is a

line s 0
p in F 0 through p directed by the two vertices in op;F 0 . In particular, for any

t A R, s 0
p�t� is a singular point with k�Ss 0

p�t�
� � 1. Indeed we conclude that sp � s 0

p by

Proposition 4.1 and by the assumption in the statement of the present theorem. Hence

we can ®nd the line sy in F 0 through y parallel to sp. Of course, sy is parallel to sx.

Thus we ®nd that X � Psx�R�, where Psx�R� is the set of all the images of the lines

parallel to sx. Hence, applying Lemma 3.3, we obtain X � T � R. Moreover, T has

the structure of a tree by Lemma 2.9. r

Theorem 6.3. Let X be as in Theorem 6.1. Assume that for any z A SX , k�Sz�U 2

and that there is a singular point x A SX with k�Sx� � 2. Then X is the product of two

trees.

Proof. Let V1�x� :� V1�Sx� and V2�x� :� V2�Sx� be the vertex subsets of �Sx; rx�

such that V1�x�UV2�x� � V�Sx�, V1�x�VV2�x� � q, and rx�v1; v2� � p=2 for any vi A

Vi�x�, i � 1; 2. Then rx�ui; vi� � p for any ui; vi A Vi�x�. We denote by Ti�x�HX the

set of the images of all rays from x directed by the directions in Vi�x�.

We ®rst show that Ti�x� is convex, and in fact that it has the structure of a tree.

In order to prove this, for arbitrary yi; zi;wi A Ti�x�, we show that h�yi; zi;wi�HTi�x�

is degenerate.

Assume that each vxyi ; vxzi , and vxwi
represents a distinct direction. Then all three
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angles at x consisted of yi; zi, and wi are equal to p. Now, assume that vxyi ; vxzi are the

same and vxwi
is distinct. Then there are two possible cases. In the one case, yi; zi,

and wi lie on the same geodesic through x. In the other case, yi and zi do not lie on

the same geodesic through x. Then there is a point x 0 A X such that x 0 lies on the two

geodesics extending from x to yi and from x to zi with k�Sx 0� � 2, as follows from

Proposition 4.1 and Lemma 5.2 and the structure of Sx 0 . In particular, each angle

at x 0 consisting of yi; zi, and wi is equal to p. Next, assume that vxyi ; vxzi , and vxwi

are identical. Then, following arguments similarly to those given above, we ®nd that

h�yi; zi;wi� is degenerate. Thus in each case h�yi; zi;wi� is degenerate, and hence

h�yi; zi;wi�HTi�x�. Therefore Ti�x� is convex, and therefore has the structure of a

tree.

Next, consider y A Xnfxg. By Proposition 5.1, there is a ¯at plane F � F�sxy�

HX containing sxy�R�, where sxy is a line through x and y. Let ox;F HSx be the

closed geodesic of length 2p corresponding to F. Then there are singular segments

s1; s2 : R ! F such that s1 and s2 are perpendicular to each other at x and directed by

the four vertices in ox;F marked correspondingly by V1�x� and V2�x�. Let pi A F be

the foot point on si�R� to y, and let vpi be the direction to pi at y. Now, by the

assumption in the statement of the present theorem we can de®ne, if necessary, adding

suitable vertices, the vertex subsets V1�y� and V2�y� of �Sy; ry� as V1�y� :� V1�Sy�,

V2�y� :� V2�Sy� so that V1�y�UV2�y� � V�Sy�;V1�y�VV2�y� � q, and ry�v1; v2� �

p=2 for any vi A Vi�y�, and vp1 A V2�y�; vp2 A V1�y�. Thus we can de®ne Ti�y� similarly

to Ti�x�.

We now verify the compatibility of the de®nition of Ti�y�:

(6.3.1) vy A Vi�y
0�HSy 0 for any y 0 A Ti�y�, where vy is the direction from y 0 to y

in Sy 0 .

Let F 0 � F�sxy 0�; p 0
i , and Vi�y

0� be de®ned for y 0 in analogy to F, pi, and Vi�y� de®ned

for y.

Let qi A Ti�x� (respectively q 0
i A Ti�x�) be the point closest to y (respectively y 0).

Suppose that pi 0 qi. Let bsi be a line in Ti�x� through pi and qi. By the structure of

Spi and the convexity of Ti�x�, we have epi�y; qi� � p=2. Also, eqi�x; y� � p=2 by the

assumption in the statement of the present theorem, because we can not ®nd a closed

geodesic of length >2p in Sqi . Furthermore, eqi�y; pi�V p=2, by the choice of qi.

These yield a contradiction to the convexity of the function t 7! d�y; bsi�t��; that is, the

above function in t would have local minima at no fewer than two points. Therefore

pi � qi (respectively p 0
i � q 0

i ). This implies that pi is also the closest point to y on Ti�x�

(respectively, p 0
i is the closest point to y 0).

Now, in order to verify (6.3.1) it su½ces to show ey 0�y; p 0
j � � 0 or p. First, note

that ey�y
0; pj� � 0 or p by the choice of y 0. Assume that ey�y

0; pj� � p. Then,

because y lies on the geodesic extending from y 0 to pj, we have pj � p 0
j , as follows from

an argument similar to that above. This implies that y lies on the geodesic in F 0

extending from y 0 to p 0
j , and hence ey 0�y; p 0

j � � 0.

Next, assume that ey�y
0; pj� � 0. Now, three cases are possible. The ®rst case is

that in which y 0 lies on a line through y and pj. Then pj � p 0
j , and hence ey 0�y; p 0

j �

� 0 or p. We note that, if y 0 does not lies on a line through y and pj, then there is a

Asymptotic rigidity of Hadamard 2-spaces 719



point y0 A SX such that y0 lies on the line through y and pj and thatey0�y
0; pj� > 0, by

Proposition 4.1. Since k�Sy0� � 1 or 2, we have ey0�y
0; pj� � p by considering the

singular segments on F. The second case is that in which y 0 does not lie on a line

through y and pj and that y 0 lies on the geodesic extending from y to p 0
j . Then

ey 0�y; p 0
j � � p. The third case is that in which y 0 does not lie on a line through y and

pj and that y 0 does not lie on the geodesic extending from y to p 0
j . In this case we also

haveey 0�y; p 0
j � � 0. Hence in each caseey 0�y; p 0

j � � 0 or p. Thus we have veri®ed the

compatibility of the de®nition of Ti�y�.

Considering the structure of Ti�y�, similarly to the case for Ti�x�, we ®nd that

Ti�y� is convex, and thus it has the structure of a tree, by the compatibility of the

de®nition of Ti�y�. Furthermore, by the above arguments, the quadrangle spanned

by y; y 0; p 0
i , and pi is a ¯at rectangle. Hence d�ÿ;Ti�x��U d�x; y� on Ti�y�, and

similarly we have d�ÿ;Ti�y��U d�x; y� on Ti�x�. This implies that Ti�y� is parallel to

Ti�x� for any y A X . Applying Lemma 3.3, we ®nd that X � T1�x� �N, where N �

fprT1�y��x�jy A Xg and prT1�y� is the projection map onto T1�y�. Now, it follows from

the de®nition of T1�x� and T2�x� that N � T2�x�. Thus we conclude that X is the

product of two trees. r

Theorem 6.4. Let X be as in Theorem 6.1. Assume that there is only one singular

point x A SX with k�Sx�V 2. Then X is the Euclidean cone over �X�y�;Td�.

Proof. Suppose that there is a direction u A Sx such that there are two distinct

rays sxu and s 0
xu from x directed by u. Then by Proposition 4.1 there is a point x0�0x�

that lies on sxu and s 0
xu which satis®es ex0�sxu�y�; s 0

xu�y�� > 0. This implies that

x0 A SX . By assumption, k�Sx0� � 1. Now, by Proposition 5.1, there is a ¯at plane

F �sxu� containing sxu�R�. Let sx0 : R ! F �sxu� be the singular segment directed by the

two vertices of Sx0 . Considering the structure of Sx0 , we ®nd that x does not lie on sx0 .

This implies that we can ®nd a singular point with k�ÿ�V 2 distinct from x. This

contradicts our assumption. Hence for any u A Sx there is a unique ray sxu from

x directed by u.

By the above argument, we can de®ne the map jx from the tangent cone at x

Sx � �0;y�=
@

to X as jx�u; t� � sxu�t�. The surjectivity of jx is clear. Now, consider

�u; s�; �v; t� A Sx � �0;y�=
@
. Since there is a closed geodesic ox HSx of length 2p

containing u and v, there is a ¯at plane F � F �sxu;ox� containing sxu�R� such that ox

corresponds to F by Lemma 5.2, where sxu is a line through x directed by u. Now, by

the uniqueness of rays, for the ray sxv from x directed by v, we have sxv��0;y��HF .

Hence it follows from the geometry on F that jx is an isometry.

Furthermore, we can also de®ne the isometry Fx from Sx to X�y� as Fx�u� �

sxu�y� by the above arguments. Therefore we have shown that X is the Euclidean

cone over X �y�. r

Theorem 6.5. Let X be as in Theorem 6.1. Assume that there are points x; y A SX

with k�Sx�V 3 and k�Sy�V 2. Then X is a thick Euclidean building of dimension 2 of

type A2, B2, or G2.

Proof. Recall Proposition 4.1 implies that for any w A SX with k�Sw�V 2 there
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is a positive number r � r�w� > 0 such that B�w; r� contains no singular point with

k�ÿ�V 2. Hence it follows from Proposition 4.1 and the local compactness of X that

B�x; r 0� contains at most ®nitely many singular points with k�ÿ�V 2 for any r 0 > 0.

Choose y A SX with k�Sy�V 2 satisfying d�x; y� � minfd�x;w�jw A SXnfxg; k�Sw�V 2g

> 0. Then by Proposition 5.1, there is a ¯at plane F � F�sxy� containing sxy�R�, where

sxy is a line through x and y.

Let ox;F HSx (respectively oy;F HSy) be the closed geodesic of length 2p cor-

responding to F, and let v1; v2; . . . ; v2k�Sx� A ox;F be the vertices of Sx ordered by the

rotation manner. Then there is a singular segment si : �0;y� ! F , 1U iU 2k�Sx�,

emanating from x directed by vi. Let Ri�x�HF be the ¯at sector spanned by two

singular segments si��0;y�� and si�1��0;y�� (if i � 2k�Sx�, then Ri�x� is spanned by

s2k�Sx���0;y�� and s1��0;y��).

We now show that there is a singular segment si such that y A si��0;y��. Suppose

that there is a ¯at sector Ri�x� such that the interior of Ri�x� contains y. Then there

are two points pi A si��0;y�� and pi�1 A si�1��0;y�� such that vypi and vypi�1
are ad-

jacent vertices in oy;F ; that is, ey�pi; pi�1� � p=k�Sy�, and that vyx is contained in the

edge joining vypi and vypi�1
. Note that pi; pi�1 A SX with k�Spi�V 2 and k�Spi�1

�V 2.

Consider the ¯at quadrangle in Ri�x� spanned by x; pi; pi�1, and y. Then since

ex�pi; pi�1� is not greater than p=3, either d�x; pi� or d�x; pi�1� is smaller than d�x; y�.

This contradicts the choice of y.

Now there is a point z A si�1��0;y�� such that ey�x; z� � p=k�Sy�. This implies

that syz : R ! F is a singular segment through y and z. In particular, z A SX with

k�Sz�V 2. Then the interior of the ¯at triangular region spanned by h�x; y; z� does

not contain singular points: if it did, we could ®nd a singular point y 0 A SX with

k�Sy 0�V 2 and d�x; y 0� < d�x; y�, since ex�y; z�U p=3 and ey�x; z�;ez�x; y�U p=2.

Moreover, by the Gauss-Bonnet formula, the ¯at triangular region spanned by

h�x; y; z� is isometric to that of type A2;B2, or G2. Thus we verify that F has a

triangulation of type A2;B2, or G2 which satis®es the following:

(1) Every 2-simplex is isometric to the ¯at triangular region spanned by h�x; y; z�.

(2) No interior of any 2-simplex contains a singular point.

(3) Every point in every 1-simplex is singular.

(4) Every interior point of every 1-simplex has type of k�ÿ� � 1.

For q B F , let p � p�q;F � A F be the closest point to q. Also, let op;F H �Sp; rp�

be the closed geodesic of length 2p corresponding to F, and let vq A Sp be the direction

to q. Then by the structure of Sp there is a point v 0q A op;F such that rp�vq; v
0
q� � p.

Let spq be a line directed by vq and v 0q at p with spq�0� � p, spq�d�p; q�� � q, and

spq��ÿy; 0��HF . Then, applying Proposition 5.1 to spq and Proposition 4.1 to p,

we obtain a ¯at plane F 0 � F 0�spq�HX such that F 0 contains a 2-simplex of such a

triangulation of F. Hence F 0 has a triangulation of the same type as F.

Therefore it follows from the above arguments that X has a triangulation whose 2-

simplices are all isometric. We next verify the axioms for thick Euclidean buildings of

dimension 2 (see Subsection 2.3). First, in order to verify (B1), consider arbitrary 2-

simplices h1 and h2. Let xi, i � 1; 2, be an interior point of hi, and let sx1x2 be a line

through x1 and x2. It then follows from Propositions 4.1 and 5.1 that there is a ¯at
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plane F�sx1x2� containing sx1x2�R� such that h1;h2 HF�sx1x2�. This implies that X

satis®es (B1). Now, it is also clear that X satis®es (B2 0) and the thickness condition by

the above arguments. Thus X is a thick Euclidean building of dimension 2. This

completes the proof of Theorem 6.5. r

We have thus completed the proof of Theorem 6.1. r

With the preceding preparation we obtain the following main theorem as a cor-

ollary of Theorem 6.1, which is a natural extension of Theorem 1 stated in Section 1.

Theorem 6.6. Assume that X is a locally compact, geodesically complete non-

positively curved 2-space satisfying the LFC. Then ~X is isometric to either the product of

two trees, the Euclidean cone over � ~X�y�;Td�, or a thick Euclidean building of dimension

2 of type A2;B2, or G2.

Proof. Proposition 5.1 implies that ~X is a locally compact, geodesically complete

Hadamard 2-space such that the diameter of � ~X �y�;Td� is equal to p. Applying

Theorem 6.1, we obtain Theorem 6.6. r

Furthermore we assume that X is compact. Then, because a fundamental domain

of the deck transformation group on ~X has a ®nite diameter, we obtain the following

corollary:

Corollary 6.7. Let X be a compact, geodesically complete nonpositively curved

2-space satisfying the LFC. Then ~X is isometric to either the product of two trees or

a thick Euclidean building of dimension 2 of type A2;B2, or G2.

Remark 6.8. Let X be as in Theorem 6.1. Then, �X�y�;Td� also has the

structure of a graph with the properties listed in Lemma 2.11. Conversely, it follows

from Propositions 3.4 and 3.5 that, if k�X �y��U 2, then X is the product of two trees.

Recently Bernhard Leeb has obtained the following result, closely related to

Theorem 6.1: Let X be a locally compact Hadamard space with extendible geodesic

segments and assume that qTitsX is a connected thick irreducible spherical building.

Then X is a Riemannian symmetric space or a Euclidean building. ([Le]) His result

is discussed in the case of general dimension. Assume that X is 2-dimensional in his

result. Then, actually, the results here intersect with his result in [Le] in the case

k�X �y��V 3. However our approach, which is obtained independently, is more

elementary than his approach in [Le].
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