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On pluricanonical maps for threefolds of general type
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\S 1. Introduction

Let $X$ be a nonsingular projective threefold of general type over the complex number
field $C$ . It remains open whether there exists an absolute number $m(3)$ such that $\Phi_{|mK_{X}|}$

is a birational map onto its image when $m\geq m(3)$ for any $X$ . Restricting interest to
objects of nonsingular minimal threefolds of general type, Benveniste [1] got $m(3)=9$

and then Matsuki [9] obtained $m(3)=7$ . In this paper, we want to show $m(3)=6$ .

MAIN THEOREM. Let $X$ be a nonsingular projective threefold with $nef$ and big canon-
ical divisor $K_{X}$ , then the 6-canonical map $\Phi_{|6K_{X}|}$ is a birational map onto its image.

Throughout this paper, most our notations and terminologies are standard except the
following which we are in favour of:

$:=-definition$ ;
$\sim_{lin}$–linear equivalence;
$\sim_{num}$–numerical equivalence.

\S 2. Proof of the Main Theorem

2.1 Kawamata-Viehweg’s vanishing theorem. We will use the vanishing theorem in
the following form.

PROPOSITION 2.1 (Theorem 1.2 of [5]). Let $X$ be a nonsingular complete variety,
$D\in Div(X)\otimes Q$ . Assume the following two conditions:

(1) $D$ is $nef$ and big;
(2) the fractional part of $D$ has the support with only normal crossings.

Then $H$‘(X, $0_{X}(\lceil D\rceil+K_{X})$ ) $=0$ for $i>0$ , where $\lceil D\rceil$ is the minimum integral divisor with
$\lceil D\rceil-D\geq 0$ .

2.2 Basic formula. Let $X$ be a nonsingular projective threefold. For a divisor
$D\in Div(X)$ , we have

$\chi(\mathcal{O}_{X}(D))=D^{3}/6-K_{X}\cdot D^{2}/4+D\cdot(K_{X}^{2}+c_{2})/12+\chi(\mathcal{O}_{X})$

by Riemann-Roch theorem. The calculation shows that
$\chi(\mathcal{O}_{X}(D))+\chi(\mathcal{O}_{X}(-D))=-K_{X}\cdot D^{2}/2+2\chi(\mathcal{O}_{X})\in Z$ ,

therefore $K_{X}\cdot D^{2}$ is an even integer, especially $K_{X}^{3}$ is even.
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If $K_{X}$ is nef and big, then we obtain by Kawamata-Viehweg’s vanishing theorem that

$p(n):=h^{0}(X, \mathcal{O}_{X}(nK_{X}))=(2n-1)[n(n-1)K_{X}^{3}/12-\chi(\mathcal{O}_{X})]$ ,

for $n\geq 2$ .
Let $X$ be a nonsingular projective threefold, $f$ : $Xarrow C$ be a fibration onto a non-

singular curve $C$ . From the spectral sequence:

$E_{2}^{p,q}:=H^{p}(C, R^{q}f_{*}\omega_{X})\Rightarrow E^{n}:=H^{n}(X, \omega_{X})$ ,

we get by direct calculation that

$h^{2}(\mathcal{O}_{X})=h^{1}(C,f_{*}\omega_{X})+h^{0}(C, R^{1}f_{*}\omega_{X})$ ,

$q(X)$ $:=h^{1}(\mathcal{O}_{X})=b+h^{1}(C, R^{1}f_{*}\omega_{X})$ .

Therefore we obtain

$\chi(\mathcal{O}_{X})=\chi(\mathcal{O}_{F})\chi(\mathcal{O}_{C})+\Delta_{2}-\Delta_{1}$ ,

where we set $\Delta_{1}:=\deg f_{*}\omega_{x/C}$ and $\Delta_{2}:=\deg R^{1}f_{*}\omega_{X/c}$ . We can also refer to corollary
3.2 of [8] for the above formula.

For a nonsingular threefold $X$ with nef and big canonical divisor $K_{X}$ , Miyaoka
showed that $3c_{2}-c_{1}^{2}$ is pseudo-effective, therefore we get $K_{X}^{3}\leq-72\chi(\mathcal{O}_{X})$ by the
Riemann-Roch equality

$\chi(\mathcal{O}_{X})=-c_{2}\cdot K_{X}/24$ .

In particular, $\chi(\mathcal{O}_{X})<0$ .

2.3 A lemma.

LEMMA 2.1 (Theorem 1 of [6]). Let $X,$ $C$ be nonsingular projective varieties and $C$ is
a curve, $f$ : $Xarrow C$ be an algebraic fiber space, then $f_{*}[\omega_{X/c}^{\otimes m}]$ is semi-positive for $m\geq 1$ .

2.4 Proof of the first part. From 2.2, we have $p(2)=3[K_{X}^{3}/6-\chi(\mathcal{O}_{X})]\geq 4$ , there-
fore $\dim\Phi_{|2K_{X}|}(X)\geq 1$ , i.e., the bicanonical map is well-defined. We would like to for-
mulate a proof through two steps: (1) $\dim\Phi_{|2K_{X}|}(X)\geq 2$ and (2) $\dim\Phi_{|2K_{X}|}(X)=1$ .

DEFINITION 2.1. Let $X$ be a nonsingular projective threefold. Suppose that $|2K_{X}|$

is not composed of pencils, i.e., $\dim\Phi_{|2K_{X}|}(X)\geq 2$ . Set $2K_{X}\sim_{lin}M_{2}+Z_{2}$ , where $M_{2}$ is
the moving.part of $|2K_{X}|$ and $Z_{2}$ is the fixed part. We define $\delta_{2}(X):=K_{X}^{2}\cdot M_{2},$ $\delta_{2}(X)$

is intrinsic relating to $X$ .

THEOREM 2.1 (Theorem 6 of [3]). Let $X$ be a nonsingular projective threefold with
$nef$ and big canonical divisor $K_{X}$ , suppose $|2K_{X}|$ be not composed of pencils, $i.e.$ ,
$\dim\Phi_{|2K_{X}|}(X)\geq 2$ , and suppose $\delta_{2}(X)\geq 2$ , then $\Phi_{|6K_{X}|}$ is a birational map onto its image.

PROPOSITION 2.2. Let $X$ be a nonsingular projective threefold whose canonical divisor
$K_{X}$ is $nef$ and big. Suppose that $|2K_{X}|$ is not composed ofpencils, then $\delta_{2}(X)\geq 2$ .

PROOF. Obviously, we have $\delta_{2}(X)\geq 1$ under the assumption of the theorem.
Suppose $\delta_{2}(X)=1$ , we shall derive a contradiction.
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Let $f_{2}$ : $X’arrow X$ be a succession of blowing-ups with nonsingular centers such that
$g_{2}=\Phi_{|2K_{X}|}\circ f_{2}$ is a morphism. Let $g_{2}$ : $X\prime^{h_{2}}arrow W_{2}^{\prime_{arrow}^{s_{2}}}W_{2}\subset P^{p(2)-l}$ be the Stein factori-
zation of $g_{2}$ . Let $H_{2}$ be a hyperplane section of $W_{2}=\overline{\Phi_{|2K_{X}|}(X)}$ in $P^{p(2)-1}$ and $S_{2}$ be a
general member of $|g_{2}^{*}(H_{2})|$ . Since $\dim W_{2}\geq 2,$ $S_{2}$ is a nonsingular irreducible projec-
tive surface. We set $2K_{X}\sim_{lin}M_{2}+Z_{2}$ , where $Z_{2}$ is the fixed part of $|2K_{X}|$ , and $M_{2}$ the
moving part. Set $f_{2}^{*}(M_{2})\sim_{lin}S_{2}+E_{2}’,$ $K_{X’}\sim_{lin}f_{2}^{*}(K_{X})+E_{2}$ , where $E_{2}$ is the ramifica-
tion divisor for $f_{2},$ $E_{2}’$ is the exceptional divisor for $f_{2}$ .

We have $\delta_{2}(X)=K_{X}^{2}\cdot M_{2}=f_{2}^{*}(K_{X})^{2}\cdot S_{2}=1$ . Multiplying $2K_{X}\sim_{lin}M_{2}+Z_{2}$ by
$K_{X}\cdot M_{2}$ , we have

$2=2K_{X}^{2}\cdot M_{2}=K_{X}\cdot M_{2}^{2}+K_{X}\cdot M_{2}\cdot Z_{2}$ .

Since $|S_{2}|$ is not composed of pencils, $f_{2}^{*}(K_{X})$ is nef and big and since $S_{2}$ is nef, we have

$K_{X}\cdot M_{2}^{2}=f_{2}^{*}(K_{X})\cdot f_{2}^{*}(M_{2})^{2}=f_{2}^{*}(K_{X})\cdot f_{2}^{*}(M_{2})\cdot S_{2}$

$=f_{2}^{*}(K_{X})\cdot S_{2}^{2}+f_{2}^{*}(K_{X})\cdot S_{2}\cdot E_{2}’\geq 1$ .

Whereas, $K_{X}\cdot M_{2}^{2}$ is even by 2.2 and $K_{X}\cdot M_{2}\cdot Z_{2}\geq 0$ because $M_{2}\cdot Z_{2}\geq 0$ as a l-cycle.
Thus we have $K_{X}\cdot M_{2}^{2}=2$ and $K_{X}\cdot M_{2}\cdot Z_{2}=0$ .

Since $f_{2}^{*}(K_{X})$ is nef and big, there exists a positive integer $m$ such that

$Bs|mf_{2}^{*}(K_{X})|=\emptyset$

and a general member $T\in|mf_{2}^{*}(K_{X})|$ is a nonsingular projective surface of general type.
$S_{2}|_{T}$ is a nef divisor on the surface $T$ , because $S_{2}$ is nef on $X$ ‘. $(S_{2}|_{T})_{T}^{2}=mf_{2}^{*}(K_{X})$ .
$S_{2}^{2}>0$ , i.e., $S_{2}|_{T}$ is big. We have

$(S_{2}|_{T}\cdot f_{2}^{*}(Z_{2})|_{T})_{T}=mf_{2}^{*}(K_{X})\cdot S_{2}\cdot f_{2}^{*}(Z_{2})=mK_{X}\cdot M_{2}\cdot Z_{2}=0$ ,

therefore we should have $mK_{X}\cdot Z_{2}^{2}=(f_{2}^{*}(Z_{2})|_{T})_{T}^{2}\leq 0$ by Hodge’s index theorem on $T$ .
On the other hand, $4K_{X}^{3}=K_{X}\cdot(M_{2}+Z_{2})^{2}=K_{X}\cdot M_{2}^{2}+K_{X}\cdot Z_{2}^{2}$ , therefore

$K_{X}\cdot Z_{2}^{2}=4K_{X}^{3}-2>0$ . We obtaina contradiction. $\square$

THEOREM 2.2. Let $X$ be a nonsingular projetive threefold with $nef$ and big canonical
divisor $K_{X}$ , suppose $|2K_{X}|$ be not composed ofpencils, then $\Phi_{|6K_{X}|}$ is a birational map onto
its image.

PROOF. This is a direct result of theorem 2.1 and proposition 2.2. $\square$

2.5 Proof of the second part. Suppose $|2K_{X}|$ be composed of pencils, again take
$f_{2}$ : $X’arrow X$ be a succession of blowing-ups with nonsingular centers such that $g_{2}$ $:=$

$\Phi_{|2K_{X}|}\circ f_{2}$ is a morphism. Let $g_{2}$ : $X^{\prime^{h_{2}}}arrow W_{2}^{\prime^{s_{2}}}arrow W_{2}$ be the stein factorization of $g_{2}$ .
Because $\dim W_{2}=1$ , we know that a general fiber $F$ of the fibration $h_{2}$ is a nonsingular
projective surface of general type. We denote $b:=g(W_{2}’)$ .

PROPOSITION 2.3 (Claim 9.1 of [9]). Let $X$ be a nonsingular projective threefold with
$nef$ and big canoical divisor $K_{X}$ . Suppose $|2K_{X}|$ be composed ofpencils, then we have

$\mathcal{O}_{F}(f_{2}^{*}(K_{X})|_{F})\cong \mathcal{O}_{F}(\pi^{*}(K_{F_{0}}))$ ,

where $\pi:Farrow F_{0}$ is the contraction to minimal model.
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THEOREM 2.3 (Theorem 10 of [3]). Let $X$ be a nonsingular projective threefold with
$nef$ and big canoical divisor $K_{X}$ . Suppose $|2K_{X}|$ be composed of pencils and $p_{g}(X)\geq 2$ ,
then $\Phi_{|6K_{X}|}$ is a birational map onto its image.

THEOREM 2.4. Let $X$ be nonsingular projective threefold with $nef$ and big canonical
divisor $K_{X}$ . Suppose $|2K_{X}|$ be composed ofpencils, $p_{g}(X)\leq 1$ and a generalfiber $F$ of $h_{2}$

is not a surface with $K_{F_{0}}^{2}=1$ and $p_{g}(F)=2$ , then $\Phi_{|6K_{X}|}$ is a birational map onto its image.

PROOF. Let $b_{2}:=\deg(s_{2})$ and $H_{2}$ be a hyperplane section of $W_{2}$ in $P^{p(2)-1}$ , and let
$a_{2}$ be the degree of $W_{2}$ in $P^{p(2)-1}$ . Then

$f_{2}^{*}(2K_{X})\sim_{lin}g_{2}^{*}(H_{2})+Z_{2}$ ,

$f_{2}^{*}(2K_{X})\sim_{nm}a_{2}b_{2}F+Z_{2}$ ,

where $Z_{2}$ is the fixed part of $|f_{2}^{*}(2K_{X})|$ .
Let $\pi:Farrow F_{0}$ be the contraction onto the minimal model $F_{0}$ of $F$ . From proposi-

tion 2.3, we have

$\mathcal{O}_{F}(\pi^{*}(K_{F_{0}}))=\mathcal{O}_{F}(f_{2}^{*}(K_{X})|_{F})$ .

Noting that $g_{2}^{*}(H_{2})$ can be a disjoint union of $F_{i}’ s(1\leq i\leq a_{2}b_{2})$ at least over a
Zariski open subset of $W_{2}’$ , each $F_{i}$ is of the same kind as $F$ mentioned in proposition
2.3. We have

$K_{X’}+3f_{2}^{*}(K_{X})+g_{2}^{*}(H_{2})\leq 6K_{X’}$ .

From the exact sequence

$0arrow \mathcal{O}_{X’}(K_{X’}+3f_{2}^{*}(K_{X}))$

$arrow \mathcal{O}_{X’}(K_{X’}+3f_{2}^{*}(K_{X})+g_{2}^{*}(H_{2}))$

$arrow\bigoplus_{i=1}^{a_{2}b_{2}}\mathcal{O}_{F_{i}}(K_{F_{i}}+3f_{2}^{*}(K_{X})|_{F_{i}})arrow 0$

and because $H^{1}(X’,K_{X’}+3f_{2}^{*}(K_{X}))=0$ by proposition 2.1, we get the following $su\dot{q}ec-$

tive map

$H^{0}(X’, \mathcal{O}_{X’}(K_{X’}+3f_{2}^{*}(K_{X})+g_{2}^{*}(H_{2})))arrow\bigoplus_{i=1}^{a_{2}b_{2}}H^{0}(F_{i}, \mathcal{O}_{F_{i}}(K_{F_{i}}+3f_{2}^{*}(K_{X})|_{F_{i}}))$ .

This means that $\Phi_{|K_{X},+3f_{2}^{*}(K_{X})+g_{2}^{*}(H_{2})|}$ separates the fibers of $g_{2}$ and the components on a
general fiber at least on some nonempty Zariski open subset of $X’$ . On the other hand,

$\Phi_{|K_{X’}+3f_{2}^{*}(K_{X})+g_{2}^{*}(H_{2})|}|_{F_{i}}=\Phi_{|K_{F_{i}}+3f_{2}^{*}(K_{X})|_{F_{i}}|}=\Phi_{|4K_{F_{i}}|}$

by Proposition 2.3. If $F$ is not a surface with $K_{F_{0}}^{2}=1$ and $p_{g}(F_{0})=2$ , then $\Phi_{|4K_{F_{i}}|}$ is
birational. Therefore we see that

$\Phi_{|K_{X’}+3f_{2}^{*}(K_{X})+g_{2}^{*}(H_{2})|}$

is birational. Thus $\Phi_{|6K_{X},|}$ is a birational map onto its image. So is $\Phi_{|6K_{X}|}$ . $\square$
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PROPOSITION 2.4. Let $X$ be a nonsingular projective threefold whose canonical divisor
is $nef$ and big. Suppose $p_{g}(X)\leq 1$ and $|2K_{X}|$ be composed of pencils, if $F$ is a surface
with $K_{F_{0}}^{2}=1$ and $p_{g}(F)=2$ , then we have $b=p_{g}(X)=q(X)=1$ and $h^{2}(\mathcal{O}_{X})=0$ .

PROOF. We have

$\chi(\mathcal{O}_{X})=1-q(X)+h^{2}(\mathcal{O}_{X})-p_{g}(X)<0$ .

Since $p_{g}(X)\leq 1$ , then $q(X)>1+h^{2}(\mathcal{O}_{X})-p_{g}(X)$ , i.e. $q(X)>0$ . Now we have a fibra-
tion $h_{2}$ : $X’arrow W_{2}’$ , where $W_{2}’$ is a nonsingular curve. Denote by $b$ the genus of $W_{2}’$ and
$F$ a general fiber of $h_{2}$ . If $F_{0}$ is a surface with $K_{F_{0}}^{2}=1$ and $p_{g}(F_{0})=2$, then we have
$q(F_{0})=0$ by E. Bombieri’s theorem in [2] and then $R^{1}h_{2*}\omega_{X’}=0$ . Therefore we have
$0<q(X)=q(X’)=b+h^{1}(R^{1}h_{2*}\omega_{X’})=b$ , which says that $\Phi_{|2K_{X}|}$ is actually a morphism.
We have $X=X’$ .

For the fibration $h_{2}$ : $Xarrow W_{2}’$ , we have $\deg h_{2*}\omega_{X}\geq 4(b-1)$ by Lemma 2.1.
From Riemann-Roch theorem, we have

$1\geq p_{g}(X)=h^{0}(h_{2*}\omega_{X})=h^{1}(h_{2*}\omega_{X})+\deg(h_{2*}\omega_{X})+2(1-b)$

$\geq 2(b-1)$ .

Therefore $b=1$ and then $q(X)=1$ . From $\chi(O_{X})=h^{2}(\mathcal{O}_{X})-p_{g}(X)<0$ , we get
$p_{g}(X)=1$ and $h^{2}(0_{X})=0$ . $\square$

THEOREM 2.5. Let $X$ be a nonsingular projective threefold with $nef$ and big canonical
divisor. Suppose $p_{g}(X)\leq 1$ and $|2K_{X}|$ be composed of pencils, $fF$ is a surface with
$K_{F_{0}}^{2}=1$ and $p_{g}(F)=2$ , then $\Phi_{|6K_{X}|}$ is a birational map onto its image.

PROOF. Under the assumption of this theorem, we know from proposition 2.4 that
$\Phi_{|2K_{X}|}$ is a morphism because $b=1>0$ . We actually have

$X^{h_{2}}arrow W_{2}’arrow s_{2}W_{2}$ .

We can take a modification $f$ : $X’arrow X$ according to Hironaka such that all the singular
fibers of the fibration $h_{2}’=h_{2}\circ f$ : $X’arrow W_{2}’$ have the $suppo$rt with only normal crossings.
$Letg_{2}’:=\Phi_{|2K_{X}|}of=s_{2}oh_{2}’$ . $Fromproposition2.4,$ $wehavep_{g}(X’)=p_{g}(X)=1$ . Let
$D\in|K_{X’}|$ be the unique effective divisor. Set $D=V_{0}+H_{0}$ , where $V_{0}$ is the vertical part
and $H_{0}$ the horizontal one. Because $2D\sim_{lin}2K_{X’}$ , there is a hyperplane section $H_{2}^{0}$ of
$W_{2}$ in $P^{p(2)-1}$ such that

$2D=g_{2^{*}}’(H_{2}^{0})+E$ ,

where $E$ is the fixed part. Note that each component of $g_{2}^{\prime*}(H_{2}^{0})$ is vertical with respect
to $h_{2}’$ , we have $g_{2^{*}}’(H_{2}^{0})\leq 2V_{0}$ as divisors. Therefore $(1/2)g_{2^{*}}’(H_{2}^{0})\leq V_{0}$ as Q-divisors
and then $\lceil(1/2)g_{2^{*}}’(H_{2}^{0})\rceil\leq V_{0}$ as divisors. Denote $D_{0}:=\lceil(1/2)g_{2^{*}}’(H_{2}^{0})\rceil$ .

NOW we consider the system $|K_{X’}+4f^{*}(K_{X})+D_{0}|$ . Obviously, we have

$|K_{X’}+2f^{*}(K_{X})+g_{2}^{\prime*}(H_{2})|\subset|K_{X’}+4f^{*}(K_{X})+D_{0}|\subset|6K_{X’}|$ .

At least over a nonempty Zariski open subset of $W_{2}’,$ $g_{2^{*}}’(H_{2})$ can split into disjoint union
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of fibers of $h_{2}’$ . We have the following exact sequence:

$0arrow \mathcal{O}_{X’}(K_{X’}+2f^{*}(K_{X}))$

$arrow \mathcal{O}_{X’}(K_{X’}+2f^{*}(K_{X})+g_{2^{*}}’(H_{2}))$

$arrow\bigoplus_{i=1}^{a_{2}b_{2}}\mathcal{O}_{F_{i}}(K_{F_{i}}+2f^{*}(K_{X})|_{F_{i}})arrow 0$ .

From Kawamata-Viehweg’s vanishing theorem, we have $H^{1}(X’, K_{X’}+2f^{*}(K_{X}))=0$ .
Therefore we get the $su\dot{\eta}ective$ map

$H^{0}(X’,K_{X’}+2f^{*}(K_{X})+g_{2}^{J*}(H_{2})) arrow\bigoplus_{i=1}^{a_{2}b_{2}}H^{0}(F_{i},K_{F_{i}}+2f^{*}(K_{X})|_{F_{i}})$ .

Which means that $\Phi_{|K_{X},+2f^{*}(K_{X})+g_{2}’’(H_{2})|}$ can separate fibers of $g_{2}$ and disjoint components
of a general fiber of $g_{2}’$ at least over a nonempty Zariski open subset of $W_{2}$ , so can
$\Phi_{|K_{X},+4f^{*}(K_{X})+D_{0}|}$ . In order to prove the birationality of $\Phi_{|K_{\chi},+4f^{*}(K_{X})+D_{0}|}$ we have to
show that $\Phi_{|K_{X},+4f^{*}(K_{X})+D_{0}|}|_{F}$ is birational for a general fiber $F$ of $h_{2}’$ . Now let $F$ be a
general fiber of $h_{2}’$ , denote

$G:=4f^{*}(K_{X})+ \frac{1}{2}g_{2^{*}}’(H_{2}^{0})-F$ .

Because $b=1,$ $p(2)=h^{0}(g_{2^{*}}’(H_{2}^{0}))=h^{0}(a_{2}b_{2}F)=a_{2}b_{2}$ . Noting that $p(2)\geq 4$ and
$a_{2}\geq p(2)-1$ , we actually have $b_{2}=1$ and $p(2)=a_{2}\geq 4$ . Therefore $(1/2)g_{2^{*}}’(H_{2}^{0})-F$

is nef and then $G$ is nef. It is easy to see that $G$ is big. $G$ is also an effective Q-divisor
because $4f^{*}(K_{X})-F\geq 0$ . Note that the fractional part $\{G\}$ of $G$ is composed of com-
ponents from singular fibers of $h_{2}’$ and at most one smooth fiber of $h_{2}’$ (one only has to
consider the components of $V_{0}$ ), therefore $\{G\}$ has support with only normal crossings.
Thus by Kawamata-Viehweg’s vanishing theorem, we have

$H^{1}(X’, K_{X’}+4f^{*}(K_{X})+D_{0}-F)=H^{1}(X’,K_{X’}+\lceil G\rceil)=0$ .

Noting that $D_{0}$ is vertical, we have $D_{0}|_{F}=0$ . By the definition of $f$ , we see that the
ramification divisor of $f$ is contained in singular fibers of $h_{2}’$ , therefore $f^{*}(K_{X})|_{F}=$

$K_{X’}|_{F}=K_{F}$ . From the exact sequence

$0arrow \mathcal{O}_{X’}(K_{X’}+4f^{*}(K_{X})+D_{0}-F)$

$arrow \mathcal{O}_{X’}(K_{X’}+4f^{*}(K_{X})+D_{0})$

$arrow 0_{F}(5K_{F})arrow 0$ ,
we get the surjective map

$H^{0}(X’,K_{X’}+4f^{*}(K_{X})+D_{0})arrow H^{0}(F, 5K_{F})$ .

Which means $\Phi_{|K_{X},+4f^{\iota}(K_{X})+D_{0}|}|_{F}=\Phi_{|5K_{F}|}$ is a birational map, therefore

$\Phi_{|K_{X’}+4f^{*}(K_{X})+D_{0}|}$

is a birational map, so is $\Phi_{|6K_{X},|}$ . $\square$

Theorem 2.2, theorem 2.3, theorem 2.4 and theorem 2.5 mply main theorem.
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