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On pluricanonical maps for threefolds of general type
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§1. Introduction

Let X be a nonsingular projective threefold of general type over the complex number
field C. It remains open whether there exists an absolute number m(3) such that @,k
is a birational map onto its image when m > m(3) for any X. Restricting interest to
objects of nonsingular minimal threefolds of general type, Benveniste [1] got m(3) =9
and then Matsuki [9] obtained m(3) = 7. In this paper, we want to show m(3) = 6.

MAIN THEOREM. Let X be a nonsingular projective threefold with nef and big canon-
ical divisor Ky, then the 6-canonical map ®ex,| is a birational map onto its image.

Throughout this paper, most our notations and terminologies are standard except the
following which we are in favour of:

: = —definition;

~in—linear equivalence;

~mm—numerical equivalence.

§2. Proof of the Main Theorem

2.1 Kawamata-Viehweg’s vanishing theorem. We will use the vanishing theorem in
the following form.

PROPOSITION 2.1 (Theorem 1.2 of [5]). Let X be a nonsingular complete variety,
DeDiv(X)® Q. Assume the following two conditions:

(1) D is nef and big,

(2) the fractional part of D has the support with only normal crossings.
Then H'(X,0x([D] + Kx)) = 0 for i > 0, where [D] is the minimum integral divisor with
[D]—-D >0.

2.2 Basic formula. Let X be a nonsingular projective threefold. For a divisor
D e Div(X), we have

x(0x(D)) = D*/6 — Kx - D*/4+ D - (K} + ¢2)/12 + x(Ox)
by Riemann-Roch theorem. The calculation shows that
2(0x(D)) + x(0x(—D)) = —Kx - D*/2 + 24(0x) € Z,

therefore Ky - D? is an even integer, especially K3 is even.
) X
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If Ky is nef and big, then we obtain by Kawamata-Viehweg’s vanishing theorem that
p(n) := h(X, Ox(nKx)) = (2n = 1)[n(n — 1)K3 /12 — x(0x)],

for n > 2.
Let X be a nonsingular projective threefold, f : X — C be a fibration onto a non-
singular curve C. From the spectral sequence:

EP? .= H?(C,R.wy) = E" := H"(X,wyx),
we get by direct calculation that
h*(0x) = h'(C, fuwx) + h°(C, R fuwy),
4(X) = h'(Ox) = b+ h'(C, R'fuax).
Therefore we obtain
x(0x) = x(OF)x(Oc) + 42 — 4y,

where we set 41 := deg fuwy/c and 4; := deg le*wX/C. We can also refer to corollary
3.2 of [8] for the above formula.

For a nonsingular threefold X with nef and big canonical divisor Ky, Miyaoka
showed that 3c, —c¢? is pseudo-effective, therefore we get K3 < —72x(0Ox) by the
Riemann-Roch equality

){((QX) = —C3" Kx/24
In particular, y(Ox) < 0.
2.3 A lemma.

LEMMA 2.1 (Theorem 1 of [6]). Let X, C be nonsingular projective varieties and C is
a curve, f : X — C be an algebraic fiber space, then f*[co?/”(':] is semi-positive for m > 1.

2.4 Proof of the first part. From 2.2, we have p(2) = 3[K3/6 — x(Ox)] = 4, there-
fore dim @5, |(X) > 1, i.e., the bicanonical map is well-defined. We would like to for-
mulate a proof through two steps: (1) dim @y, |(X) = 2 and (2) dim Pk, |(X) = 1.

DErFINITION 2.1. Let X be a nonsingular projective threefold. Suppose that |2Ky|
is not composed of pencils, i.e., dim @k, |(X) = 2. Set 2Ky ~y, My + Z;, where M, is
the moving part of |2Kx| and Z, is the fixed part. We define 6,(X) := K2 - M, 62(X)
is intrinsic relating to X.

THEOREM 2.1 (Theorem 6 of [3]). Let X be a nonsingular projective threefold with
nef and big canonical divisor Ky, suppose |2Kx| be not composed of pencils, i.e.,
dim P, |(X) = 2, and suppose 52(X) = 2, then Pyek,| is a birational map onto its image.

PROPOSITION 2.2. Let X be a nonsingular projective threefold whose canonical divisor
Ky is nef and big. Suppose that |2Kx| is not composed of pencils, then 65(X) = 2.

ProoF. Obviously, we have d,(X) >1 under the assumption of the theorem.
Suppose J,(X) = 1, we shall derive a contradiction.
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Let f>: X’ — X be a succession of blowing-ups with nonsingular centers such that
g2 = Dpk,| © f2 is a morphism. Let g : X’ LA W, 4 W, <« PPD-1 be the Stein factori-
zation of g;. Let H be a hyperplane section of W, = @5k, |(X) in PP@-1 and S, be a
general member of |g5(H2)|. Since dim W, > 2, S, is a nonsingular irreducible projec-
tive surface. We set 2Ky ~;, M + Z,, where Z, is the fixed part of |2Ky|, and M, the
moving part. Set f(M2) ~in S2 + E), Kx' ~uin f; (Kx) + E,, where E is the ramifica-
tion divisor for f;, E) is the exceptional divisor for f.

We have d2(X) = K2 - M, =f;(Kx)*- S, = 1. Multiplying 2Ky ~jn M3 + Z; by
Ky - M, we have

2=2K2 M=Ky -M?+Kx-M,-2,.

Since |S;| is not composed of pencils, f,(Kx) is nef and big and since S, is nef, we have

Ky M} =f5(Kx) - f3(M2)? = f5 (Kx) - 5 (M3) - S2
=f2*(KX) . S% +f2*(K)() -8 - E; > 1.

Whereas, Ky - M22 is even by 2.2 and Ky - M, - Z, > 0 because M, - Z, >0 as a 1-cycle.
Thus we have Ky - M2 =2 and Ky - M>-Z» = 0.
Since f;(Ky) is nef and big, there exists a positive integer m such that

Bs|mfy (Kx)| = &

and a general member T € |mf,(Kyx)| is a nonsingular projective surface of general type.
S2|r is a nef divisor on the surface T, because S, is nef on X' (S2|T)% = mf; (Kx) -
S2 >0, ie., Sy|r is big. We have

(S2lr - 17 (Z2) 1) = mfy (Kx) - S2- f3(Z2) =mKx - M- Z5 =0,
therefore we should have mKy - Z3 = (f3(Z2)|7)3 < 0 by Hodge’s index theorem on T.

On the other hand, 4K} =Ky-(M;+ Z2)? =Ky - M?+ Ky -Z3, therefore
Ky -Z%?=4K} —2>0. We obtain a contradiction. O

THEOREM 2.2. Let X be a nonsingular projetive threefold with nef and big canonical
divisor Ky, suppose |2Kx| be not composed of pencils, then D¢, is a birational map onto
its image.

Proor. This is a direct result of theorem 2.1 and proposition 2.2. O

2.5 Proof of the second part. Suppose |2Kx| be composed of pencils, again take
f2: X' = X be a succession of blowing-ups with nonsingular centers such that g, :=
Ppky| © f2 is a morphism. Let g;: X’ e Wz’ﬁ W, be the stein factorization of g,.
Because dim W, = 1, we know that a general fiber F of the fibration A, is a nonsingular

projective surface of general type. We denote b := g(W).

ProposITION 2.3 (Claim 9.1 of [9]). Let X be a nonsingular projective threefold with
nef and big canoical divisor Ky. Suppose |2Kx| be composed of pencils, then we have

Or(f; (Kx)Ir) = Or(n*(KR)),

where n : F — Fy is the contraction to minimal model.
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THEOREM 2.3 (Theorem 10 of [3]). Let X be a nonsingular projective threefold with
nef and big canoical divisor Ky. Suppose |2Kx| be composed of pencils and py(X) > 2,
then D¢k, | is a birational map onto its image.

THEOREM 2.4. Let X be nonsingular projective threefold with nef and big canonical
divisor Ky. Suppose |2Kx| be composed of pencils, py,(X) < 1 and a general fiber F of h,
is not a surface with K,,z~o = 1 and py(F) = 2, then ®ex,| is a birational map onto its image.

Proor. Let by := deg(sy) and H, be a hyperplane section of W, in PP~ and let
a, be the degree of W, in PP@~1. Then
15 (2Kx) ~iin g5(H2) + Z3,
17 (2Kx) ~pum az2b2F + Z5,

where Z, is the fixed part of |f(2Kx)|.
Let 7 : F — F, be the contraction onto the minimal model Fy of F. From proposi-

tion 2.3, we have

Or(n" (KR )) = Or (f5 (Kx)|F)-

Noting that g3(H;) can be a disjoint union of F;’s (1 <i < ab;) at least over a
Zariski open subset of W), each F; is of the same kind as F mentioned in proposition
2.3. We have

K}(/ + 3f2*(KX) + g;(Hz) < 6KXI.
From the exact sequence
0 b de’(}{X"F Qﬁ;(}(X))
— Ox/(Ky + 35 (Kx) + g3(H2))

azbz
— @ Or(Kr, + 317 (Kx)|p) — 0
i=1
and because H!(X’, Kx: + 3f;(Ky)) = 0 by proposition 2.1, we get the following surjec-
tive map

a2b2
H(X',0x (Kx + 3f; (Kx) + g5(H2))) = @ H°(Fi, Or,(Kr, + 3f5 (Kx)|F,))-
i=1
This means that Dk, +3f; (Kx)+a3(Hy)| SEParates the fibers of g, and the components on a
general fiber at least on some nonempty Zariski open subset of X’. On the other hand,
Dy +3; (Kn)+a5H)I | F, = Pk 436 (K)lg | = Pak|
by Proposition 2.3. If F is not a surface with K7 =1 and p,(Fo) =2, then Pyk;,| i
birational. Therefore we see that

DKy +3f; (Kx ) +95(H)|

is birational. Thus ®cx,,| is a birational map onto its image. So is DPex, |- O
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PROPOSITION 2.4. Let X be a nonsingular projective threefold whose canonical divisor
is nef and big. Suppose py(X) <1 and |2Kx| be composed of pencils, if F is a surface
with K} =1 and p,(F) =2, then we have b = p;(X) = ¢q(X) = 1 and h2(0x) = 0.

ProOF. We have
x(0x) =1—-¢q(X)+ hz((ﬁx) —py(X) <0.

Since p,(X) < 1, then g(X) > 1+ h*(Ox) — py(X), i.e. g(X) > 0. Now we have a fibra-
tion A, : X' — W, where W} is a nonsingular curve. Denote by b the genus of W, and
F a general fiber of hy. If Fp is a surface with K2 =1 and py(Fy) = 2, then we have
q(Fy) = 0 by E. Bombieri’s theorem in [2] and then R'Aywy = 0. Therefore we have
0 < g(X) = q(X’) = b+ ' (R'hy.wx') = b, which says that ®@yx, is actually a morphism.
We have X = X'.

For the fibration Ay : X — W), we have deghjy.wy >4(b—1) by Lemma 2.1.
From Riemann-Roch theorem, we have

12 py(X) = B (hy.0x) = h' (hauwx) + deg(hz.wx) + 2(1 — b)

>2(b - 1).
Therefore 5=1 and then g(X)=1. From x(0x)=h*0x)—p,(X) <0, we get
pg(X) =1 and A%(0Ox) = 0. O

THEOREM 2.5. Let X be a nonsingular projective threefold with nef and big canonical
divisor. Suppose p,(X) <1 and |2Kx| be composed of pencils, if F is a surface with
KZ =1 and p,(F) =2, then Pisk,| is a birational map onto its image.

Proor. Under the assumption of this theorem, we know from proposition 2.4 that
D|3ky| is a morphism because b =1 > 0. We actually have

h K}
x5 oo,

We can take a modification f : X’ — X according to Hironaka such that all the singular
fibers of the fibration 4} = h; o f : X' — W, have the support with only normal crossings.
Let g5 := @k, of = sy0h)y. From proposition 2.4, we have pg(X') = pg(X) = 1. Let
D e |Ky/| be the unique effective divisor. Set D = Vj + Hp, where ¥} is the vertical part
and H, the horizontal one. Because 2D ~, 2Ky, there is a hyperplane section Hg of
W, in PP@-1 guch that

2D = g5 (H)) + E,

where E is the fixed part. Note that each component of g (HJ) is vertical with respect
to h, we have gy (HJ) < 2Vy as divisors. Therefore (1/2)g5(H?) < Vo as Q-divisors
and then [(1/2)g5 (H?)] < Vo as divisors. Denote Dy := [(1/2)g5 (H?)].

Now we consider the system |Ky: + 4f*(Kx) + Dy|. Obviously, we have

|Kx' + 2f*(Kx) + g5 (H2)| < |Kx' 4+ 4f*(Kx) + Do| < |6Kx|.

At least over a nonempty Zariski open subset of W;, g% (H>) can split into disjoint union
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of fibers of 4. We have the following exact sequence:
0— (OX/(KX/ + Zf*(Kx))
— Ox/(Kx' +2f*(Kx) + g5 (H2))

axb,

- (391 Or(Kr, + 2 *(Kx)|,) — 0.

From Kawamata-Viehweg’s vanishing theorem, we have H!(X',Ky' + 2f*(Kx)) = 0.
Therefore we get the surjective map

azbz
H(X', Ky + 2f*(Kx) + g5 (H2)) = @ H°(Fi, KF, + 21 *(Kx)|,)-

i=1
Which means that @k, , ,ar+(ky)+g (#,)| Can separate fibers of g, and disjoint components
of a general fiber of g, at least over a nonempty Zariski open subset of W, so can
Dk, +4f*(Kx)+Do|- In order to prove the birationality of Dk, 4r+(ky)+D, W€ have to
show that Dk, 4r+(ky)+D||F 15 birational for a general fiber F of h). Now let F be a
general fiber of /), denote

* 1 *
G :=4f*(Kx) + 3 gy (H)) ~F.

Because b =1, p(2)=h"gy(H?)) = h"(arb,F) = asb,. Noting that p(2) >4 and
a; > p(2) — 1, we actually have b, = 1 and p(2) = a, > 4. Therefore (1/2)g5y(HY) — F
is nef and then G is nef. It is easy to see that G is big. G is also an effective Q-divisor
because 4/*(Kyx) — F > 0. Note that the fractional part {G} of G is composed of com-
ponents from singular fibers of /) and at most one smooth fiber of A’ (one only has to
consider the components of V), therefore {G} has support with only normal crossings.
Thus by Kawamata-Viehweg’s vanishing theorem, we have

HY (X' Ky +4f*(Kx)+ Dy — F) = H'(X', Ky + [G]) = 0.

Noting that Dy is vertical, we have Dy|r = 0. By the definition of f, we see that the
ramification divisor of f is contained in singular fibers of A}, therefore f*(Ky)|r =
Kx'|p = Kr. From the exact sequence

0— (QXI(KX/ +4f*(Kx) + Dy — F)
— Ox(Kx' + 4f*(Kx) + Do)

— 0 F(SKF) 4 0,
we get the surjective map

H°(X' Ky +4f*(Kx) + Do) — H°(F,5Kp).
Which means Dk, 147+(ky)+Do|lF = Pysk,| is a birational map, therefore
DKy -+47* (Kx)+ Dol
is a birational map, so is Piex,,|- O

Theorem 2.2, theorem 2.3, theorem 2.4 and theorem 2.5 imply main theorem.
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