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Introduction.

This study is a continuation of my papers [12], [13] and [14]. Let $M$ be a compact
simply connected riemannian symmetric space of dimension $m(\geq 2)$ , and $s$ an integer
such that $1\leq s\leq m$ . Let $G^{s}(T_{p}M)$ be the set of $s$-dimensional linear subspaces in a
tangent space $T_{p}M$ and denote by $G^{s}(TM)$ the Grassmann bundle over $M$ with fibres
$G^{s}(T_{p}M)$ . For an arbitrary subset $\gamma$ in $G^{s}(TM)$ an $s$-dimensional connected sub-
manifold $S$ of $M$ is called a $\gamma$-submanifold if at each point $p$ of $S$ the tangent space $T_{p}S$

belongs to Yr The collection of $\gamma$-submanifolds, denoted by $\mathscr{L}(M, \gamma)$ , constitutes a
$\gamma^{\nearrow}$-geometry. The term “Grassmann geometries” in the title is a collected name for such
$\gamma$-geometries and it has been introduced in R. Harvey-H. B. Lawson [4].

We now consider the following $\gamma$-geometries. Let $G$ be the isometry group of $M$ .
Then it acts transitively on $M$ and at the same time acts on $G^{s}(TM)$ via the differentials
of isometries. If as a subset $\gamma$ we take a $G$-orbit on $G^{s}(TM)$ by this action, the $\parallel^{\wedge}-$

geometry gives a class of submanifolds in $M$ with congruent tangent spaces.
We moreover consider $G$-orbits of the following type. An $s$-dimensional linear sub-

space $V$ in $T_{p}M$ is called strongly curvature-invariant if it satisfies that

$R_{p}(V, V)V\subset V$ and $R_{p}(V^{\perp}, V^{\perp})V^{\perp}\subset V^{\perp}$ ,

where $R$ denotes the curvature tensor on $M$ and $V^{\perp}$ denotes the orthogonal complement
of $V$ in $T_{p}M$ . We consider a $G$-orbit $\gamma$ through such a subspace $V$ . The $\gamma$-geometry
is also said to be of strongly curvature-invariant type. By a result on symmetric space
a $\gamma$-geometry of strongly curvature-invariant type has a unique compact totally geodesic
$\gamma$-submanifold, except the difference by isometries.

In the previous papers we have treated the cases that $G$ is a simple Lie group, and
have decided the $\gamma$-geometries which admit non-totally geodesic $\gamma$-submanifolds. In
the present paper we treat a general case that the Lie group $G$ is not necessarily simple,
and we obtain a decomposition theorem for $\gamma$-submanifolds, thus, for $\gamma$-geometries
of strongly curvature-invariant type. The theorem will clarify the structure of $\gamma_{-}$

geometries of strongly curvature-invariant type, and as a result it will give the classifica-
tion of symmetric submanifolds in a general compact simply connected riemannian sym-
metric space.
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\S 1. Preliminaries.

In the following we consider a compact simply connected riemannian symmetric
space $M$ and a $\gamma$-geometry $\mathscr{L}(M, \gamma)$ of strongly curvature-invariant type.

Let $\gamma_{i}’ s$ be the connected components of $G$-orbit $\gamma$ They are then realized as
orbits by the identity component $G^{0}$ of $G$, where the group $G/G^{0}$ acts transitively on the
collection $\{\gamma_{i}\}$ of $G^{0}$-orbits, thus, on the collection of $\gamma_{i}$ -geometries. Also, since a $\gamma_{-}$

submanifold is always connected, the $\gamma$-geometry is the union of $\gamma_{i}$ -geometries. From
this observation we hereafter consider only the $\gamma$-geometries obtained from $G^{0}$ -orbits.

A $\gamma$-geometry $\mathscr{L}(M, \gamma)$ of strongly curvature-invariant type is said to be not sub-
stantial if $M$ is a product of symmetric spaces $M_{1}$ and $M_{2}$ , and it moreover holds that
$V\subset TM_{1}$ for any element $V$ in $\gamma$ Otherwise it is said to be substantial.

Assume that $\mathscr{L}(M, \gamma)$ is not substantial and let $G_{1}^{0}$ be the identity component of
isometries on $M_{1}$ . Then there exists a $G_{1}^{0}$-orbit $\gamma_{1}$ over $M_{1}$ such that $\mathscr{L}(M, \gamma)=$

$\{S_{1}\cross\{q\};S_{1}\in \mathscr{L}(M_{1}, \gamma_{1}), q\in M_{2}\}$ . We can thus regard the geometry $\mathscr{L}(M, \gamma)$ as a
geometry over $M_{1}$ of strongly curvature-invariant type. So we consider only substantial
ones.

A compact semisimple Lie algebra $\mathfrak{g}$ with involution $\sigma$ , denoted by $(\mathfrak{g}, \sigma)$ , is called a
symmetric Lie algebra if the $(+1)$ -eigenspace of $\sigma$ acts faithfully on the (-l)-eigenspace
of $\sigma$ by the adjoint action. Moreover an ordered pair of symmetric Lie algebras $(\mathfrak{g}, \sigma)$

and $(\mathfrak{g}, \tau)$ is called a pairwise symmetric Lie algebra, abbreviated to PSLA, if the involu-
tions $\sigma$ and $\tau$ are commutative. Hereafter a PSLA is denoted by $(\mathfrak{g}, \sigma, \tau)$ .

Let $\mathscr{L}(M, \gamma)$ be a substantial geometry. Fix a point $p$ in $M$ and take an element
$V$ in $\gamma$ such that $V\subset T_{p}M$ . Moreover let $s_{p}$ be the symmetry at $p$ of symmetric space
$M$ and $t_{p}$ be the involutive isometry of $M$ satisfying $t_{p}(p)=p$ and $(dt_{p})_{p}(v)=-v$ , or
$(dt_{p})_{p}(v)=v$ according as $v\in V$ or $v\in V^{\perp}$ . The existance of $t_{p}$ is assured by the strong
curvature-invariance of $V$ . We now take the Lie algebra $\mathfrak{g}$ of $G$ and define involutions $\sigma$

and $\tau$ respectively as the differentials of inner automorphisms on $G$ induced from $s_{p}$ and
$t_{p}$ . Then $(\mathfrak{g}, \sigma, \tau)$ is a PSLA. The substantiality of geometry gives a necessary and suf-
ficient condition that $(\mathfrak{g}, \tau)$ is a symmetric Lie algebra. This construction, independently
of the fixed point $p$ , gives a one-to-one correspondence between the collection of sub-
stantiai geometries over $M$ and the equivalence classes of PSLA’s with the underlying
symmetric Lie algebra $(\mathfrak{g}, \sigma)$ . Here the equivalence is the one by inner automorphisms.
(cf. See [10] for details.)

Next a substantial geometry $\mathscr{L}(M, \gamma)$ is said to be not strong if there exists a
product factor $M_{1}$ of $M$, such that $T_{p}M_{1}\subset V$ for any $p$ in $M$ and any $V$ in $\gamma$ such that
$V\subset T_{p}M$ . (Here we admit the case $M_{1}=M.$ ) Otherwise it is said to be strong. A
substantial geometry $\mathscr{L}(M, \gamma)$ is strong if and only if a geometry $\mathscr{L}(M, \gamma^{\perp})$ is sub-
stantial where $\gamma^{\perp}$ is the $G^{0}$-orbit consisting of orthogonal complements of elements in
$\gamma$ This is moreover equivalent to the fact that the pair $(\mathfrak{g}, \sigma\tau)$ is also a symmetric Lie
algebra. So, the collection of strongly substantial geometries over $M$ corresponds to the
equivalence classes of PSLA’s with $(\mathfrak{g}, \sigma)$ , such that pairs $(\mathfrak{g}, \sigma\tau)$ are also symmetric Lie
algebras. In the following such a PSLA is called of strong type.

REMARK. From a PSLA $(\mathfrak{g}, \sigma\tau)$ of strong type we can successively construct the
following five PSLA’s of strong type: $(\mathfrak{g}, \sigma, \sigma\tau),$ $(\mathfrak{g}, \tau, \sigma),$ $(\mathfrak{g}, \tau, \sigma\tau),$ $(\mathfrak{g}, \sigma\tau, \sigma)$ and $(\mathfrak{g}, \sigma\tau, \tau)$ .
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The collection of these six PSLA’s is called a family and it has much contributed to the
classification of PSLA’s for the case $\mathfrak{g}$ is simple. (See the previous papers.)

\S 2. The decomposition of substantial geometries.

We first determine the irreducible PSLA’s and by using the result we study the
decomposition of substantial geometry.

A PSLA is called irreducible if it is not decomposed into a sum of more than two
PSLA’s. A PSLA with simple Lie algebra is irreducible, but an irreducible PSLA does
not always have a simple Lie algebra.

LEMMA 2.1. Let $(\mathfrak{g}, \sigma, \tau)$ be an irreducible PSLA. Then $\mathfrak{g}$ is a compact simple Lie
algebra, or a direct sum of two or four copies of a compact simple Lie algebra.

PROOF. Let $\mathfrak{g}=\oplus_{i=1}^{r}\mathfrak{g}_{i}$ be the decomposition into compact simple Lie algebras.
Since $\sigma$ is involutive, we may moreover assume that

$\mathfrak{g}=\mathfrak{g}_{1}\oplus\cdots\oplus \mathfrak{g}_{s}\oplus \mathfrak{g}_{s+1}\oplus\cdots\oplus \mathfrak{g}_{s+t}\oplus \mathfrak{g}_{s+t+1}\oplus\cdots\oplus \mathfrak{g}_{s+2t}$ $(s+2t=r)$

where $\sigma(\mathfrak{g}_{i})=\mathfrak{g}_{i}(1\leq i\leq s)$ and $\sigma(\mathfrak{g}_{s+i})=\mathfrak{g}_{s+t+i}(1\leq i\leq t)$ .
If $s>0$ , then $\sigma(\mathfrak{g}_{1})=\mathfrak{g}_{1}$ . Since $\tau$ is an involution commutative to $\sigma$, there exists an

index $j(1\leq j<s)$ such that $\tau(\mathfrak{g}_{1})=\mathfrak{g}_{j}$ . If $j=1$ , the object $(\mathfrak{g}_{1}, \sigma, \tau)$ is a PSLA, and if
$j\neq 1$ , the object $(\mathfrak{g}_{1}\oplus \mathfrak{g}_{j}, \sigma, \tau)$ is so. The irreducibility of $(\mathfrak{g}, \sigma, \tau)$ implies that $\mathfrak{g}=\mathfrak{g}_{1}$ if
$j=1$ and $\mathfrak{g}=\mathfrak{g}_{1}\oplus \mathfrak{g}_{j}$ if $j\neq 1$ . Noting that in the second case $\mathfrak{g}_{j}$ is isomorphic to $\mathfrak{g}_{1}$ ,
we can see that in these cases $\mathfrak{g}$ is a compact simple Lie algebra or a direct sum of two
copies of a compact simple Lie algebra.

If $s=0$ , then $\sigma(\mathfrak{g}_{1})=\mathfrak{g}_{t+1}$ . Moreover if $\tau$ preserves $\mathfrak{g}_{1}\oplus \mathfrak{g}_{t+1}$ , similarly as the above
argument we can see that $\mathfrak{g}$ is a direct sum of two copies of a compact simple Lie alge-
bra. Otherwise, by the commutativity of $\sigma$ and $\tau$ there exists an index $j(2\leq j\leq t)$ such
that $\tau(9_{1}\oplus \mathfrak{g}_{t+1})=\mathfrak{g}_{j}\oplus \mathfrak{g}_{t+j}$ . Again, the irreducibility of PSLA $(\mathfrak{g}, \sigma, \tau)$ implies that
$\mathfrak{g}=\mathfrak{g}_{1}\oplus \mathfrak{g}_{t+1}\oplus \mathfrak{g}_{j}\oplus \mathfrak{g}_{t+j}$ . Noting that these Lie algebras are all isomorphic, we can see
that $\mathfrak{g}$ is a direct sum of four copies of a compact simple Lie algebra. $\square$

According to the cases of Lemma 2.1 we determine the irreducible PSLA’s. In the
following let $(\mathfrak{g}, \sigma, \tau)$ be an irreducible PSLA, and let $\mathscr{L}(M, \gamma)$ and $N$ be the corre-
sponding substantial geometry and the compact totally geodesic $\gamma$-submanifold.

The case (A) that $\mathfrak{g}$ is simple. As described above, such a PSLA, called a simple
PSLA, is always irreducible. The simplicity of $\mathfrak{g}$ also implies that the simple PSLA is of
strong type if and only if $\sigma\neq\tau$ . In the case $\sigma=\tau$ , the $G^{0}$ -orbit $\gamma$ is the tangent bundle
$TM$ and thus the substantial geometry $\mathscr{L}(M, \gamma)$ consists of all the connected open sub-
sets in $M$ . Particularly $N$ is $M$ itself. On the other hand the simple PSLA’s of strong
type have been classified in the previous papers. The associated symmetric spaces
$M$ exhaust the irreducible ones of not group type and the compact totally geodesic r-
submanifolds $N$ have been also determined in the papers.

The case (B) that $\mathfrak{g}$ is a direct sum of two copies of a compact simple Lie algebra.
Let I be a compact simple Lie algebra and put $\mathfrak{g}=I_{1}\oplus I_{2}$ where $I_{1}=I_{2}=I$ . In this case
the following three subcases are considerable from the proof of Lemma 2.1; the subcase
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(B1) that $\sigma$ preserves $I_{i}’ s$ and $\tau$ exchanges $I_{i}’ s$ , the subcase (B2) that $\sigma$ exchanges $I_{i}’ s$ and $\tau$

preserves $I_{i}’ s$ , and the subcase (B3) that both $\sigma$ and $\tau$ exchange $I_{i}’ s$ .
The subcase (B1). Suppose that $\tau(X, Y)=(Y, X)$ for $X,$ $Y\in I$ and let $\sigma_{i}(i=1,2)$

be the restrictions of $\sigma$ on $I_{i}$ , which induce involutions on I. Then by the commutativity
of $\sigma$ and $\tau$ , it follows that $\sigma_{1}=\sigma_{2}$ on I. Hence a PSLA in this case is, by an auto-
morphism of $\mathfrak{g}$ , equivalent to a PSLA with the following $\sigma$ and $\tau$ :

$\sigma(X, Y)=(\hat{\sigma}(X),\hat{\sigma}(Y))$ , $\tau(X, Y)=(Y, X)$

where $\hat{\sigma}$ is a nontrivial involution of I. A PSLA of this type is obviously of strong type.
Moreover, taking the simply connected symmetric space $M^{*}$ of not group type which
corresponds to (I, $\hat{\sigma}$), we can see that $M=M^{*}\cross M^{*}$ and $N$ is the diagonal subset in
$M^{*}xM^{*}$ .

The subcase (B2). Suppose that $\sigma(X, Y)=(Y, X)$ for $X,$ $Y\in I$ . Then by the same
way as (B1), a PSLA in this case is, by an automorphism of $\mathfrak{g}$ , equivalent to a PSLA
with the following $\sigma$ and $\tau$ :

$\sigma(X, Y)=(Y, X)$ , $\tau(X, Y)=(\hat{\tau}(X),\hat{\tau}(Y))$

where $\hat{\tau}$ is a nontrivial involution of I. A PSLA of this type is also of strong type.
Moreover, taking the simply connected symmetric space $M^{*}$ of not group type which
corresponds to (I, $\hat{\tau}$), we can see that $M$ is the universal covering $\hat{L}^{*}$ of the identity com-
ponent of isometry group of $M^{*}$ , and $N$ is the image of Cartan imbedding $M^{*}arrow\hat{L}^{*}$ .

The subcase (B3). Suppose that $\sigma(X, Y)=(Y, X)$ for $X,$ $Y\in I$ . Then by the same
way as (B1), a PSLA in this case is, by an automorphism of $\mathfrak{g}$ , equivalent to a PSLA
with the following $\sigma$ and $\tau$ :

$\sigma(X, Y)=(Y, X)$ , $\tau(X, Y)=(\hat{\tau}(Y),\hat{\tau}(X))$

where $\hat{\tau}$ is an involution of I. (We here admit the case that $\hat{\tau}$ is identical.) A PSLA of
this type is of strong type if and only if $\hat{\tau}$ is not identical, that is, $\sigma\neq\tau$ . Moreover in
the case of strong type, taking the same $M^{*}$ and $\hat{L}^{*}$ as in (B2), we can see that $M$ is also
$\hat{L}^{*}$ and $N$ is the compact subgroup $\hat{K}^{*}$ suoh that $M^{*}=L\hat{r}*/\hat{K}^{*}$ .

The case (C) that $\mathfrak{g}$ is a direct sum of four copies of a compact simple Lie algebra.
Let I be a compact simple Lie algebra and put $\mathfrak{g}=\oplus_{i=1}^{4}I_{i}$ where $I_{i}=I(1\leq i\leq 4)$ . In
this case, taking account of the proof of Lemma 2.1, we suppose that

$\tau(X, Y, Z, W)=(Z, W, X, Y)$ , $\sigma(I_{1})=I_{2}$ , $\sigma(I_{3})=I_{4}$ .

Then by the commutativity of $\sigma$ and $\tau$ , there exists an automorphism $\varphi$ of I such that

$\sigma(X, Y, Z, W)=(\varphi(Y), \varphi^{-1}(X),$ $\varphi(W),$ $\varphi^{-1}(Z))$ .

Hence a PSLA in this case is, by an automorphism of $\mathfrak{g}$ , equivalent to the PSLA with
these $\sigma$ and $\tau$ . A PSLA of this type is obviously of strong type. Moreover we can see
that $M$ is, as symmetric space, isomorphic to the product group $L\cross L$ of the simply
connected compact Lie group $L$ with Lie algebra I, and $N$ is also the diagonal subgroup
in $L\cross L$ which is isomorphic to $L$ .
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REMARK. Fixing an irreducible symmetric space $M^{*}$ which appears in the case (B),
we can easily see that three PSLA’s of subcases (B1), (B2), and (B3) constitute a family.
Similarly, fixing a simple Lie algebra I in the case (C), we can see that the PSLA in the
case constitutes a family by itself.

NOW, before we describe the decomposition theorem of substantial geometries, we
review four examples of substantial geometries $\mathscr{L}(M, \gamma)$ which admit non-totally geo-
desic $\gamma$-submanifolds. See the previous papers for details.

EXAMPLE 1. Let $M$ be the $m(\geq 2)$ -dimensional standard sphere $S^{m}$ and fix an inte-
ger $s$ such that $1\leq s\leq m-1$ . Then, if we put $\gamma=G^{s}(TM)$ , it is only the $G^{0}$ -orbit and
defines a strongly substantial geometry $\mathscr{L}(M, \gamma)$ , which consists of all the s-dimensional
connected submanifolds of $M$ . The corresponding PSLA of strong type belongs to the
case (A) if $m\neq 3$ , the case (B2) if $m=3$ and $s=2$ , and the case (B3) if $m=3$ and $s=1$ .

EXAMPLE 2. Let $M$ be the $n$-dimensional complex projective space $CP$“. (In this
case $m=2n.$ ) Then the following two geometries are considerable:

Complex type. Fix an integer $t$ such that $1\leq t\leq n-1$ and let $\gamma$ be the set of
$t$-dimensional tangential complex subspaces of M. (In this case $s=2t.$ ) Then it is a $G^{0_{-}}$

orbit and defines a strongly substantial geometry which consists of all the t-dimensional
connected complex submanifolds of $M$ . The corresponding PSLA of strong type belongs
to the case (A).

Totally real type. Let $\gamma$ be the set of $n$-dimensional tangential totally real sub-
spaces of $M$ . Then it is a $G^{0}$-orbit and defines a strongly substantial geometry which
consists of all the $n$-dimensional connected totally real submanifolds of $M$ . The corre-
sponding PSLA of strong type also belongs to the case (A).

EXAMPLE 3. Let $M$ be the $n$-dimensional quatemion projective space $HP^{n}$ . (In this
case $m=4n.$ ) Then the following geometry is considerable: Let $\parallel^{-}$ be the set of 2n-
dimensional tangential totally complex subspaces of $M$ . Then it is a $G^{0}$-orbit and
defines a strongly substantial geometry which consists of all the $2n$-dimensional con-
nected totally complex submanifolds of $M$ . The corresponding PSLA of strong type
$aIso$ beIongs to the case (A).

EXAMPLE 4. The geometries in this case are closely related to the irreducible sym-
metric $R$-spaces. They are (not necessarily simply connected) compact symmetric spaces
and contain the irreducible compact hermitian symmetric spaces.

First let $\hat{M}$ be a compact irreducible hermitian symmetric space and $\hat{N}$ be a real
form of $\hat{M}$, i.e., a half-dimensional complete totally real totally geodesic submanifold.
The irreducible symmetric $R$-spaces of not hermitian type exhaust such real forms.
(See M. Takeuchi [16].) Then a tangent space $T_{p}\hat{N}$ is strongly curvature-invariant and it
induces a substantial geometry of strong type. The real form $\hat{N}$ is a unique compact
totally geodesic submanifold contained in the geometry. Let $(\mathfrak{g}, \tau, \sigma)$ be the PSLA which
corresponds to the geometry, and consider the PSLA $(\mathfrak{g}, \sigma, \tau)$ which belongs to the same
family. Then the geometry which corresponds to the new PSLA admits non-totally
geodesic submanifolds, and a unique compact totally geodesic submanifold in it is locally
isometric to $\hat{N}$ . The new geometry obviously belongs to the case (A).
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Next consider the case that $M^{*}$ in the subcase (B1) is an irreducible compact her-
mitian symmetric space. Then $M^{*}$ is the diagonal real form in the product space
$M^{*}\cross M^{*}$ , provided that the complex structure on the second $M^{*}$ is the minus multiple
of the complex structure on the first $M^{*}$ . In this case the same arguments as above
hold, and the obtained new geometry belongs to the subcase (B2).

A typical example of these geometries is the hypersurface geometry of $S^{n}$ , which also
appeared in Example 1. If $n\neq 3$ , it is the first case constructed from the real form $S^{n-1}$

of the $(n-1)$ -dimensional complex quadric space $CQ^{n-1}$ , and if $n=3$ , it is the second
case constructed from the real form $CP^{1}(=S^{2})$ of the product space $CP^{1}\cross CP^{1}$ .

We now give a decomposition theorem of substantial geometries. Let $\mathscr{L}(M, \gamma)$ be
a substantial geometry with PSLA $(\mathfrak{g}, \sigma, \tau)$ and decompose the PSLA into irreducible
PSLA’s $(\mathfrak{g}_{i}, \sigma_{i}, \tau_{i})$ , i.e.,

$( \mathfrak{g}, \sigma, \tau)=\bigoplus_{i=1}^{r}(\mathfrak{g}_{i}, \sigma_{i}, \tau_{i})$ .

Moreover denote by $\mathscr{L}(M_{i}, \gamma_{i})$ the substantial geometries which correspond to the
PSLA’s $(\mathfrak{g}_{i}, \sigma_{i}, \tau_{i})$ . Then we have the following.

THEOREM 2.2. Let $S$ be a submanifold in $\mathscr{L}(M, \gamma)$ . Then,
(1) for any point $p$ in $S$ there exist submanifolds $S_{i}$ in $\mathscr{L}(M_{i}, \gamma_{i})$ such that near $p$ the

imbedding $Sarrow M\dot{i}$ the product of the imbeddings $S_{i}arrow M_{i}$ . Moreover, if $S$ is complete,
there exist complete submanifolds $S_{i}$ in $\mathscr{L}(M_{i}, \gamma_{i})$ such that the imbedding $Sarrow M$ is the
global product of the imbeddings $S_{i}arrow M_{i}$ .

(2) Under the above product decomposition, $\iota f\mathscr{L}(M_{i}, \gamma_{i})$ is none of Examples 1
through 4, the imbedding $S_{i}arrow M_{i}$ is always totally geodesic.

PROOF. We first show the claim (1). Identifying the ambient space $M$ with the
product space $M_{1}\cross\cdots\cross M_{r}$ , we have the orbit decomposition $\gamma=\gamma_{1}\cross\cdots\cross\gamma_{r}$ .
By this decomposition, each tangent space $T_{q}S$ is uniquely decomposed into the sum of
subspaces $S_{q}^{i}$ which respectively belong to $\gamma_{i}$ i.e., $T_{q}S=S_{q}^{1}\oplus\cdots$ (ED $S_{q}^{r}$ . This moreover
induces the following decomposition of the tangent bundle $TS$ :

(2.1) $TS=S^{1}\oplus\cdots\oplus S^{r}$

where $S^{i}= \sum_{q\in S}S_{q}^{i}\subset TM_{i}$ . Similarly, taking the bundles $(S^{i})^{\perp}$ orthogonal to $S^{i}$ in the
bundles $TM_{i}$ , we have the following decomposition of the normal bundle $NS$ :

(2.2) $NS=(S^{1})^{\perp}\oplus\cdots\oplus(S^{r})^{\perp}$ .

Denote by $\alpha$ the second fundamental form of the imbedding $Sarrow M$ , and by $D$ and
$D^{S}$ the riemannian connections on $M$ and $S$ , respectively. We now show that

(2.3) $D_{X}^{S}S^{i}\subset S^{i}$ and $\alpha(TS, S^{i})\subset(S^{i})^{\perp}$

for a $TS$-valued vector field $X$ on $S$ and any index $i$ . In fact, it holds by Gauss formula
that

$D_{X}Y=D_{X}^{S}Y+\alpha(X, Y)$
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for any $S^{i}$-valued vector field $Y$ on $S$ . We here note that $Y$ is $TM_{i}$-valued. Since the
holonomy group of $M$ is the direct product of holonomy groups of $M_{j}’ s$ , the parallel
translations with respect to $D$ preserve each $TM_{j}$ . This implies that the vector field
$D_{X}Y$ is also $TM_{i}$-valued, and thus it follows by (2.1) and (2.2) that $D_{X}^{S}Y$ is $S^{i}$-valued
and $\alpha(X, Y)$ is $(S^{i})^{\perp}$ -valued. These prove (2.3).

AS a direct result of (2.3) we obtain that

(2.4) $R^{S}(X, Y)S^{i}\subset S^{i}$

for $TS$-valued vector fields $X$ and $Y$, where $R^{S}$ is the curvature tensor on $S$, and more-
over obtain that

(2.5) $\alpha(S^{i}, S^{j})=0$

for distinct indices $i$ and $j$ . From (2.4) the de Rham decomposition theorem assures
that there exist submanifolds $S_{i}$ in $\mathscr{L}(M_{i}, \gamma_{i})$ such that near a given point $p,$ $S=$

$S_{1}\cross\cdots\cross S_{r}$ and $TS_{i}=S^{i}$ . Along arguments in J. D. Moore [8] together with (2.5), we
can see that near $p$ , the imbedding $Sarrow M$ is the product of imbeddings $S_{i}arrow M_{i}$ .

In the case that $S$ is complete, we also obtain our claim along Moore’s arguments,
where if necessary, we take the universal covering of $S$ .

Next we consider the claim (2). Consider an irreducible substantial geometry
$\mathscr{L}(M_{i}, \gamma_{i})$ . If it is not of strong type, it always consists of only totally geodesic sub-
manifolds. We thus assume that it is of strong type and none of geometries in Examples
1 through 4. If it is the case (A), we have proved in the previous papers that it does not
admit non-totally geodesic submanifolds. For the cases (B) or (C), we will show the fact
in the following sections. $\square$

REMARK. In the above theorem, a substantial geometry $\mathscr{L}(M, \gamma)$ is of strong type
if and only if each irreducible geometry $\mathscr{L}(M_{i}, \gamma_{i})$ is also of strong type.

Let $M$ be a compact simply connected symmetric space. Then a connected sub-
manifold $S$ of $M$ is called a symmetric submamfold if for any point $p$ in $S$ there exists an
extrinsic symmetry $t_{p}$ of $S$ at $p$ , i.e., it is an isometry on $M$ which satisfies

$t_{p}(p)=p$ , $t_{p}(S)=S$ , and $(dt_{p})(v)=\{$
$-v$ if $v\in T_{p}S$ ,
$v$ if $v\in N_{p}S$ .

AS a corollary of Theorem 2.2, we obtain the classification of symmetric submanifolds of
$M$ by the following facts:

(1) A symmetric submanifold belongs to some geometry of strongly curvature-
invariant type ([15]);

(2) A compact totally geodesic submanifold which belongs to a geometry of
strongly curvature-invariant type is always a symmetric submanifold ([15]);

(3) The symmetric submanifolds which belong to the geometries of Examples 1
through 4 have been classified up to non-totally geodesic ones.

The classifications in (3) have been given by many people: Ferus for the geometries
of Example 1, Takagi-Nakagawa for ones of Example 2 (complex type), the author-
Takeuchi for ones of Example 2 (totally real type), Tsukada for ones of Example 3, and
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the author for ones of Example 4. (cf. See [15] for Examples 1 through 3, and [10, 13,
or 14] for Example 4.)

\S 3. The irreducible substantial geometries.

In this section we consider whether a given irreducible substantial geometry of strong
type admits non-totally geodesic submanifolds, or not. As described above, the problem
is solved for the geometries of case (A). We now study it for the geometries of cases (B)
and (C).

We first review the structure of PSLA’s of strong type, which has been explained in
[13] or [14]. Let $(\mathfrak{g}, \sigma, \tau)$ be a PSLA of strong type and decompose $\mathfrak{g}$ into the sum of
$(\pm 1)$ -eigenspaces $\mathfrak{k}$ and $p$ of $\sigma$ . Moreover by $\tau$ decompose $\mathfrak{k}$ and $\mathfrak{p}$ into the sums of
$(\pm 1)$ -eigenspaces $\mathfrak{k}_{\pm}$ and $p_{\pm}$ , respectively, i.e.,

$\mathfrak{g}=\mathfrak{k}\oplus p$ , $\mathfrak{k}=\mathfrak{k}_{+}\oplus \mathfrak{k}_{-}$ , $p=p_{+}\oplus p_{-}$ .

Then $t_{+}$ is a subalgebra of $\mathfrak{g}$ and vector spaces $t_{-},$
$p_{\pm}$ are $t_{+}$ -modules. Take a maximal

abelian subspace $\mathfrak{h}_{+}$ in $f_{+}$ and fix a fundamental root system $\Pi(\mathfrak{k}_{+})(\subset\sqrt{-1}\mathfrak{h}_{+})$ of semi-
simple part of $(\mathfrak{k}_{+})^{C}$ . We then make the Dynkin diagram of $\Pi(\mathfrak{k}_{+})$ , and next represent
the minus nonzero dominant weights of $f_{+}$ -modules $f^{C},$ $p+c$ and $P^{\frac{C}{}}$ by cross circles $\otimes^{\mu_{j}}$ ,
$\otimes^{v_{j}},$ $\otimes^{v_{j}}$ with lavels $\mu,$ $v$ and $v$ , while the zero dominant weights are represented by black
circles $\bullet^{\mu_{j}}\bullet^{\mathcal{V}}J\bullet^{v_{j}}$ . All dominant weights are counted up to the multiplicity. Here the
term zero dominant weight is used for the case that a $\mathfrak{k}_{+}$ -module has the nonzero sub-
module on which $f_{+}$ acts trivially, and the multiplicity implies the dimension of the sub-
module. We note that the multiplicity of nonzero dominant weight is always one.
Next we put lines and arrows between fundamental roots and minus dominant weights
according to the rule of Dinkin diagram. An obtained figure is said to be a P-figure
associated with PSLA. The PSLA’s which belong to a family have the same subalgebra
$f_{+}$ and the $\mathfrak{k}_{+}$ -modules $\mathfrak{k}_{-},$

$p_{\pm}$ which coincide except order. So the associated P-figures
are the same ones except lavels $\mu,$ $v$ , and $v$ .

We have seen in the previous papers $[13, 14]$ that the simple PSLA’s of strong type
and their families, appeared in the case (A), are decided only by the P-figures. This is
true even for irreducible PSLA’s of strong type, thus, for general ones of strong type,
which will be seen after the decision of the P-figures associated with irreducible PSLA’s
in the cases (B) and (C).

REMARK. The irreducible PSLA’s of strong type in the cases (B) and (C) are always
of outer type, i.e., rank $f_{+}\neq rankg$ .

We next review a sufficient condition for a substantial geometry of strong type to be
constituted by only totally geodesic submanifolds.

For a PSLA $(\mathfrak{g}, \sigma, \tau)$ of strong type we define a $\mathfrak{k}_{+}$ -homomorphism $\rho$ of $p_{-}^{*}\otimes$ f-to
$\wedge^{2}(p_{-}^{*})\otimes \mathfrak{p}_{+}$ in the following way:

$\rho(\lambda)(x,y)=[\lambda(x),y]-[\lambda(y), x]$

for $\lambda\in p_{-}^{*}\otimes \mathfrak{k}$-and $x,y\in p_{-}$ . Here $($ $)^{*}$ denotes the dual space of vector space. The
sufficient condition is given by the following lemma.
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LEMMA 3.1 ([12]). If the homomorphism $\rho$ is injective, the geometry associated with
$(\mathfrak{g}, \sigma, \tau)$ is constituted by only totally geodesic submanifolds.

REMARK. We have seen in the previous papers [12, 13, and 14] that for a geometry
of case (A) this condition is also a necessary condition. After deciding the injectivity of $p$

for geometries of cases (B) and (C), we will see from Theorem 2.2 that even for ageneral
geometry of strong type it is a necessary and sufficient condition.

We now study the PSLA’s of cases (B) and (C). We first consider the case (C) and
next consider the case (B).

Let $(\mathfrak{g}, \sigma, \tau)$ be an irreducible PSLA of case (C) and suppose that $\sigma$ and $\tau$ are the
involutions given in \S .2. Then the subalgebra $f_{+}$ and the $\mathfrak{k}_{+}$ -modules $f_{-},$

$p_{+}$ are given in
the following:

$\mathfrak{k}_{+}=\{(X, \varphi^{-1}(X), X, \varphi^{-1}(X));X\in I\}$ ,

$\mathfrak{k}_{-}=\{(Y, \varphi^{-1}(Y), -Y, -\varphi^{-1}(Y));Y\in I\}$ ,

$\mathfrak{p}_{+}=\{(Z, -\varphi^{-1}(Z), Z, -\varphi^{-1}(Z));Z\in I\}$ ,

$p_{-}=\{(W, -\varphi^{-1}(W), -W, \varphi^{-1}(W));W\in I\}$ .

Consider the first projection of these spaces onto I. Then $f_{+}$ is as Lie algebras identified
with I and $f_{-},$

$p_{\pm}$ are as vector space identified with it. According to $\mathfrak{k}_{-},$

$p_{+}$ , and $p_{-}$ , we
here rewrite the identified vector space I by $I_{1},$ $I_{2}$ , and I3. The Lie algebra $\mathfrak{g}$ is then
identified with a Lie algebra I $\oplus I_{1}\oplus I_{2}\oplus$ I3 with the bracket product such that [I, $\lceil\rfloor=I$ ,
[I, $I_{i}$ ] $=I_{i},$ $[I_{i}, I_{i}]=I$ , and $[I_{i}, I_{j}]=I_{k}$ for distinct indices $i,$ $j$ , and $k$ .

We now see the P-figure associated with this PSLA. Take a maximal abelian sub-
space $\mathfrak{a}$ in I and fix a fundamental root system $\Pi(I)$ of $I^{C}$ . Since the representations of
I on $I_{i}^{C}$ are all adjoint, their dominant weights are given by only the highest root $\beta^{0}$ of
$\Pi(I)$ . Hence the P-figure coincides with the extended Dynkin diagram of $\Pi(I)$ , provided
that the minus dominant weight $-\beta^{0}$ has all labels $\mu,$ $v$ , and $v$ .

We next consider the injectivity of $\rho$ : $I_{3}^{*}\otimes I_{1}arrow(\wedge^{2}I_{3})\otimes I_{2}$ . We take the complexi-
fication of $\rho$ and argue by the same way as in [13] or [14].

Let $r$ be the root system of $I^{C}$ with respect to $\mathfrak{a}^{C}$ and take a basis $\{a_{0(1)},$
$\ldots,$ $a_{0(\swarrow)}$ ,

$X_{\delta}(\delta\in r)\}$ of $I^{C}$ , where $\{a_{0(1)}, \ldots, a_{0(l)}\}$ is a basis of $\mathfrak{a}^{C}$ and $X_{\delta}’ s$ are root vectors with
roots $\delta$ . Putting $\Sigma=$ $\{$0(1), . . . , $0(l)\}\cup r$ , we write the basis by $\{T_{\alpha};\alpha\in\Sigma\}$ . For the
I-module $(I_{3}^{C})^{*}\otimes I_{1}^{C}$ we represent a maximal weight vector $u$ in the following way:

(3.1)
$u= \sum_{\alpha:w_{\alpha}\neq 0}T_{\alpha}^{*}\otimes w_{\alpha}$

where $w_{\alpha}’ s$ are weight vectors in $I_{1}^{C}$ and at least one of them is a maximal vector with the
dominant weight $\beta^{0}$ . (This follows by a result of representation theory.) Then it follows

(3.2)
$\rho(u)=\sum_{\alpha\in\Sigma\alpha:}\sum_{w_{\alpha}\neq 0}(T_{\alpha}^{*}\wedge T_{\alpha}^{*})\otimes[w_{\alpha}, T_{\alpha’}]$

.

We now start from the dominant weight $\beta^{0}$ of $I^{C}1$ and perform the following proce-
dure. Fix an element $\alpha$ in $\Sigma$ and put $\lambda(\alpha)=-\alpha+\beta^{0}$ . For a given subset $S$ in $\Sigma$ we
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then consider the following condition $(C\alpha)$ on $S$ :

$(C\alpha)$ $\gamma+\lambda(\alpha)\in\{0\}\cup r$ for $\gamma\in S$ .

We now put

$\Omega_{0}=\{\gamma\in\Sigma_{;}[T_{\gamma}, X_{\beta^{0}}]\neq 0\}$ and $D_{0}=$ { $\alpha\in\Sigma;(C\alpha)$ holds on $\Omega_{0}$ }.

If $D_{0}\neq\emptyset$ , we next put $B_{0}=\{\beta^{0}\}$ and for each $\alpha$ in $D_{0}$ we take the following sets $B_{1}(\alpha)$ ,
$\Omega_{1}(\alpha)$ and $D_{1}$ :

$B_{1}(\alpha)=$ { $\beta\in r-B_{0;}\beta=\gamma+\lambda(\alpha)$ for some $\gamma\in\Omega_{0}$ },

$\Omega_{1}(\alpha)=$ { $\gamma\in\Sigma;[T_{\gamma},$ $X_{\beta}]\neq 0$ for some $\beta\in B_{1}(\alpha)$ },

$D_{1}=$ { $\alpha\in D_{0;}(C\alpha)$ holds on $\Omega_{1}(\alpha)$ }.

Moreover, for integers $k(\geq 2)$ we inductively define sets $B_{k}(\alpha),$ $\Omega_{k}(\alpha)$ and $D_{k}$ as follows:

$B_{k}( \alpha)=\{\beta\in r-(\bigcup_{j=0}^{k-1}B_{j}(\alpha));\beta=\gamma+\lambda(\alpha)$ for some $\gamma\in\Omega_{k-l}(\alpha)\}$ ,

$\Omega_{k}(\alpha)=$ { $\gamma\in\Sigma_{;}[T_{\gamma},$ $X_{\beta}]\neq 0$ for some $\beta\in B_{k}(\alpha)$ },

$D_{k}=$ { $\alpha\in D_{k-1;}(C\alpha)$ holds on $\Omega_{k}(\alpha)$ }.

From the way of taking vectors $T_{\alpha}$ , we can easily check the conditions $[T_{\gamma}, X_{\beta}]\neq 0$ . For
a sufficiently large integer $k$ the set $B_{k}(\alpha)$ is empty and then the set $\Omega_{k}(\alpha)$ is also regarded
as the empty set. Hence it follows that $D_{k}=D_{k-1}$ for such an integer $k$ . We here put
$D= \bigcap_{k\geq 0}D_{k}$ . Then we have the following.

LEMMA 3.2. $D=\{\beta^{0}\}\iota f$ rank $I\neq 1$ , and $D=\{\beta^{0},0\}$ if rank $I=1$ .

PROOF. Since $\lambda(\beta^{0})=0$ , we can easily see that generally $\beta^{0}\in D$ . Moreover we
note that $\Omega_{0}$ contains zero $and-\beta^{0}$ .

We first consider the case rank $I\neq 1$ . We assume that there exists an element $\alpha$ in $D$

except $\beta^{0}$ , and we then deduce a contradiction for each of the following cases; the case
$\alpha=0_{\hat{J}}$ the case that ct is a negative root, and the case that $\alpha$ is a positive root.

Suppose that $\alpha=0$ . By the assumption rank $I\neq 1$ the set $\Omega_{0}$ moreover contains a
negative root except $-\beta^{0}$ . Since $\lambda(\alpha)=\beta^{0}$ , the set $B_{1}(\alpha)$ thus contains a positive root
$\beta_{1}$ , which is not $\beta^{0}$ . Then there exists a positive root $\gamma$ such that $\gamma+\beta_{1}$ is also a positive
root. This implies that $[T_{\gamma}, X_{\beta_{1}}]\neq 0$ , and it thus follows that $\gamma\in\Omega_{1}(\alpha)$ . Since $\gamma+\lambda(\alpha)$

is not a root, the condition $(C\alpha)$ does not hold on $\Omega_{1}(\alpha)$ , which is a contradiction.
Suppose that $\alpha$ is a negative root. Then $\lambda(\alpha)$ is not a root. Since $0\in\Omega_{0}$ , this con-

tradicts that the condition $(C\alpha)$ holds on $\Omega_{0}$ .
Suppose that $\alpha$ is a positive root. We here note that $\lambda(\alpha)>0$ . If $\lambda(\alpha)$ is not a root,

we have a contradiction by the same way as the case that $\alpha$ is a negative root. Hence
we may assume that $\lambda(\alpha)$ is a positive root, where $\lambda(\alpha)\neq\beta^{0}$ . Since $\beta^{0}-\alpha=\lambda(\alpha)$ , it
follows that in this case $-\alpha\in\Omega_{0}$ and thus $-\alpha+\lambda(\alpha)=\beta^{0}-2\alpha\in B_{1}(\alpha)$ . From this we
also obtain that $\alpha-\lambda(\alpha)\in\Omega_{1}(\alpha)$ and $\alpha\in B_{2}(\alpha)$ . Again since $\alpha+\lambda(\alpha)=\beta^{0}$ , it follows
that $\lambda(\alpha)\in\Omega_{2}(\alpha)$ . Since $2\lambda(\alpha)$ is a not root, this contradicts that the condition $(C\alpha)$

holds on $\Omega_{2}(\alpha)$ .
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We next consider the case rank $I=1$ . In the above arguments for the case that $\alpha$ is
a negative root, we do not use the assumption rank $I\neq 1$ . Moreover we can easily see
$thatinthiscaseO\in D$ . $HenceitfollowsthatD=\{\beta^{0},0\}$ . $\square$

NOW we claim that $\rho(u)\neq 0$ for any maximal weight vector $u(\neq 0)$ in $(I_{3}^{C})^{*}\otimes I_{1}^{C}$ ,
which deduces the injectivity of $\rho$ . In fact, if $\rho$ is not injective, the kemel $Kerp$ of $p$ is
a nontrivial I-submodule of $(I_{3}^{C})^{*}\otimes I_{1}^{C}$ since $p$ is an I-homomorphism. Take a maximal
weight vector $u(\neq 0)$ of $Ker\rho$ . Then $p(u)=0$ and $u$ is also a maximal weight vector of
$(I_{3}^{C})^{*}\otimes I_{1}^{C}$ . This is a contradiction.

Let’s prove our claim. We assume that there exists a maximal weight vector $u(\neq 0)$

in $(I_{3}^{C})^{*}\otimes I_{1}^{C}$ such that $p(u)=0$ , and then induce contradictions. Represent $u$ by $u=$

$\Sigma_{\alpha\in\Sigma}T_{\alpha}^{*}\otimes w_{\alpha}$ , and let $\alpha_{0}$ be an element in $\Sigma$ such that $w_{\alpha_{0}}(\neq 0)$ is a maximal weight
vector in $I_{1}^{C}$ , where the weight of $w_{\alpha_{0}}$ is $\beta^{0}$ . Then we can inductively see that $\alpha_{0}\in D$ .
We first show $\alpha_{0}\in D_{0}$ . Take any $\gamma$ in $\Omega_{0}$ . Since $[T_{\gamma}, X_{\beta^{0}}]\neq 0$ , it follows $[T_{\gamma}, w_{\alpha_{0}}]\neq 0$ .
In (3.2), the coefficient of the term $T_{\alpha_{0}}^{*}\wedge T_{\gamma}^{*}$ equals to $[w_{\alpha_{0}}, T_{\gamma}]-[w_{\gamma}, T_{\alpha_{0}}]$ . Since $\rho(u)=0$ ,
it holds $[w_{\gamma}, T_{\alpha_{0}}]=[w_{\alpha_{0}}, T_{\gamma}]\neq 0$ and thus $w_{\gamma}\neq 0$ . This implies that the term $T_{\gamma}^{*}\otimes w_{\gamma}$

appears in the representation (3.1) of $u$ . Since $\lambda(\alpha_{0})$ is the weight of $u,$ $w_{\gamma}$ is a weight
vector in $I_{1}^{C}$ with weight $\gamma+\lambda(\alpha_{0})$ . Particularly $\gamma+\lambda(\alpha_{0})\in rU\{0\}$ . Hence $\alpha_{0}\in D_{0}$ .
We next show $\alpha_{0}\in D_{1}$ . For any $\beta$ in $B_{1}(\alpha_{0})$ there exists $\gamma\in\Omega_{0}$ such that $\beta=\gamma+\lambda(\alpha_{0})$ .
We here note that $w_{\gamma}$ is a nonzero weight vector in $1_{1}^{C}$ with nonzero weight $\beta$ and the
term $T_{\gamma}^{*}\otimes w_{\gamma}$ appears in the representation (3.1) of $u$ . For any $\delta$ in $\Omega_{1}(\alpha_{0})$ such that
$[T_{\delta}, X_{\beta}]\neq 0$ , we can see by the same way as above that $\delta+\lambda(\alpha_{0})\in r\cup\{0\}$ . Hence it
follows $\alpha_{0}\in D_{1}$ . Inductively and by the same way, we can see that $\alpha_{0}\in D_{k}$ for any $k$ .
Hence we have $\alpha_{0}\in D$ .

By Lemma 3.2 it holds $\alpha_{0}=\beta^{0}$ or $\alpha_{0}=0$ . The latter case occurs only in the case
rank $I=1$ . We induce a contradiction for each case.

$Wefirstconsiderthecase\alpha_{0}=\beta^{0}$ . $Inthiscase\lambda(\alpha_{0})=0$ . $Notethat-\beta^{0}\in\Omega_{0}$ and
$0(i)\in\Omega_{0}$ for some $i$ . Then, since $p(u)=0$ , it follows $w_{-\beta^{0}}\neq 0$ and $w_{0(i)}\neq 0$ , i.e., the
terms $T_{-\beta^{0}}^{*}\otimes w_{-\beta^{0}}$ and $T_{0(i)}^{*}\otimes w_{0(i)}$ , together with the term $T_{\beta^{0}}^{*}\otimes w_{\beta^{0}}$ , appear in the rep-
resentation (3.1) of $u$ . Since the weights of $w_{\beta^{0}}$ and $w_{-\beta^{0}}$ are respectively $\beta^{0}$ and $-\beta^{0}$ ,
there exist nonzero numbers $a,$

$b$ such that $w_{\beta^{0}}=aX_{\beta^{0}}$ and $w_{-\beta^{0}}=bX_{-\beta^{0}}$ . In (3.2), the
coefficients $\dot{o}f$ terms $T_{\beta^{0}}^{*}\wedge T_{-\beta^{0}}^{*},$ $T_{\beta^{0}}^{*}\wedge T_{0(i)}^{*}$ and $T_{-\beta^{0}}^{*}\wedge T_{0(i)}^{*}$ are respectively given by
$[w_{\beta^{0}}, T_{-\beta^{0}}]-[w_{-\beta^{0}}, T_{\beta^{0}}]$ , $[w_{\beta^{0}}, T_{0(i)}]-[w_{0(i)}, T_{\beta^{0}}]$ and $[w_{-\beta^{0}}, T_{0(i)}]-[w_{0(i)}, T_{-\beta^{0}}]$ . Since
$p(u)=0$, it moreover follows

$a+b=0$ , $a\beta^{0}(a_{0(i)})+\beta^{0}(w_{0(i)})=0$ , $b\beta^{0}(a_{0(i)})+\beta^{0}(w_{0(i)})=0$ ,

where we note $w_{0(i)}\in \mathfrak{a}^{C}$ . Since $0(i)\in\Omega_{0}$ , it holds $[w_{\beta^{0}}, T_{0(i)}]\neq 0$ and thus $\beta^{0}(a_{0(i)})\neq 0$ .
Noting this, we obtain that $a=b=0$ , which is a contradiction.

We next consider the case that rank $I=1$ and $\alpha_{0}=0$ . In this case $\lambda(\alpha_{0})=\beta^{0}$ .
$Since-\beta^{0}\in\Omega_{0},$

$w_{-\beta^{0}}$ is a nonzero weight vector in $I_{1}^{C}$ with weight $0$ . By the assumption
rank $I=1$ , it follows $[T_{\beta}o, w_{-\beta^{0}}]\neq 0$ and thus $w_{\beta^{0}}$ is also a nonzero weight vector in $I_{1}^{C}$

with weight $2\beta^{0}$ . Particularly $2\beta^{0}\in r$ . This is a contradiction.
Summing up the above arguments, we have the following result.

PROPOSITION 3.3. A substantial geometry of the case (C) admits only totally geodesic
submanifolds.
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We next consider a substantial geometry of case (B). We start with the subcase
(B1). Since the geometries of subcases (B2) and (B3) constitute families with the ones of
subcase (B1), we argue them at the same time as the subcase (B1).

Let (I, $\hat{\sigma}$) be a symmetric Lie algebra with compact simple Lie algebra I. As de-
scribed in \S .2, an irreducible PSLA $(\mathfrak{g}, \sigma, \tau)$ of subcase (B1) is given as follows:

$\mathfrak{g}=I\oplus I$ , $\sigma(X, Y)=(\hat{\sigma}(X),\hat{\sigma}(Y))$ , $\tau(X, Y)=(Y, X)$

for $X$ and $Y$ in I. Let $\mathfrak{s}$ and $\mathfrak{m}$ be the $(\pm 1)$ -eigenspaces of $\hat{\sigma}$, respectively. Then the
subalgebra $f_{+}$ and the $\mathfrak{k}_{+}$ -modules $\mathfrak{k}_{-},$

$p_{\pm}$ are given in the following:

$\mathfrak{k}_{+}=\{(X, X);X\in \mathfrak{s}\}$ , $\mathfrak{k}_{-}=\{(Y, -Y);Y\in \mathfrak{s}\}$ ,

$p_{+}=\{(Z, Z);Z\in \mathfrak{m}\}$ , $p_{-}=\{(W, -W);W\in \mathfrak{m}\}$ .

Consider the first projection of these spaces onto $\mathfrak{s}$ or $\mathfrak{m}$ . Then $f_{+}$ is as Lie algebra
identified with $\mathfrak{s}$ and $f_{-},$

$\mathfrak{p}_{\pm}$ are as vector space identified with $s,$ $m$ . According to
$f_{-},$

$p_{\pm}$ , we here rewrite the identified vector spaces by $\mathfrak{s}_{-},$ $\mathfrak{m}_{\pm}$ , respectively. The Lie
algebra $\mathfrak{g}$ is then identified with a Lie algebra $\mathfrak{s}\oplus \mathfrak{s}_{-}\oplus \mathfrak{m}_{+}\oplus m_{-}$ with the bracket
product such that

$[\mathfrak{s}, \mathfrak{s}]\subset \mathfrak{s}$ , $[\mathfrak{s}, \mathfrak{s}_{-}]\subset \mathfrak{s}_{-}$ , $[\mathfrak{s}, \mathfrak{m}_{\pm}]=\mathfrak{m}_{\pm}$ ,

$[\mathfrak{s}_{-}, \mathfrak{s}_{-}]\subset \mathfrak{s}$ , $[\mathfrak{m}_{\pm}, \mathfrak{m}_{\pm}]\subset \mathfrak{s}$ , $[\mathfrak{s}_{-}, \mathfrak{m}_{\pm}]=\mathfrak{m}_{\mp}$ ,

$[m_{+}, m_{-}]\subset S_{-}$ .

We now see the P-figure associated with this PSLA. Take a maximal abelian sub-
space $\mathfrak{a}$ in $\mathfrak{s}$ and fix a fundamental root system $\Pi(\mathfrak{s})$ of the semisimple part of $s^{C}$ . Since
the representations of $\mathfrak{s}$ on $s\frac{C}{}$ and $\mathfrak{m}_{\pm}^{C}$ are all adjoint, their dominant weights are given
as follows: If $\mathfrak{s}$ has trivial center, the dominant weights of $s\frac{C}{}$ are the highest roots of
simple parts of $\Pi(\mathfrak{s})$ and those of $\mathfrak{m}_{\pm}^{C}$ are given by the only dominant weight of s-module
$\mathfrak{m}^{C}$ . If $\mathfrak{s}$ has nontrivial center, the $\mathfrak{s}$-module $s\frac{C}{}$ has the zero dominant weight besides
the above ones and the dominant weights of $\mathfrak{m}_{\pm}^{C}$ are also given by the just two dominant
weights of $\mathfrak{s}$-module $\mathfrak{m}^{C}$ .

From these observations the P-figure is constituted by the fundamental root system
$\Pi(\mathfrak{s})$ , the minus dominant weights of $\mathfrak{s}$-module $\mathfrak{s}^{C}$ with label $\mu$ , and the minus dominant
weights of $\mathfrak{s}$-module $\mathfrak{m}^{C}$ with label $v$ and $v$ . Here a figure constituted by $\Pi(\mathfrak{s})$ and the
minus dominant weights of $\mathfrak{s}$-module $\mathfrak{m}^{C}$ is called the S-figure associated with (I, $\hat{\sigma}$) and
it characterizes the symmetric Lie algebra. The S-figures have been already determined
(cf. [5] or [9]) and the P-figures, together with the dominant weights, will be concretely
given in \S 4.

For the PSLA’s of (B2) and (B3) which belong to the same family as a PSLA of
(B1), the associated P-figures are obtained by permutations of labels $\mu,$ $v$ , and $v$ : The
P-figure of (B2) is given by the permutation $(\mu;v;varrow v;\mu;v)$ and the P-figure of (B3)
is given by the permutation $(\mu;v;varrow v;\mu;v)$ .

We next consider the injectivity of $p$ . We start with the subcase (B1). In this case
$\rho$ is a homomorphism of $\mathfrak{m}_{-}^{*}\otimes \mathfrak{s}_{-}$ to $(\wedge^{2}\mathfrak{m}_{-})\otimes \mathfrak{m}_{+}$ . We again take the complexifica-
tion of $p$ and argue by the same way as in [13] or [14].
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We recall the canonical forms of simple symmetric Lie algebras. (See S. Murakami
[9] for details.) Let I be a compact simple Lie algebra and take a maximal abelian
subspace $\mathfrak{h}$ in I. Fix a fundamental root system $\Pi(I)(=\{\alpha_{1}, \ldots, \alpha\swarrow\}\subset\sqrt{-1}\mathfrak{h})$ and let
$\{H_{1}, \ldots, H_{t}\}$ be the dual basis of $\Pi(I)$ in $\sqrt{-1}\mathfrak{h}$ , i.e., $\langle\alpha_{i}, H_{j}\rangle=\delta_{ij}$ for all $i,j$ . Next fix
a Weyl basis of $I^{C}$ and let $t$ be an involution on I which preserves the Dynkin diagram
$\Pi(I)$ and which satisfies the following; $t(X_{\pm\alpha})=X_{\pm t(\alpha)}$ for $\alpha$ in $\Pi(I)$ where $X_{\pm\alpha},$ $X_{\pm t(\alpha)}$

are the root vectors with roots $\pm\alpha,$ $\pm t(\alpha)$ fixed in the Weyl basis. Represent the minus
highest root $\alpha_{0}$ for $\Pi(I)$ as follows:

$\alpha_{0}+m_{1}\alpha_{1}+\cdots+m_{J}\alpha_{t}=0$ .

Then the symmetric Lie algebras with the following $\hat{\sigma}$, called the canonical forms, repre-
sent all the equivalence classes of simple symmetric Lie algebras:

(1) $\hat{\sigma}=t$ where $t$ is not identical;
(2) $\hat{\sigma}=t\exp ad(\pi\sqrt{-1}H_{i})$ where $m_{i}=1$ or 2, and $t(\alpha_{i})=\alpha_{i}$ .

Here the involutions $t$ and exp(*) are respectively called the Dynkin part and the inner
part of $\hat{\sigma}$ . If in (2) the Dynkin part is identical, the symmetric Lie algebras with such $\hat{\sigma}$

represent all the simple symmetric Lie algebras of inner type.
Fix a canonical form (I, $\hat{\sigma}$) in the cases (1) or (2) and take the lexicographic order $<on$

$\sqrt{-1}\mathfrak{h}$ with respect to $\Pi(I)$ . Denote by $r$ the root system of $I^{C}$ and define subsets $r_{0}$ and
$r_{1}$ in $r$ as follows:

$r_{0}=\{\alpha\in r;t(\alpha)=\alpha\}$ , $r_{1}=\{\alpha\in r;t(\alpha)<\alpha\}$ .

Moreover let $r_{0+}$ (resp. $r_{0-}$ ) be the subset in $r_{0}$ which consists of roots $\alpha$ such that a is
identical (resp. minus identical) on the root subspaces. Then the subsets $r_{0\pm}$ are given
in the following. (See [13].)

LEMMA 3.4. If I is of type $A\swarrow$ ( $l$ : even) and $\hat{\sigma}$ is the case (1), it holds that $r_{0+}=\emptyset$

and $r_{0-}=r_{0}$ , and if I is except the above type and $\hat{\sigma}$ is the case (1), it holds that $r_{0+}=r_{0}$

and $r_{0-}=\emptyset$ .
Next, if $\hat{\sigma}\dot{i}$ the case (2), it holds that

$t_{\cup+}^{-}=$ { $\alpha\in C_{\cup}^{-};\langle\alpha,$ $H_{i}\rangle$ : even}, $\mathfrak{r}_{0-}=$ { $\alpha\in r_{\overline{\cup}};\langle\alpha,$ $H_{i}\rangle$ : odd}.
(In this case I is not of type $A_{t}(l$ : even).)

Let $\mathfrak{a}$ and $b$ be the $(\pm 1)$ -eigenspaces of $t$ in $\mathfrak{h}$ . Take a Weyl basis $\Pi(I)\cup\{X_{\alpha};\alpha\in r\}$

of $I^{C}$ and put

$U_{\alpha}=X_{\alpha}+\hat{\sigma}(X_{\alpha})$ , $V_{\alpha}=X_{\alpha}-\hat{\sigma}(X_{\alpha})$

where $\alpha\in \mathfrak{r}$ . We then have the following root or weight decompositions:

$\mathfrak{s}^{C}=\mathfrak{a}^{C}\oplus\sum_{\alpha\in r_{0+}\cup r_{1}}CU_{\alpha}$ , $\mathfrak{m}^{C}=b^{C}\oplus\sum_{\alpha\in \mathfrak{r}_{0-\cup \mathfrak{r}_{1}}}CV_{\alpha}$ .

We here note that $\mathfrak{a}$ is a maximal abelian subspace in $\mathfrak{s}$ . Taking the projection $-of$

$\sqrt{-1}\mathfrak{h}$ onto $\sqrt{-1}\mathfrak{a}$ , we can easily see that the set {ct; $\alpha\in r_{0+}Ur_{1}$ } is a root system of $\mathfrak{s}^{C}$

with root vectors $U_{\alpha}$ , and the set {ct; $\alpha\in r_{0-}Ur_{1}$ } is a system of nonzero weights of $\mathfrak{m}^{C}$

with weight vectors $V_{\alpha}$ . As an order on $\sqrt{-1}\mathfrak{a}$ we take the restriction of the lexico-
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graphic order $<$ on $\sqrt{-1}\mathfrak{h}$ and we fix the fundamental root system $\Pi(\mathfrak{s})$ of $\mathfrak{s}^{C}$ which
consists of simple roots with respect to this order. As the dominant weights of $\mathfrak{s}^{C}$ and
$\mathfrak{m}_{\pm}^{C}$ we take the ones with respect to this $\Pi(\mathfrak{s})$ .

Retuming to the subcase (B1), we now consider the injectivity of $p$ . We suppose
that (I, $\hat{\sigma}$) is a canonical form. Take a basis $\{b_{0(1)}, \ldots, b_{0(r)}, V_{\delta}(\delta\in r_{0-}Ur_{1})\}$ of $\mathfrak{m}^{C}$ ,
where $\{b_{0(1)}, \ldots, b_{0(r)}\}$ is a basis of $b^{C}$ . Putting $\Sigma=$ $\{$0(1), . . . , $0(r)\}Ur_{0-}Ur_{1}$ , we write
this basis by $\{T_{\alpha};\alpha\in\Sigma\}$ , and we represent a maximal weight vector $u$ of $( m\frac{C}{})^{*}\otimes s\frac{C}{}$ in
the way of (3.1):

$u= \sum_{\alpha:w_{\alpha}\neq 0}T_{\alpha}^{*}\otimes w_{\alpha}$

where $w_{\alpha}’ s$ are weight vectors in $s\frac{C}{}$ , and at least one of them is a maximal vector.
Similarly to (3.2) it then follows

$\rho(u)=\sum_{\alpha\in\Sigma\alpha:}\sum_{w_{\alpha}\neq 0}(T_{\alpha}^{*}\wedge T_{\alpha}^{*})\otimes[w_{\alpha}, T_{\alpha’}]$
.

We now start from a dominant weight $\eta$ of $s\frac{C}{}$ and perform the following procedure.
Fix an element $\alpha$ in $\Sigma$ , and put $\lambda(\alpha)=-\alpha$ if $\eta=0$ and $\lambda(\alpha)=-\alpha+\beta^{0}$ if $\eta\neq 0$ . In the
latter case $\beta^{0}$ is a unique element in $\Gamma$ such that $\overline{\beta}^{0}=\eta$ , where $\Gamma=r_{0+}Ur_{1}$ . For a
given subset $S$ in $\Sigma$ we then consider the following condition $(C\alpha)$ on $S$ :

$(C\alpha)$ $\gamma+\lambda(\alpha)\in\{0\}\cup\Gamma$ (mod $b^{C}$ ) for $\gamma\in S$ .

We now put $S_{\alpha}=U_{\alpha}$ for $\alpha$ in $\Gamma$ and moreover put

$\Omega_{0}=\{$

$\Sigma$ if $\eta=0$ ,

$\{\gamma\in\Sigma_{;}[T_{\gamma}, S_{\beta^{0}}]\neq 0\}$ if $\eta\neq 0$ ,

$D_{0}(\eta)=$ { $\alpha\in\Sigma;(C\alpha)$ holds on $\Omega_{0}$ }.

If $D_{0}(\eta)\neq\emptyset$ , we next put $B_{0}=\emptyset$ or $\{\beta^{0}\}$ according as $\eta=0$ or $\eta\neq 0$ , and for each $\alpha$

in $D_{0}(\eta)$ we take the following sets $B_{1}(\alpha),$ $\Omega_{1}(\alpha)$ and $D_{1}(\eta)$ :

$B_{1}(\alpha)=$ { $\beta\in\Gamma-B0;\beta\equiv\gamma+\lambda(\alpha)(mod b^{C})$ for some $\gamma\in\Omega_{0}$ },

$\Omega_{1}(\alpha)=$ { $\gamma\in\Sigma;[T_{\gamma},$ $S_{\beta}]\neq 0$ for some $\beta\in B_{1}(\alpha)$ },

$D_{1}(\eta)=$ { $\alpha\in D_{0}(\eta);(C\alpha)$ holds on $\Omega_{1}(\alpha)$ }.

Moreover for integers $k(\geq 2)$ we inductively define sets $B_{k}(\alpha),$ $\Omega_{k}(\alpha)$ and $D_{k}(\eta)$ as
follows:

$B_{k}( \alpha)=\{\beta\in\Gamma-(\bigcup_{=0}^{k-1}B_{j}(\alpha));\beta\equiv\gamma+\lambda(\alpha)$ for some $7\in\Omega_{k-1}(\alpha)\}$ ,

$\Omega_{k}(\alpha)=$ { $\gamma\in\Sigma;[T_{\gamma},$ $S_{\beta}]\neq 0$ for some $\beta\in B_{k}(\alpha)$ },

$D_{k}(\eta)=$ {ct $\in D_{k-1}(\eta);(C\alpha)$ holds on $\Omega_{k}(\alpha)$ }.

Putting $D( \eta)=\bigcap_{k\geq 0}D_{k}(\eta)$ , we then have the following lemma by a similar argument
to the case (C). But, in the case $\eta=0$, we must note the following: A maximal weight
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vector $H(\neq 0)$ in $\mathfrak{s}^{C}$ with zero dominant weight belongs to the center of $s^{C}$ , and $ad(H)$

is nondegenerate on $\mathfrak{m}^{C}$ . Therefore, it holds $[T_{\alpha}, H]\neq 0$ for all $\alpha$ in $\Sigma$ .

LEMMA3.5. $Thehomomorphism\rho isinjectiveifD(\eta)=\emptyset foralldominantweights\eta$

of $s^{C}$ .

These arguments are also useful or the subcases (B2) or (B3). If it is the subcase
(B2), $p$ is a homomorphism of $\mathfrak{m}_{-}^{*}\otimes \mathfrak{m}_{+}$ to $(\wedge^{2}\mathfrak{m}_{-})\otimes \mathfrak{s}_{-}$ . In this case we may do the
following replacements in the above procedure for (B1): $\eta$ is a dominant weight of $\mathfrak{m}_{+}^{C};\Sigma$

and $T_{\alpha}(\alpha\in\Sigma)$ are the same ones as (B1); $\Gamma=r_{0-}Ur_{1}$ ; $S_{\alpha}=V_{\alpha}$ for $\alpha$ in $\Gamma$ .
If it is the subcase (B3), $\rho$ is a homomorphism of $s-\otimes m_{+}$ to $(A^{2}S_{-})\otimes m_{-}$ . In this

case we take a basis $\{a_{0(1)}, \ldots, a_{0(s)}\}$ of $\mathfrak{a}^{C}$ and moreover fix a basis $\{a_{0(1)},$
$\ldots,$ $a_{0(s)}$ ,

$U_{\delta}(\delta\in r_{0+}\cup r_{1})\}$ of $s^{C}$ . We here put $\Sigma=$ $\{$0(1), . . . , $0(s)\}Ur_{0+}Ur_{1}$ and write the fixed
basis by $\{T_{\alpha};\alpha\in\Sigma\}$ . Moreover, for $\eta,$

$\Gamma$ and $S_{\alpha}(\alpha\in\Gamma)$ we may do the same replace-
ments as (B2) in the procedure for (B1). In the subcases (B2) and (B3) we note that
$\eta\neq 0$ .

After these replacements, Lemma 3.5 also holds for the subcases (B2) and (B3). To
use this lemma, we must determine the set $D(\eta)$ for each dominant weight $\eta$ . We there
need to see the conditions $[T_{\gamma}, S_{\beta}]\neq 0$ for the determination of sets $\Omega_{k}(\alpha)$ . But the con-
ditions can be ascertained by the following facts:

(1) $[V_{\gamma}, V_{\beta}]\neq 0$ for $\gamma$ and $\beta$ in $r_{0-}Ur_{1}$ if and only if (i) $\gamma+\beta$ is zero or a root, or (ii)
$\gamma+t(\beta)$ is zero or a root which is not contained in $r_{0-;}$

(2) $[V_{\gamma}, U_{\beta}]\neq 0$ for $\gamma$ in $r_{0}Ur_{1}$ and $\beta$ in $r_{0+}Ur_{1}$ if and only if (i) $\gamma+\beta$ is a root, or
(ii) $\gamma+t(\beta)$ is zero or a root which is not contained in $r_{0+}$ .
These facts are obtained by a similar way to [13].

After the above consideration, we explicitly determine the sets $D(\eta)$ case by case.
(See\S 4.)From the resu1ts we can see the fo11owing. Ifa geometry isacase of(Bl), the
sets $D(\eta)$ are all empty except the cases of type GDIV and type GBII $(i=\swarrow)$ . Hence if
it is not one of the exceptional cases, Lemma 3.5 induces the injectivity of $\rho$ . Though
we can not use the lemma for the exceptional cases, we also have the injectivity of $\rho$ by
using a more detailed argument. (See Type GDIV in \S 4.)

Next if a geometry is a case of (B3), the sets $D(\eta)$ are all empty except a case of type
GAI. Hence, except the case, we again by Lemma 3.5 have the injectivity of $p$ . For
the exceptional case $\rho$ is really not injective. This case corresponds to the geometry of
curves in $S^{3}$ .

Let’s consider the subcase (B2). Generally, by the irreducibility of $\mathfrak{s}$-module $\mathfrak{m}$ , the
$\mathfrak{s}$-module $\mathfrak{m}^{C}$ , thus $\mathfrak{m}_{+}^{C}$ , has at most two dominant weights. The case with just two
dominant weights occurs if and only if the Lie algebra $\mathfrak{s}$ has 1-dimensional center, i.e.,
the symmetric Lie algebra (I, $\hat{\sigma}$) is of hermitian type. In this case the corresponding
geometry of (B2) is a case in Example 4 and particularly $p$ is not injective. We now
consider a case of (B2) that $\mathfrak{m}_{+}^{C}$ has just one dominant weight $\eta$ . In this case the set
$D(\eta)$ , by the case by case determination, consists of only one element. The element is
the unique element $\beta^{0}$ in $r_{0-}\cup r_{1}(\subset\Sigma)$ such that $\eta=\overline{\beta}^{0}$ . Noting that in this case
$\lambda(\beta^{0})=0$ , we can easily see that $\beta^{0}\in D(\eta)$ . Under these consideration, we have the
following.
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LEMMA 3.6. If the $\mathfrak{s}$-module $\mathfrak{m}_{+}^{C}$ has just one dominant weight, the homomorphism $p$

for the subcase (B2) is injective.

PROOF. By virture of the arguments in the case (C), we may show that $p(u)\neq 0$ for
a maximal weight vector $u$ in $\mathfrak{m}_{-}^{*c}\otimes \mathfrak{m}_{+}^{C}$ . We now assume that there exists a maximal
weight vector $u$ such that $p(u)=0$ , and deduce a contradiction.

Represent $u$ by $u=\Sigma_{\alpha\in\Sigma}T_{\alpha}^{*}\otimes w_{\alpha}$ and let $\alpha_{0}$ be an element in $\Sigma$ such that $w_{\alpha_{0}}(\neq 0)$ is
a maximal weight vector in $\mathfrak{m}_{+}^{C}$ . Since $\mathfrak{m}_{+}^{C}$ has just one dominant weight $\eta$ , the weight
of $w_{\alpha_{0}}$ is $\eta$ . Also, similarly to the arguments in the case (C), we have that $\alpha_{0}\in D(\eta)$ .
Since $D(\eta)$ consists of one element $\beta^{0}$ , it holds $\alpha_{0}=\beta^{0}$ and thus the weight of $u$ equals to
zero. Rewrite $u$ by

$u= \sum_{\alpha\in B}c_{\alpha}T_{\alpha}^{*}\otimes T_{\alpha}$

$(i.e., w_{\alpha}=c_{\alpha}T_{\alpha})$

where $B=\{\alpha\in\Sigma;c_{\alpha}\neq 0\}$ , which contains $\beta^{0}$ . Since $\rho(u)=0$ , it follows by the repre-
sentation of $\rho(u)$ described before

(3.1) $c_{\alpha}+c_{\alpha’}=0$

for $\alpha$ and $\alpha’$ in $B$ such that $[T_{\alpha}, T_{\alpha’}]\neq 0$ .
We first note the following. Let $\alpha$ and $\alpha’$ be roots in $r_{0-}Ur_{1}(\subset\Sigma)$ such that

$[U_{\gamma},RT_{\alpha}]=RT_{\alpha’}$ for some $\gamma$ in $r_{0+}Ur_{1}$ . Then it follows that

(3.2) $[T_{\alpha}, T_{-t(\alpha’)}]\neq 0$ .

In fact, since $[U_{\gamma}, T_{\alpha}]=[U_{\gamma}, V_{\alpha}]\neq 0$ , it holds that (i) $\gamma+\alpha$ is a root, or (ii) $\gamma+t(\alpha)$ is zero
or a root which is not contained in $r_{0+}$ . We here note that $\overline{\gamma}+\overline{\alpha}=\overline{\gamma}+\overline{t(\alpha)}=\overline{\alpha}’$ , and
moreover note that $\overline{\delta}=\overline{\delta}’for\delta$ and $\delta’$ in $r$ if and only if $\delta’=\delta$ or $\delta’=t(\delta)$ . If the case
(i) occurs, it follows that $\gamma+\alpha=\alpha’$ or $\gamma+\alpha=t(\alpha’)$ , thus, $\alpha+t(-t(\alpha’))=-\gamma\not\in r_{0-}$ or
$\alpha+(-t(\alpha’))=-\gamma$ . These induce (3.2). Similarly, noting that $\gamma+t(\alpha)\neq 0$ , we can
show (3.2) for the case (ii).

We next note that

(3.3) $[T_{\alpha’}, T_{-t(\alpha’)}](=[V_{\alpha’}, V_{-t(\alpha’)}])\neq 0$

$for\alpha’inr_{0-}Ur_{1}$ . $Thisfollowssince\alpha’+t(-t(\alpha’))=0$ .
Let $\alpha eBn(r_{0}Ur_{1})$ and $\alpha’\in r_{0-}Ur_{1}$ . If there exists $\gamma$ in $r_{0+}Ur_{1}$ such that

$[U_{\gamma}, RT_{\alpha}]=RT_{\alpha’}$ , it follows by (3.1) and (3.2) that $-t(\alpha’)\in B$ and $c_{\alpha}+c_{-t(\alpha’)}=0$ , and
moreover follows by (3.1) and (3.3) that $\alpha’\in B$ and $c_{\alpha’}+c_{-t(\alpha’)}=0$ . Consequently, it
holds that $\alpha’\in B$ and $c_{\alpha’}=c_{\alpha}$ .

We now start from the root $\beta^{0}$ , which belongs to $B\cap(r_{0-}Ur_{1})$ . Let $\delta$ be any root
in $r_{0-}Ur_{1}$ which is not $\beta^{0}$ . By a result of representation theory there then exist $\gamma_{i}$

$(1\leq i\leq s)$ in $r_{0+}Ur_{1}$ such that [ $U_{r},$ $[\cdots, [U_{1}, RT_{\beta^{0}}]\cdots]=RT_{\delta}$ . Hence we inductively
obtain that $\delta\in B$ and $c_{\delta}=c_{\beta^{0}}$ . Again noting that $c_{\delta}+c_{-t(\delta)}=0$ for any $\delta$ in $r_{0-}Ur_{1}$ ,
we then have a contradiction. $\square$
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Summarizing these arguments, we have the following.

PROPOSITION 3.7. A substantial geometry of the case (B) admits non-totally geodesic
submanifolds $\iota f$ and only if it is one of the following; the geometries of (B2) with hermitian
symmetric spaces $M^{*}$ and the geometry of curves in $S^{3}(=SU(2))$ , which is a special
geometry of (B3).

\S .4 Case by case arguments.

In this section we case by case study the strongly substantial geometries of case
(B). The items to be clarified are the P-figure associated with each geometry and the
injectivity of $\rho$ . Conceming the second item, we determine the sets $D(\eta)$ for all $\eta$ . To
do this for each $\eta$ , we should generally see the sets $D_{k}(\eta)$ for all $k$, but practically it may
be sufficient to see sets $D_{0}(\eta)$ and $D_{1}(\eta)$ except cases of type GDIV, (B1) and type GBII,
(B1). For the exceptional cases we must also see the set $D_{2}(\eta)$ . A detailed argument
will be done only for the type GDIV, and for the type GBII it will be omitted since it is a
similar way to the type GDIV.

NOW, before starting case by case arguments, we recall the following, described in
\S 3. The dominant weights of $\mathfrak{s}$-modules $s\frac{C}{},$ $m+c$ and $m^{C}$ are respectively represented
with labels $\mu,$ $v$ and $v$ . Moreover the dominant weights of $s\frac{C}{}$ are the ones of $\mathfrak{s}^{C}$ and the
dominant weights of $\mathfrak{m}_{\pm}^{C}$ are the ones of $\mathfrak{m}^{C}$ . We start from a simple symmetric Lie
algebra (I, $\hat{\sigma}$) and take a fundamental root system $\Pi([)$ of $I^{C}$ with respect to $b^{c}$ . More-
over we take the lexicographic order $<$ on $\sqrt{-1}\mathfrak{h}$ with respect to $\Pi(I)$ and restrict it on
$\sqrt{-1}\mathfrak{a}$ . AS the fundamental root system $\Pi(\mathfrak{s})$ of $\mathfrak{s}^{C}$ we then take the system of simple
roots with respect to this order. We now start from I of classical type. We refer to [2]
for the root systems.

Let I be the compact simple Lie algebra su(f+l) of type $A\swarrow(l\geq 1)$ . Then the
Dynkin diagram of $\Pi([)$ is given in the following, where $\alpha_{0}$ denotes the minus highest
root of $\Pi(I)$ .

$O-O-\cdots-O-O$
$\alpha_{0}+\alpha_{1}+\cdots+\alpha_{t}=0$

$\alpha_{1}$ $\alpha_{2}$ $\alpha_{f-1}$ $\alpha_{t}$

In the following we identify a vector $a_{1}\alpha_{1}+\cdots+a_{l}\alpha_{t’}$ with an $l$-tuple $(a_{1}, \ldots, a_{l})$ .

Type GAI. Let $\hat{\sigma}=\exp ad(\pi\sqrt{-1}H_{i})(1\leq i\leq l)$ . Then $\mathfrak{s}=\mathfrak{s}u(i)\oplus \mathfrak{s}u(l-i+1)$

$\oplus T$ and $\Pi(\mathfrak{s})=\{\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_{l}\}$ . The minus dominant weights of $\mathfrak{s}^{C}$ and
$\mathfrak{m}_{\pm}^{C}$ are given in the following.

$\mu_{0}=0$

$\mu_{1}=-(1\cdots 10^{i}\cdots 0)$ $\mu_{2}=-(0\cdots 0^{i}1\cdots 1)$

$v_{1}=v_{1}=\alpha_{0}$ $v_{2}=v_{2}=\alpha_{i}$

[1] The P-figure associated with geometry of subcase (B1).
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$\mu_{0}$

$V_{1}$ $=$ $v_{1}$

$(\ell\geq 5,3\leq i\leq\ell-2)$

$\mu_{1}$ $\mu_{2}$

$\mu_{0}$

$\bullet$

$\nu_{1}=v_{1}$

$(\ell\geq 4, i=2)$

$\mu_{0}\bullet$

$\iota\nearrow_{1}=v_{1}$

$(\ell\geq 3, i=1)$

$\mu_{0}\bullet$

$V_{1}=v_{1}$

$(\ell\geq 4, i=\ell-1)$

$\mu_{1}$

$\mu_{0}$

$\bullet$

$V_{1}=v_{1}$

$(\ell\geq 3, i=\ell)$

$\mu_{1}$ $\mu_{2}$

$||\otimes||\iota_{4}=v_{2} \otimes||||$

$\mu_{0}$

$O-\otimes-O$

$\alpha_{1\backslash \nearrow^{\alpha_{3}}}$

$\otimes$

$v_{1}=v_{1}$

$(\ell=3, i=2)$
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$\mu_{2}$ $\mu_{1}$

$\nu_{2}=v_{2}\otimes||||\mu_{0} \otimes||||\eta=v_{2}$
$\mu_{0}$

$\otimes-O$ $\bullet$ $O-\otimes$

$\otimes/\alpha_{3}$ $\alpha_{1}\backslash _{\otimes}$

$\nu_{1}=$ $v_{1}$ $\nu_{1}=v_{1}$

$(\ell=2 , i= 1)$ $(\ell=2, i= 2)$

$\nu_{2}=v_{2}$

$\otimes$

$\bullet\mu_{0}$

$\otimes$

$\nu_{1}=v_{1}$

$(\ell=i=1)$

[2] The injectivity of $\rho$ . In the subcase (B1) the sets $D(\eta)$ are all empty, where
$\eta=-\mu_{i}(i=0,1,2)$ , and in the subcase (B3) they are empty except the case $l=i=1$ ,
where $\eta=-v_{i}(i=1,2)$ . The exceptional case corresponds to the geometry of curves
in $S^{3}$ . Moreover the geometry of subcase (B2) is a case in Example 4 since (I, $\hat{\sigma}$) is
hermitian.

Type GAII. We assume that $l$ is even. Let $\hat{\sigma}=t$ where the Dynkin part $t$ is
determined by the following involution on $\Pi(I)$ : $t(\alpha_{i})=\alpha_{l-i+1}$ for all $i$ . Then
$\mathfrak{s}=\mathfrak{s}o(l+1)$ and $\Pi(\mathfrak{s})=\{ct_{1}’, \ldots, \alpha_{\swarrow/2}’\}$ where $\alpha_{i}’=(1/2)(\alpha_{i}+t(\alpha_{i}))(1\leq i\leq l/2)$ . The
minus dominant weights of $s\frac{C}{}$ and $\mathfrak{m}_{\pm}^{C}$ are given in the following.

$\mu_{1}=-\frac{1}{2}(12\cdots 21)=-(\alpha_{1}’+2\alpha_{2}’+\cdots+2\alpha_{\swarrow/2}’)$

$v_{1}=v_{1}=- \frac{1}{2}(2\cdots 2)=\alpha_{0}$

[1] The P-figure associated with geometry of subcase (B1).
$\mu_{1}$

$\otimes$

1
$\nu_{1}=v_{1}\otimes\Rightarrow 0-0-\cdots-O\Rightarrow O$

$\alpha_{1}’$ $\alpha_{2}’$

$\alpha_{p,2^{-1}}’$ $\alpha_{\frac{\prime p}{2}}$

$(\ell\geq 6)$

$\mu_{1}$

$\otimes$

$V_{1}=v_{1}\otimes\Rightarrow O\Rightarrow O\Downarrow$

$\alpha_{1}’$ $\alpha_{2}’$

$\mu_{1}$

$V_{1}=v_{1}\propto x_{\alpha_{1}}^{\otimes}||||$

$(\ell=4)$ $(\ell=2)$
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[2] The injectivity of $p$ . In the subcases (B1) and (B3) the sets $D(\eta)$ are all empty,
and in the subcase (B2) the set $D(\eta)(=D(-v_{1}))$ consists of one element $\beta^{0}$ where
$\beta^{0}=-\alpha_{0}$ , which by Lemma 3.4 belongs to $r_{0-}$ . Taking account of Lemma 3.6, we can
see that $\rho$ is injective for all cases.

Type GAIII. We assume that $l$ is odd and more than 3. Let $\hat{\sigma}=t$ where the
Dynkin part $t$ is the same as that of Type GAII. Then $\mathfrak{s}=\mathfrak{s}\mathfrak{p}((l+1)/2)$ and $\Pi(\mathfrak{s})=$

$\{\alpha_{1}’, \ldots, \alpha_{(l-1)/2}’, \alpha_{(t+1)/2}\}$ where $\alpha_{i}’=(1/2)(\alpha_{i}+t(\alpha_{i}))(1\leq i\leq(l-1)/2)$ . The minus
dominant weights of $s\frac{C}{}$ and $\mathfrak{m}_{\pm}^{C}$ are given in the following.

$\mu_{1}=-\frac{1}{2}(2\cdots 2)=\alpha_{0}=-(2\alpha_{1}’+2\alpha_{2}’+\cdots+2\alpha_{(\swarrow-1)/2}’+\alpha_{(l+1)/2})$

$v_{1}=v_{1}=- \frac{1}{2}(12\cdots 21)=-(\alpha_{1}’+2\alpha_{2}’+\cdots+2\alpha_{(t-1)/2}’+2\alpha_{(t+1)/2})$

[1] The P-figure associated with geometry of subcase (B1).

$v_{1}=v_{1}$ $v_{1}=v_{1}$

$\otimes$ $\otimes$

$\otimes\Rightarrow 0-o^{1}$

–... – $0\Leftarrow O$

$\otimes\Rightarrow O\Leftarrow O\Uparrow$

$\mu_{1}$
$\alpha_{1}’$ $\alpha_{2}’$

$\alpha_{\frac{\prime l-1}{2}}$ $\alpha_{\frac{p+1}{2}}$
$\mu_{1}$

$\alpha_{1}’$
$\alpha_{2}$

$(\ell\geq 5)$ $(\ell=3)$

[2] The injectivity of $\rho$ . In the subcases (B1) and (B3) the sets $D(\eta)$ are all empty,
and in the subcase (B2) the set $D(\eta)(=D(-v_{1}))$ consists of one element $\beta^{0}$ where $\beta^{0}=$

$(1\cdots 10)$ , which belongs to $r_{1}$ . Taking account of Lemma 3.6, we can see that $\rho$ is
injective for all cases.

Type GAIV. We assume that $l$ is odd and more than 3. Let $\hat{\sigma}=t\exp$

$ad(\pi\sqrt{-1}H_{(\swarrow+1)/2})$ where the Dynkin part $t$ is the same as that of Type GAIII. Then
$\mathfrak{s}=\mathfrak{s}o(l+1)$ and $\Pi(\mathfrak{s})=\{\alpha_{1}’, \ldots, \alpha_{(\swarrow-1)/2}’, \alpha’\}$ where $\alpha_{i}’(1\leq i\leq(l-1)/2)$ are the same
as those of Type GAIII and $\alpha’=(1/2)(0\cdots$ 01210. . . $0)$ . The minus dominant weights
of $s\frac{C}{}$ and $\mathfrak{m}_{\pm}^{C}$ are given in the following.

$\mu_{1}=-\frac{1}{2}(12\cdots 21)=-(\alpha’+\alpha_{1}’+2\alpha_{2}’+\cdots+2\alpha_{(\swarrow-3)/2}’+\alpha_{(t-1)/2}’)$

$\mu_{2}=-\frac{1}{2}(101)$ $(l=3)$

$v_{1}=v_{1}=- \frac{1}{2}(2\cdots 2)=\alpha_{0}$

[1] The P-figure associated with geometry of subcase (B1).

$\mu_{1}$

$\alpha’$

$\otimes$ $O$

I
$V_{1}=v_{1}\otimes\Rightarrow 0-0-\cdots-O-O$

$\alpha_{1}’$ $\alpha_{2}’$

$\alpha_{\frac{\prime p-3}{2}}$ $\alpha_{\frac{\prime p-1}{2}}$

$(\ell\geq 7)$
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$\mu_{1}$

$/^{\otimes}\alpha_{1}\backslash$

$O-O-O$
$\alpha_{2}’$ $\Uparrow$

$\alpha’$

$\otimes$

$v_{1}=v_{1}$

$(\ell=3)$

$(\ell=5)$

[2] The injectivity of $\rho$ . In the subcases (B1) and (B3) the sets $D(\eta)$ are all empty,
and in the subcase (B2) the set $D(\eta)(=D(-v_{1}))$ consists of one element $\beta^{0}$ where
$\beta^{0}=(1\cdots 1)$ , which by Lemma 3.4 belongs to $r_{0-}$ . Taking account of Lemma 3.6, we
can see that $p$ is injective for all cases.

Let I be the compact simple Lie algebra $\mathfrak{s}o(2l+1)$ of type $B_{t}(l\geq 3)$ . Then the
Dynkin diagram of $\Pi(I)$ is given in the following, where $\alpha_{0}$ denotes the minus highest
root of $\Pi(I)$ .

$o-0-\cdots-O\Rightarrow O$
$\alpha_{0}+\alpha_{1}+2\alpha_{2}+\cdots+2\alpha_{\ell-1}+2\alpha p=0$

$\alpha_{1}$ $\alpha_{2}$ $\alpha_{\ell-1}$ $\alpha_{\ell}$

In the following we identify a vector $a_{1}\alpha_{1}+\cdots+a\swarrow\alpha\swarrow$ with an $l$-tuple $(a_{1}, \ldots, a\swarrow)$ .

Type GBI. Let $\hat{\sigma}=\exp ad(\pi\sqrt{-1}H_{1})$ . Then $\mathfrak{s}=\mathfrak{s}o(2l-1)\oplus T$ and $\Pi(\mathfrak{s})=$

$\{\alpha_{2}, \ldots, \alpha_{1}\}$ . The minus dominant weights of $s\frac{C}{}$ and $\mathfrak{m}_{\pm}^{C}$ are given in the following.

$\mu_{0}=0$ $\mu_{1}=-(012\cdots 2)$

$v_{1}=v_{1}=\alpha_{0}$ $v_{2}=v_{2}=\alpha_{1}$

[1] The P-figure associated with geometry of subcase (B1).

$\nu_{1}=v_{1}$

$\otimes$

1
$n=v_{2}\otimes-0-0-\cdots-O\Rightarrow O$

$\alpha_{2}$
$|$

$\alpha_{\ell-1}$ $\alpha_{\ell}$

$\otimes$

$\mu_{1}$

$(\ell\geq 4)$

$V_{1}=v_{1}$

$\otimes$

$|$

$\alpha_{3}$

$\bullet$ $\nu_{2}=v_{2}\otimes-O\Rightarrow O$ $\bullet$

$\mu_{0}$ $\alpha_{2}$ $\Uparrow$

$\mu_{0}$

$\otimes$

$\mu$ I

$(\ell=3)$

[2] The injectivity of $\rho$ . In the subcases (B1) and (B3) the sets $D(\eta)$ are all empty,
and the geometry of subcase (B2) is a case in Example 4 since (I, $\hat{\sigma}$) is hermitian.

Type GBII. Let $\hat{\sigma}=\exp ad(\pi\sqrt{-1}H_{i})$ $(2\leq i\leq l)$ . Then $\mathfrak{s}-\mathfrak{s}o_{l}(2\iota)\oplus$

$\mathfrak{s}o(2l-2i+1)$ and $\Pi(\mathfrak{s})=\{\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha\swarrow, \alpha’\}$ where $\alpha’=(0\cdots 012\cdots 2)$ .
The minus dominant weights of $\mathfrak{s}^{C}$ and $\mathfrak{m}_{\pm}^{C}$ are given in the following.
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$\mu_{1}=-(12\cdots 2)=\alpha_{0}$
$\mu_{2}=-(0\cdots 0^{i}12\cdots 2)$ $(i\leq l-1)$

$\mu_{-1}=-(10\cdots 0)$ $(i=2)$

$v_{1}=v_{1}=-(1\cdots 12\cdot 2)i.$.

[1] The P-figure associated with geometry of subcase (B1).

$\alpha^{j}$

$\mu_{1}$ $\mu_{2}$

$O$ $\otimes$
$\otimes$

$|$
$|$

$\nu_{1}=v_{1}$ $|$

$O-0-\cdots-0-0-\otimes-O-O--...-O\Rightarrow O$
$\alpha:-1$ $\alpha_{1}$ $\alpha:+1$ $\alpha_{P-1}$ $\alpha_{1}$

$(\ell\geq 7,4\leq i\leq\ell-3)$

$\alpha’$

$\mu_{1}$ $\mu_{2}$

$O$ $\otimes$ $Q$

$O-0^{1}$
–...

$-0^{1}-0-\otimes-O\Rightarrow O\Downarrow$
$\nu_{1}=v_{1}$

$\alpha_{t-3}$ $\alpha_{1}$ $\alpha_{\ell-1}$ $\alpha_{t}$

$(\ell\geq 6 4\leq i=\ell-2)$

$\alpha^{j}$

$\mu_{1}$

$O$ $\otimes$

$|$ $|$

$V_{1}=v_{1}$

$O-O-\cdots-O-O\Rightarrow\otimes$

$\alpha_{\ell-2}$ $\alpha_{1}$ $\alpha_{\ell}$ $\alpha_{\ell-1}$ $\alpha_{1}$

$(\ell\geq 5,4\leq i=\ell-1)$ $(\ell\geq 4, i=\ell)$

$\alpha’$

$\mu_{2}$
$\alpha’$

$\mu_{2}$

$\mu_{1}\otimes\alpha_{1}O-\otimes-O-O$– $-O\Rightarrow O$
$\mu_{1}\otimes\alpha_{1}O-\emptyset-O\Rightarrow O\Downarrow$

$\nearrow|\nu_{1}=v_{1}O$
$\otimes|$ $\nearrow|O\nu_{1}=v_{1}$

$\otimes$

$\backslash _{o^{1}}$

$\alpha_{4}$ $\alpha_{\ell-1}$ $\alpha_{l}$

$\backslash _{o^{1}}$

$\alpha_{4}$ $\alpha_{5}$

$\alpha_{2}$ $\alpha_{2}$

$(\ell\geq 6 i=3)$ $(\ell=5, i=3)$
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$\alpha’$

$\mu_{2}$
$\alpha^{j}$

$\mu_{1}\swarrow_{\alpha_{1}}^{o_{V_{1}=v_{1}}}\backslash _{o^{|\alpha_{4}}}^{o^{1}-\otimes\Rightarrow\square 1}$

$/|\nu_{1}=v_{1}O$

$\mu_{1}\otimes\alpha_{1}\backslash _{o^{1}}^{O\Rightarrow\otimes}$

$\alpha_{2}$ $\alpha_{2}$

$(\ell=4, i=3)$ $(\ell=i=3)$

$\mu_{1}$

$\alpha’$

$\mu_{2}$ $\mu_{1}$

$\alpha’$

$\mu_{2}$

$\otimes\equiv O$ $\otimes$ $\otimes^{--}--O$ $\otimes$

$\nu_{1}=v_{1}\otimes-0-0^{1}|$
-. $..-O\Rightarrow O$

$V_{1}=v_{1}\otimes|-O\Rightarrow O\Downarrow$

$|$

$\alpha_{3}$ $\alpha_{\ell-1}$ $\alpha_{l}$
$|$

$\alpha_{3}$ $\alpha_{4}$

$\otimes\overline{\equiv}0$ $\otimes\overline{\underline{=}}0$

$\mu_{-1}$ $\alpha_{1}$ $\mu_{-1}$ $\alpha_{1}$

$(\ell\geq 5 i=2)$ $(\ell=4, i=2)$

$\mu_{1}$

$\alpha’$

$\mu_{2}$

$V_{1}=v_{1}\otimes\otimes_{-}^{-}--O|\Rightarrow b7||$

$|$

$\alpha_{3}$

$\otimes_{--O}^{--}$

$\mu_{-1}$ $\alpha_{1}$

$(\ell.=3, i=2)$

[2] The injectivity of $\rho$ . In the subcase (B3) the set $D(\eta)$ is empty. In the subcase
(B1) $(i=l)$ , the set $D(\eta)$ is not empty. But, by a similar way to the type GDIV, (B1),
we can see that in this case $p$ is injective. (The proof is omitted.) For the other cases of
(B1) the sets $D(\eta)$ are all empty. In the subcase (B2) the set $D(\eta)(=D(-v_{1}))$ consists
of one element $\beta^{0}$ where $\beta^{0}=(1\cdots 12\cdot 2)i.$. which by Lemma 3.4 belongs to $\mathfrak{r}_{0-}$ .
Taking account of Lemma 3.6, we can see that $\rho$ is injective for all cases.

Let I be the compact simple Lie algebra $\mathfrak{s}p(l)$ of type $C_{t}(l\geq 2)$ . Then the Dynkin
diagram of $\Pi(I)$ is given in the following, where $\alpha_{0}$ denotes the minus highest root of
$\Pi(I)$ .

$o-0-\cdots-O\Leftarrow O$
$\alpha_{0}+2\alpha_{1}+2\alpha_{2}+\cdots+2\alpha_{\ell-1}+\alpha_{\ell}=0$

$\alpha_{1}$ $\alpha_{2}$ $\alpha_{\ell-1}$ $\alpha_{\ell}$

In the following we identify a vector $a_{1}\alpha_{1}+\cdots+a\swarrow\alpha_{t}$ with an $l$-tuple $(a_{1}, \ldots, a_{t})$ .

Type GCI. Let $\hat{\sigma}=\exp ad(\pi\sqrt{-}H_{t})$ . Then $\mathfrak{s}=\mathfrak{s}u(l)\oplus T$ and $\Pi(\mathfrak{s})=$

$\{\alpha_{1}, \ldots, \alpha\swarrow-1\}$ . The minus dominant weights of $\mathfrak{s}^{C}$ and $\mathfrak{m}_{\pm}^{C}$ are given in the following.
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$\mu_{0}=0$ $\mu_{1}=-(1\cdots 10)$

$v_{1}=v_{1}=\alpha_{0}$ $v_{2}=v_{2}=\alpha\swarrow$

[1] The P-figure associated with geometry of subcase (B1).

$\mu_{1}$ $\mu_{1}$

$\nearrow^{\otimes}\backslash$

$V_{1}=v_{1}\otimes\Rightarrow\Downarrow|_{\Leftarrow\otimes\nu_{2}=v_{2}}\otimes$

$\bullet$$V_{1}=v_{1}\otimes\Rightarrow O--...-O\Leftarrow\otimes vg=v_{2}$ $\bullet$

$\alpha_{1}$ $\alpha_{\ell-1}$ $\mu_{0}$ $\alpha_{1}$ $\mu_{0}$

$(\ell\geq 3)$ $(\ell=2)$

[2] The injectivity of $\rho$ . In the subcases (B1) and (B3) the sets $D(\eta)$ are all empty,
and the geometry of subcase (B2) is a case in Example 4 since (I, $\hat{\sigma}$) is hermitian.

Type GCII. Let $\hat{\sigma}=\exp ad(\pi\sqrt{-1}H_{i})(1\leq i\leq l-1)$ . Then $\mathfrak{s}=\mathfrak{s}p(i)\oplus \mathfrak{s}p(\parallel-i)$

and $\Pi(\mathfrak{s})=\{\alpha_{1}, \ldots , \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_{f}, \alpha’\}$ where $\alpha’=(0\cdots 02\cdot\cdot 21)i.$ . The minus domi-
nant weights of $s\frac{C}{}$ and $\mathfrak{m}_{-}^{C}$ are given in the following.

$\mu_{1}=-(2\cdots 21)=\alpha_{0}$
$\mu_{2}=-(0\cdots 0^{i}2\cdots 21)$

$v_{1}=v_{1}=-(1\cdots 12\cdots 21)i$

[1] The P-figure associated with geometry of subcase (B1).
$\mu_{1}$ $\mu_{2}$

$\otimes$ $\otimes$

$\Downarrow V_{1}=v_{1}$ $\Downarrow$

$O\Rightarrow O$ –... $-O-\otimes-O$ –.. . $-O\Leftarrow O$

$\alpha’$

$\alpha_{i-1}$ $\alpha_{1}$ $\alpha_{i+1}$ $\alpha_{l-1}$ $\alpha_{l}$

$(\ell\geq 4,2\leq i\leq\ell-2)$

$\mu_{1}$ $\mu_{2}$

$|7||V_{1}=v_{1}\otimes\Downarrow$

$O\Rightarrow\otimes-O$ $--...-O\Leftarrow O$
$\alpha’$

$\alpha_{2}$ $\alpha_{l-1}$ $\alpha_{l}$

$(\ell\geq 3, i=1)$

$\mu_{1}$ $\mu_{2}$

$O\Rightarrow O$

$--...-O-\otimes\Leftarrow b\otimes\Downarrow\nu_{1}=v_{1}\ovalbox{\tt\small REJECT}$

$\alpha’$
$\alpha_{\ell-2}$ $\alpha_{1}$ $\alpha p$

$(\ell\geq 3, i=t-1)$

$\mu_{1}$ $\mu_{2}$

$|7=v_{1}||||\otimes$

$O\Rightarrow\otimes\Leftarrow O$

$\alpha’$
$\alpha_{2}$

$(\ell=2, i=1)$

[2] The injectivity of $p$ . In the subcases (B1) and (B3) the sets $D(\eta)$ are all empty,
and $in_{i}$ the subcase (B2) the set $D(\eta)(=D(-v_{1}))$ consists of one element $\beta^{0}$ where $\beta^{0}=$

$(1\cdots 12\cdots 21)$ , which by Lemma 3.4 belongs to $r_{0-}$ . Taking account of Lemma 3.6, we
can see that $\rho$ is injective for all cases.
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Let I be the compact simple Lie algebra $\mathfrak{s}o(2l)$ of type $D_{l}(\parallel\geq 4)$ . Then the
Dynkin diagram of $\Pi(I)$ is given in the following, where $\alpha_{0}$ denotes the minus highest
root of $\Pi(I)$ .

$\alpha_{\ell}$

$O$

$|$ $\alpha_{0}+\alpha_{1}+2\alpha_{2}+\cdots+2\alpha_{\ell-2}+\alpha_{\ell-1}+\alpha\ell=0$

$O-O-\cdots-O-O$
$\alpha_{1}$ $\alpha_{2}$ $\alpha_{P-2}$ $\alpha_{\ell-1}$

In the following we identify a vector $a_{1}\alpha_{1}+\cdots+a_{f}\alpha_{1}$ with an f-tuple
$(a_{1}, \ldots,a_{t-2}|a_{t-1}, \alpha\swarrow)$ .

Type GDI. Let $\hat{\sigma}=\exp ad(\pi\sqrt{-1}H_{1})$ . Then $\mathfrak{s}=\mathfrak{s}o(2l-2)\oplus T$ and $\Pi(\mathfrak{s})=$

$\{\alpha_{2}, \ldots, \alpha\swarrow\}$ . The minus dominant weights of $s\frac{C}{}$ and $\mathfrak{m}_{\pm}^{C}$ are given in the following.

$\mu_{0}=0$ $\mu_{1}=-(012\cdots 2|11)$

$v_{1}=v_{1}=\alpha_{0}$ $v_{2}=v_{2}=\alpha_{1}$

[1] The P-figure associated with geometry of subcase (B1).

$V_{1}=v_{1}\mu_{1}$ $\alpha\ell$

$\otimes$ $\otimes$ $O$

$|$ $|$
$|$

$V_{2}=v_{2}\otimes-O-O-\cdots-O-O$
$\alpha_{1}$ $\alpha_{2}$ $\alpha_{\ell-2}$ $\alpha_{\ell-1}$ $\mu_{0}$

[2] The injectivity of $\rho$ . In the subcases (B1) and (B3) the sets $D(\eta)$ are all empty,
and the geometry of subcase (B2) is a case in Example 4 since (I, $\hat{\sigma}$ ) is hermitian.

Type GDII. Let $\hat{\sigma}=\exp ad(\pi\sqrt{-1}H\swarrow)$ . Then $\mathfrak{s}=\mathfrak{s}u(l)\oplus T$ and $\Pi(\mathfrak{s})=$

$\{\alpha_{1}, \ldots, \alpha_{f-1}\}$ . The minus dominant weights of $s\frac{C}{}$ and $\mathfrak{m}_{\pm}^{C}$ are given in the following.

$\mu_{0}=0$ $\mu_{1}=-(1\cdots 1|10)$

$v_{1}=v_{1}=\alpha_{0}$ $v_{2}=v_{2}=\alpha_{f}$

[1] The P-figure associated with geometry of subcase (B1).

$\mu_{0}$

$\mu_{1}$

[2] The injectivity of $\rho$ . In the subcases (B1) and (B3) the sets $D(\eta)$ are all empty,
and the geometry of subcase (B2) is a case in Example 4 since (I, $\hat{\sigma}$) is hermitian.
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Type $GDm$ . Let $\hat{\sigma}=\exp ad(\pi\sqrt{-1}H_{i})$ $(2\leq i\leq l-2)$ . Then $\mathfrak{s}=\mathfrak{s}o(2i)\oplus$

$i$

$\mathfrak{s}o(2\swarrow-2i)$ and $\Pi(\mathfrak{s})=\{\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_{\ell^{\nu}}, \alpha’\}$ where $\alpha’=(0\cdots 012\cdots 2|11)$ . The
minus dominant weights of $\mathfrak{s}^{C}$ and $\mathfrak{m}_{\pm}^{C}$ are given in the following.

$\mu_{1}=-(12\cdots 2|11)=\alpha_{0}$ $\mu_{2}=-(0\cdots 0^{i}12\cdots 2|11)$
$(i\leq\swarrow-3)$

$\mu_{-1}=-(10\cdots 0|00)$ $(i=2)$ $\mu_{3}=-(0\cdots 0|01)$ $(i=l-2)$

$v_{1}=v_{1}=-(1\cdots 12\cdot 2|11)i.$. $\mu_{-3}=-(0\cdots 0|10)$ $(i=\swarrow-2)$

[1] The P-figure associated with geometry of subcase (B1).

$\alpha’$

$\mu_{1}$ $\mu_{2}$ $\alpha_{\ell}$

$O$ $\otimes$ $\emptyset$ $O$

$|$ $|$ $V_{1}=v_{1}$
$|$ $|$

$O-O$ –. $..-O-O-\otimes-O-O$ $--...-O-O$
$\alpha:-1$ $\alpha:-2$ $\alpha_{2}$ $\alpha_{1}$ $\alpha_{i+1}$ $\alpha_{1+2}$ $\alpha_{\ell-2}$ $\alpha_{\ell-1}$

$(\ell\geq 8,4\leq i\leq\ell-4)$

$\alpha’$
$\mu_{2}$

$\alpha_{l}$

$\mu_{1}J_{\alpha_{1O-\otimes-O-0^{1}}}^{|=v_{1}}o_{V_{1}}\otimes$

–... –

$oo^{1}-O$

$\backslash _{o^{1}}$

$\alpha_{4}$ $\alpha_{5}$ $\alpha_{\ell-2}$ $\alpha p-1$

$\alpha_{2}$

$(\ell\geq 7 i=3)$

$\alpha’$
$\mu_{1}$ $\alpha\ell$

$O|$ $\otimes|$ $\nu_{1}=v_{1}O|\backslash$

$\alpha p-4\alpha p-\epsilon\alpha_{2}\alpha_{1}0-0-\cdots-e-0-\otimes-o^{1\nearrow^{p-2}}O\alpha\otimes\mu_{2}$

$a_{\ell-1}$

$(\ell\geq 7, i=\ell-3)$

$\mu_{1}$

$\alpha’$
$\mu_{2}$

$\alpha\ell$

$\ovalbox{\tt\small REJECT}-$
$\otimes$ $O$

$|$

$|$
$|$

$V_{1}=v_{1}\Theta-O-O$ $--...-O-O$
$|$

$\alpha_{3}$ $\alpha_{4}$ $\alpha_{\ell-2}$ $\alpha_{l-1}$

$\otimes_{-}^{---O}$

$\mu_{-1}$ $\alpha_{1}$

$(\ell\geq 6, i=2)$
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$\alpha’$
$\mu_{1}$

$\alpha_{\ell}$ $\mu_{3}$

$O$ $\otimes$ $O^{---\otimes}-$

$|$
$|$

$|$

$O-O$ –... $-O-O-\otimes V_{1}=v_{1}$

$\alpha_{\ell-3}$ $\alpha p-4$ $\alpha_{2}$ $\alpha_{1}$
$|$

$O^{---\otimes}-$

$\alpha_{\ell-1}$ $\mu-3$

$(\ell\geq 6, i=\ell-2)$

$\alpha’$
$\alpha_{6}$ $\mu_{1}$

$\alpha’$
$\alpha_{4}$ $\mu_{3}$

$\nearrow|OV_{1}=v_{1}|\backslash O$
$\otimes\underline{\overline{=}}o_{\backslash /}o\underline{\overline{=}}\otimes$

$\mu_{1}\otimes\alpha_{1}\backslash _{o^{1}o^{1\nearrow}}^{o-\otimes-O\alpha_{4}\otimes\mu_{2}}$ $\nu_{1}=v_{1}\otimes\infty-0^{/}--\otimes$

$\alpha_{2}$ $\alpha_{5}$ $\mu_{-1}$ $\alpha_{1}$ $\alpha_{3}$ $\mu-3$

$(\ell=6, i=3)$

$\alpha’$

$\alpha_{5}$ $\mu_{3}$

$O$ $0\underline{\equiv}\emptyset$

$\nearrow|$ $|$

$\mu_{1}\otimes\alpha_{1}O-\otimes\nu_{1}=v_{1}$

$\backslash |$ $|$

$O$ $O^{---}-\otimes$

$\alpha_{2}$ $\alpha_{4}$ $\mu_{-3}$

$(\ell=5, i=3)$

$(\ell=4, i=2)$

$\mu_{1}$

$\alpha’$
$\alpha_{5}$

$\otimes----O|$ $\nwarrow_{1}$

$V_{1}=v_{1}\otimes-O\alpha_{3}\otimes\mu_{2}$

$|$ $|\nearrow$

$\otimes\underline{\overline{=}}0$ $O$

$\mu_{-1}$ $\alpha_{1}$ $\alpha_{4}$

$(\ell=5, i=2)$

[2] The injectivity of $\rho$ . In the subcases (B1) and (B3) the sets $D(\eta)$ are all empty,
and in the subcase (B2) the set $D(\eta)(=D(-v_{1}))$ consists of one element $\beta^{0}$ where

$i$

$\beta^{0}=(1\cdots 12\cdots 2|11)$ , which by Lemma 3.4 belongs to $r_{0-}$ . Taking account of Lemma
3.6, we can see that $p$ is injective for all cases.

Type GDIV. Let $\hat{\sigma}=t$ where the Dynkin part $t$ is determined by the following
involution on $\Pi(I)$ : $t(\alpha_{i})=\alpha_{i}(1\leq i\leq l-2),$ $t(\alpha_{t-1})=\alpha_{t}$ , and $t(\alpha_{1})=\alpha_{t-1}$ . Then $\mathfrak{s}=$

$\mathfrak{s}o(2l-1)$ and $\Pi(\mathfrak{s})=\{\alpha_{1}, \ldots, \alpha_{t-2}, \alpha_{1-1}’\}$ where $\alpha_{t-1}’=(1/2)(\alpha_{t-1}+t(\alpha_{t}))$ . The minus
dominant weights of $\mathfrak{s}^{C}$ and $\mathfrak{m}_{\pm}^{C}$ are given in the following.

$\mu_{1}=\alpha_{0}$

$v_{1}=v_{1}=- \frac{1}{2}(2\cdots 2|11)$

[1] The P-figure associated with geometry of subcase (B1).

$\mu_{1}$

$\otimes$

1
$V_{1}=v_{1}\otimes\Leftarrow 0-O--...-O\Rightarrow O$

$\alpha_{1}$ $\alpha_{2}$ $\alpha_{\ell-2}$ $\alpha_{t-1}’$
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[2] The injectivity of $\rho$ . In the subcase (B3) the set $D(\eta)$ is empty, and in the sub-
case (B2) the set $D(\eta)(=D(-v_{1}))$ consists of one element $\beta^{0}$ where $\beta^{0}=(1\cdots 1|10)$ ,
which belongs to $r_{1}$ . Taking account of Lemma 3.6, we can see that in these cases $\rho$ is
injective.

We consider the subcase (B1). Then it follows that

$\Omega_{0}=\{-(1\cdots 1|01), -(01\cdots 1|01)\}$ and

$D(\eta)=\{-(00\cdots 01\cdot 1|01);k..2\leq k\leq l-2\}$ .

In this
$k$

case we need a detailed $argu_{k}ment$ . Fix an integer $k$ and put $\alpha^{0}=$

$-(00\cdots 01\cdots 1|01)$ . Then $\lambda(\alpha^{0})=(12\cdots 23\cdots 3|12)$ and the set $B_{0} \cup(\bigcup_{i\geq 1}B_{i}(\alpha^{0}))$

consists of the following elements;

$\beta^{0}=(12\cdots 2|11)$ , $\beta^{1}=(01\cdots 12\cdot 2|11)k.$. $\beta^{2}=(11\cdots 12\cdot 2|11)k..$ .

The corresponding elements $\alpha^{i}$ in $\Sigma$ , which satisfy $\beta^{i}\equiv\alpha^{i}+\lambda(\alpha^{0})(mod b^{C})$ , are given in
the following.

$\alpha^{0}=-(00\cdots 01\cdot 1k..|01)$ , $\alpha^{1}=-(1\cdots 1|01)$ , $\alpha^{2}=-(01\cdots 1|01)$ .

We suppose that a maximal weight vector $u$ of $( m\frac{C}{})^{*}\otimes s\frac{C}{}$ has weight $\overline{\lambda}(\alpha^{0})$ and
the elements $\alpha^{i}(i=0,1,2)$ appear in the summation: $u= \sum_{\alpha:w_{\alpha}\neq 0}T_{\alpha}^{*}\otimes w_{\alpha}$ . Note that
$T_{\alpha^{i}}=V_{\alpha^{i}}$ , and $w_{\alpha^{i}}=c_{i}U_{\beta^{i}}$ for some nonzero constants $c_{i}$ . If $p(u)=0$ , it then follows

$c_{i}[V_{\alpha^{j}}, U_{\beta^{i}}]=c_{j}[V_{\alpha^{i}}, U_{\beta^{j}}]$

for distinct indices $i$ and $j$ . Since in this case $U_{\beta^{i}}=2X_{\beta^{i}}$ and $V_{\alpha^{i}}=X_{\alpha^{i}}-\hat{\sigma}(X_{\alpha^{i}})$ , this
moreover induces the following: $c_{i}[X_{\alpha^{j}}, X_{\beta^{i}}]=c_{j}[X_{\alpha^{l}}, X_{\beta^{j}}]$ and thus

(4.1) $c_{i}N_{\alpha^{j},\beta^{i}}=c_{j}N_{\alpha^{i},\beta^{j}}$ .

We now put $\gamma=\alpha^{2}-\alpha^{1}=\beta^{2}-\beta^{1}$ , which is a positive root of $\mathfrak{s}^{C}$ and belongs to $r_{0+}$ .
Since $u$ is a maximal vector, it holds $X_{\gamma}\cdot u=0$ and it consequently follows

(4.2) $c_{2}N_{\gamma,\alpha^{1}}=c_{1}N_{\gamma,\beta^{1}}$ .

Next, noting that $\alpha^{1}+\beta^{1}$ is not a root, we have the following.

$N_{\alpha^{2},\beta^{1}}X_{\alpha^{2}+\beta^{1}}=(1/N_{\alpha^{1},\gamma})[[X_{\alpha^{1}}, X_{\gamma}],$ $X_{\beta^{1}}]$

$=-(1/N_{\alpha^{1},\gamma})([[X_{\gamma}, X_{\beta^{1}}], X_{\alpha^{1}}]+[[X_{\beta^{1}}, X_{\alpha^{1}}], X_{\gamma}])$

$=-(1/N_{\alpha^{1},\gamma})N_{\gamma,\beta^{1}}N_{\beta^{2},\alpha^{1}}X_{\beta^{2}+\alpha^{1}}$

and so $N_{\alpha^{2},\beta^{1}}N_{\alpha^{1},\gamma}=-N_{\gamma,\beta^{1}}N_{\beta^{2},\alpha^{1}}$ . This, together with (4.2), implies $c_{1}N_{\alpha^{2},\beta^{1}}=-c_{2}N_{\alpha^{1},\beta^{2}}$ ,
which contradicts (4.1). (The above argument is similar to that of Lemma 2.4 in [12].)

By these arguments we obtain that in the subcase (B1) the homomorphism $\rho$ is
injective.

Type GDV. $Let\hat{\sigma}=t\exp ad(\pi\sqrt{-1}H_{i})wheretheDynkinparttisthesameasthat$

of Type GDIV and $2\leq i\leq l-2$ . Then $\mathfrak{s}=\mathfrak{s}o(2i+1)\oplus \mathfrak{s}o(2l-2i-1)$ and $\Pi(\mathfrak{s})=$
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$\{\alpha_{1}, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_{J-2}, \alpha_{t-1}’, \alpha’\}i$ where $\alpha_{t-l}’=(1/2)(\alpha\swarrow-1+t(\alpha_{t-1}))$ and $\alpha’=(1/2)$

$(0\cdots 02\cdots 2|11)$ . The minus dominant weights of $s\frac{C}{}$ and $\mathfrak{m}_{\pm}^{C}$ are given in the following.

$\mu_{1}=-(12\cdots 2|11)=\alpha_{0}$
$\mu_{2}=-(0\cdots 0^{i}12\cdots 2|11)$

$v_{1}=v_{1}=-(1\cdots 12\cdot 2|11)i.$.

[1] The P-figure associated with geometry of subcase (B1).

$\mu_{1}$ $\mu_{2}$

$\otimes$ $\otimes$

$|$ $v_{1}=v_{1}$
$|$

$O\Leftarrow O$ $--...-O-O-\otimes-O-O$ $--...-O\Rightarrow O$

$\alpha’$

$\alpha:-1$ $\alpha_{2}$ $\alpha_{1}$ $\alpha_{\mathfrak{i}+1}$ $\alpha_{i+2}$ $\alpha_{\ell-2}$ $\alpha_{\ell-1}’$

$(\ell\geq 7,3\leq i\leq l-4)$

$\mu_{1}$ $\mu_{2}$

$\otimes$ $\otimes$

$O\Leftarrow O$ –. .. $-0^{1}-0-\otimes-O\Rightarrow O\Downarrow$
$\nu_{1}=v_{1}$

$\alpha’$

$\alpha_{t-4}$ $\alpha_{2}$ $\alpha_{1}$ $\alpha_{l-2}$ $\alpha_{\ell-1}’$

$(\ell\geq 6, i=t-3)$

$\mu_{1}$ $\mu_{2}$

$\otimes|$

$V_{1}=v_{1}$

$\otimes||||$

$O\Leftarrow O$ –.. . $-O-O-\otimes\Rightarrow O$

$\alpha’$

$\alpha p-3$ $\alpha_{2}$ $\alpha_{1}$ $a_{l-1}’$

$(\ell\geq 5, i=\ell-2)$

$\mu_{1}$ $\mu_{2}$

$\otimes$ $\otimes$

$O\Leftarrow O-\otimes-0-0^{1}\Downarrow V_{1}=v_{1}$

$--...-O\Rightarrow O$

$\alpha’$
$\alpha_{1}$ $\alpha_{3}$ $\alpha_{4}$ $\alpha p-2$ $\alpha_{l-1}’$

$(\ell\geq 6, i=2)$

$\mu_{1}$ $\mu_{2}$

$\otimes$ $\otimes$

$O\Leftarrow O-\otimes-O\Rightarrow O\Downarrow V_{1}=v_{1}\Downarrow$

$\alpha’$
$\alpha_{1}$ $\alpha_{3}$

$\alpha_{4}’$

$\mu_{1}$ $\mu_{2}$

$\otimes\Downarrow$

$v_{1}=v_{1}$
$3|||$

$O\Leftarrow O-\otimes\Rightarrow O$

$\alpha’$
$\alpha_{1}$ $\alpha_{p-1}’$

$(l=5, i=2)$ $(\ell=4, i=2)$
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[2] The injectivity of $\rho$ . In the subcases (B1) and (B3) the sets $D(\eta)$ are all empty,
and in the subcase (B2) the set $D(\eta)(=D(-v_{1}))$ consists of one element $\beta^{0}$ where $\beta^{0}=$

$i$

$(1 \cdots 12\cdots 2|11)$ , which by Lemma 3.4 belongs to $r_{0-}$ . Taking account of Lemma 3.6,
we can see that $\rho$ is injective for all cases.

We next treat I of exceptional type. We refer to [3] for the root systems.
Let I be the compact simple Lie algebra of type $E_{6}$ . Then the Dynkin diagram of

$\Pi(I)$ is given in the following, where $\alpha_{0}$ denotes the minus highest root of $\Pi(I)$ .

$\alpha_{2}$

$O$

$|$ $\alpha_{0}+\alpha_{1}+2\alpha_{2}+2\alpha_{3}+3\alpha_{4}+2\alpha_{5}+\alpha_{6}=0$

$O-O-O-O-O$
$\alpha_{6}$ $\alpha_{5}$ $\alpha_{4}$ $\alpha_{3}$ $\alpha_{1}$

In the following we identify a vector $a_{1}\alpha_{1}+a_{2}\alpha_{2}+a_{3}\alpha_{3}+a_{4}\alpha_{4}+a_{5}\alpha_{5}+a_{6}\alpha_{6}$ with a
6-tuple $(\begin{array}{lllll} a_{2} a_{6} a_{5} a_{4} a_{3} a_{1}\end{array})$ .

Type $GE_{6}I$ . Let $\hat{\sigma}=\exp ad(\pi\sqrt{-1}H_{1})$ . Then $\mathfrak{s}=\mathfrak{s}o(10)\oplus T$ and $\Pi(\mathfrak{s})=$

$\{\alpha_{2}, \ldots, \alpha_{6}\}$ . The minus dominant weights of $s\frac{C}{}$ and $m_{\pm}^{C}$ are given in the following.

$\mu_{0}=0$ $\mu_{1}=-(\begin{array}{l}1l22l0\end{array})$

$v_{1}=v_{1}=\alpha_{0}$ $\mu_{2}=v_{2}=\alpha_{1}$

[1] The P-figure associated with geometry of subcase (B1).

$\otimes V_{1}=v_{1}$

$\mu_{1}$
$|$

$\otimes$ $O\alpha_{2}$

$|$ $|$

$o-0-0-0-\otimes Ig=v_{2}$
$\alpha_{6}$ $\alpha_{5}$ $\alpha_{4}$ $\alpha_{3}$ $\mu_{0}$

[2] The injectivity of $\rho$ . In the subcases (B1) and (B3) the sets $D(\eta)$ are all empty,
and the geometry of subcase (B2) is a case in Example 4 since (I, $\hat{\sigma}$) is hermitian.

Type $GE_{6}n$ . Let $\hat{\sigma}=\exp ad(\pi\sqrt{-1}H_{2})$ . Then $\mathfrak{s}=\mathfrak{s}u(6)\oplus \mathfrak{s}u(2)$ and $\Pi(\mathfrak{s})=$

$\{\alpha_{1}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}, \alpha‘\}$ where $\alpha’=-\alpha_{0}$ . The minus dominant weights of $s\frac{C}{}$ and $\mathfrak{m}_{\pm}^{C}$ are
given in the following.

$\mu_{1}=-(\begin{array}{l}0l111l\end{array})$
$\mu_{2}=\alpha_{0}$

$v_{1}=v_{1}=-(\begin{array}{l}1l232l\end{array})$

[1] The P-figure associated with geometry of subcase (B1).
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$\otimes\mu_{2}$

$\Downarrow|_{\alpha’}$

$1$

$\mu_{1}$

[2] The injectivity of $p$ . In the subcases (B1) and (B3) the sets $D(\eta)$ are all empty,
and in the subcase (B2) the set $D(\eta)(=D(-v_{1}))$ consists of one element $\beta^{0}$ where
$\beta^{0}=(\begin{array}{l}l12321\end{array})$ , which by Lemma 3.4 belongs to $r_{0-}$ . Taking account of Lemma 3.6, we
can see that $\rho$ is injective for all cases.

Type $GE_{6}m$ . Let $\hat{\sigma}=t$ where the Dynkin part $t$ is determined by the following
involution on $\Pi(I)$ : $t(\alpha_{i})=\alpha_{i}(i=0,2,4),$ $t(\alpha_{1})=\alpha_{6},$ $t(\alpha_{6})=\alpha_{1},$ $t(\alpha_{3})=\alpha_{5}$ , and $t(\alpha_{5})=$

$\alpha_{3}$ . Then $s=f_{4}$ and $\Pi(\mathfrak{s})=\{\alpha_{1}’, \alpha_{2}, \alpha_{3}’, \alpha_{4}\}$ where $\alpha_{1}’=(1/2)(\alpha_{1}+t(\alpha_{1}))$ and $\alpha_{3}’=(1/2)$

$(\alpha_{3}+t(\alpha_{3}))$ . The minus dominant weights of $s\frac{C}{}$ and $\mathfrak{m}_{\pm}^{C}$ are given in the following.

$\mu_{1}=\alpha_{0}$

$v_{1}=v_{1}=- \frac{1}{2}(\begin{array}{l}223432\end{array})$

[1] The P-figure associated with geometry of subcase (B1).

$\mu_{1}$ $V_{1}=v_{1}$

$\otimes-O-O\Rightarrow O-O-\otimes$

$\alpha_{2}$ $\alpha_{4}$
$\alpha_{3}^{j}$ $\alpha_{1}’$

[2] The injectivity of $p$ . In the subcases (B1) and (B3) the sets $D(\eta)$ are empty, and
in the subcase (B2) the set $D(\eta)(=D(-v_{1}))$ consists of one element $\beta^{0}$ where
$\beta^{0}=(\begin{array}{l}ll122l\end{array}),$ $whichbelongstor_{1}$ . $TakingaccountofLemma3.6,$ $wecanseethat\rho is$

injective for all cases.

Type $GE_{6}IV$ . Let $\hat{\sigma}=t\exp ad(\pi\sqrt{-1}H_{2})$ where the Dynkin part $t$ is the same as
that of Type $GE_{6}III$ . Then $s=sp(4)$ and $\Pi(\mathfrak{s})=\{\alpha_{1}’, \alpha_{3}’, \alpha_{4}, \alpha’\}$ where $\alpha’=(1/2)$

$(\begin{array}{l}20l2l0\end{array})$ . The minus dominant weights of $s\frac{C}{}$ and $\mathfrak{m}_{\pm}^{C}$ are given in the following.

$\mu_{1}=\alpha_{0}$
$v_{1}=v_{1}=-(\begin{array}{l}11232l\end{array})$

[1] The P-figure associated with geometry of subcase (B1).

$V_{1}=v_{1}$ $\mu_{1}$

$\otimes-O\Rightarrow O-O-O\Leftarrow\otimes$

$\alpha_{4}$
$\alpha_{3}’$ $\alpha_{1}’$

$\alpha’$
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[2] The injectivity of $\rho$ . In the subcases (B1) and (B3) the sets $D(\eta)$ are empty, and
in the subcase (B2) the set $D(\eta)$ $(=D(-v_{1}))$ consists of one element $\beta^{0}$ where
$\beta^{0}=(\begin{array}{l}ll2321\end{array})$ , which by Lemma 3.4 belongs to $r_{0-}$ . Taking account of Lemma 3.6, we
can see that $p$ is injective for $aU$ cases.

Let I be the compact simple Lie algebra of type E7. Then the Dynkin diagram of
$\Pi([)$ is given in the following, where $\alpha_{0}$ denotes the minus highest root of $\Pi([)$ .

$\alpha_{2}$

$O$

$|$ $\alpha_{0}+2\alpha_{1}+2\alpha_{2}+3\alpha_{3}+4\alpha_{4}+3\alpha_{5}+2\alpha_{6}+\alpha_{7}=0$

$O-O-O-O-O-O$
$\alpha_{7}$ $\alpha_{6}$ $\alpha_{5}$ $\alpha_{4}$ $\alpha_{3}$ $\alpha_{1}$

In the following we identify a vector $a_{1}\alpha_{1}+a_{2}\alpha_{2}+a_{3}\alpha_{3}+a_{4}\alpha_{4}+a_{5}\alpha_{5}+a_{6}\alpha_{6}+a_{7}\alpha_{7}$ with
a 7-tuple $(\begin{array}{llllll} a_{2} a_{7} a_{6} a_{5} a_{4} a_{3} a_{1}\end{array})$ .

Type $GE_{7}I$ . Let $\hat{\sigma}=\exp ad(\pi\sqrt{-1}H_{1})$ . Then $\mathfrak{s}=\mathfrak{s}o(12)\oplus \mathfrak{s}u(2)$ and $\Pi(\mathfrak{s})=$

$\{\alpha’, \alpha_{2}, \ldots, \alpha_{7}\}$ where $\alpha’=-\alpha_{0}$ . The minus dominant weights of $s\frac{C}{}$ and $m_{\pm}^{C}$ are given
in the following.

$\mu_{1}=-(\begin{array}{l}l1222l0\end{array})$ $\mu_{2}=-(\begin{array}{l}2l23432\end{array})=\alpha_{0}$

$v_{1}=v_{1}=-(\begin{array}{l}2l2343l\end{array})$

[1] The P-figure associated with geometry of subcase (B1).

$\mu_{1}$ $\alpha_{2}$ $\mu_{2}$

$\otimes|$ $O|$
$V_{1}=v_{1}|\eta|$

$O-O-O-O-O-\otimes-O$
$\alpha_{7}$ $\alpha_{6}$ $\alpha_{5}$ $\alpha_{4}$ $\alpha_{3}$

$\alpha’$

[2] The injectivity of $\rho$ . In the subcases (B1) and (B3) the sets $D(\eta)$ are all empty,
and in the subcase (B2) the set $D(\eta)(=D(-v_{1}))$ consists of one element $\beta^{0}$ where
$\beta^{0}=(\begin{array}{l}2123431\end{array})$ , which by Lemma3.4belongs to $r_{0-}$ . Taking account of Lemma3.6, we
can see that $\rho$ is injective for all cases.

Type $GE_{7}\Pi$ . Let $\hat{\sigma}=\exp ad(\pi\sqrt{-1}H_{2})$ . Then $s=su(8)$ and $\Pi(\mathfrak{s})=$

$\{\alpha_{1}, \alpha_{3}, \ldots, \alpha_{7}, \alpha’\}$ where $\alpha’=(\begin{array}{l}20l232l\end{array})$ . The minus dominant weights of $s\frac{C}{}$ and $\mathfrak{m}_{\pm}^{C}$

are given in the following.

$\mu_{1}=-(\begin{array}{l}2l23432\end{array})$ $v_{1}=v_{1}=-(\begin{array}{l}l123321\end{array})$

[1] The P-figure associated with geometry of subcase (B1).

$V_{1}=v_{1}$
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[2] The injectivity of $\rho$ . In the subcases (B1) and (B3) the sets $D(\eta)$ are all empty,
and in the subcase (B2) the set $D(\eta)(=-D(v_{1}))$ consists of one element $\beta^{0}$ where
$\beta^{0}=(\begin{array}{l}ll23321\end{array})$ , which by Lemma 3.4 belongs to $r_{0-}$ . Taking account of Lemma 3.6, we
can see that $\rho$ is injective for all cases.

Type $GE7m$ . Let $\hat{\sigma}=\exp ad(\pi\sqrt{-1}H_{7})$ . Then $\mathfrak{s}=\mathfrak{e}_{6}\oplus T$ and $\Pi(\mathfrak{s})=$

$\{\alpha_{1}, \ldots, \alpha_{6}\}$ . The minus dominant weights of $s\frac{C}{}$ and $\mathfrak{m}_{\pm}^{C}$ are given in the following.

$\mu_{0}=0$ $\mu_{1}=-(\begin{array}{l}20l232l\end{array})$

$v_{1}=v_{1}=\alpha_{0}$ $v_{2}=v_{2}=\alpha_{7}$

[1] The P-figure associated with geometry of subcase (B1).

$\otimes\mu_{1}$

I
$O\alpha_{2}$

$\nu_{2}=v_{2}$ $|$

$\nu_{1}=v_{1}$ $\mu_{0}$

$\otimes-0-0-0-O-O-\otimes$
$\alpha_{7}$ $\alpha_{6}$ $\alpha_{5}$ $\alpha_{4}$ $\alpha_{3}$ $\alpha_{1}$

[2] The injectivity of $\rho$ . In the subcases (B1) and (B3) the sets $D(\eta)$ are all empty,
and the geometry of subcase (B2) is a case in Example 4 since (I, $\hat{\sigma}$) is hermitian.

Let I be the compact simple Lie algebra of type $E_{8}$ . Then the Dynkin diagram of
$\Pi(I)$ is given in the following, where $\alpha_{0}$ denotes the minus highest root of $\Pi(I)$ .

$\alpha 0^{2}|$

$o-0-0-0-0-O-O$
$\alpha_{8}$ $\alpha_{7}$ $\alpha_{6}$ $\alpha_{5}$ $\alpha_{4}$ $\alpha_{3}$ $\alpha_{1}$

$\alpha_{0}+2\alpha_{1}+3\alpha_{2}+4\alpha_{3}+6\alpha_{4}+5\alpha_{5}+4\alpha_{6}+3\alpha_{7}+2\alpha_{8}=0$

In the following we identify a vector $a_{1}\alpha_{1}+a_{2}\alpha_{2}+a_{3}\alpha_{3}+a_{4}\alpha_{4}+a_{5}\alpha_{5}+a_{6}\alpha_{6}+a_{7}\alpha_{7}+$

$a_{8}\alpha_{8}$ with an 8-tuple $(\begin{array}{lllllll} a_{2} a_{8} a_{7} a_{6} a_{5} a_{4} a_{3} a_{1}\end{array})$ .

Type $GE_{8}I$ . Let $\hat{\sigma}=\exp ad(\pi\sqrt{-1}H_{1})$ . Then $s=so(16)$ and $\Pi(\mathfrak{s})=$

$\{\alpha’, \alpha_{2}, \ldots, \alpha_{8}\}$ where $\alpha’=(\begin{array}{l}20123432\end{array})$ . The minus dominant weights of $\mathfrak{s}^{C}$ and $\mathfrak{m}_{\pm}^{C}$ are
given in the following.

$\mu_{1}=-(\begin{array}{l}32345642\end{array})$ $v_{1}=v_{1}=-(\begin{array}{l}3l23453l\end{array})$

[1] The P-figure associated with geometry of subcase (B1).

$v_{1}=v_{1}$

$\otimes|$

$\mu_{1}$

$\otimes$ $O\alpha_{2}$

1 1
$o-0-0-0-0-0-O\alpha’\alpha_{8}\alpha_{7}\alpha_{6}\alpha_{5}\alpha_{4}\alpha_{3}$
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[2] The injectivity of $\rho$ . In the subcases (B1) and (B3) the sets $D(\eta)$ are all empty,
and in the subcase (B2) the set $D(\eta)(=D(-v_{1}))$ consists of one element $\beta^{0}$ where
$\beta^{0}=(\begin{array}{l}3l23453l\end{array})$ , which by Lemma 3.4 belongs to $r_{0-}$ . Taking account of Lemma 3.6,
we can see that $\rho$ is injective for all cases.

Type $GE_{8}\Pi$ . Let $\hat{\sigma}=\exp ad(\pi\sqrt{-1})H_{8})$ . Then $s=e_{7}esu(2)$ and $\Pi(\mathfrak{s})=$

$\{\alpha’, \alpha_{1}, \ldots, \alpha_{7}\}$ where $\alpha’=-\alpha_{0}$ . The minus dominant weights of $s\frac{C}{}$ and $\mathfrak{m}_{\pm}^{C}$ are given
in the following.

$\mu_{1}=-(\begin{array}{l}20123432\end{array})$
$\mu_{2}=\alpha_{0}$

$v_{1}=v_{1}=-(\begin{array}{l}3l345642\end{array})$

[1] The P-figure associated with geometry of subcase (B1).

$\mu_{2}$ $\alpha_{2}$

$\otimes||||\nu_{1}=v_{1}$
$O|$

$\mu_{2}$

$O-\otimes-O-O-O-O-O-O-\otimes$
$\alpha^{j}$

$\alpha_{7}$ $\alpha_{6}$ $\alpha_{5}$ $\alpha_{4}$ $\alpha_{3}$ $\alpha_{1}$

[2] The injectivity of $\rho$ . In the subcases (B1) and (B3) the sets $D(\eta)$ are all empty,
and in the subcase (B2) the set $D(\eta)(=D(-v_{1}))$ consists of one element $\beta^{0}$ where
$\beta^{0}=(\begin{array}{l}3l345642\end{array})$ , which by Lemma 3.4 belongs to $r_{0-}$ . Taking account of Lemma 3.6,
we can see that $\rho$ is injective for all cases.

Let I be the compact simple Lie algebra of type $F_{4}$ . Then the Dynkin diagram of
$\Pi(I)$ is given in the following, where $\alpha_{0}$ denotes the highest root of $\Pi([)$ .

$O-O\Rightarrow O-O$
$\alpha_{0}+2\alpha_{1}+3\alpha_{2}+4\alpha_{3}+2\alpha_{4}=0$

$\alpha_{1}$ $\alpha_{2}$ $\alpha_{3}$ $\alpha_{4}$

In the following we identify a vector $a_{1}\alpha_{1}+a_{2}\alpha_{2}+a_{3}\alpha_{3}+a_{4}\alpha_{4}$ with a 4-tuple
$(a_{1}, a_{2},a_{3}, a_{4})$ .

Type $GF_{4}I$ . Let $\hat{\sigma}=\exp ad(\pi\sqrt{-1}H_{1})$ . Then $\mathfrak{s}=\mathfrak{s}u(2)\oplus \mathfrak{s}\mathfrak{p}(3)$ and $\Pi(\mathfrak{s})=$

$\{\alpha’, \alpha_{2}, \alpha_{3}, \alpha_{4}\}$ where $\alpha’=-\alpha_{0}$ . The minus dominant weights of $s\frac{C}{}$ and $\mathfrak{m}_{\pm}^{C}$ are given in
the following.

$\mu_{1}=-(0122)$ $\mu_{2}=-(2342)=\alpha_{0}$

$v_{1}=v_{1}=-(1342)$

[1] The P-figure associated with geometry of subcase (B1).

$\mu_{2}$

$\psi|\nu_{1}=v_{1}\mu_{1}\otimes-\otimes-O\Rightarrow O-O\Leftarrow\otimes$

$\alpha’$
$\alpha_{2}$ $\alpha_{3}$ $\alpha_{4}$
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[2] The injectivity of $p$ . In the subcases (B1) and (B3) the sets $D(\eta)$ are all empty,
and in the subcase (B2) the set $D(\eta)(=D(-v_{1}))$ consists of one element $\beta^{0}$ where
$\dot{\beta}^{0}=(1342)$ , which by Lemma 3.4 belongs to $r_{0-}$ . Taking account of Lemma 3.6, we
can see that $p$ is injective for all cases.

Type $GF_{4}n$ . Let $\hat{\sigma}=\exp ad(\pi\sqrt{-1}H_{4})$ . Then $s=so(9)$ and 1I(s) $=$ {ct’, $\alpha_{1},$ $\alpha_{2},$ $\alpha_{3}$ }
where $\alpha’=(0122)$ . The minus dominant weights of $\mathfrak{s}^{C}$ and $\mathfrak{m}_{\pm}^{C}$ are given in the fol-
lowing.

$\mu_{1}=-(2342)$ $v_{1}=v_{1}=-(1231)$

[1] The P-figure associated with geometry of subcase (B1).

$\mu_{1}$

$\otimes$

$|$

$\nu_{1}=v_{1}$

$O-O-O\Rightarrow O-\otimes$

$\alpha’$
$\alpha_{1}$ $\alpha_{2}$ $\alpha_{3}$

[2] The injectivity of $\rho$ . In the subcases (B1) and (B3) the sets $D(\eta)$ are all empty,
and in the subcase (B2) the set $D(\eta)(=D(-v_{1}))$ consists of one element $\beta^{0}$ where
$\beta^{0}=(1231)$ , which by Lemma 3.4 belongs to $r_{0-}$ . Taking account of Lemma 3.6, we
can see that $\rho$ is injective for all cases.

Let I be the compact simple Lie algebra of type $G_{2}$ . Then the Dynkin diagram of
$\Pi(I)$ is given in the following, where $\alpha_{0}$ denotes the minus highest root of $\Pi(I)$ .

$g$
$\alpha_{0}+2\alpha_{1}+3\alpha_{2}=0$

$\alpha_{1}\alpha_{2}$

In the following we identify a vector $a_{1}\alpha_{1}+a_{2}\alpha_{2}$ with a 2-tuple $(a_{1},a_{2})$ .

Type $GG_{2}$ . Let $\hat{\sigma}=\exp ad(\pi\sqrt{-1}H_{1})$ . Then $\mathfrak{s}=\mathfrak{s}u(2)\oplus \mathfrak{s}u(2)$ and $\Pi(\mathfrak{s})=$

$\{\alpha’, \alpha_{2}\}$ where $\alpha’=-\alpha_{0}$ . The minus dominant weights of $s\frac{C}{}$ and $\mathfrak{m}_{\pm}^{C}$ are given in the
following.

$\mu_{1}=-(01)$ $\mu_{2}=-(23)=\alpha_{0}$

$v_{1}=v_{1}=-(13)$

[1] The P-figure associated with geometry of subcase (B1).

$\alpha^{j}\nu_{1}=v_{1}\alpha_{2}$

$|\begin{array}{l}O\otimes\end{array}|||-t_{\otimes}|||$

$\mu_{1}$ $\mu_{2}$

[2] The injectivity of $\rho$ . In the subcases (B1) and (B3) the sets $D(\eta)$ are all empty,
and in the subcase (B2) the set $D(\eta)(=D(-v_{1}))$ consists of one element $\beta^{0}$ where
$\beta^{0}=(13)$ , which by Lemma 3.4 belongs to $r_{0-}$ . Taking account of Lemma 3.6, we can
see that $\rho$ is injective for all cases.



592 H. NAITOH

Comparing the P-figures associated with strongly substantial geometries of cases (A),
(B) and (C), we last have the following.

THEOREM 4.1. Generally, the PSLA’s of strong type, thus, the strongly substantial
geometries are decided by their P-figures.
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