Saturation of fundamental ideals on $\mathcal{L}_{\kappa}\lambda$

By Yoshihiro ABE

(Received Mar. 24, 1994) (Revised Oct. 3, 1994)

§ 0. Preliminaries.

In this paper we will examine how large is the saturation number of familiar ideals on $\mathcal{P}_{\kappa}\lambda$. It is known that the nonstationary ideal, $NS_{\kappa\lambda}$ is not λ -saturated and the statement " $NS_{\kappa\lambda}$ is λ^+ -saturated" is a large cardinal hypothesis. On the other hand few results are known on the saturation of other familiar ideals except Johnson's result "the minimal ideal on $\mathcal{P}_{\kappa}\lambda$, $I_{\kappa\lambda}$ is not λ^+ -saturated", which naturally generalizes that I_{κ} is not κ^+ -saturated. We will improve this in Section 1. Sections 2 and 3 are devoted to extend Matsubara's results on $NS_{\kappa\lambda}$ to $WNS_{\kappa\lambda}$, the minimal strongly normal ideal on $\mathcal{P}_{\kappa}\lambda$.

We work in ZFC and most of our notations are standard. The image of X under f is denoted by f[X], i.e., $f[X] = \{y : y = f(x) \text{ for some } x \in X\}$. Throughout this paper, $\kappa \le \lambda$ are uncountable cardinals and κ is regular. For such a pair (κ, λ) , $\mathcal{L}_{\kappa}\lambda = \{x \subset \lambda : |x| < \kappa\}$. More generally, $\mathcal{L}_{\gamma}A = \{x \subset A : |x| < |\gamma|\}$ for any set A and ordinal γ .

DEFINITION. I is an ideal on $\mathcal{Q}_{\kappa}\lambda$ if I is a collection of subsets of $\mathcal{Q}_{\kappa}\lambda$ such that

- (i) $\phi \in I$ and $\mathcal{Q}_{\kappa} \lambda \notin I$.
- (ii) If $X, Y \subset \mathcal{Q}_{\kappa}\lambda$, $X \in I$ and $Y \subset X$, then $Y \in I$.
- (iii) If $X \in I$ and $Y \in I$, then $X \cup Y \in I$.

An ideal I on $\mathcal{Q}_{\kappa}\lambda$ is κ -complete if I is closed under union of κ many members.

An ideal I on $\mathcal{L}_{\kappa}\lambda$ is fine if for each $\alpha < \lambda$, $\{x \in \mathcal{L}_{\kappa}\lambda : \alpha \notin x\} \in I$. For the sake of convenience, throughout this paper, by 'ideal' we mean 'fine κ -complete ideal'.

The diagonal union of $\{X_{\alpha}: \alpha < \lambda\}$ is defined by:

$$V_{\alpha<\lambda}X_{\alpha}=\{x\in\mathcal{P}_{\kappa}\lambda\colon x\in X_{\alpha} \text{ for some } \alpha\in x\}.$$

This research was partially supported by Grant-in-Aid for Scientific Research (No. 04302009), Ministry of Education, Science and Culture.

An ideal I on $\mathcal{L}_{\kappa}\lambda$ is normal iff $V_{\alpha<\lambda}\{X_{\alpha}: \alpha<\lambda\}\in I$ for any $\{X_{\alpha}: \alpha<\lambda\}\subset I$. We define $V_{<}X_{\alpha}$ for $\{X_{\alpha}: \alpha\in\mathcal{L}_{\kappa}\lambda\}$ by:

 $\nabla_{<}X_a$

 $= \{x \in \mathcal{P}_{\kappa} \lambda \colon x \in X_a \text{ for some } a \in \mathcal{P}_{\kappa} \lambda \text{ such that } a \subset x \text{ and } |a| < |x \cap \kappa| \}.$

An ideal I on $\mathcal{P}_{\kappa}\lambda$ is strongly normal if $V_{<}\{X_a: a\in\mathcal{P}_{\kappa}\lambda\}\in I$ for any $\{X_a: a\in\mathcal{P}_{\kappa}\lambda\}\subset I$.

A filter \mathcal{F} on $\mathcal{L}_{\kappa}\lambda$ and an ideal I on $\mathcal{L}_{\kappa}\lambda$ are dual to each other if the following holds:

$$X \in \mathcal{F}$$
 iff $\mathcal{L}_{\kappa} \lambda - X \in I$ for every $X \subset \mathcal{L}_{\kappa} \lambda$.

The dual filter of I will be denoted by I^* and each member of I^* is called I-measure one. Let $I^+ = \mathcal{PP}_{\kappa} \lambda - I = \{X : X \notin I\}$ and $X \in I^+$ is called I-positive.

For an $x \in \mathcal{P}_{\kappa} \lambda$, let $\hat{x} = \{ y \in \mathcal{P}_{\kappa} \lambda : x \subset y \}$, and $X \subset \mathcal{P}_{\kappa} \lambda$ is unbounded iff $X \cap \hat{x} \neq \phi$ for all $x \in \mathcal{P}_{\kappa} \lambda$.

Let $I_{\kappa\lambda} = \{X \subset \mathcal{Q}_{\kappa}\lambda : X \text{ is not unbounded}\}$. $I_{\kappa\lambda}$ is the minimal ideal on $\mathcal{Q}_{\kappa}\lambda$, and $\hat{x} \in I_{\kappa\lambda}^*$ for any $x \in \mathcal{Q}_{\kappa}\lambda$.

 $X \subset \mathcal{P}_{\kappa} \lambda$ is closed iff $\bigcup D \in X$ for any increasing \subset -sequence $D \subset X$ such that $|D| < \kappa$. $C \subset \mathcal{P}_{\kappa} \lambda$ is said to be a *cub* iff it is closed and unbounded. X is *stationary* iff $X \cap C \neq \phi$ for every cub C.

 $NS_{\kappa\lambda} = \{X \subset \mathcal{P}_{\kappa}\lambda : X \text{ is not stationary}\}$. So $NS_{\kappa\lambda}$ is the dual ideal of the cub filter on $\mathcal{P}_{\kappa}\lambda$ generated by cub sets.

 $X \subset \mathcal{P}_{\kappa} \lambda$ is strongly closed iff $\bigcup D \in X$ for all $D \subset X$ with $|D| < \kappa$ and we call $C \subset \mathcal{P}_{\kappa} \lambda$ a strong cub iff it is strongly closed and unbounded.

 $SNS_{\kappa\lambda} = \{X \subset \mathcal{Q}_{\kappa}\lambda \colon X \cap C = \phi \text{ for some strong cub set } C \subset \mathcal{Q}_{\kappa}\lambda\}.$

 $WNS_{\kappa\lambda} = V_{\leq I_{\kappa\lambda}}$. We say X is strong stationary if $X \in WNS_{\kappa\lambda}^+$.

THEOREM (Jech [6], Carr, Levinski and Pelltier [4]). (i) $SNS_{\kappa\lambda} = \overline{V}I_{\kappa\lambda}$.

- (ii) $NS_{\kappa\lambda}$ is the minimal normal ideal on $\mathcal{L}_{\kappa\lambda}$ and $NS_{\kappa\lambda} = VSNS_{\kappa\lambda}$.
- (iii) WNS_{$\kappa\lambda$} is the minimal strongly normal ideal on $\mathfrak{L}_{\kappa}\lambda$ and it is proper iff κ is Mahlo or $\kappa=\nu^+$ with $\nu^{<\nu}=\nu$.
 - (iv) $V_{<}I_{\kappa\lambda}=V_{<}SNS_{\kappa\lambda}=V_{<}NS_{\kappa\lambda}=WNS_{\kappa\lambda}$.

DEFINITION. X, $Y \subset \mathcal{P}_{\kappa}\lambda$ are called almost disjoint with respect to I if $X \cap Y \in I$. I is δ -saturated for a cardinal δ if there is no pairwise almost disjoint family of size δ of I-positive subsets of $\mathcal{P}_{\kappa}\lambda$.

§ 1. The saturation of $I_{\kappa\lambda}$.

We prove the next theorem on the saturation number of $I_{\kappa\lambda}$ which implies

Johnson's result, i.e., Corollary 1.5 below.

THEOREM 1.1. If $2^{<\kappa} \leq \lambda$, then $I_{\kappa\lambda}$ is not $(\lambda^{<\kappa})^+$ -saturated.

We need some lemmas for the proof. The author is grateful to Y. Matsubara for his suggestions.

LEMMA 1.2. $\mathcal{L}_{\kappa}\lambda$ is a disjoint union of $\lambda^{<\kappa}$ many unbounded subsets. Hence $I_{\kappa\lambda}$ is not $\lambda^{<\kappa}$ -saturated.

PROOF. Fix an enumeration of $\mathcal{Q}_{\kappa}\lambda$, say $\{s_{\alpha}: \alpha < \lambda^{<\kappa}\}$. Inductively we form a disjoint family $\{T_{\alpha}: \alpha < \lambda^{<\kappa}\}$ such that each $T_{\alpha} = \{t_{\alpha}(\xi): \xi < \alpha + 1\}$. It is possible since $|\bigcup_{\beta < \alpha} T_{\beta}| < \lambda^{<\kappa}$ and $|\hat{s_{\alpha}}| = \lambda^{<\kappa}$ for any $\alpha < \lambda^{<\kappa}$.

Then put $X_{\xi} = \{t_{\alpha}(\xi) : \xi \leq \alpha < \lambda^{<\kappa}\}$. For each α and $\xi < \lambda^{<\kappa}$, there is a β such that $\xi \leq \beta$ and $s_{\alpha} \subset s_{\beta}$. Since $t_{\beta}(\xi) \in T_{\beta}$, $s_{\beta} \subset t_{\beta}(\xi) \in X_{\xi}$. So, X_{ξ} is unbounded. By our construction it is clear that $\{X_{\xi} : \xi < \lambda^{<\kappa}\}$ is pairwise disjoint. \square

Since $\mathcal{Q}_{\kappa}\lambda = \bigcup_{x \in X} \mathcal{Q}(x)$ for any unbounded $X \subset \mathcal{Q}_{\kappa}\lambda$, we have;

LEMMA 1.3. If $2^{\kappa} \leq \lambda$, then $|X| = \lambda^{\kappa}$ for any $X \in I_{\kappa \lambda}^+$.

LEMMA 1.4. For any cardinal δ , there is a $\{g_{\alpha} \in \delta : \alpha < \delta^+\}$ such that sup $\{\sigma < \delta : g_{\alpha}(\sigma) = g_{\beta}(\sigma)\} < \delta$ whenever $\alpha < \beta < \delta^+$.

PROOF OF THEOREM 1.1. Set $Y_{\xi} = X_{\xi} \cap \widehat{s_{\xi}}$ with $\{X_{\xi} : \xi < \lambda^{<\kappa}\}$ and $\{s_{\alpha} : \alpha < \lambda^{<\kappa}\}$ in Lemma 1.2. Since $Y_{\xi} \in I_{\kappa\lambda}^+$, $|Y_{\xi}| = \lambda^{<\kappa}$ by Lemma 1.3 and our hypothesis.

Let $\{u_{\xi}(\sigma): \sigma < \lambda^{<\kappa}\}$ be an enumeration of Y_{ξ} and $\{g_{\alpha}: \alpha < (\lambda^{<\kappa})^{+}\}$ be a family of functions in Lemma 1.4 where we take $\lambda^{<\kappa}$ for δ .

Set $A_{\alpha} = \{u_{\xi}(g_{\alpha}(\xi)) : \xi < \lambda^{<\kappa}\}$. Since $u_{\xi}(g_{\alpha}(\xi)) \in A_{\alpha} \cap \hat{s}_{\xi}$ for every $\xi < \lambda^{<\kappa}$, A_{α} is unbounded for any $(\alpha < \lambda^{<\kappa})^+$. Since $\{Y_{\xi} : \xi < \lambda^{<\kappa}\}$ is pairwise disjoint, $|A_{\alpha} \cap A_{\beta}| = |\{\xi : g_{\alpha}(\xi) = g_{\beta}(\xi)\}| < \lambda^{<\kappa}$ whenever $\alpha < \beta < (\lambda^{<\kappa})^+$. Then, Lemma 1.3 tells us that $A_{\alpha} \cap A_{\beta} \in I_{\kappa\lambda}$.

Now we have shown that $\{A_{\alpha}: \alpha < (\lambda^{<\epsilon})^+\}$ is an almost disjoint family. Hence $I_{\epsilon\lambda}$ is not $(\lambda^{<\epsilon})^+$ -saturated. \square

If $2^{\kappa} > \lambda$, then $\lambda^{\kappa} \ge 2^{\kappa} \ge \lambda^+$. Combining Theorem 1.1 and Lemma 1.2, we get Johnson's Theorem as a corollary.

COROLLARY 1.5 (Johnson [7, Theorem 1.6]). $I_{\kappa\lambda}$ is not λ^+ -saturated.

COROLLARY 1.6. If $I_{\kappa\lambda}$ is λ^{++} -saturated, then $\lambda^{<\kappa} = \max(2^{<\kappa}, \lambda)$.

Note that we can blow up 2^{ω} much larger than λ by a c.c.c. forcing and in the extended universe $I_{\kappa\lambda}$ has the same saturation number as in the ground model.

2. Embedding $\mathcal{P}_{\kappa}\lambda$ into larger sets.

In this section we embed $\mathcal{Q}_{\kappa}\lambda$ into $\mathcal{Q}_{\kappa}\delta$ with $\delta \geq \lambda$ and get some facts about ideals on $\mathcal{Q}_{\kappa}\lambda$.

Let I be an ideal on $\mathcal{P}_{\kappa}\lambda$, $\mathcal{Q}_{x}\subset\mathcal{P}(x)$ for each $x\in\mathcal{P}_{\kappa}\lambda$ and $\{u_{\alpha}:\alpha<\delta\}$ an enumeration of $\bigcup_{x\in\mathcal{P}_{\kappa}\lambda}\mathcal{Q}_{x}$ satisfying the following conditions.

- (i) $|g_x| < \kappa$ for any $x \in \mathcal{Q}_{\kappa} \lambda$,
- (ii) $\{x \in \mathcal{Q}_{\kappa} \lambda : u_{\alpha} \in \mathcal{Q}_x\} \in I^* \text{ for every } \alpha < \delta.$

Define $f: \mathcal{Q}_{\kappa} \lambda \rightarrow \mathcal{Q}_{\kappa} \delta$ and $J \subset \mathcal{Q} \mathcal{Q}_{\kappa} \delta$ by

$$f(x) = \{\alpha < \delta : u_{\alpha} \in \mathcal{G}_x\}$$
 and $J = \{X \subset \mathcal{P}_{\kappa} \delta : f^{-1}[X] \in I\} = f_*(I)$.

LEMMA 2.1. J is an ideal on $\mathcal{Q}_{\kappa}\delta$.

Matsubara [11] proved "There is no λ -saturated ideal on $\mathcal{P}_{\kappa}\lambda$ in case κ is a successor cardinal". Using the above translation from I to J, we slightly improve this in the next theorem.

THEOREM 2.2. Assume that $\kappa = \nu^+$ and $\nu^{<\mu} = \nu$. Then, there is no $\lambda^{<\mu}$ -saturated ideal on $\mathcal{Q}_{\kappa}\lambda$.

PROOF. Let $\mathcal{G}_x = \mathcal{L}_{\mu}x$. Then, $\bigcup_{x \in \mathcal{L}_{\kappa}\lambda} \mathcal{G}_x = \mathcal{L}_{\mu}\lambda$ and $\delta = \lambda^{<\mu}$. So, (i) and (ii) above are clearly satisfied. Hence we have an ideal J on $\mathcal{L}_{\kappa}\delta$ which is not δ -saturated [11, Theorem 12]. Since $J = f_*(I)$, neither is I δ -saturated. \square

Now we turn to strongly normal ideals. We have two cases.

Let $\kappa = \nu^+$ and $\nu^{<\nu} = \nu$ first. By the preceding theorem, we have

COROLLARY 2.3. If $\kappa = \nu^+$ and $\mathcal{L}_{\kappa}\lambda$ bears a strongly normal ideal, then no ideal on $\mathcal{L}_{\kappa}\lambda$ is $\lambda^{<\nu}$ -saturated.

In other words, $\lambda^{<\nu} < \eta$ if there is a η -saturated ideal on $\mathcal{Q}_{\kappa}\lambda$.

Second, let κ be Mahlo. We choose $\{y \subset x : |y| < |x \cap \kappa|\}$ as \mathcal{G}_x for each $x \in \mathcal{D}_{\kappa} \lambda$. Hence $\bigcup_{x \in \mathcal{D}_{\kappa} \lambda} \mathcal{G}_x = \mathcal{D}_{\kappa} \lambda$ and $\delta = \lambda^{<\kappa}$.

LEMMA 2.4. (i) Let $X_{\alpha} \subset \mathcal{P}_{\kappa} \delta$ and $Y_{u_{\alpha}} = f^{-1}[X_{\alpha}] \subset \mathcal{P}_{\kappa} \lambda$ for all $\alpha < \delta$. Put $X = \overline{V} X_{\alpha}$ and $Y = \overline{V}_{<} Y_{u_{\alpha}}$. Then $Y = f^{-1}[X]$.

(ii) I is strongly normal iff J is normal iff J is strongly normal.

PROOF. (i) For any $x \in \mathcal{P}_{\kappa} \lambda$, $x \in Y$ iff $x \in Y_{u_{\alpha}}$ for some $u_{\alpha} \in \mathcal{G}_{x}$ iff $f(x) \in X_{\alpha}$ for some $\alpha \in f(x)$ iff $f(x) \in VX_{\alpha}$ iff $x \in f^{-1}[X]$.

(ii) The first equivalence is clear since $X \in J$ iff $f^{-1}[X] \in I$ by our definition. So, we only have to show that J is strongly normal if I is strongly normal.

Let I be strongly normal, $X \in J^+$, $g: X \to \mathcal{P}_{\kappa} \delta$ such that $g(x) \subset x$ and |g(x)|

 $<|x \cap \kappa|$ for any $x \in X$, and $Y = f^{-1}[X]$. Define $h: Y \to \mathcal{PP}_{\kappa}\lambda$ by: $h(y) = \{u_{\alpha} : \alpha \in g(f(y))\}$ for any $y \in Y$. Then, $h(y) \subset \mathcal{G}_{y}$ and $|h(y)| < |f(y) \cap \kappa|$.

If $\{y \in \mathcal{P}_{\kappa}\lambda : \text{there is an } \alpha_y \in y \cap \kappa - f(y) \cap \kappa\} \in WNS_{\kappa\lambda}^+$, we have an α such that $A = \{y \in \mathcal{P}_{\kappa}\lambda : \alpha \notin f(y)\} \in WNS_{\kappa\lambda}^+$ for some $\alpha < \kappa$. But $A \in I_{\kappa\lambda}$ because $u_{\alpha} \notin \mathcal{G}_y$ for any $y \in A$.

If $\{y \in \mathcal{Q}_{\kappa}\lambda : f(y) \cap \kappa - y \cap \kappa \neq \phi\} \in WNS_{\kappa\lambda}^+$, there is a $\beta < \kappa$ such that $B = \{y \in \mathcal{Q}_{\kappa}\lambda : u_{\beta} \in \mathcal{Q}_{y} \text{ and } \beta \notin y \cap \kappa\} \in WNS_{\kappa\lambda}^+ \text{ since } WNS_{\kappa\lambda} \text{ is strongly normal.}$ But $B \in I_{\kappa\lambda}$. Hence $\{y \in \mathcal{Q}_{\kappa}\lambda : y \cap \kappa = f(y) \cap \kappa\} \in WNS_{\kappa\lambda}^+ \subset I^*$.

The reader should also note that the strong normality of WNS_{$\kappa\lambda$} and the inaccessibility of κ give us $\{y \in \mathcal{L}_{\kappa}\lambda : y \cap \kappa \text{ is inaccessible}\} \in WNS_{\kappa\lambda}^*$.

Now let $Z = \{y \in Y : y \cap \kappa = f(y) \cap \kappa$ is inaccessible $\} \in I^+$ and $c_y = \bigcup h(y)$ for each $y \in Z$. Then, $c_y \in \mathcal{G}_y$ for any $y \in Z$. Since I is strongly normal, we can find a $c \in \mathcal{P}_{\kappa}\lambda$ such that $W = \{y \in Z : c_y = c\} \in I^+$. Note that $h(y) \subset \mathcal{P}(c)$ for any $y \in W$ and $|\mathcal{P}(c)| < \kappa$. Since I is κ -complete, we have a $u \in \mathcal{P}_{\kappa}\lambda$ such that $S = \{y \in W : h(y) = u\} \in I^+$. Hence $T = f[S] \in J^+$ and $g \mid T$ is constant.

So, J is also strongly normal. \square

COROLLARY 2.5. If $f_*(I) \supset SNS_{\kappa\delta}$, then $I \supset WNS_{\kappa\lambda}$ and $f_*(I) \supset WNS_{\kappa\delta}$. Hence $f_*(NS_{\kappa\lambda}) \not\supset SNS_{\kappa\delta}$.

THEOREM 2.6. Suppose that $\lambda \leq \eta$ is regular, κ is Mahlo and there is a strongly normal η -saturated ideal on $\mathcal{P}_{\kappa}\lambda$. Then, $\lambda^{<\kappa} \leq \eta$.

PROOF. Let I be a strongly normal η -saturated ideal on $\mathcal{L}_{\kappa}\lambda$ and $\eta > \lambda$. Suppose contrary that $\delta = \lambda^{< k} > \eta$. Then J is a normal η -saturated ideal on $\mathcal{L}_{\kappa}\delta$. $J \mid \eta = \{X \mid \eta : X \in J\}$ is also a normal η -saturated ideal on $\mathcal{L}_{\kappa}\eta$ where $X \mid \eta$ is the set $\{x \cap \eta : x \in X\}$. By [1, Corollary 2.4], $\eta^{< \kappa} = \eta$. But $\lambda^{< \kappa} \leq \eta^{< \kappa}$. \square

COROLLARY 2.7. The saturation number of any strongly normal ideal on $\mathcal{P}_{\kappa}\lambda$ for a Mahlo κ does not lie between λ and $\lambda^{<\kappa}$.

We did not use here the strong normality of $f_*(I)$. This idea was already used in [1] to prove;

THEOREM. If $\mathcal{P}_{\kappa}\lambda$ carries a normal λ -saturated ideal and $cf(\lambda) < \kappa$, then, $\lambda^{<\kappa} = \max(2^{<\kappa}, \lambda^+)$. If $\mathcal{P}_{\kappa}\lambda$ bears a normal λ^+ -saturated ideal, then we have $\lambda^{<\kappa} \leq \max(2^{<\kappa}, \lambda^+)$.

In this case $\delta = \lambda^+$. We are interested in case $\delta = \lambda^{<\kappa}$ and have some applications to $\mathcal{L}_{\kappa}\lambda$ -combinatorics which we just mention in § 4. We also prove a stronger fact than Lemma 2.4, (ii) later.

§ 3. On WNS_{$\kappa\lambda$}.

At the end of § 2, we have dealt with strongly normal ideals. We will make more detailed observation on the minimal strongly normal ideal WNS_{$\kappa\lambda$}.

We already know WNS_{$\kappa\lambda$} is not $\lambda^{<\nu}$ -saturated if $\kappa=\nu^+$. The question is whether it is $\lambda^{<\kappa}$ -saturated or not. Although we know that NS_{$\kappa\lambda$} is not $\lambda^{<\kappa}$ -saturated if κ is inaccessible (Matsubara, [12, Theorem 3]), the method used in § 2 is not available since $f_*(WNS_{\kappa\lambda}) \supset WNS_{\kappa\delta} \supseteq NS_{\kappa\delta}$ by Lemma 2.4. We trace Matsubara's argument to get analogous fact.

Theorem 3.1. If κ is Mahlo, then WNS_{$\kappa\lambda$} is not $\lambda^{<\kappa}$ -saturated.

We shall prove it by series of lemmas.

LEMMA 3.2. $S_{\kappa\lambda} = \{x \in \mathcal{Q}_{\kappa}\lambda : |x \cap \kappa| = |x|\} \in WNS_{\kappa\lambda}^+$. Especially if κ is a successor, $S_{\kappa\lambda} \in WNS_{\kappa\lambda}^*$.

PROOF. Let κ be Mahlo. Note that $X \in WNS_{\kappa\lambda}^*$ iff there is $f: \mathcal{L}_{\kappa}\lambda \to \mathcal{L}_{\kappa}\lambda$ such that $C_f = \{x \in \mathcal{L}_{\kappa}\lambda : f(y) \subset x \text{ for every } y \subset x \text{ with } |y| < |x \cap \kappa|\} \subset X$. Thus we only have to show that $S_{\kappa\lambda} \cap C_f \neq \phi$ for every $f: \mathcal{L}_{\kappa}\lambda \to \mathcal{L}_{\kappa}\lambda$.

Pick any $f: \mathcal{Q}_{\kappa}\lambda \to \mathcal{Q}_{\kappa}\lambda$ and define a sequence $\{x_{\alpha}: \alpha < \kappa\} \subset \mathcal{Q}_{\kappa}\lambda$ such that $x_{\alpha} \subset x_{\alpha+1} \in C_f$ and $|x_{\alpha}| < |x_{\alpha+1} \cap \kappa|$ for any $\alpha < \kappa$, and $x_{\alpha} = \bigcup \{x_{\beta}: \beta < \alpha\}$ if α is a limit ordinal $< \kappa$. Next, define $g: \kappa \to \kappa$ by $: g(\alpha) = |x_{\alpha}|$ for all $\alpha < \kappa$.

There is an inaccessible $\eta < \kappa$ such that $g[\eta] \subset \eta$ since κ is Mahlo. Now $|x_{\eta} \cap \kappa| = |\bigcup \{x_{\alpha} \cap \kappa : \alpha < \eta\} | \ge |\bigcup \{x_{\alpha+1} \cap \kappa : \alpha < \eta\} | \ge |\bigcup \{x_{\alpha} : \alpha < \eta\} | = |x_{\eta}|$. So, $x_{\eta} \in S_{\kappa \lambda}$. Let $y \subset x_{\eta}$ and $|y| < |x_{\eta} \cap \kappa|$. Since $|x_{\eta} \cap \kappa| = |x_{\eta}| = \eta$ is regular, $y \subset x_{\alpha+1} \in C_f$ for some $\alpha < \eta$. Hence $f(y) \subset x_{\alpha+1} \subset x_{\eta}$. So, $x_{\eta} \in C_f$ and the proof is completed. \square

Recall the definition of non λ -Shelah ideal $\operatorname{NSh}_{\kappa\lambda}$ by $\operatorname{Carr} [2]$. $X \subset \mathcal{P}_{\kappa}\lambda$ has the λ -Shelah property iff for any $\{f_x \colon x \in X\}$ with $f_x \colon x \to x$ for any $x \in X$, there is an $f \colon \lambda \to \lambda$ such that $\{y \in X \cap \hat{x} \colon f_y \mid x = f \mid x\} \neq \phi$. $\operatorname{NSh}_{\kappa\lambda} = \{X \subset \mathcal{P}_{\kappa}\lambda \colon X \text{ does not have the } \lambda\text{-Shelah property}\}$.

The first proposition of the next corollary in case of a successor λ has already appeared in [8].

COROLLARY 3.3. (i) $\{x: |x \cap \kappa| < |x|\} \in NSh_{\kappa\lambda}^*$.

(ii) $WNS_{\kappa\lambda} \subseteq NSh_{\kappa\lambda}$.

PROOF. (i) Suppose contrary that $X = \{x : |x \cap \kappa| = |x|\} \in \mathrm{NSh}_{\kappa\lambda}^+$. Let $f: x \to x \cap \kappa$ be bijective for each $x \in X$. By the λ -Shelah property of X, we have an $f: \lambda \to \kappa$ such that $\{x \in X : f | y = f_x | y\} \in I_{\kappa\lambda}^+$ for any $y \in \mathcal{Q}_{\kappa}\lambda$. Since each f_x is injective, f is also an injection from λ to κ . Contradiction. \square

(ii) We only have to show WNS_{\karraller \lambda} \subseteq NSh_{\karraller \lambda} by Lemma 3.2. It is known NSh_{\karraller \lambda} is strongly normal if $cf(\lambda) \ge \kappa$. So we deal with the case $cf(\lambda) < \kappa$. Let $X \in \text{NSh}_{\kappa \lambda}^+$ and $f: X \to \mathcal{P}_{\kappa} \lambda$ such that $f(x) \subset x$ and $|f(x)| < |x \cap \kappa|$ for any $x \in X$. Without loss of generality, we can assume $x \cap \kappa$ is inaccessible for any $x \in X$. Then, $X_1 = \{x \in X \cap \hat{r} : f(x) \text{ has the order type } \gamma\} \in \text{NSh}_{\kappa \lambda}^+$ for some $\gamma < \kappa$. Let $g_x: \gamma \to f(x)$ be the order preserving map for each $x \in X_1$. There is a $g: \gamma \to \lambda$ such that $X_2 = \{x \in X_1: g = g_x\} \in I_{\kappa \lambda}^+$. $f(x) = g[\gamma]$ for every $x \in X_2$. Thus $X \in \text{WNS}_{\kappa \lambda}^+$. \Box

DEFINITION. I has the disjointing property if for any almost disjoint family $\{X_{\xi} \colon \xi < \sigma\}$ there exists a disjoint family $\{Y_{\xi} \colon \xi < \sigma\}$ such that $(X_{\xi} - Y_{\xi}) \cup (Y_{\xi} - X_{\xi}) \in I$ for every $\xi < \sigma$.

LEMMA 3.4 (Foreman [5, Lemma 10]). Any countably complete ideal with the disjointing property is precipitous.

LEMMA 3.5. Any strongly normal $(\lambda^{<\kappa})^+$ -saturated ideal on $\mathcal{L}_{\kappa}\lambda$ with κ Mahlo has the disjointing property hence is precipitous.

PROOF. Let $\{X_{\alpha}: \alpha < \lambda^{<\kappa}\} \subset I^+$ be an almost disjoint family, $\{s_{\alpha}: \alpha < \lambda^{<\kappa}\}$ be an enumeration of $\mathcal{L}_{\kappa}\lambda$. We may assume that $X_{\alpha} \subset \{y: s_{\alpha} \subset y, |s_{\alpha}| < |y \cap \kappa|\}$. For any $\alpha < \beta < \lambda^{<\kappa}$, there is a $C_{\alpha,\beta} \in WNS_{\kappa\lambda}^*$ such that $C_{\alpha,\beta} \cap X_{\alpha} \cap X_{\beta} = \phi$.

Set $C = \{x \in \mathcal{Q}_{\kappa}\lambda : x \in C_{\alpha,\beta} \text{ whenever } s_{\alpha}, s_{\beta} \subset x \text{ and } |s_{\alpha}|, |s_{\beta}| < |x \cap \kappa|\} \text{ which is in } I^* \text{ since } I \text{ is strongly normal.} \text{ We can show that } \{X_{\alpha} \cap C : \alpha < \lambda^{<\kappa}\} \text{ is a desired disjoint family. } \square$

LEMMA 3.6. Suppose that $\delta = \lambda^{<\kappa}$, I is a strongly normal δ -saturated ideal on $\mathcal{Q}_{\kappa}\lambda$, G is a generic filter of $\mathcal{Q}\mathcal{Q}_{\kappa}\lambda - I$ and $j: V \to M \cong Ult(V, G)$ is the canonical elementary embedding into the transitive collapse of Ult(V, G). Then $V[G] \models \delta$ is a cardinal, and $\delta M \cap V[G] \subset M$.

PROOF. We only show that ${}^{\delta}M \cap V[G] \subset M$. The other part is clear. Let $\{s_{\alpha}: \alpha < \delta\}$ and $\langle \tau_{\alpha}: \alpha < \delta \rangle$ be an enumeration of $\mathcal{Q}_{\kappa}\lambda$ in V and a term for a δ -sequence in V[G] of elements of M respectively. Since I has the disjointing property by Lemma 3.5, we can find, in V, a sequence of functions $\langle f_{\alpha}: \alpha < \delta \rangle$ such that $\|[f_{\alpha}]_{M} = \tau_{\alpha}\|^{(B)} = 1$, where $[]_{M}$ and B denote the equivalence class in the ultrapower and corresponding Boolean algebra to I.

Define $g: \mathcal{L}_{\kappa} \lambda \to V$ by $g(x) = \{f_{\alpha}(x): s_{\alpha} \subset x \text{ and } |s_{\alpha}| < |x \cap \kappa|\}$. Since I is strongly normal, we have $[g]_{M} = \{\tau_{\alpha}^{V[G]}: \alpha < \delta\}$. \square

LEMMA 3.7. $\{x \in \mathcal{Q}_{\kappa}\lambda : |x|^{\langle |x \cap \kappa|} = |x|\} \in WNS_{\kappa\lambda}^+$.

PROOF. If $\kappa = \nu^+$, $\nu^{<\nu} = \nu$ and $\{x : |x| = |x \cap \kappa| = \nu\} \in I_{\kappa\lambda}^* \subset WNS_{\kappa\lambda}^*$. If κ is Mahlo, we have $\{x : x \cap \kappa \text{ is strongly inaccessible}\} \in WNS_{\kappa\lambda}^*$. Combining these

with Lemma 3.2, we get the conclusion. \Box

LEMMA 3.8. Let κ be Mahlo. $\{x \in \mathcal{P}_{\kappa} \lambda : |x|^{<|x \cap \kappa|} = |x| \}$ splits into $\lambda^{<\kappa}$ many disjoint strong stationary subsets.

PROOF. If we observe the proof of the statement "Every stationary subsets of $S_{\kappa\lambda}$ splits into λ many disjoint stationary subsets" ([11], Lemma 14) and replace $NS_{\kappa\lambda}$ by $WNS_{\kappa\lambda}$, we get "Every strong stationary subsets of $S_{\kappa\lambda}$ splits into λ many disjoint strong stationary subsets." So, $\{x \in \mathcal{L}_{\kappa}\lambda : |x|^{<|x|\kappa|} = |x|\}$ is a disjoint union of λ many strong stationary subsets.

Let $\lambda < \lambda^{<\kappa}$ and suppose contrary that $X = \{x : |x|^{<|x \cap \kappa|} = |x|\}$ is not splitted into $\lambda^{<\kappa}$ many disjoint strong stationary sets. Then, $I = \text{WNS}_{\kappa\lambda}|X$ is $\lambda^{<\kappa}$ saturated strongly normal hence precipitous by Lemma 3.5.

Let $j: V \to M \cong \text{Ult}(V, G)$ be as in Lemma 3.6 and $\delta = \lambda^{<\kappa}$ in V. Note that two functions $\{\langle x, x \cap \kappa \rangle : x \in \mathcal{Q}_{\kappa} \lambda \}$ and the identity represent κ and $j[\lambda]$ respectively in M. Hence $M \models |\lambda^{<\kappa}| = |\lambda|$. For each $a \in (\mathcal{Q}_{\kappa} \lambda)^V$, define f_a by $f_a(x) = x \cap a$. Then $M \models \text{``}[f_a] \subset j[\lambda]$ and $|[f_a]| \leq |j(a)| = |a| < \kappa$ ''. So, we have $M \models [f_a] \in \mathcal{Q}_{\kappa} j[\lambda]$. Note that $[f_a] \neq [f_b]$ whenever $a \neq b$. Thus, we have $V[G] \models |(\lambda^{<\kappa})^V| \leq \lambda$. Hence $\lambda^{<\kappa}$ is collapsed contradicting to that I is $\lambda^{<\kappa}$ -saturated. \square

Now Theorem 3.1 has been proved and we have a corollary which can be seen on the line of Matsubara's Theorem for stationary sets.

COROLLARY 3.9. If κ is Mahlo, then $\mathcal{P}_{\kappa}\lambda$ splits into $\lambda^{<\kappa}$ many strong stationary subsets.

Recall the next theorem for normal ideals.

THEOREM. An normal ideal I on $\mathcal{L}_{\kappa}\lambda$ is λ^+ -saturated iff any normal ideal extending I is of the form I|X for some $X \in I^+$.

Here is an analogue of it;

THEOREM 3.10. (i) Let κ be Mahlo. A strongly normal ideal I on $\mathcal{L}_{\kappa}\lambda$ is $(\lambda^{<\kappa})^+$ -saturated iff any strongly normal extension of I is of the form I|A for some $A \in I^+$.

- (ii) Let $\kappa = \nu^+$ and I a strongly normal ideal on $\mathfrak{P}_{\kappa}\lambda$. Then, I is $(\lambda^{<\nu})^+$ -saturated iff every strongly normal extension of I is of the form $I \mid A$ for some $A \in I^+$.
- (iii) Let $\lambda^{<\kappa}=\lambda$. Then every normal ideal extending WNS_{$\kappa\lambda$} is strongly normal. Thus every normal ideal extending WNS_{$\kappa\lambda$} is λ^+ -saturated if WNS_{$\kappa\lambda$} is λ^+ -saturated.

PROOF. (i) Minor adjustment of the proof of the theorem for normal

ideal is available.

First assume that I is $(\lambda^{(s)})^+$ -saturated and $I \subset J$ is strongly normal. Let $\mathcal{W} = \{A_{\alpha} : \alpha < \eta\} \subset J - I$ be a maximal almost disjoint family for I. Fix an enumeration of $\mathcal{L}_{\kappa}\lambda$, $\{s_{\alpha} : \alpha < \lambda^{(s)}\}$ and set $A_{\alpha} = \phi$ if $\eta \leq \alpha < \lambda^{(s)}$.

 $A = \{x \in \mathcal{P}_{\kappa}\lambda : x \notin A_{\alpha} \text{ if } s_{\alpha} \subset x \text{ and } |s_{\alpha}| < |x \cap \kappa|\} \in J^* \text{ since } J \text{ is strongly normal.} I | A \subset J \text{ is clear. Suppose } X \in J - I |A. \text{ Then } X \cap A \in J - I \text{ and there is an } A_{\alpha} \text{ such that } X \cap A \cap A_{\alpha} \in I^+. \text{ But } A \cap A_{\alpha} \cap \{x : s_{\alpha} \subset x \text{ and } |s_{\alpha}| < |x \cap \kappa|\} = \phi. \text{ Hence } J = I | A.$

For the converse, suppose that I is a strongly normal ideal on $\mathcal{L}_{\kappa}\lambda$ and $\{A_{\alpha}: \alpha < \mu\}$ be a maximal almost disjoint family with $\mu > \lambda^{<\kappa}$.

Define J by

$$X \in J \quad \text{iff} \quad |\{\alpha < \mu \colon X \cap A_{\alpha} \in I^*\}| \leq \lambda^{<\kappa}.$$

Then J is a strongly normal ideal $\supset I$ and $J \neq I \mid A$ for any $A \in I^+$. \square

- (ii) can be proved similarly by enumerating $\mathcal{Q}_{\nu}\lambda$.
- (iii) WNS_{$\kappa\lambda$}=NS_{$\kappa\lambda$}|B where $B = \{x : \varphi(y) \in x \text{ if } y \subset x \text{ and } |y| < |x \cap \kappa|\}$ for any bijection $\varphi : \mathcal{Q}_{\kappa}\lambda \to \lambda$ if $\lambda^{<\kappa} = \lambda$. \square

THEOREM 3.11. If κ is Mahlo and there is a strongly normal ideal I on $\mathcal{Q}_{\kappa}\lambda$ such that $\{x \in \mathcal{Q}_{\kappa}\lambda : X \cap \mathcal{Q}_x \in WNS_{|x \cap \kappa|x}^+\} \in I^*$ for any $X \in I^*$ where $\mathcal{Q}_x = \{y \subset x : |y| < |x \cap \kappa|\}$, then $WNS_{\kappa\lambda}$ is not $(\lambda^{<\kappa})^+$ -saturated.

PROOF. Suppose contrary that there is an ideal I on $\mathcal{Q}_{\kappa}\lambda$ which satisfies the condition in the statement and $\text{WNS}_{\kappa\lambda}$ is $(\lambda^{<\kappa})^+$ -saturated. By Theorem 3.10, $I = \text{WNS}_{\kappa\lambda} \mid A$ for some $A \in \text{WNS}_{\kappa\lambda}^+$. Then we have a $B \in \text{WNS}_{\kappa\lambda}^*$ such that $B \cap A \subset \{x : A \cap \mathcal{G}_x \text{ is strong stationary in } \mathcal{G}_x\} \in I^*$.

Since $B \in WNS_{\kappa\lambda}^*$, we can assume that for some function $g: \mathcal{Q}_{\kappa\lambda} \to \mathcal{Q}_{\kappa\lambda}$, $B = \{x: g(y) \subset x \text{ for all } y \in \mathcal{Q}_x\}$.

By the strongnormality, $C = \{x : |g(y)| < |x \cap \kappa| \text{ for every } y \in \mathcal{G}_x\} \in WNS_{\kappa\lambda}^*$. Note that the relation " $y \in \mathcal{G}_x$ " is wellfounded. Pick any x in $C \cap A$ which is minimal in this relation. Then $x \in B$ and $A \cap \mathcal{G}_x$ is strong stationary in \mathcal{G}_x , since $g \mid \mathcal{G}_x : \mathcal{G}_x \to \mathcal{G}_x$, $C \cap \mathcal{G}_x \in WNS_{|x \cap \kappa|} x^*$. Then we have $C \cap A \cap \mathcal{G}_x \neq \phi$ which is a desired contradiction. \square

§ 4. $\mathcal{L}_{\kappa}\lambda$ and $\mathcal{L}_{\kappa}\lambda^{<\kappa}$.

In case $\lambda^{<\kappa}=\lambda$, the structure of WNS_{\kappa\lambda} and some ideals defined by large cardinal properties such as NSh_{\kappa\lambda}, NAIn_{\kappa\lambda}(non almost \lambda-ineffable ideal), NIn_{\kappa\lambda} (non \lambda-ineffable ideal) are fairly known. WNS_{\kappa\lambda}=NS_{\kappa\lambda}|S for some S and the last three ideals are all strongly normal.

On the other hand we know little in case $\lambda^{<\kappa} > \lambda$. So, we further study

520 Y. ABE

the behavior of the embedding f defined in §2 and show what large cardinal properties on $\mathcal{L}_{\kappa}\lambda$ induce the same properties on $\mathcal{L}_{\kappa}\lambda^{<\kappa}$ in Corollary 4.5.

Let $\delta = \lambda^{<\kappa}$ and κ be strongly inaccessible. Recall the notation in Lemma 2.4. We only use $\{y \subset x : |y| < |x \cap \kappa|\}$ as \mathcal{G}_x for each $x \in \mathcal{L}_{\kappa}\lambda$ and fix an enumeration $\{s_{\alpha} : \alpha < \delta\}$ of $\mathcal{L}_{\kappa}\lambda$. $f : \mathcal{L}_{\kappa}\lambda \to \mathcal{L}_{\kappa}\delta$ is defined by: $f(x) = \{\alpha < \delta : s_{\alpha} \in \mathcal{G}_x\}$. If we regard \mathcal{G}_x as an embedding of $\mathcal{L}_{\kappa}\lambda$ into $\mathcal{L}_{\kappa}\mathcal{L}_{\kappa}\lambda$, we get a natural embedding where $\{x \in \mathcal{L}_{\kappa}\lambda : a \in \mathcal{G}_x\} \in I_{\kappa\lambda}^*$ holds for any $a \in \mathcal{L}_{\kappa}\lambda$. However, the use of \mathcal{G}_x causes some notational confusion, hence we adopt the above f to avoid the confusion.

 $J=f_*(I)=\{X\subset \mathcal{P}_{\kappa}\delta: f^{-1}[X]\in I\}$ is an ideal on $\mathcal{P}_{\kappa}\delta$ for any ideal I on $\mathcal{P}_{\kappa}\lambda$. We already know J is strongly normal iff I is strongly normal. Note that f is one to one and $f(x)\subset f(y)$ iff $x\subset y$. Hence $f[X]\in I_{\kappa\delta}$ for any $X\in I_{\kappa\lambda}$.

Note also that our interest is in case $\lambda < \lambda^{<\kappa} = \delta$. In fact, $S = \{x \in \mathcal{P}_{\kappa}\lambda : f(x) = x\} \in WNS_{\kappa\lambda}^*$ and $WNS_{\kappa\lambda} = NS_{\kappa\lambda} | S$ if $\lambda^{<\kappa} = \lambda$.

First we show that f does not depend on the choice of $\{s_{\alpha}: \alpha < \delta\}$ if $I \supset WNS_{\kappa\lambda}$;

PROPOSITION 4.1. Let $\{s_{\alpha}: \alpha < \delta\} = \{t_{\alpha}: \alpha < \delta\} = \mathcal{D}_{\kappa}\lambda$ be two bijective enumerations, and f and g be defined from s_{α} 's and t_{α} 's respectively as above. Then, $f_{*}(I) = g_{*}(I)$ for $I \supset WNS_{\kappa\lambda}$.

PROOF. We prove that $\{x \in \mathcal{D}_{\kappa}\lambda : f(x) = g(x)\} \in WNS_{\kappa\lambda}^*$. Soppose not. We may assume that there are $\alpha_x(x \in \mathcal{D}_{\kappa}\lambda)$ such that $X = \{x \in \mathcal{D}_{\kappa}\lambda : \alpha_x \in f(x) - g(x)\}$ $\in WNS_{\kappa\lambda}^+$. Since $s_{\alpha_x} \in \mathcal{G}_x$ for all $x \in X$ and $WNS_{\kappa\lambda}$ is strongly normal, there is α such that $Y = \{x \in X : \alpha_x = \alpha\} \in WNS_{\kappa\lambda}^+$. For any $x \in Y$, $t_{\alpha_x} = t_{\alpha} \notin \mathcal{G}_x$ contradicting to $Y \in I_{\kappa\lambda}^+$. \square

DEFINITION. Let $[X]^2 = \{(x, y) \in X \times X : x \subseteq y\}$ for an $X \subset \mathcal{P}_{\kappa}\lambda$. An ultrafilter \mathcal{O} on $\mathcal{P}_{\kappa}\lambda$ has the partition property iff for any $F: [\mathcal{P}_{\kappa}\lambda]^2 \to 2$, there exists an $H \in \mathcal{O}$ such that $F \mid [H]^2$ is constant.

The fact " $f(x) \subset f(y)$ iff $x \subset y$ " and Lemma 2.4 (ii) imply;

PROPOSITION 4.2. If $cf(\lambda) < \kappa$ and U is a normal measure on $\mathcal{L}_{\kappa}\lambda$ with the partition property, then $f_*(U)$ is a normal measure on $\mathcal{L}_{\kappa}\lambda^+$ with the partition property.

At the end of this paper, in Corollary 4.5, we observe ideals on $\mathcal{P}_{\kappa}\lambda$ defined by weak forms of the partition property.

LEMMA 4.3. Let $A = f[\mathcal{Q}_{\kappa}\lambda]$ and let $c: \delta \to \mathcal{Q}_{\kappa}\lambda$, $d: \mathcal{Q}_{\kappa}\lambda \to \mathcal{Q}_{\kappa}\delta$ and $e: \mathcal{Q}_{\kappa}\lambda \to \delta$ be all bijections. Then,

- (i) $\{x \in \mathcal{Q}_{\kappa}\lambda : c[f(x)] = \mathcal{Q}_x\} \in WNS_{\kappa\lambda}^*$.
- (ii) $B = \{x \in \mathcal{Q}_{\kappa} \delta : d[\mathcal{Q}_{x \cap \lambda}] = \mathcal{Q}_x \text{ and } e[\mathcal{Q}_{x \cap \lambda}] = x\} \in WNS_{\kappa \delta}^*.$

- (iii) $A \in WNS_{\kappa\delta}^* NS_{\kappa\delta}^*$.
- (iv) $f_*(I_{\kappa\lambda}) = I_{\kappa\delta} | A \supseteq I_{\kappa\delta}$.
- (v) $f_*(\overline{V}_{\leq I}) = \overline{V} f_*(I)$ for any ideal I on $\mathcal{Q}_{\kappa}\lambda$.
- (vi) $f_*(I_{\kappa\lambda}) \subseteq f_*(SNS_{\kappa\lambda}) \subseteq f_*(NS_{\kappa\lambda}) \subseteq f_*(WNS_{\kappa\lambda}) = SNS_{\kappa\delta} | A = NS_{\kappa\delta} | A$.
- (vii) $NS_{\kappa\delta} \subseteq SNS_{\kappa\delta} | A$.

PROOF. (i) Suppose contrary that $\{x \in \mathcal{D}_{\kappa}\lambda : c[f(x)] \neq \mathcal{G}_x\} \in WNS_{\kappa\lambda}^+$. If $\{x : \mathcal{G}_x - c[f(x)] \neq \phi\} \in WNS_{\kappa\lambda}^+$, we use strong normality to get a $u \in \mathcal{D}_{\kappa}\lambda$ such that $X = \{x \in \mathcal{D}_{\kappa}\lambda : u \in \mathcal{G}_x - c[f(x)]\} \in WNS_{\kappa\lambda}^+$. Then we have a $v \in \mathcal{D}_{\kappa}\lambda$ and an $\alpha < \delta$ such that $u = c(\alpha)$ and $v = s_{\alpha}$. Now $X \subset \{x : \alpha \in f(x)\} \subset \{x : v \notin \mathcal{G}_x\} \in I_{\kappa\lambda}$ which contradicts to $X \in WNS_{\kappa\lambda}^+$.

If $\{x: c[f(x)] - \mathcal{Q}_x \neq \phi\} \in WNS_{\kappa\lambda}^+$, there exist a $w \in \mathcal{Q}_{\kappa}\lambda$ and a $\beta < \delta$ such that $w = s_{\beta}$ and $\{x: c(\beta) \notin \mathcal{Q}_x\} \in WNS_{\kappa\lambda}^+$. Contradiction.

(ii) First suppose that $X = \{x \in \mathcal{Q}_{\kappa}\delta : d[\mathcal{Q}_{x \cap \lambda}] \neq \mathcal{Q}_x\} \in WNS_{\kappa\delta}^+$. Then, there is a y such that $X_1 = \{x \in X : d(y) \notin \mathcal{Q}_x\} \in WNS_{\kappa\delta}^+$, or there is a $z \in \mathcal{Q}_{\kappa}\lambda$ such that $X_2 = \{x \in X : d^{-1}(z) \notin \mathcal{Q}_{x \cap \lambda}\} \in WNS_{\kappa\lambda}^+$. $\mathcal{Q}_{x \cap \lambda} = \mathcal{Q}_x \cap \mathcal{Q}_{\kappa}\lambda$ for every $x \in \mathcal{Q}_{\kappa}\delta$. Thus both of X_1 and X_2 are in $I_{\kappa\lambda}$. Contradiction.

Secondly let $Y = \{x \in \mathcal{Q}_{\kappa} \delta : e[\mathcal{Q}_{x \cap \lambda}] \neq x\} \in WNS_{\kappa\delta}^+$. Again we have a $q \in \mathcal{Q}_{\kappa} \lambda$ with $\{x \in \mathcal{Q}_{\kappa} \delta : e(q) \notin x\} \in WNS_{\kappa\delta}^+$, or $\{x : e^{-1}(\gamma) \notin \mathcal{Q}_{x \cap \lambda}\} \in WNS_{\kappa\delta}^+$ for some $\gamma < \delta$, which is a contradiction.

(iii) Suppose contrary that $A \in NS_{\kappa\delta}^*$. Then there exist a cub $C \subset A$ and a strictly \subset -increasing sequence $\{x_n : n \in \omega\} \subset C$ with $\omega_1 \subset y_0 = f^{-1}(x_0)$. Let $x = \bigcup \{x_n : n \in \omega\}$. Since $x \in C \subset A$, x = f(y) for some $y \in \mathcal{P}_{\kappa}\lambda$.

CLAIM. $y = \bigcup \{y_n : n \in \omega\}$ where $y_n = f^{-1}(x_n)$.

PROOF OF THE CLAIM. Since $f(y_n) = x_n \subset x = f(y)$, $y_n \subset y$ for all $n \in \omega$. On the other hand, for $\xi \in y$, there exists $\alpha < \delta$ such that $\{\xi\} = s_\alpha$. Then $\alpha \in f(y) = x$. Hence we find an $n \in \omega$ such that $\alpha \in x_n = f(y_n)$. Then $\xi \in y_n$ and $y \subset \cup \{y_n : n \in \omega\}$. \square

Since $x_n \subseteq x_{n+1}$, $y_n \subseteq y_{n+1}$ for all n. Pick any $\gamma_n \in y_{n+1} - y_n$ for each n and let $b = \{\gamma_n : n \in \omega\}$. Then, $b \subset y$ and $|b| = \omega$. By our assumption on y_0 , we have $|y \cap \kappa| \ge \omega_1 > |b|$. So, $b \in \mathcal{G}_y$. For β with $b = s_\beta$, $\beta \in f(y) = x$ and $\beta \in x_n$ for some $n \in \omega$. We then have $b \in \mathcal{G}_{y_n}$ contradicting to $\gamma_n \in y_{n+1} - y_n$. Hence $A \notin NS_{\kappa\lambda}^*$.

 $A \in WNS_{\kappa\delta}^*$ is clear by (ii).

- (iv) Suppose that $X \subset \mathcal{P}_{\kappa}\delta$ and $X \cap A \in I_{\kappa\delta}$. Then there is an $a \in \mathcal{P}_{\kappa}\delta$ such that $a \not\subset x$ for all $x \in X \cap A$. Let $b = \bigcup \{s_{\alpha} : \alpha \in a\} \in \mathcal{P}_{\kappa}\lambda$. Since $a \subset f(b)$ and $f^{-1}[X] = f^{-1}[X \cap A]$, $f^{-1}[X] \cap \hat{b} = \phi$. Hence $I_{\kappa\delta} \mid A \subset f_*(I_{\kappa\lambda})$. Conversely, if $f^{-1}[X] \in I_{\kappa\lambda}$, then $X \cap A = f[(f^{-1}[X])] \in I_{\kappa\delta}$. The inequality of $I_{\kappa\delta}$ and $I_{\kappa\delta} \mid A$ is proved by (iii).
 - (v) is a reformulation of Lemma 2.4 (i).

(vi) We can prove that $f_*(I) \subseteq f_*(J)$ whenever $I \subseteq J$. Pick any $X \in J - I$. Since f is one to one, $X = f^{-1}[f[X]]$. Hence $f[X] \in f_*(J) - f_*(I)$.

We know $f_*(WNS_{\kappa\lambda})=f_*(\overline{V}_{< I_{\kappa\lambda}})=\overline{V}f_*(I_{\kappa\lambda})=\overline{V}(I_{\kappa\delta}|A)$ by (iv) and (v). Since $V(I|Y)=(\overline{V}I)|Y$ for any ideal I, $f_*(WNS_{\kappa\lambda})=(\overline{V}I_{\kappa\delta})|A=SNS_{\kappa\delta}|A$. Recall that $\overline{V}_{<}\overline{V}_{<}I=\overline{V}_{<}I$ for any ideal I. We also have $f_*(WNS_{\kappa\lambda})=NS_{\kappa\delta}|A$.

(vii) is clear by (iii) and (vi).

THEOREM 4.4. $f_*(WNS_{\kappa\lambda}) = WNS_{\kappa\delta}$.

PROOF. By Lemma 2.4, $J=f_*(WNS_{\kappa\lambda})$ is strongly normal hence $J\supset WNS_{\kappa\delta}$. By (iii) and (vi) in the above, $J=NS_{\kappa\delta}|A$ and $A\subseteq WNS_{\kappa\delta}^*$. $NS_{\kappa\delta}\subset WNS_{\kappa\delta}$ implies $J\subset WNS_{\kappa\delta}$.

DEFINITION. Let $F: [X]^2 \to 2$. Then $H \subset X$ is homogeneous for F iff $F \mid [H]^2$ is constant. $X \in \operatorname{NP}_{\kappa\lambda}$ iff there is an $F: [X]^2 \to 2$ with no unbounded homogeneous set. $\operatorname{NP}_{\kappa\lambda}$ is an ideal on $\mathscr{Q}_{\kappa\lambda}$. We may define similar ideals on $\mathscr{Q}_{\kappa\lambda}$; that is, $X \in \operatorname{NP}_{\kappa\lambda}^0$ ($\operatorname{NP}_{\kappa\lambda}^1$, $\operatorname{NP}_{\kappa\lambda}^2$) if we have an $F: [X]^2 \to 2$ with no $\operatorname{SNS}_{\kappa\lambda}$ ($\operatorname{NS}_{\kappa\lambda}$, $\operatorname{WNS}_{\kappa\lambda}$)-positive homogeneous set. We say $\operatorname{Part}(\kappa, \lambda)$ iff $\mathscr{Q}_{\kappa\lambda} \in \operatorname{NP}_{\kappa\lambda}^+$. Note that $\operatorname{NP}_{\kappa\lambda}^i$ is a normal ideal $\supset \operatorname{NSh}_{\kappa\lambda}$ hence strongly normal if $\operatorname{cf}(\lambda) \geq \kappa$.

 $X \in \text{NIn}_{\kappa\lambda}^i$ iff there is an $f: X \to \mathcal{Q}_{\kappa\lambda}$ with $f(x) \subset x$ for all $x \in X$ such that $\{x \in X : f(x) = x \cap A\} \in I_i$ for any $A \subset \lambda$ with $I_0 = \text{SNS}_{\kappa\lambda}$, $I_1 = \text{NS}_{\kappa\lambda}$ and $I_2 = \text{WNS}_{\kappa\lambda}$.

 $X \in \text{NSIn}^i_{\kappa\lambda}$ iff there is an $f: X \to \mathcal{Q}\mathcal{Q}_{\kappa}\lambda$ with $f(x) \subset \mathcal{Q}_x$ for all $x \in X$ such that $\{x \in X: f(x) = B \cap \mathcal{Q}_x\} \in I_i$ for any $B \subset \mathcal{Q}_{\kappa}\lambda$.

COROLLARY 4.5. Let $\delta = \lambda^{<\kappa}$.

- (i) If $X \in NP_{\kappa\lambda}^+$, then $f[X] \in NP_{\kappa\delta}^+$. Thus $Part(\kappa, \lambda)$ implies $Part(\kappa, \delta)$.
- (ii) $NP_{\kappa\lambda}^0 = NP_{\kappa\lambda}^1$.
- (iii) If $cf(\lambda) \ge \kappa$, then $NP_{\kappa\lambda}^0 = NP_{\kappa\lambda}^1 = NP_{\kappa\lambda}^2$.
- (iv) If $X \in NP^2_{\kappa\lambda}$, then $f[X] \in NP^2_{\kappa\delta}$.
- $(v) NIn_{\kappa\lambda}^0 = NIn_{\kappa\lambda}^1.$
- (vi) If $cf(\lambda) \ge \kappa$, then $NIn^i_{\kappa\lambda} = NSIn^j_{\kappa\lambda}$ for $0 \le i$, $j \le 2$.
- (vii) If $X \in \text{NSIn}^2_{\kappa \lambda}^+$, then $f[X] \in \text{NSIn}^2_{\kappa \delta}^+$ and $\delta \leq \lambda^+$.
- PROOF. (i) Suppose that $X \in \operatorname{NP}_{\kappa\lambda}^+$, Y = f[X] and $F : [Y]^2 \to 2$. For each $(u, v) \in [Y]^2$ we can find a unique $(x, y) \in [X]^2$ with u = f(x) and v = f(y). If $G : [X]^2 \to 2$ is defined by G(x, y) = F(f(x), f(y)), $G[H]^2$ is constant for some $H \in I_{\kappa\lambda}^+$. Then, f[H] is clearly an unbounded homogeneous set for F.
- (ii) Note that $NS_{\kappa\lambda} = SNS_{\kappa\lambda} \mid D$ for some $D \subset \mathcal{P}_{\kappa\lambda}$ (Matet [10]). We only have to show that $X \in NP^0_{\kappa\lambda}$ for all $X \in NP^1_{\kappa\lambda}$. Let $F: [X]^2 \to 2$ witness that $X \in NP^1_{\kappa\lambda}$. Since $D \in NS_{\kappa\lambda} * \subset NP^0_{\kappa\lambda} *$, $X \cap D \in NP^0_{\kappa\lambda} *$ if $X \in NP^0_{\kappa\lambda} *$. So, there is an $H \subset X \cap D$ which is a $SNS_{\kappa\lambda}$ -positive homogeneous set for F. In fact $H \in NS_{\kappa\lambda} *$ since $H \cap D \in SNS_{\kappa\lambda} *$.

- (iii) WNS_{$\kappa\lambda$}=NS_{$\kappa\lambda$}|S for some $S\subset \mathcal{P}_{\kappa}\lambda$ if $cf(\lambda)\geq \kappa$. The proof is similar as above.
- (iv) Note that $f[H] \in NS_{\kappa\delta^+}$ if $H \in WNS_{\kappa\lambda^+}$ and $\delta^{<\kappa} = \delta$. The similar proof as (i) works together with (iii).
 - (v) is similar to (ii).
- (vi) The fact that $\operatorname{NIn}_{\kappa\lambda}^i$'s are the same is proved as in (iii). It is also clear that $\operatorname{NIn}_{\kappa\lambda}^i \subset \operatorname{NSIn}_{\kappa\lambda}^i$ and $\operatorname{NSIn}_{\kappa\lambda}^i \subset \operatorname{NSIn}_{\kappa\lambda}^j$ if i < j. Hence, we only have to show that $\operatorname{NIn}_{\kappa\lambda}^2 = \operatorname{NSIn}_{\kappa\lambda}^2$. Let $X \in \operatorname{NIn}_{\kappa\lambda}^2^+$, $f(x) \subset \mathcal{G}_x$ for all $x \in X$, and $c: \mathcal{G}_{\kappa} \to \lambda$ bijective. $S = \{x: c[\mathcal{G}_x] = x\} \in \operatorname{WNS}_{\kappa\lambda}^* \subset \operatorname{NIn}_{\kappa\lambda}^2$. We have an $A \subset \lambda$ such that $Y = \{x \in X \cap S: c[f(x)] = x \cap A\} \in \operatorname{NS}_{\kappa\lambda}^+$. Put $B = c^{-1}[A]$. Then $f(x) = \mathcal{G}_x \cap B$ for all $x \in Y$. We also know $Y \in \operatorname{WNS}_{\kappa\lambda}^+$ since $\operatorname{WNS}_{\kappa\lambda} = \operatorname{NS}_{\kappa\lambda} \mid S$.
- (vii) Suppose that $X \in \text{NSIn}^2_{\kappa\lambda}^+$ and Y = f[X]. Since $\delta^{<\kappa} = \delta$, it suffices to show that $Y \in \text{NIn}_{\kappa\delta}^+$. Let $g: Y \to \mathcal{P}_{\kappa}\delta$ such that $g(x) \subset x$ for all $x \in Y$. If we define $h: X \to \mathcal{P}\mathcal{P}_{\kappa}\lambda$ as $h(z) = \{s_{\alpha} : \alpha \in g(f(z))\}$, then $h(z) \subset \mathcal{G}_z$ for any $z \in X$. Hence we have a $B \subset \mathcal{P}_{\kappa}\lambda$ with $W = \{z \in X : h(z) = B \cap \mathcal{G}_z\} \in \text{WNS}_{\kappa\lambda}^+$. Now it is clear that $f[W] \in \mathcal{P}(Y) \cap \text{NS}_{\kappa\delta}^+$ and $g(x) = x \cap f[B]$ for all $x \in f[W]$. It is known that $\lambda^{<\kappa} = \lambda$ if κ is λ -ineffable and $cf(\lambda) \ge \kappa$. If $cf(\lambda) < \kappa$, then $\delta \ge \lambda^+$ and κ is at least λ^+ -ineffable by the previous paragraph. So, $(\lambda^+)^{<\kappa} = \lambda^+$. \square

The proposition (viii) has some interest under similarity to the certain extendibility of large cardinal property below;

If κ is λ -(super) compact, then it is $\lambda^{<\kappa}$ -(super) compact. Moreover $\lambda^{<\kappa} = \lambda$ if $cf(\lambda) \ge \kappa$ and $\lambda^{<\kappa} = \lambda^+$ if $cf(\lambda) < \kappa$.

It may be natural to ask;

QUESTION. Are they also true if the compactness is replaced by " κ is λ -ineffable"?

The answer is "Yes" if $cf(\lambda) \ge \kappa$. The question in case $cf(\lambda) < \kappa$ seems to remain open. It is a motivation of the study about embedding $\mathcal{L}_{\kappa}\lambda$ into $\mathcal{L}_{\kappa}\lambda^{<\kappa}$ indeed. But we could only show that the stronger property "NSIn_{$\kappa\lambda$} is proper" inherits to $\mathcal{L}_{\kappa}\lambda^{<\kappa}$ and the weaker property $Part(\kappa, \lambda)$ leads to $Part(\kappa, \lambda^{<\kappa})$.

REMARK. S. Kamo proved an interesting fact using this embedding:

THEOREM (Kamo [9]). Suppose that κ is almost κ^+ -ineffable and no $\alpha < \kappa$ is almost α^+ -ineffable. Then, κ is not κ^+ -ineffable.

References

- [1] Y. Abe, Weakly normal ideals on $\mathcal{P}_{\kappa}\lambda$ and the singular cardinal hypothesis, Fund. Math., 143 (1993), 97-106.
- [2] D.M. Carr, The structure of ineffability properties of $\mathcal{L}_{\kappa}\lambda$, Acta Math. Hungar., 47 (1986), 325-332.

- [3] D.M. Carr, $\mathcal{L}_{\kappa}\lambda$ partition relations, Fund. Math., 128 (1987), 181-195.
- [4] D.M. Carr, J.P. Levinski and D.H. Pelletier, On the existence of strongly normal ideals over $\mathcal{L}_{\kappa}\lambda$, Arc. Math. Logic, 30 (1990), 59-72.
- [5] M. Foreman, Potent axioms, Trans. Amer. Math. Soc., 294 (1986), 1-28.
- [6] T. J. Jech, Some combinatorial problems concerning uncountable cardinals, Ann. Math. Logic, 5 (1973), 165-198.
- [7] C.A. Johnson, On saturated ideals and $\mathcal{L}_{\kappa}\lambda$, Fund. Math., 129 (1988), 215-221.
- [8] C.A. Johnson, Some partition relations for ideals on $\mathcal{P}_{\kappa}\lambda$, Acta Math. Hungar., 56 (1990), 269-282.
- [9] S. Kamo, Remarks on $\mathcal{L}_{\kappa}\lambda$ -combinatorics, Fund. Math., 145 (1994), 141-151.
- [10] P. Matet, Concerning stationary subsets of $[\lambda]^{<\kappa}$, Set Theory and its applications, (eds. Steprans and Watson), Lecture Notes in Math., 1401, Springer, Berlin, 1989.
- [11] Y. Matsubara, Menas' conjecture and generic ultrapowers, Ann. Pure Appl. Logic, 36 (1987), 225-234.
- [12] Y. Matsubara, Splitting $\mathcal{P}_{\kappa}\lambda$ into stationary subsets, J. Symbolic Logic, 53(2) (1988), 385-389.
- [13] T.K. Menas, On strong compactness and supercompactness, Ann. Math. Logic, 7 (1974), 327-359.
- [14] R.M. Solovay, Strongly compact cardinals and the GCH, in Proc. Tarski Symposium, Proc. Sympos. Pure Math., 25 (1974), 365-372.

Yoshihiro Abe

Department of Mathematics Kanagawa University Rokkakubashi, Kanagawa-ku Yokohama 221 Japan