J. Math. Soc. Japan
Vol. 48, No. 3, 1996

Saturation of fundamental ideals on 2.z

By Yoshihiro ABE

(Received Mar. 24, 1994)
(Revised Oct. 3, 1994)

§0. Preliminaries.

In this paper we will examine how large is the saturation number of fa-
miliar ideals on ®,4. It is known that the nonstationary ideal, NS,; is not 4-
saturated and the statement “NS,; is A*-saturated” is a large cardinal hypo-
thesis. On the other hand few results are known on the saturation of other
familiar ideals except Johnson’s result “the minimal ideal on @4, 1., is not 2*-
saturated”, which naturally generalizes that [, is not x*-saturated. We will
improve this in Section 1. Sections 2 and 3 are devoted to extend Matsubara’s
results on NS,; to WNS,;, the minimal strongly normal ideal on 2,4.

We work in ZFC and most of our notations are standard. The image of
X under f is denoted by f[X], ie., f[X]={y: y=f(x) for some x=X}.
Throughout this paper, k<1 are uncountable cardinals and & is regular. For
such a pair (x, 1), A= {xC2a:1x|<k}. More generally, L;,A={xCA:|x|<l|yl}
for any set A and ordinal 7.

DEFINITION. [ is an ideal on @4 if I is a collection of subsets of 2.4
such that

(i) ¢=I and P A&

(ii) If X, YCc®4, Xl and YCX, then YelI.

(ili) If X=I and Y1, then XUY el

An ideal I on @A is k-complete if I is closed under union of k& many
members.

An ideal I on 2. is fine if for each a<i, {x&®PA: a&éx}<I. For the
sake of convenience, throughout this paper, by ‘ideal’ we mean ‘fine xk-complete
ideal’.

The diagonal union of {X,: a<4} is defined by:

Voc:Xo={x € PA: x € X, for some a € x}.

This research was partially supported by Grant-in-Aid for Scientific Research (No.
04302009), MinistryTof Education, Science and Culture.
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An ideal I on @, is normal iff V,;{X,: a<A} &I for any {X,: a<i}CI.
We define VX, for {X.: ac®.4} by:

V<Xa
= {xePA: xX, for some a=P,A such that aCx and |a|<|xNk|}.

An ideal I on @,A is strongly normal if Vo{X,: ac®, 4} I for any {X,: ac
PACI

A filter ¢ on 2,4 and an ideal I on @4 are dual to each other if the
following holds:

Xecg iff ®A—X eI for every XCP,A.

The dual filter of I will be denoted by /* and each member of I* is called
I-measure one. Let I'=PPA—I={X: X&I} and XTI is called I-positive.

For an x=®,4, let = {yePA: xCy}, and XCT P4 is unbounded iff XNzx=+
¢ for all x4

Let I,;={XC®A: X is not unbounded}. I;; is the minimal ideal on 24,
and 2l ;* for any x=2P.A.

XC P2 is closed iff \WDeX for any increasing C-sequence DC X such that
|D|<k. CCP.Ais said to be a cub iff it is closed and unbounded. X is sta-
tionary iff XNC+#¢ for every cub C. '

NS, ;= {XC@.A: X is not stationary}. So NS,; is the dual ideal of the cub
filter on #.A generated by cub sets.

XC @, is strongly closed iff \UDeX for all DCX with |D| <« and we call
CCP,2 a strong cub iff it is strongly closed and unbounded.

SNS;; = {(XCPA: XNC=¢ for some strong cub set CCP.4}.
WNS,; =VI.;. We say X is strong stationary if X&WNS;,,*.

THEOREM (Jech [6], Carr, Levinski and Pelltier [4]). (i) SNS.,=V1I,,.

(ii) NS.; is the minimal normal ideal on P.A and NS,;=FSNS,,.

(ili) WNS;; s the minimal strongly normal ideal on P,A and it is proper
if k€ is Mahlo or k=y* with y<=y.

(iv) V. ,;=FVSNS,; =V NS, ; =WNS;,.

DEFINITION. X, Y C @A are called almost disjoint with respect to [ if
XNYel. [ is o0-saturated for a cardinal 6 if there is no pairwise almost dis-
joint family of size & of I-positive subsets of @.A.

§1. The saturation of I,;.

We prove the next theorem on the saturation number of I,; which implies
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Johnson’s result, i.e., [Corollary 1.5 below.

THEOREM 1.1. If 2<r<3, then I, is not (A<F)*-saturated.

We need some lemmas for the proof. The author is grateful to Y. Matsu-
bara for his suggestions.

LEMMA 1.2. 2.Z is a disjoint union of A<* many unbounded subsets. Hence
Lz is not A<*-saturated.

PROOF. Fix an enumeration of %A, say {s,: a <A<*}. Inductively we
form a disjoint family {T,: a<<A<} such that each T,={{,(§): é<a+1}. It
is possible since |\Jg<aT gl <A<F and |§a|:l<‘ for any a<<A<.

Then put Xe={t,(§): §ESa<4<*}. For each a and §<4<%, there is a 8 such
that §<p3 and s,Csg. Since #3(§) € T, spCitp§)Xe. So, X is unbounded.
By our construction it is clear that {X.: §<A<*} is pairwise disjoint. [

Since PiA=\U.exP(x) for any unbounded XC P,4, we have;
LEMMA 1.3. If 2<¢ZA, then |X| =A< for any Xe<l,*.

LEMMA 1.4. For any cardinal 8, there is a {g,€% : a<<8*} such that sup
{0<0: gu(0)=gp(0)} <0 whenever a<<B<0".

PROOF OF THEOREM L.1. Set Y= X.N\s; with {X:: £< 21 and {s,:
a<A<%} in Since Y:€k;*, |Y¢|=1<F by and our hypo-
thesis.

Let {us(o): 0<A<} be an enumeration of Y. and {g,: a <(A<)*} be a
family of functions in where we take A<* for 6.

Set A= {us(g.(€): £<A<. Since u(g.(8)SA.NS: for every £<i<, A,
is unbounded for any (a<A<*)*. Since {Y:: §<A<¢} is pairwise disjoint, |A,MN
Agl=11{6: ga(6)=gp(é)} | <2<* whenever a<f<(4<)*. Then, tells
us that A,NAgEl..

Now we have shown that {A,: a <(4<®)*} is an almost disjoint family.
Hence I.; is not (A<")*-saturated. O

If 2<*>4, then A1<*=2<*=4*. Combining [Theorem 1.1l and Lemma 1.2, we
get Johnson’s as a corollary.

COROLLARY 1.5 (Johnson [7, Theorem 1.6]). Il.; is not A*-saturated.
COROLLARY 1.6. [If I.; is A**-saturated, then A<*=max(2<*, A).

Note that we can blow up 2° much larger than A by a c.c.c. forcing and
in the extended universe I,; has the same saturation number as in the ground
model.
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2. Embedding .1 into larger sets.

In this section we embed %A into P.0 with 6=2 and get some facts about
ideals on 2,A.

Let I be an ideal on @4, ¢,CP(x) for each x&®PA and {u,: a<d} an
enumeration of \J.e¢, 19, satisfying the following conditions.

(i) |@.|<k for any xe& P4,

(ii) {x€Pih: u,s46,}<I* for every a<ad.
Define f: @P.A—P0 and JC PP by

f(x) = {a<0: u,=8,} and J= {(XCPo: ['[X]el} = f«().
LEMMA 2.1. [ is an ideal on P,0.

Matsubara proved “There is no A-saturated ideal on .4 in case & is
a successor cardinal”. Using the above translation from I to J, we slightly
improve this in the next theorem.

THEOREM 2.2. Assume that £k =v* and v<# =y. Then, there is no A<‘-
saturated ideal on P.A.

Proor. Let ¢,=%,x. Then, Usce,19.=Pu4 and d=4<*. So, (i) and (ii)
above are clearly satisfied. Hence we have an ideal / on @0 which is not
J-saturated [11, Theorem 12]. Since J=f«(I), neither is [ d-saturated. [J

Now we turn to strongly normal ideals. We have two cases.
Let k=y* and v<*=y first. By the preceding theorem, we have

COROLLARY 2.3. If k=v* and P.A bears a strongly normal ideal, then no
ideal on P.A is A<*-saturated.

In other words, A<*<(y if there is a 7-saturated ideal on @4.
Second, let £ be Mahlo. We choose {yCx: |y|<|xNk|} as ¢, for each
xEPA. Hence U.ee 18,=P:A and d=1<"

LEMMA 2.4. (i) Let X,CP:0 and YV, =] '[X,JCT P for all a<d. Put
X=FVX, and Y=V.Y,,. Then Y=f"'[X].
(ii) [T 4s strongly normal iff | is normal iff | is strongly normal.

PROOF. (i) For any xe®4, xY iff xeY,, for some u, =6, iff f(x)e
X, for some acf(x) iff f(x)eV X, iff xef'[X].

(ii) The first equivalence is clear since X iff f![X]<[l by our defini-
tion. So, we only have to show that J is strongly normal if 7 is strongly
normal.

Let I be strongly normal, XeJ*, g: X—®.0 such that g(x)Cx and |g(x)]
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<lxNk| for any x<X, and Y=f"'[X]. Define h: Y—PPA by: h(y)={u,:
acg(f(y)} for any yeY. Then, A(y)Cg, and |A(y)|<|f(y)Nkl.

If {ye®P.: there is an a,eyNk—f(y)Nk} eWNS,;*, we have an a such
that A={ye®i: a& f(y)} €WNS;;* for some a<k. But A<l,; because u,&4,
for any yeA.

If {ye®d: fO)Ne—yNk=g} =WNS;,;", there is a f<x such that B=
{ye®i: ugeg, and f&Ey Nk} eWNS,,;* since WNS,; is strongly normal. But
Bel,;. Hence {ye®i: y\k=f(y)Nk} €WNS;*CT*.

The reader should also note that the strong normality of WNS,; and the
inaccessibility of & give us {y=P.A: y Nk is inaccessible} e WNS;;*.

Now let Z={yeY : yNne=f(y) Nk is inaccessible}=/* and c¢,=\Uh(y) for
each yeZ. Then, ¢,e4, for any yeZ. Since [ is strongly normal, we can
find a c€®,4 such that W={yeZ: c,=c}I*. Note that h(y)CP(c) for any
yeW and |P(c)|<k. Since I is k-complete, we have a ue P4 such that S=
{yeW: h(y)=u}cI*. Hence T=/f[S]e/J* and g|T is constant.

So, J is also strongly normal. [

COROLLARY 2.5. If f4«(I)DSNS;s then IDWNS;; and f«(I)DWNS,;. Hence
S (NS¢ 2) PSNS;5.

THEOREM 2.6. Suppose that A<n is regular, £ is Mahlo and there is a
strongly normal n-saturated ideal on PcA. Then, A<*<1).

PrOOF. Let I be a strongly normal 7-saturated ideal on 2.4 and 9>A.
Suppose contrary that 6=A1<*>y. Then J is a normal 5-saturated ideal on 2,d.
JIp={X|n: X<]} is also a normal y-saturated ideal on @.» where X |y is the
set {xNn: x<X}. By [1, Corollary 2.4], »<f=9. But A<~*=Zy<~. O

COROLLARY 2.7. The saturation number of any strongly normal ideal on
LA for a Mahlo £ does not lie between A and A<.

We did not use here the strong normality of f«(/). This idea was already
used in to prove;

THEOREM. If P carries a normal A-saturated ideal and cf(A)<k, them, 1<*
=max(2<t, 2*). If P.A bears a normal A*-saturated ideal, then we have A<
max(2<*, 1*).

In this case =4*. We are interested in case §=2A<F and have some applica-
tions to 2.A-combinatorics which we just mention in §4. We also prove a

stronger fact than (i) later.
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§3. On WNS;,.

At the end of §2, we have dealt with strongly normal ideals. We will
make more detailed observation on the minimal strongly normal ideal WNS,,.

We already know WNS,; is not A<*-saturated if x=y*. The question is
whether it is A<*-saturated or not. Although we know that NS;, is not A<*-
saturated if « is inaccessible (Matsubara, [12, Theorem 3]), the method used in
§ 2 is not available since fx(WNS,)DWNS,;2NS,; by We trace
Matsubara’s argument to get analogous fact.

THEOREM 3.1. If & is Mahlo, then WNS;; is not A<F-saturated.
We shall prove it by series of lemmas.

LEMMA 3.2. S ={x€®A: |xNk|=|x|} eWNS,*. Especially if £ is a
successor, Sy & WNS,  *.

PROOF. Let £ be Mahlo. Note that XeWNS,,* iff there is f: P4 — P4
such that C,={xe®.A: f(y)Cx for every yCx with |y|<|xNk|}CX. Thus
we only have to show that S.;\C;+#¢ for every f[: P, A—P,A.

Pick any f: @.4A—P.A and define a sequence {x,: a<<k}CP,A such that
XaCXann€C, and |x,|<|x,.:Nk| for any a<k, and x,=U{xg: f<a} if a is
a limit ordinal<x. Next, define g: k—« by: gla)=|x,] for all a<s.

There is an inaccessible <k such that g[y]C» since & is Mahlo. Now
| %,k = U {xaNE: a<ph | 2| U Nk a<ln} | 21U {x. a<p}|=]x,]. So,
x,ES:. Let yCx, and |y|<|x,Nk|. Since |x,N\&|=]|x,|=y is regular, yC
Xen€C; for some a<y. Hence f(y)C x,.:C x,. So, x,&C,; and the proof
is completed. O

Recall the definition of non A-Shelah ideal NSh,; by Carr [2]. XC %4 has
the A-Shelah property iff for any {f,: x=X} with f,: x—x for any x&X,
there is an f: 4—4 such that {yeXNx: f,|x=f]x} #¢. NSh,={XCPJa: X
does not have the A-Shelah property}.

The first proposition of the next corollary in case of a successor A has
already appeared in [8].

COROLLARY 3.3. (i) {x: |xNk|<|x]|} =NSh,,*.
(ii) WNS,; S NSh,;.

PrOOF. (i) Suppose contrary that X = {x: |x"\&|=|x|} &€ NSh,;*. Let
f: x—xNk be bijective for each x=X. By the A-Shelah property of X, we
have an f: A—«& such that {xeX: fly=f.|y}<l;* for any ye®,A. Since
each f, is injective, f is also an injection from A to x. Contradiction. [
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(ii) We only have to show WNS,;CNSh,; by It is known
NSh,; is strongly normal if c¢f(A)=«. So we deal with the case ¢f(A)<k. Let
X&NSh,;* and f: X—2:4 such that f(x)Cx and | f(x)|<|xNk| for any xX.
Without loss of generality, we can assume x/ & is inaccessible for any x&X.
Then, X;={x&XN7: f(x) has the order type y} €NSh,;" for some y<k. Let
g:: y—/f(x) be the order preserving map for each x&X,. There isa g: y—2
such that X,={reX,: g=g.;} €l;;*. f(x)=g[y] for every xeX, Thus Xe
WNS,;*. O

DEFINITION. [ has the disjointing property if for any almost disjoint family
{Xe: <o} there exists a disjoint family {Y.: £§<o} such that (X;—Y)U(Y:—
Xe el for every £<o.

LEMMA 3.4 (Foreman [5, Lemma 10]). Any countably complete ideal with
the disjointing property is precipitous.

LEMMA 3.5. Any strongly normal (A<5)*-saturated ideal on P.2 with £ Mahlo
has the disjointing property hence is precipitous.

PROOF. Let {X,: a<A<}CI* be an almost disjoint family, {s,: a<A<%}
be an enumeration of #,4. We may assume that X, C{y:s.Cy, |s.|<|yNkl}.
For any a<B<2<, there is a C,, s&WNS,;* such that C, gN\ X, NXz=¢.

Set C={x&PA: x=C,, g whenever s,, spCx and [s.], |sg]l<|xMk|} which
is in I* since [ is strongly normal. We can show that {X,NC: a<<A<%} is a
desired disjoint family. [ '

LEMMA 3.6. Suppose that 6=21<%, [ is a strongly normal 6&-saturated ideal
on P, G is a generic filter of PPA—1and j:V—-M=UIt(V, G) is the canonical
elementary embedding into the transitive collapse of Ult(V, G). Then V[G]Eéd
is a cardinal, and *MNV[G]CM.

ProOOF. We only show that MNV[G]cM. The other part is clear. Let
{s,: a<od} and {r,: «<d) be an enumeration of ¥4 in V and a term for a
d-sequence in V[G] of elements of M respectively. Since / has the disjointing
property by we can find, in V, a sequence of functions {f,: a<d)
such that |[f.lx=rt.]|® =1, where [ ]y and B denote the equivalence class in
the ultrapower and corresponding Boolean algebra to 1.

Define g: @PA—V by g(x)={f.(%): s«Cx and |s,|<|xMNk]}. Since I is
strongly normal, we have [g]ly={r,""%?: a<d}. O

LEMMA 3.7, {x&€@A: |x|<1*nfi=]|x|} eWNS;;".

PROOF. If g=p*, v<=yp and {x: |x|=|xNk|=y} €l *C WNS;;*. If £ is
Mahlo, we have {x: xNk is strongly inaccessible} eWNS;;*. Combining these
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with [Lemma 3.2, we get the conclusion. [

LEMMA 3.8. Let £ be Mahlo. {x&PA: |x|<'*¥i=|x|} splits into 2<* many
disjoint strong stationary subsets.

ProOOF. If we observe the proof of the statement “FEvery stationary subsets
of Sz splits into 2 many disjoint stationary subsets” ([11], Lemma 14) and replace
NS;; by WNS,,;, we get “FEvery strong stationary subsets of Sci splits into 2
many disjoint strong stationary subsets.” So, {x&PA: |x|<1*ei=|x]|} is a dis-
joint union of A many strong stationary subsets.

Let 1<A<* and suppose contrary that X={x: |x|<'*"*'=|x|} is not splitted
into A<* many disjoint strong stationary sets. Then, I = WNS,;|X is A<
saturated strongly normal hence precipitous by

Let 7: V->M=Ul(V, G) be as in and 6=4<* in V. Note that
two functions {{x, xN\k)>: x=2P.A} and the identity represent £ and j[A] res-
pectively in M. Hence M=|A<*|=|4|. For each a=(LA)", define f, by f.(x)
=xMNa. Then ME“[f.,]CJj[A] and |[f.]l1<]j(@)|=]a]<k”. So, we have
ME[fo]e®j[A]. Note that [f,]1#[f»] whenever a#b. Thus, we have
VIG]E|(A<%)"|<A. Hence A<* is collapsed contradicting to that / is A<*-satu-
rated. [

Now has been proved and we have a corollary which can be
seen on the line of Matsubara’s for stationary sets.

COROLLARY 3.9. If & is Mahlo, then P4 splits into A<* many strong sta-
tionary subsets.,

Recall the next theorem for normal ideals.

THEOREM. An normal ideal I on LA is A*-saturated iff any normal ideal
extending I is of the form I|X for some X&I*.

Here is an analogue of it;

THEOREM 3.10. (i) Let k be Mahlo. A strongly normal ideal I on P.A is
(A<%)*-saturated 1iff any strongly normal extension of I is of the form I|A for
some AsT”.

(ii) Let k=v* and I a strongly normal ideal on P.A. Then, I is (A*)*-
saturated iff every strongly normal extension of I is of the form I|A for some
Aelr.

(iii) Let A~*=A. Then every normal ideal extending WNS,; is strongly
normal. Thus every normal ideal extending WNS,; is A™-saturated if WNS,; is
A*-saturated.

PROOF. (i) Minor adjustment of the proof of the theorem for normal
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ideal is available.

First assume that [ is (4<*)*-saturated and / C J is strongly normal. Let
W={A,: a<np}CJ—I be a maximal almost disjoint family for /. Fix an enu-
meration of P4, {s,: a<A<} and set A,=¢ if p<a i<

A={xePd: x & A, if s, C x and |s,|<|xNk|} € J* since J is strongly
normal. I|AC]J is clear. Suppose X=/—I|A. Then XNAe J—I and there
is an A, such that XNANA,sI". But ANA,N\{x: s,Cx and |s.|<|xNkl}
=¢. Hence J=I|A.

For the converse, suppose that [ is a strongly normal ideal on .4 and
{Aq.: a<p} be a maximal almost disjoint family with p>A<s.

Define J by

Xe ] iff [Ha<p: XNA,eI* |25,
Then J is a strongly normal idealDI and J+#1|A for any Asl*. O

(ii) can be proved similarly by enumerating P,A.
(iii) WNS;;=NS;;|B where B={x: p(y)ex if yCx and |y|<|xNk|} for
any bijection ¢: PA—4 if 2<5=2. O

THEOREM 3.11. If k is Mahlo and there is a strongly normal ideal I on P2
such that {(x&PAd: XNG,EWNS ;nni"} 1% for any XelI* where ¢,={yCx:
ly|<lxMkl}, then WNS,; 7s not (A<%)*-saturated.

PROOF. Suppose contrary that there is an ideal I/ on %,4 which satisfies
the condition in the statement and WNS,, is (A<*)*-saturated. By [Theorem 3.10,
I=WNS;;|A for some A & WNS;;*. Then we have a B&WNS,,;* such that
BNAC {x: ANg, is strong stationary in g,} I*.

Since BEWNS;;*, we can assume that for some function g: @.4— P4, B=
{x: giy)cx for all yeg.}.

By the strongnormality, C={x: |g(»)| <|xNk| for every yeg,} €WNS, *.
Note that the relation “yeg.,” is wellfounded. Pick any x in CN\A which is
minimal in this relation. Then x=B and ANg, is strong stationary in G,
since glG,: G,—G., CNG,EWNS,;~.* Then we have CNANG, # ¢ which
is a desired contradiction. [

§4. P.A and P.A<

In case A<*=4, the structure of WNS,; and some ideals defined by large
cardinal properties such as NSh.;, NAln,;(non almost A-ineffable ideal), Nin,,
(non A-ineffable ideal) are fairly known. WNS,;=NS,;|S for some S and the
last three ideals are all strongly normal.

On the other hand we know little in case A<*>A. So, we further study
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the behavior of the embedding f defined in § 2 and show what large cardinal
properties on £.4 induce the same properties on P.4<* in [Corollary 4.5

Let 0=4<F and « be strongly inaccessible. Recall the notation in
2.4. We only use {yCx: |y|<|lxNkl|} as &, for each x & &4 and fix an
enumeration {s,: a<d} of @A [: P.A—P0 is defined by: f(x)={a<d: s,
G.}. If we regard ¢, as an embedding of @A into P,P.A, we get a natural
embedding where {xe®P.A: a=g,} €l;* holds for any a=®A. However, the
use of &G, causes some notational confusion, hence we adopt the above f to
avoid the confusion.

J=f+)={XCP0: f}[X]l} is an ideal on @0 for any ideal / on P.A.
We already know J is strongly normal iff I is strongly normal. Note that f
is one to one and f(x)C f(y) iff xCy. Hence f[X]€ks for any X< l,;.

Note also that our interest is in case A<<A<*=0. In fact, S={xePi: f(x)
=x} eWNS;;* and WNS;;=NS,;|S if i<r=A.

First we show that f does not depend on the choice of {s,: a<d} if ID
WNS;,;

PROPOSITION 4.1. Let {s,:a<d}={t,: a<d} =P be two bijective enumera-
tions, and f and g be defined from s,’s and t,’s respectively as above. Then,
fxI)=g«(I) for I DWNS,,.

PROOF. We prove that {xe®Pd: f(x)=g(x)} €WNS;,;*. Soppose not. We
may assume that there are a,(x €2 4) such that X={xePd: a,.=f(x)—g(x)}
€WNS;,;*. Since s,, €8, for all x&€X and WNS,; is strongly normal, there is
a such that Y={xeX: a,=a} €WNS,;*. For any x&Y, t, =t,&4, contra-
dicting to Yel;;*. O

DEFINITION, Let [X]*={(x, y)€eXXX: xSy} for an XCP.A. An ultrafilter
CY on LA has the partition property iff for any F: [P.4]*—2, there exists an
He<Y such that F|[H]? is constant.

The fact “f(x)C f(y) iff xCy” and Lemma 2.4 (ii) imply;

PROPOSITION 4.2. If cf (A)<k and U is a normal measure on P.A with the
partition property, then f(U) is a normal measure on P,A* with the partition
property.

At the end of this paper, in [Corollary 4.5, we observe ideals on ¥, defined
by weak forms of the partition property.

LEMMA 4.3. Let A=f[P.A] and let ¢: 0—PA, d: PA—P0 and e: PA—d
be all bijections. Then,

(1) {x€ePi: c[f(x)]=8.} €WNS;; %

(ii) B={x€P0: d[G:n1]1=8, and e[G,~1]=x} EWNS,s*.
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(111) AEWNS,5*— NS 5*.

(iv)  fxlea)=Ls| ARLe.

(v) f«WV<D)=V feI) for any ideal I on PA.

(vi) fx(e) S «(SNSe2) S (NS 2) S fs(WNS,; ) =SNS5 | A=NS,5| A.
(vii) NS, &SNS | A. :

PROOF. (i) Suppose contrary that {x&PA: c[f(x)]#8G,} €WNS,;*. If
{x: @,—c[f(x)]#¢} =WNS;;*, we use strong normality to get a u&PA such
that X={x€PA: ucsi,—c[f(x)]} eWNS;;*. Then we have a v&P,4 and an
a<d such that u =c(a) and v=s,. Now X C {x: acf(x)} C {x: v&g,} €l
which contradicts to XeWNS;,;".

If {x:c[f(x)]—G,#¢} €WNS;;", there exist a wePA and a <9 such
that w=sp and {x: ¢(B)& 4.} WNS,,*. Contradiction.

(ii) First suppose that X={x&P,0: d[G.~11# 4.} EWNS,;*. Then, there
is a y such that X,={x=X: d(y)& 3.} €WNSs*, or there is a z&®,4 such that
Xo={x&X: d Y (2)& G~} EWNSY. Gori=8.NPA for every x&P 0. Thus
both of X, and X, are in I,;. Contradiction.

Secondly let Y={x&P0: e[G,n1]1#x} =€WNS;;*. Again we have a g2
with {x&P,0: e(Q)&x} eWNS,*, or {x: e ()& G-n1} EWNS* for some y<4,
which is a contradiction.

(ili) Suppose contrary that A=NS,;*. Then there exist a cub CCA and a
strictly C-increasing sequence {x,:ncw}CC with 0,Cy,=f"%(x,). Let x=
U{x.: n€w}. Since xeCC A, x=f(y) for some ye=P,A. '

CLAIM. y=\U{y,: ncw} where y,=f *(x,).

PROOF OF THE CLAIM. Since f(y.)=x,Cx=/f(y), y.Cy for all n€w. On
the other hand, for £=v, there exists a<d such that {&} =s,. Then ac<f(y)
=x. Hence we find an new such that a=x,=f(y,). Then &=y, and
yCU{y:new. O

Since x2S Xny1, YnE Va4 for all n. Pick any y,Eyn.—y. for each n and
let b={y.: n€w}. Then, bCy and |b|=w. By our assumption on y, we have
|yNe|=zw,>1b]. So, beg,. For B with b=sz, fEf(y)=x and B x, for some
ncw. We then have b&g, contradicting to y,EYn.1—ya. Hence AENS,;*.

AeWNS,;* is clear by (ii).

(iv) Suppose that XC®,0 and XNA<l,;. Then there is an a=®,0 such
that aZx for all x€XNA. Let b=U/{s,:acsa}=sPA. Since aC f(b) and
UIXI=fXNA], [f'[XInb=¢. Hence I;|ACf+(.;). Conversely, if
f[X]el,,, then XNA=f[(f"'[X])]J€l.s. The inequality of /,; and [;]|A is
proved by (iii).

(v) is a reformulation of Lemma 2.4 (i).
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(vi) We can prove that f«(I)Sf«(J) whenever IS J. Pick any XeJ—1I.
Since f is one to one, X=f"'[f[X]]. Hence fIXlesf«(J)—f+).

We know fx(WNS,))=Fx¥ <I:2)=Ff+(I.2)=V ;| A) by (iv) and (v). Since
PY)=FID)|Y for any ideal I, fx(WNS,)=F1I.)|A=SNS,|A. Recall that
V.V I=V_.I for any ideal I. We also have fx(WNS,;)=NS,;|A.

(vii) is clear by (iii) and (vi).

THEOREM 4.4. f«(WNS;;)=WNS,;.

Proor. By Lemma 24, J=f+«(WNS,,) is strongly normal hence J DOWNS,;.
By (iii) and (vi) in the above, J=NS,;] A and A=WNS;*. NS, ;CWNS,; implies
JCWNS,;. O

DEFINITION. Let F:[X]®*—2. Then HCX is homogeneous for F iff F|[H]*
is constant. X&NP,; iff there is an F: [X]*—2 with no unbounded homogene-
ous set. NP,; is an ideal on #,A. We may define similar ideals on @.4; that
is, X&NP%, (NP, NP%.,) if we have an F:[X]*—2 with no SNS,; (NS,,,
WNS,,)-positive homogeneous set. We say Part(x, 2) iff P,A=NP,;*. Note that
NP?,; is a normal ideal DNSh,; hence strongly normal if cf(2)=x.

X &NIn?,, iff there is an f: X— 2. A with f(x)Cx for all x&X such that
{xeX: f(x)y=xNA} €l; for any ACA with I,=8NS,;, I,=NS,; and L=WNS,;.

Xe&NSIn?,,; iff there is an f: X—> PP A with f(x)C &, for all x=X such that
{xeX: f(x)=BN4,} l; for any BC 2.

COROLLARY 4.5. Let 0=21%".

(i) If XeNP,*, then f[X]NP,*. Thus Part(k, ) implies Part(x, d).
(ii) NP°.,;=NP',,.

(iii) If c¢f(A)=«k, then NP° ,=NP’, ,=NP2,;.

(iv) If XNP%,;, then f[X]1=NP%;.

(v) NIn®,;=NIn’,;.

(vi) If c¢f(A)=«k, then NIn®,;=NSIn’,; for 04, j<2.

(vii) If XeNSIn%;*, then f[X]1=NSIn?;* and 0<A°.

PROOF. (i) Suppose that X&NP,;*, Y=f[X] and F:[YV]}*-2. For each
(u, v)e[Y]* we can find a unique (¥, y)e[X]? with u=f(x) and v=/f(y). If
G :[X]>—2 is defined by G(x, y)=F(f(x), f(y)), GI[H]* is constant for some
Hel;t. Then, f[H] is clearly an unbounded homogeneous set for F.

(ii) Note that NS,;=SNS;;|D for some DC P4 (Matet [10]). We only
have to show that X&NP°, for all X&NP%;. Let F:[X]*-2 witness that
XENPI”. Since DENSN*CNPO,,Q*, XﬂDENP°‘3+ if XeNP°,,;*. So, there is
an HCXND which is a SNS,;-positive homogeneous set for F. In fact HENS,;*
since HN\D&SNS,;".
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(ili) WNS,;=NS;;|S for some SC @ if cf(A)=k. The proof is similar as
above.

(iv) Note that f[H]eNS,;* if HEWNS,;" and d<*=4. The similar proof
as (i) works together with (iii).

(v) is similar to (ii).

(vi) The fact that NIn%;’s are the same is proved as in (iii). It is also
clear that NIn%;NSIn%,; and NSIn% ;CNSIn/,; if i<<sj. Hence, we only have
to show that NIn%,=NSIn?%,;. Let XeNIn%;*, f(x)C&, for all x=X, and
c: PA— A bijective. S={x:c[G.]=x} =WNS,*CNIn%;*. We have an AC2A
such that Y={xeXNS: c[f(x)]=xNA} &NS;;*. Put B=c'[A]. Then f{x)=
G.NB for all x€Y. We also know Y &WNS;;* since WNS,;=NS,;|S.

(vii) Suppose that X&NSIn?%,;* and Y=f[X]. Since 0<*=49, it suffices to
show that Y&NIn,;*. Let g:Y—®.0 such that g(x)Cx for all x&Y. If we
define h: X—> PP as h(z2)={s,: a=g(f(2))}, then h(z)C g, for any z&X. Hence
we have a BCPA with W={zeX: h(z)=BN3a,} €WNS;;*. Now it is clear
that f[W]1e®@(Y)NNS;;* and g(x)=xNf[B] for all xef[W]. It is known
that A<*=41 if £ is A-ineffable and ¢f(A)=«k. If ¢f(A)<k, then 6=A* and « is at
least A*-ineffable by the previous paragraph. So, (A*)~*=1*. [

The proposition (viii) has some interest under similarity to the certain ex-
tendibility of large cardinal property below ;

If & is A-(super) compact, then it is A~*-(super) compact. Moreover A*=2 if
cfA =k and 2= if cfA<k.

It may be natural to ask;

QUESTION. Are they also true if the compactness is replaced by “k is
A-ineffable” ?

The answer is “Yes” if ¢f())=«. The question in case c¢f()<k seems to
remain open. It is a motivation of the study about embedding ®.1 into @.A<*
indeed. But we could only show that the stronger property “NSIn.; is proper”
inherits to 2@,4<F and the weaker property Part(x, 2) leads to Part(x, 1<%).

REMARK. S. Kamo proved an interesting fact using this embedding :

THEOREM (Kamo [9]). Suppose that k£ is almost k*-ineffable and no a<k is
almost a*-ineffable. Then, £ is not k*-ineffable.
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