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Introduction.

For two primitive cusp forms $f(z)= \sum_{n=1}^{\infty}a(n)e(nz)$ and $g(z)= \sum_{n=1}^{\infty}b(n)e(nz)$

( $e(z)=\exp(2\pi iz),$ $z\in \mathfrak{H}$ : the upper half complex plane), we define a zeta function
by

$D(s, f, g)= \sum_{n=1}^{\infty}a(n)b(n)n^{-S}$ $(s\in C)$ ,

and denote by $K$ the field generated over $Q$ by $a(n)$ and $b(n)$ for all $n$ . If the
weight $k$ of $f$ is greater than the weight 1 of $g$ , Shimura [4] proved that
$\pi^{-k}\langle f, f\rangle^{-1}D(m, f, g)$ belongs to $K$ for an integer $m$ with $(1/2)(k+l-2)<m<k$ ,

where $\langle, \rangle$ denotes the normalized Petersson inner product as in [4]. When $K$

is a CM-field, namely, a totally imaginary quadratic extension over a totally real
field $F$, we are going to show the divisibility of these special values by a certain
polynomial of the Fourier coefficients $a(p)$ and $b(p)$ at prime divisors $p$ of the
level of these forms. Roughly speaking, $a(p)-\overline{b(p)}p^{e}$ with a certain integer $e$

depending on $k,$ $m$ and $p$ divides the numerator of $\pi^{-k}\langle f, f\rangle^{-1}D(m, f, g)$ . More
precisely, we have

THEOREM 1. Let $\chi$ be the character of $f$ and $N$ the conductor of $f$. Assume
that the character of $g$ is the complex conjugate $\overline{\chi}$ of $\chi$ and $g$ has the same con-
ductor $N$ as $f$. Write $M$ for the conductor of $\chi$ . Let $A$ be the set of prjme
divisors of $N$ satisfying one of the following conditions;

$(C_{a})$ The $p$-Primary part of $N$ is equal to that of $M$ ; or,
$(C_{b})$ $p|N,$ $p^{2}\nmid N$ and $p\nmid M$.

Put
$C=N \cross\prod_{p\in A}[a(p)^{\rho}\{a(p)-b(p)^{\rho}p^{k-\delta(p)- m}\}]$ ,

where

$\delta(p)=\{\begin{array}{ll}1 if P satisfies Condition (C_{a}),2 if P safisfies Condition (C_{b}),\end{array}$
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and $\rho$ denotes the complex conjugation. Then
(1) $\pi^{-k}\langle f, f\rangle^{-1}D(m, f, g)/C$ belongs to the maxzmal real subfield $F$ of $K$ ;
(2) Let us write the pnncipal ideal $(\pi^{-k}\langle f, f\rangle^{-1}D(m, f, g))=\mathfrak{V}/\mathfrak{A}$ with mutu-

ally Prime integral ideals $\mathfrak{U}$ and $\mathfrak{V}$ of K. Then we have $\mathfrak{U}_{K}^{\rho}\mathfrak{V}_{K}=(C)_{K}$ . Here,

for any integral ideal $\mathfrak{M}$ of $K$, we decompOse $\mathfrak{M}=\mathfrak{M}_{F}\mathfrak{M}_{K}$ with the smallest integral
ideal $\mathfrak{M}_{F}$ of $F$ dividing $\mathfrak{M}$ and the remaining K-ideal $\mathfrak{M}_{K}$ (for details of this
definition, see \S 1).

Let us give some remarks:
(1) All the prime divisors of $\mathfrak{A}$ are “congruence divisors” of $f$ except for

trivial factors. This fact is a direct consequence of Shimura’s proof of his
algebraicity theorem in [4] and was indicated by Doi and Hida;

(2) When the conductor $N$ is a prime, we can easily see that the prime
divisors of $(C)_{F}$ are the factors of $N$ or $N^{e}-1$ for the positive integer $e=$

$2m+2-k-l$ . Thus in this case, the K-part $(C)_{K}$ is roughly equal to the whole
ideal $(C)=(N\cross a(N)^{\rho}\cross(a(N)-b(N)^{\rho}N^{k-1- m}))$ as mentioned above in Theorem 1;

(3) The property similar to the second assertion of Theorem 1 holds under
some restrictions even if $g$ is an Eisenstein series (see \S 1, Proposition 3).

In \S 2, we discuss some numerical examples.

\S 1. Proof of Theorem 1.

We keep the notation and the assumptions in the introduction throughout
this section. We define complex numbers $\alpha_{p},$

$\alpha_{p}’,$ $\beta_{p},$ $\beta_{p}’\in C$ for rational primes
$p$ by

$1-a(p)x+\chi(p)p^{k-1}x^{2}=(1-\alpha_{p}x)(1-\alpha_{p}’x)$ ,
and

$1-b(p)x+\overline{x}(p)p^{l- 1}x^{2}=(1-\beta_{p}x)(1-\beta_{p}’x)$ ,

where $x$ is an indeterminate. Then we know (cf. [4, Lemma 1])

$D(s, f, g)= \prod_{p}[X_{p}(s)Y_{p}(s)^{-1}]$ ,

where $P$ runs over all rational primes,

$X_{p}(s)=1-\alpha_{p}\alpha_{p}’\beta_{p}\beta_{p}’p^{-2s}$ ,
and

$Y_{p}(s)=(1-\alpha_{p}\beta_{p}p^{-S})(1-\alpha_{p}\beta_{p}’p^{-S})(1-\alpha_{p}’\beta_{p}p^{-S})(1-\alpha_{p}’\beta_{p}’p^{-S})$ .

Both the conductors of $f$ and $g$ being $N$, for every prime divisor $p$ of $N$, we
may put

$\alpha_{p}=a(p)$ ,
and

$\alpha_{p}’=0$ ,
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$\beta_{p}=b(p)$ , $\beta_{p}’=0$ ,
therefore we have

$X_{p}(s)=1$ ,
and

$Y_{p}(s)=1-a(p)b(p)p^{-S}$ .
Let us further put

$D_{N}(s, f, g)= \{\prod_{p|N}Y_{p}(s)\}\cross D(s, f, g)$ .

Then we have

(1.1) $D_{N}(s, f, g)= \sum_{(n,N)=1}a(n)b(n)n^{-S}$ ,

and
(1.2) $D_{N}(s, f^{\rho}, g^{\rho})= \sum_{(n.N)=1}a(n)^{\rho}b(n)^{\rho}n^{-S}$

for $f^{\rho}(z)= \sum_{n=1}^{\infty}a(n)^{\rho}e(nz)$ and $g^{\rho}(z)= \sum_{n=1}^{\infty}b(n)^{\rho}e(nz)$ . Since we know

$a(n)^{\rho}=\overline{\chi}(n)a(n)$

and
$b(n)^{\rho}=x(n)b(n)$

for all integers $n$ prime to $N,$ $(1.1)$ and (1.2) imply that

(1.3) $D_{N}(s, f, g)=D_{N}(s, f^{\rho}, g^{\rho})$ .

For every prime divisor $p$ of $N$, we have $a(p)a(p)^{\rho}=p^{k-\delta(p)}$ if $p\in A$ and other-
wise, $a(P)=0$ (see Asai [1] or Doi-Miyake [2]). Therefore we see that

$1-a(p)b(p)p^{-S}=\{\begin{array}{ll}\{a(p)^{\rho}-b(p)p^{k-\delta(p)- s}\}/a(p)^{\rho} if p\in A,1 if p\not\in A,\end{array}$

and

$1-a(p)^{\rho}b(p)^{\rho}p^{-S}=\{\begin{array}{ll}\{a(p)-b(p)^{\rho}p^{k-\delta(p)- S}\}/a(p) if p\in A,1 if p\not\in A.\end{array}$

It follows from the identity $\langle f, f\rangle=\langle f^{\rho}, f^{\rho}\rangle$ that

(1.4) $\pi^{-k}\langle f, f\rangle^{-1}D(m, f, g)/[N\cross\prod_{p\in A}\{a(p)^{\rho}(a(p)-b(p)^{\rho}p^{k-\delta(p)- m})\}]$

$= \pi^{-k}\langle f^{\rho}, f^{\rho}\rangle^{-1}D(m, f^{\rho}, g^{\rho})/[N\cross\prod_{p\in A}\{a(p)(a(p)^{\rho}-b(p)p^{k-\delta(p)-m})\}]$

for an integer $m$ with $(1/2)(k+l-2)<m<k$ . On the other hand, [4, Theorem 3]

shows

(1.5) $(\pi^{-k}\langle f, f\rangle^{-1}D(m, f, g))^{\rho}=\pi^{-k}\langle f^{p}, f^{\rho}\rangle^{-1}D(m, f^{\rho}, g^{\rho})$ .
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Consequently $\pi^{-k}\langle f, f\rangle^{-1}D(m, f, g)/[N\cross\prod_{p\in A}\{a(p)^{\rho}(a(p)-b(p)^{\rho}p^{k-\delta(p)- m})\}]$ is

real and therefore, belongs to $F$.
Now, for any integral ideal $\mathfrak{M}$ of $K$, write $\mathfrak{M}=\square \mathfrak{P}^{\alpha(\mathfrak{P})}$ with prime ideals $\mathfrak{P}$

and non-negative integers $\alpha(\mathfrak{P})$ . For a prime ideal $\mathfrak{p}$ of $F$, we define a non-
negative integer $\beta(\mathfrak{p})$ by

$\beta(\mathfrak{p})=\{\begin{array}{ll}[\frac{\alpha(\mathfrak{P})}{2}] if \mathfrak{p} is ramified as \mathfrak{p}=\mathfrak{P}^{2} in K,\alpha(\mathfrak{P}) if \mathfrak{p} remains prime as \mathfrak{p}=\mathfrak{P} in K,Min \{\alpha(\mathfrak{P}), \alpha(\mathfrak{P}^{\rho})\} if \mathfrak{p} is split as \mathfrak{p}=\mathfrak{P}\mathfrak{P}^{\rho} in K,\end{array}$

where $[r]$ indicates the largest integer not exceeding $r$ . Then we put $\mathfrak{M}_{F}=$

$\Pi \mathfrak{p}^{\beta(\mathfrak{p})}$ and $\mathfrak{M}_{K}=\mathfrak{M}/\mathfrak{M}_{F}$ . In short, the ideal $\mathfrak{M}_{F}$ is the smallest integral ideal of
$F$ dividing $\mathfrak{M}$ as mentioned in the introduction. Now we are going to prove the
second assertion of Theorem 1 in a slightly general setting.

LEMMA 2. Let $a$ be a nonzero element of $K$ and $c$ an algebraic integer of
K. Write the principal ideal $(a)=\mathfrak{V}/\mathfrak{U}$ with mutually prime integral ideals $\mathfrak{U}$

and $\mathfrak{V}$ of K. Assume that $a/c$ belongs to F. Then we have $\mathfrak{U}_{K}^{\rho}\mathfrak{V}_{K}=(c)_{K}$ .
PROOF. From the assumption, $\mathfrak{V}/\{\mathfrak{U}(c)\}=(\mathfrak{V}_{F}/\{\mathfrak{A}_{F}(c)_{F}\})\cross(\mathfrak{V}_{K}/\{\mathfrak{A}_{K}(c)_{K}\})$ is

an ideal of $F$ ; therefore, $\mathfrak{V}_{K}/\{\mathfrak{U}_{K}(c)_{K}\}$ must be an ideal of $F$. Now we suppose
that a positive power $\mathfrak{P}^{e}$ of a prime ideal $\mathfrak{P}$ of $K$ divides $\mathfrak{V}_{K}$ . First we con-
sider the case $\mathfrak{P}\neq \mathfrak{P}^{\rho}$ Since $\mathfrak{V}_{K}/\{\mathfrak{A}_{K}(c)_{K}\}$ is an ideal of $F$, we have $\mathfrak{A}_{K}^{\rho}\mathfrak{V}_{K}(c)_{K}^{\rho}$

$=\mathfrak{A}_{K}\mathfrak{V}_{K}^{\rho}(c)_{K}$ . From the definition of the K-part $\mathfrak{V}_{K},$ $\mathfrak{P}$ is prime to $\mathfrak{V}_{K}^{\rho}$ and also
$\mathfrak{P}$ is prime to $\mathfrak{A}_{K}$ . Therefore $\mathfrak{P}^{e}$ divides $(c)_{K}$ . Next suppose $\mathfrak{P}=\mathfrak{P}^{\rho}$ . Then
$e=1$ . Assume $\mathfrak{P}\nmid(c)_{K}$ . Then, $\mathfrak{P}$ divides the F-ideal $\mathfrak{V}_{K}/\{\mathfrak{A}_{K}(c)_{K}\}$ with ex-
ponent 1, a contradiction; therefore, $\mathfrak{P}$ divides $(c)_{K}$ . Thus we know that $\mathfrak{V}_{K}|(c)_{K}$ .
Put $(c)_{K}=\mathfrak{V}_{K}\mathfrak{D}$ with an integral ideal $\mathfrak{D}$ of $K$. Since $\mathfrak{A}_{K}\mathfrak{D}=(\mathfrak{V}_{K}/\{\mathfrak{A}_{K}(c)_{K}\})^{-1}$ is
still an ideal of $F$, we see that if $\mathfrak{P}^{e}$ divides $\mathfrak{A}_{K}$ , then similarly as above, $(\mathfrak{P}^{e})^{\rho}$

must divide $\mathfrak{D}$, and therefore, $\mathfrak{U}_{K}^{\rho}|\mathfrak{D}$ . We may put $(c)_{K}=\mathfrak{U}_{K}^{\rho}\mathfrak{V}_{K}\mathfrak{E}$ with an inte-
gral ideal $\mathfrak{E}$ of $K$. Since $\mathfrak{V}_{K}/\{\mathfrak{U}_{K}(c)_{K}\}$ is an ideal of $F$, we know that $\mathfrak{E}$ is an
ideal of $F$. On the other hand, since $\mathfrak{E}$ divides the K-part $(c)_{K},$ $\mathfrak{E}$ coincides
with $\mathfrak{E}_{K}$ . Consequently we conclude $\mathfrak{E}=1$ and $\mathfrak{U}_{K}^{\rho}\mathfrak{V}_{K}=(c)_{K}$ .

We take $\pi^{-k}\langle f, f\rangle^{-1}D(m, f, g)$ and $C$ in Theorem 1 as $a$ and $c$ in Lemma
2, respectively. Then the second assertion of Theorem 1 follows from the first
assertion and Lemma 2.

We note here that if $m<k-1$ or all primes $p$ of $A$ satisfy Condition $(C_{a})$ ,
then $C’= \prod_{p\in A}[a(p)^{\rho}\{a(P)-b(p)^{\rho}p^{k-\delta(p)-m}\}]$ is integral and therefore, we can
similarly prove the assertions of Theorem 1 by replacing $C$ by $C’$ .

The second assertion of Theorem 1 also holds with some modification even
when we take an Eisenstein series in place of the cusp form $g$ in Theorem 1.



Values of the zeta functions 641

However, the analogue of tbe first assertion is not necessarily valid in this case
(see below Example 3). Let us explain this in detail. Let $l$ be a positive integer
and let $\psi_{1}$ and $\psi_{2}$ Dirichlet characters defined modulo $N_{1}$ and $N_{2}$ , respectively.
Put $\overline{x}=\psi_{1}\psi_{2}$ and $N=N_{1}N_{2}$ . Assume that $\overline{\chi}(-1)=(-1)^{l}$ and that one of the fol-
lowing conditions is satisfied:

(i) If $l=2$ and both $\psi_{1}$ and $\psi_{2}$ are the identities, then $N_{1}=1$ and $N_{2}(>1)$

is square-free; or,
(ii) Both $\psi_{1}$ and $\psi_{2}$ are primitive.

Moreover we put

$b_{0}=|^{0}- \frac{1}{24}\prod_{p1N}(1-p)-\frac{1}{2l}B_{l}.\overline{\chi}$ if $l=2$ and both $\psi_{1}$ and $\psi_{2}$ are the identities,

if $1\neq 1$ and $\psi_{1}$ is not the identity, or
$l=1$ and neither $\psi_{1}$ nor $\psi_{2}$ is the identity,

otherwise,

where $B_{l.\overline{\chi}}$ is the l-th generalized Bernoulli number belonging to the character
$\overline{\chi}$ . Now we define the Eisenstein series with characters $\psi_{1}$ and $\psi_{2}$ by

$E(z; \psi_{1}, \psi_{2})=b_{0}+\sum^{\infty}$ $\{ \sum\psi_{1}(d’)\psi_{2}(d)d^{l-1}\}e(nz)$ .
$n=1dd=na>0$

Then $E(z;\psi_{1}, \psi_{2})$ is a holomorphic modular form of weight $l$ , level $N$ and the
character $\overline{\chi}$ (see Hecke [3, Satz 44], and also [2, Theorem 4.7.1]). Now we take
a primitive cusp form $f$ of conductor $N$, character $\chi$ and weight $k$ as in Theo-
rem 1. Since for every positive integer $n$ prime to $N$, we have

$( \sum_{dd’=n}\psi_{2}(d’)\psi_{1}(d)d^{l-1})^{\rho}=x(n)\sum_{t1d’\subset n}\psi_{1}(d’)\psi_{2}(d)d^{l-1}$ ,
$d>0$ $a>0$

the similar argument as in the proof of Theorem 1 shows that

(1.3) $D_{N}(s, f, E(z;\psi_{1}, \psi_{2}))=D_{N}(s, f^{\rho}, E(z;\psi_{2}, \psi_{1})^{\rho})$ ,

and

(1.4) $\pi^{-k}\langle f, f\rangle^{-1}D(m, f, E(z;\psi_{1}, \psi_{2}))\cross N\cross\prod_{p\in A}\{a(p)(a(p)^{\rho}-b(p)p^{k-\delta(p)- m})\}$

$= \pi^{-k}\langle f^{\rho}, f^{\rho}\rangle^{-1}D(m, f^{\rho}, E(z;\psi_{2}, \psi_{1})^{\rho})\cross N\cross\prod_{p\in A}\{a(p)^{\rho}(a(p)-b’(P)^{\rho}p^{k-\delta(p)- m})\}$ ,

where
$b(p)=\psi_{1}(p)+\psi_{2}(p)p^{l-1}$ ,

and
$b’(p)=\psi_{2}(p)+\psi_{1}(p)p^{l-1}$ .

Consequently we obtain
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PROPOSITION 3. Wnte the principal ideal $(\pi^{-k}\langle f, f\rangle^{-1}D(m, f, E(z;\psi_{1}, \psi_{2})))=$

$\mathfrak{V}/\mathfrak{U}$ with mutually prime integral ideals $\mathfrak{U}$ and $\mathfrak{V}$ of $K$ and also write the prin-
cipal ideal $(\pi^{-k}\langle f, f\rangle^{-1}D(m, f, E(z;\psi_{2}, \psi_{1})))=\mathfrak{D}/\mathfrak{C}$ with mutually prime
integral ideals $\mathfrak{C}$ and $\mathfrak{D}$ of K. If a prime divisor $\mathfrak{P}$ of the pnncipal ideal
$(N \cross\prod_{p\in A}[a(p)^{\rho}\{a(p)-b’(p)^{\rho}p^{k-\delta(p)-m}\}])$ is prime to both $\mathfrak{C}^{\rho}$ and the principal ideal

\langle $N \cross\prod_{p\in A}[a(p)\{a(p)^{\rho}-b(p)p^{k-\delta(p)-m}\}])$ , then $\mathfrak{P}$ divides $\mathfrak{V}$ .

\S 2. Numerical examples.

Under the same notation and the assumptions as in the previous sections,
we define an element $S(m)=S(m, f, g)$ of $K$ by

$S(m)=\pi^{-k}\langle f, f\rangle^{-1}D(m, f, g)/\gamma$ ,
where

$\gamma=\frac{\Gamma(2m+2-k-l)}{\Gamma(m)\Gamma(m+1-l)}\cdot\frac{(-1)^{k-1-m}\cdot 4^{k-1}\cdot N}{3}\cross\prod_{p|N}(1+p^{-1})$ ,

the product being taken over all prime divisors $p$ of $N$. This modification of
our number $\pi^{-k}\langle f, f\rangle^{-1}D(m, f, g)$ is just for convenience of our numerical com-
putation of these numbers and does not affect the assertions of Theorem 1.
Thus our theorem can be stated for our number $S(m, f, g)$ instead of
$\pi^{-k}\langle f, f\rangle^{-1}D(m, f, g)$ (see \S 1, Lemma 2). The number $S(m)$ can be computed
by the method of Shimura ([4, Example p. 801]), and we write the principal
ideal $(S(m))=\mathfrak{V}/\mathfrak{U}$ with mutually prime integral ideals $\mathfrak{U}$ and $\mathfrak{V}$ of $K$ as in
Theorem 1. We give here some numerical examples. In the prime factorization
of our numerical data, we put *for large factors which we do not know whether

they are primes or not. For any modular form $h(z)= \sum_{n=0}^{\infty}c(n)e(nz)$ , we denote

by $Q(h)$ the field generated over $Q$ by $c(n)$ for all $n$ . Now we take $N=13$ and
$x=\overline{x}=(^{\underline{13}})$ :

EXAMPLE 1. Let $k=6$ and $1=4$ . We take $f\in S_{6}(\Gamma_{0}(13), \chi)$ and $g\in S_{4}(\Gamma_{0}(13),\overline{\chi})$ .
Then we have dim $S_{6}(\Gamma_{0}(13), \chi)=6$, dim $S_{4}(\Gamma_{0}(13),\overline{\chi})=2,$ $Q(g)=Q(\sqrt{-1})$ and $Q(f)$

$=Q(\alpha)$ with a root $\alpha$ of the equation:

$\phi(x)=x^{6}+161x^{4}+5856x^{2}+18864=0$ .

Moreover we obtain the following numbers:

$S(5)=[11\alpha^{5}+2(1+12\sqrt{-1})\alpha^{4}+(1423+18\sqrt{-1})\alpha^{3}+46(4+45\sqrt{-1})\alpha^{2}$

$+12(2831+126\sqrt{-1})\alpha+24(64+603\sqrt{-1})]/[2\cdot 7\cdot\phi’(\alpha)]$ ,

$N_{K/Q}$(Numerator of $S(5)$) $=2^{54}\cdot 3^{26}\cdot 13^{16}\cdot 233\cdot 12281\cdot 18181$ ,
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$N_{K/Q}(a(13)-b(13)^{\rho})=2^{14}\cdot 3^{6}\cdot 13^{14}\cdot 233\cdot 12281\cdot 18181$ ,

$N_{Q(\alpha)/Q}(\phi’(\alpha))=-2^{22}\cdot 3^{10}\cdot 23^{2}\cdot 37^{2}\cdot 113^{2}\cdot 131\cdot 163^{2}$ ,
where

$\phi’(x)=\frac{d\phi}{dx}(x)$ ,

$a(13)=(5\alpha^{5}-42\alpha^{4}+721\alpha^{3}-5682\alpha^{2}+27276\alpha-93960)/144$ ,

and
$b(13)=13(2-3\sqrt{-1})$ .

Therefore, $\mathfrak{V}_{K}$ coincides with the ideal $(a(13)^{\rho}\{a(13)-b(13)^{\rho}\})_{K}$ up to the prime
divisors of 2, 3 and 13. In this case, no prime divisors outside the ideal
$(a(13)^{\rho}\{a(13)-b(13)^{\rho}\})_{K}$ appear in $\mathfrak{V}$ .

EXAMPLE 2. Next we take $k=8$ and $l=4$, and $g$ is as in Example 1. We
take $f\in S_{8}(\Gamma_{0}(13), \chi)$ . Then we have dim $S_{8}(\Gamma_{0}(13), \chi)=6$ , and $Q(f)=Q(\alpha)$ with a
root $\alpha$ of the equation:

$\phi(x)=x^{6}+449x^{4}+37224x^{2}+205776=0$ .
We obtain that

(i) $S(6)=-[32\alpha^{5}-(5-174\sqrt{}\overline{-1})\alpha^{4}+5(2015-18\sqrt{-1})\alpha^{3}-5(227-6669\sqrt{-1})\alpha^{2}$

$+3(132196-2520\sqrt{-1})\alpha+12(2495+37683\sqrt{-1})]/[3\cdot 5\cdot 7\cdot\phi’(\alpha)]$ ,

$N_{K/Q}$(Numerator of $S(6)$ ) $=2^{56}\cdot 3^{24}\cdot 5^{25}\cdot 13^{16}\cdot 457\cdot 5441^{2}$ . 9202421 ,

$N_{K/Q}(a(13)-b(13)^{\rho}\cdot 13)=2^{14}\cdot 3^{4}\cdot 5^{3}\cdot 13^{26}\cdot 457\cdot 9202421$ ,

$N_{Q(\alpha)/Q}(\phi’(\alpha))=-2^{26}\cdot 3^{6}\cdot 5^{4}\cdot 41^{2}\cdot 1429\cdot 25104281^{2}$ ,

where
$a(13)=(65\alpha^{5}-78\alpha^{4}+26845\alpha^{3}-15990\alpha^{2}+1696500\alpha+511368)/480$ ,

and
$b(13)=13(2-3\sqrt{-1})$ .

In this case, $\mathfrak{V}_{F}$ is non-trivial and has a factor prime to the principal ideal
$(a(13)-b(13)^{\rho}\cdot 13)$ ; namely, a prime factor of 5441 divides $\mathfrak{V}_{F}$ . Note that the
degree of this factor in $F$ over $Q$ is 1. The similar assertion holds for the
prime factors of $\mathfrak{V}_{K}$ except for some small primes. These phenomena occur
persistently in the limit of our calculation we have already done.

(ii) $S(7)=[119\alpha^{5}-(1-357\sqrt{-1})\alpha^{4}+(38053-27\sqrt{-1})\alpha^{3}-2(169-35469\sqrt{-1})\alpha^{2}$

$+12(120419-129\sqrt{-1})\alpha+24(331+31185\sqrt{-1})]/[7\cdot 17\cdot\phi’(\alpha)]$ ,

$N_{K/Q}$(Numerator of $S(7)$ ) $=2^{57}\cdot 3^{18}\cdot 5^{10}\cdot 13^{28}\cdot 139^{2}\cdot 20535045284748713^{*}$ ,
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$N_{K/Q}(a(13)-b(13)^{\rho})=2^{19}\cdot 3^{4}\cdot 5^{4}\cdot 13^{18}\cdot 20535045284$748713*.

In this case, $\mathfrak{V}_{F}$ has a prime factor of 139 which is prime to the principal ideal
$(a(13)-b(13)^{\rho})$ and has the degree 1 in $F$ over $Q$ .

EXAMPLE 3. Now we take Eisenstein series $E_{1}$ and $E_{2}$ of weight 2; namely

we put $E_{1}=E(z;(^{\underline{13}}),$ $id.)$ and $E_{2}=E(z$ ; id., $(^{\underline{13}}))$ . We take $f\in S_{8}(\Gamma_{0}(13), \chi)$ .
Then we have $Q(E_{1})=Q(E_{2})=Q$ and $Q(f)=Q(\alpha)$ with $\alpha$ as in Example 2. We
obtain that

$S(6, f. E_{1})=-[238\alpha^{5}+475\alpha^{4}+79244\alpha^{3}+100817\alpha^{2}+2407488\alpha$

$+21588]/[3\cdot 7\cdot 17\cdot\phi’(\alpha)]$ ,

$S(6, f, E_{2})=-[237\alpha^{5}-495\alpha^{4}+78667\alpha^{3}-108677\alpha^{2}+2392716\alpha$

$+38172]/[3\cdot 7\cdot 17\cdot\phi’(\alpha)]$ ,

$N_{Q(\alpha)/Q}$ ($Numerator$ of $S(6,$ $f,$ $E_{1})$ )

$=-2^{22}\cdot 3^{8}\cdot 5^{6}\cdot 13^{11}\cdot 103\cdot 109\cdot 2411\cdot 2593$ . 1678613 ,

$N_{Q(\alpha)/Q}(a(13)-b’(13)^{\rho}\cdot 13)=2^{5}\cdot 3^{3}\cdot 5^{3}\cdot 13^{6}\cdot 109\cdot 2593$ . 1678613,

$N_{Q(\alpha)/Q}$ ($Numerator$ of $S(6,$ $f,$ $E_{2})$ )

$=-2^{22}\cdot 3^{7}\cdot 5^{6}\cdot 13^{16}\cdot 103\cdot 1861\cdot 2087\cdot 2411$ ,

$N_{Q(\alpha)/Q}(a(13)-b’’(13)^{\rho}\cdot 13)=2^{5}\cdot 3^{2}\cdot 5^{3}\cdot 13^{11}\cdot 1861\cdot 2087$ ,

where
$a(13)=(65\alpha^{5}-78\alpha^{4}+26845\alpha^{3}-15990\alpha^{2}+1696500\alpha+511368)/480$ ,

$b’(13)=1$ ,

and
$b’’(13)=13$ .

Let $S(6, f, E_{1})=\mathfrak{V}/\mathfrak{A}$ with mutually prime integral ideals $\mathfrak{A}$ and $\mathfrak{V}$ of $Q(\alpha)$ and
let $S(6, f, E_{2})=\mathfrak{D}/\mathfrak{C}$ with mutually prime integral ideals $\mathfrak{C}$ and $\mathfrak{D}$ of $Q(\alpha)$ .
Then we observe that $\mathfrak{V}$ and the principal ideal $(a(13)-b’(13)^{\rho}\cdot 13)$ have prime
divisors of 109, 2593 and 1678613 in common and that $\mathfrak{D}$ and the principal
ideal $(a(13)-b’’(13)^{\rho}\cdot 13)$ have prime divisors of 1861 and 2087 in common.
The prime factors of 103 and 2411 in $\mathfrak{V}$ are prime to the principal ideal
$(a(13)-b’(13)^{\rho}\cdot 13)$ , but they are not real. Thus the analogue of the first asser-
tion of Theorem 1 fails to hold in this case.

We list some other examples below in the case $N=5,$ $x=\overline{x}=(\underline{5}),$ $8\leqq k\leqq 16$

and $1=6$ . We write
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$T=T(m)=N_{K/Q}$ ($Numerator$ of $S(m)$),

and
$L=L(m)=N_{K/Q}(a(5)-b(5)^{\rho}\cdot 5^{k- 1- m})$ .

We give the table of dim $S_{k}(\Gamma_{0}(5), \chi)$ :

Table (I): The defining polynomial $\phi(x)$ for $Q(f)$ and the discriminant of $\phi(x)$ .

Table (II): The denominators of $S(m)$ .
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Here $\alpha$ is a root of $\phi(x)$ and $\phi’(x)=\frac{d\phi}{dx}(x)$ .

Table (III): $T(m)$ and $L(m)$ .
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