A remark on the values of the zeta functions associated with cusp forms

By Yoshitaka MaEda

(Received July 24, 1982)

Introduction

For two primitive cusp forms $f(z)=\sum_{n=1}^{\infty} a(n) e(n z)$ and $g(z)=\sum_{n=1}^{\infty} b(n) e(n z)$ $(e(z)=\exp (2 \pi i z), z \in \mathfrak{G}$: the upper half complex plane), we define a zeta function by

$$
D(s, f, g)=\sum_{n=1}^{\infty} a(n) b(n) n^{-s} \quad(s \in \boldsymbol{C}),
$$

and denote by K the field generated over \boldsymbol{Q} by $a(n)$ and $b(n)$ for all n. If the weight k of f is greater than the weight l of g, Shimura [4] proved that $\pi^{-k}\langle f, f\rangle^{-1} D(m, f, g)$ belongs to K for an integer m with $(1 / 2)(k+l-2)<m<k$, where \langle,$\rangle denotes the normalized Petersson inner product as in [4]. When K$ is a CM-field, namely, a totally imaginary quadratic extension over a totally real field F, we are going to show the divisibility of these special values by a certain polynomial of the Fourier coefficients $a(p)$ and $b(p)$ at prime divisors p of the level of these forms. Roughly speaking, $a(p)-\overline{b(p)} p^{e}$ with a certain integer e depending on k, m and p divides the numerator of $\pi^{-k}\langle f, f\rangle^{-1} D(m, f, g)$. More precisely, we have

Theorem 1. Let χ be the character of f and N the conductor of f. Assume that the character of g is the complex conjugate $\bar{\chi}$ of χ and g has the same conductor N as f. Write M for the conductor of χ. Let A be the set of prime divisors of N satisfying one of the following conditions:
$\left(\mathrm{C}_{\mathrm{a}}\right)$ The p-primary part of N is equal to that of M; or,
$\left(\mathrm{C}_{\mathrm{b}}\right) \quad \mathrm{p} \mid N, p^{2} \nmid N$ and $p \nmid M$.
Put

$$
C=N \times \prod_{p \in A}\left[a(p)^{\rho}\left\{a(p)-b(p)^{\rho} p^{k-\grave{o}(p)-m}\right\}\right],
$$

where

$$
\delta(p)= \begin{cases}1 & \text { if } p \text { satisfies Condition }\left(\mathrm{C}_{\mathrm{a}}\right), \\ 2 & \text { if } p \text { satisfies Condition }\left(\mathrm{C}_{\mathrm{b}}\right),\end{cases}
$$

and ρ denotes the complex conjugation. Then
(1) $\pi^{-k}\langle f, f\rangle^{-1} D(m, f, g) / C$ belongs to the maximal real subfield F of K;
(2) Let us write the principal ideal $\left(\pi^{-k}\langle f, f\rangle^{-1} D(m, f, g)\right)=\mathfrak{B} / \mathfrak{A}$ with mutually prime integral ideals \mathfrak{A} and \mathfrak{F} of K. Then we have $\mathfrak{U}_{K}^{\rho} \mathfrak{B}_{K}=(C)_{K}$. Here, for any integral ideal \mathfrak{M} of K, we decompose $\mathfrak{M}=\mathfrak{M}_{F} \mathfrak{M}_{K}$ with the smallest integral ideal \mathfrak{M}_{F} of F dividing \mathfrak{M} and the remaining K-ideal \mathfrak{M}_{K} (for details of this definition, see § 1).

Let us give some remarks:
(1) All the prime divisors of \mathfrak{X} are "congruence divisors" of f except for trivial factors. This fact is a direct consequence of Shimura's proof of his algebraicity theorem in [4] and was indicated by Doi and Hida;
(2) When the conductor N is a prime, we can easily see that the prime divisors of $(C)_{F}$ are the factors of N or $N^{e}-1$ for the positive integer $e=$ $2 m+2-k-l$. Thus in this case, the K-part $(C)_{K}$ is roughly equal to the whole ideal $(C)=\left(N \times a(N)^{\rho} \times\left(a(N)-b(N)^{\rho} N^{k-1-m}\right)\right)$ as mentioned above in Theorem 1;
(3) The property similar to the second assertion of Theorem 1 holds under some restrictions even if g is an Eisenstein series (see § 1, Proposition 3).

In $\S 2$, we discuss some numerical examples.

§ 1. Proof of Theorem 1.

We keep the notation and the assumptions in the introduction throughout this section. We define complex numbers $\alpha_{p}, \alpha_{p}^{\prime}, \beta_{p}, \beta_{p}^{\prime} \in C$ for rational primes p by

$$
1-a(p) x+\chi(p) p^{k-1} x^{2}=\left(1-\alpha_{p} x\right)\left(1-\alpha_{p}^{\prime} x\right),
$$

and

$$
1-b(p) x+\bar{x}(p) p^{l-1} x^{2}=\left(1-\beta_{p} x\right)\left(1-\beta_{p}^{\prime} x\right),
$$

where x is an indeterminate. Then we know (cf. [4, Lemma 1])

$$
D(s, f, g)=\prod_{p}\left[X_{p}(s) Y_{p}(s)^{-1}\right],
$$

where p runs over all rational primes,

$$
X_{p}(s)=1-\alpha_{p} \alpha_{p}^{\prime} \beta_{p} \beta_{p}^{\prime} p^{-2 s},
$$

and

$$
Y_{p}(s)=\left(1-\alpha_{p} \beta_{p} p^{-s}\right)\left(1-\alpha_{p} \beta_{p}^{\prime} p^{-s}\right)\left(1-\alpha_{p}^{\prime} \beta_{p} p^{-s}\right)\left(1-\alpha_{p}^{\prime} \beta_{p}^{\prime} p^{-s}\right) .
$$

Both the conductors of f and g being N, for every prime divisor p of N, we may put

$$
\alpha_{p}=a(p), \quad \alpha_{p}^{\prime}=0
$$

and

$$
\beta_{p}=b(p), \quad \beta_{p}^{\prime}=0,
$$

therefore we have

$$
X_{p}(s)=1,
$$

and

$$
Y_{p}(s)=1-a(p) b(p) p^{-s} .
$$

Let us further put

$$
D_{N}(s, f, g)=\left\{\prod_{p \mid N} Y_{p}(s)\right\} \times D(s, f, g) .
$$

Then we have

$$
\begin{equation*}
D_{N}(s, f, g)=\sum_{(n, N)=1} a(n) b(n) n^{-s}, \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{N}\left(s, f^{\rho}, g^{\rho}\right)=\sum_{(n, N)=1} a(n)^{\rho} b(n)^{\rho} n^{-s} \tag{1.2}
\end{equation*}
$$

for $f^{\rho}(z)=\sum_{n=1}^{\infty} a(n)^{\rho} e(n z)$ and $g^{\rho}(z)=\sum_{n=1}^{\infty} b(n)^{\rho} e(n z)$. Since we know

$$
a(n)^{\rho}=\bar{\chi}(n) a(n)
$$

and

$$
b(n)^{\rho}=\chi(n) b(n)
$$

for all integers n prime to N, (1.1) and (1.2) imply that

$$
\begin{equation*}
D_{N}(s, f, g)=D_{N}\left(s, f^{\rho}, g^{\rho}\right) . \tag{1.3}
\end{equation*}
$$

For every prime divisor p of N, we have $a(p) a(p)^{\rho}=p^{k-\delta(p)}$ if $p \in A$ and otherwise, $a(p)=0$ (see Asai [1] or Doi-Miyake [2]). Therefore we see that

$$
1-a(p) b(p) p^{-s}= \begin{cases}\left\{a(p)^{\rho}-b(p) p^{k-\delta(p)-s}\right\} / a(p)^{\rho} & \text { if } p \in A \\ 1 & \text { if } p \notin A\end{cases}
$$

and

$$
1-a(p)^{\rho} b(p)^{\rho} p^{-s}= \begin{cases}\left\{a(p)-b(p)^{\rho} p^{k-\hat{o}(p)-s}\right\} / a(p) & \text { if } p \in A, \\ 1 & \text { if } p \notin A .\end{cases}
$$

It follows from the identity $\langle f, f\rangle=\left\langle f^{\rho}, f^{\rho}\right\rangle$ that

$$
\begin{align*}
& \pi^{-k}\langle f, f\rangle^{-1} D(m, f, g) /\left[N \times \prod_{p \in A}\left\{a(p)^{\rho}\left(a(p)-b(p)^{\rho} p^{k-\delta(p)-m}\right)\right\}\right] \tag{1.4}\\
& \quad=\pi^{-k}\left\langle f^{\rho}, f^{\rho}\right\rangle^{-1} D\left(m, f^{\rho}, g^{\rho}\right) /\left[N \times \prod_{p \in A}\left\{a(p)\left(a(p)^{\rho}-b(p) p^{k-\delta(p)-m}\right)\right\}\right]
\end{align*}
$$

for an integer m with $(1 / 2)(k+l-2)<m<k$. On the other hand, [4, Theorem 3] shows

$$
\begin{equation*}
\left(\pi^{-k}\langle f, f\rangle^{-1} D(m, f, g)\right)^{\rho}=\pi^{-k}\left\langle f^{\rho}, f^{\rho}\right\rangle^{-1} D\left(m, f^{\rho}, g^{\rho}\right) \tag{1.5}
\end{equation*}
$$

Consequently $\pi^{-k}\langle f, f\rangle^{-1} D(m, f, g) /\left[N \times \prod_{p \in A}\left\{a(p)^{\rho}\left(a(p)-b(p)^{\rho} p^{k-\delta(p)-m}\right)\right\}\right]$ is real and therefore, belongs to F.

Now, for any integral ideal \mathfrak{M} of K, write $\mathfrak{M}=\Pi \Re^{\alpha(\mathfrak{F})}$ with prime ideals $\mathfrak{\Re}$ and non-negative integers $\alpha(\mathfrak{F})$. For a prime ideal \mathfrak{p} of F, we define a nonnegative integer $\beta(\mathfrak{p})$ by

$$
\beta(\mathfrak{p})= \begin{cases}{\left[\frac{\alpha(\mathfrak{P})}{2}\right]} & \text { if } \mathfrak{p} \text { is ramified as } \mathfrak{p}=\mathfrak{F}^{2} \text { in } K, \\ \alpha(\mathfrak{F}) & \text { if } \mathfrak{p} \text { remains prime as } \mathfrak{p}=\mathfrak{P} \text { in } K, \\ \operatorname{Min}\left\{\alpha(\mathfrak{P}), \alpha\left(\mathfrak{P}^{\rho}\right)\right\} & \text { if } \mathfrak{p} \text { is split as } \mathfrak{p}=\mathfrak{B}_{\mathfrak{P}}{ }^{\rho} \text { in } K,\end{cases}
$$

where $[r]$ indicates the largest integer not exceeding r. Then we put $\mathfrak{M}_{F}=$ $\Pi \mathfrak{p}^{\beta(p)}$ and $\mathfrak{M}_{K}=\mathfrak{M} / \mathfrak{M}_{F}$. In short, the ideal \mathfrak{M}_{F} is the smallest integral ideal of F dividing \mathfrak{M} as mentioned in the introduction. Now we are going to prove the second assertion of Theorem 1 in a slightly general setting.

Lemma 2. Let a be a nonzero element of K and c an algebraic integer of K. Write the principal ideal $(a)=\mathfrak{B} / \mathfrak{A}$ with mutually prime integral ideals \mathfrak{U} and \mathfrak{F} of K. Assume that a/c belongs to F. Then we have $\mathfrak{H}_{K} \mathfrak{V}_{K}=(c)_{K}$.

Proof. From the assumption, $\mathfrak{V} /\{\mathfrak{H}(c)\}=\left(\mathfrak{V}_{F} /\left\{\mathfrak{Q}_{F}(c)_{F}\right\}\right) \times\left(\mathfrak{V}_{K} /\left\{\mathscr{H}_{K}(c)_{K}\right\}\right)$ is an ideal of F; therefore, $\mathfrak{V}_{K} /\left\{\mathfrak{U}_{K}(c)_{K}\right\}$ must be an ideal of F. Now we suppose that a positive power \mathfrak{B}^{e} of a prime ideal \mathfrak{B} of K divides \mathfrak{B}_{K}. First we consider the case $\mathfrak{B} \neq \mathfrak{W}^{\rho}$. Since $\mathfrak{B}_{K} /\left\{\mathfrak{U}_{K}(c)_{K}\right\}$ is an ideal of F, we have $\mathfrak{A}_{K}{ }_{K} \mathfrak{B}_{K}(c)_{K}^{\rho}$ $=\mathfrak{A}_{K} \mathfrak{Y}_{K}^{\rho}(c)_{K}$. From the definition of the K-part $\mathfrak{B}_{K}, \mathfrak{P}$ is prime to $\mathfrak{B}_{K}{ }_{K}$ and also \mathfrak{B} is prime to \mathfrak{A}_{K}. Therefore \mathfrak{P}^{e} divides $(c)_{K}$. Next suppose $\mathfrak{P}=\mathfrak{P}^{\rho}$. Then $e=1$. Assume $\mathfrak{P} X(c)_{K}$. Then, \mathfrak{B} divides the F-ideal $\mathfrak{B}_{K} /\left\{\mathfrak{H}_{K}(c)_{K}\right\}$ with exponent 1 , a contradiction; therefore, \mathfrak{B} divides $(c)_{K}$. Thus we know that $\mathfrak{B}_{K} \mid(c)_{K}$. Put $(c)_{K}=\mathfrak{V}_{K} \mathfrak{D}$ with an integral ideal \mathfrak{D} of K. Since $\mathfrak{A}_{K} \mathfrak{D}=\left(\mathfrak{V}_{K} /\left\{\mathfrak{U}_{K}(c)_{K}\right\}\right)^{-1}$ is still an ideal of F, we see that if \mathfrak{B}^{e} divides \mathfrak{A}_{K}, then similarly as above, ($\left.\mathfrak{B}^{e}\right)^{\rho}$ must divide \mathfrak{D}, and therefore, $\mathfrak{A}_{K}{ }_{K} \mid \mathfrak{D}$. We may put $(c)_{K}=\mathfrak{U}_{K}^{o} \mathfrak{B}_{K} \mathfrak{F}$ with an integral ideal \mathfrak{F} of K. Since $\mathfrak{B}_{K} /\left\{\mathfrak{A}_{K}(c)_{K}\right\}$ is an ideal of F, we know that \mathfrak{F} is an ideal of F. On the other hand, since \mathfrak{F} divides the K-part $(c)_{K}$, \mathfrak{F} coincides with \mathfrak{F}_{K}. Consequently we conclude $\mathfrak{F}=1$ and $\mathfrak{A}_{K} \mathfrak{O}_{K}=(c)_{K}$.

We take $\pi^{-k}\langle f, f\rangle^{-1} D(m, f, g)$ and C in Theorem 1 as a and c in Lemma 2 , respectively. Then the second assertion of Theorem 1 follows from the first assertion and Lemma 2.

We note here that if $m<k-1$ or all primes p of A satisfy Condition $\left(\mathrm{C}_{\mathrm{a}}\right)$, then $C^{\prime}=\prod_{p \in A}\left[a(p)^{\rho}\left\{a(p)-b(p)^{\rho} p^{k-\delta(p)-m}\right\}\right]$ is integral and therefore, we can similarly prove the assertions of Theorem 1 by replacing C by C^{\prime}.

The second assertion of Theorem 1 also holds with some modification even when we take an Eisenstein series in place of the cusp form g in Theorem 1.

However, the analogue of the first assertion is not necessarily valid in this case (see below Example 3). Let us explain this in detail. Let l be a positive integer and let ψ_{1} and ψ_{2} Dirichlet characters defined modulo N_{1} and N_{2}, respectively. Put $\bar{\chi}=\psi_{1} \psi_{2}$ and $N=N_{1} N_{2}$. Assume that $\bar{\chi}(-1)=(-1)^{l}$ and that one of the following conditions is satisfied:
(i) If $l=2$ and both ψ_{1} and ψ_{2} are the identities, then $N_{1}=1$ and $N_{2}(>1)$ is square-free; or,
(ii) Both ψ_{1} and ψ_{2} are primitive.

Moreover we put

$$
b_{0}= \begin{cases}0 & \text { if } l \neq 1 \text { and } \psi_{1} \text { is not the identity, or } \\ l=1 \text { and neither } \psi_{1} \text { nor } \psi_{2} \text { is the identity, } \\ -\frac{1}{24} \prod_{p \mid N}(1-p) & \text { if } l=2 \text { and both } \psi_{1} \text { and } \psi_{2} \text { are the identities, } \\ -\frac{1}{2 l} B_{l, \bar{x}} & \text { otherwise, }\end{cases}
$$

where $B_{l, \bar{x}}$ is the l-th generalized Bernoulli number belonging to the character $\bar{\chi}$. Now we define the Eisenstein series with characters ψ_{1} and ψ_{2} by

$$
E\left(z ; \psi_{1}, \psi_{2}\right)=b_{0}+\sum_{n=1}^{\infty}\left\{\sum_{\substack{d^{\prime}=n \\ d>0}} \psi_{1}\left(d^{\prime}\right) \psi_{2}(d) d^{l-1}\right\} e(n z) .
$$

Then $E\left(z ; \psi_{1}, \psi_{2}\right)$ is a holomorphic modular form of weight l, level N and the character $\bar{\chi}$ (see Hecke [3, Satz 44], and also [2, Theorem 4.7.1]). Now we take a primitive cusp form f of conductor N, character χ and weight k as in Theorem 1. Since for every positive integer n prime to N, we have

$$
\left(\underset{d d^{\prime}>=0}{d^{\prime}>0} \sum_{2} \psi_{2}\left(d^{\prime}\right) \psi_{1}(d) d^{l-1}\right)^{\rho}=\chi(n) \underset{\substack{d^{\prime}=1 \\ d^{\prime}>0}}{ } \psi_{1}\left(d^{\prime}\right) \psi_{2}(d) d^{l-1},
$$

the similar argument as in the proof of Theorem 1 shows that

$$
\begin{equation*}
D_{N}\left(s, f, E\left(z ; \psi_{1}, \psi_{2}\right)\right)=D_{N}\left(s, f^{\rho}, E\left(z ; \psi_{2}, \psi_{1}\right)^{\rho}\right), \tag{1.3}
\end{equation*}
$$

and

$$
\begin{aligned}
(1.4)^{\prime} & \pi^{-k}\langle f, f\rangle^{-1} D\left(m, f, E\left(z ; \psi_{1}, \psi_{2}\right)\right) \times N \times \prod_{p \in A}\left\{a(p)\left(a(p)^{\rho}-b(p) p^{k-\delta(p)-m}\right)\right\} \\
= & \pi^{-k}\left\langle f^{\rho}, f^{\rho}\right\rangle^{-1} D\left(m, f^{\rho}, E\left(z ; \psi_{2}, \psi_{1}\right)^{\rho}\right) \times N \times \prod_{p \in A}\left\{a(p)^{\rho}\left(a(p)-b^{\prime}(p)^{\rho} p^{k-\delta(p)-m}\right)\right\},
\end{aligned}
$$

where

$$
b(p)=\psi_{1}(p)+\psi_{2}(p) p^{l-1},
$$

and

$$
b^{\prime}(p)=\psi_{2}(p)+\psi_{1}(p) p^{l-1}
$$

Consequently we obtain

Proposition 3. Write the principal ideal $\left(\pi^{-k}\langle f, f\rangle^{-1} D\left(m, f, E\left(z ; \psi_{1}, \psi_{2}\right)\right)\right)=$ $\mathfrak{B} / \mathfrak{A}$ with mutually prime integral ideals \mathfrak{A} and \mathfrak{B} of K and also write the principal ideal $\left(\pi^{-k}\langle f, f\rangle^{-1} D\left(m, f, E\left(z ; \phi_{2}, \psi_{1}\right)\right)\right)=\mathfrak{D} / \mathbb{G}$ with mutually prime integral ideals © and \mathfrak{D} of K. If a prime divisor \mathfrak{P} of the principal ideal $\left(N \times \prod_{p \in A^{\prime}}\left[a(p)^{\rho}\left\{a(p)-b^{\prime}(p)^{\rho} p^{k-\delta(p)-m}\right\}\right]\right)$ is prime to both $\mathbb{5}^{\rho}$ and the principal ideal $\left(N \times \prod_{p \in A}\left[a(p)\left\{a(p)^{\rho}-b(p) p^{k-\delta(p)-m}\right\}\right]\right)$, then \mathfrak{P} divides \mathfrak{V}.

§ 2. Numerical examples.

Under the same notation and the assumptions as in the previous sections, we define an element $S(m)=S(m, f, g)$ of K by

$$
S(m)=\pi^{-k}\langle f, f\rangle^{-1} D(m, f, g) / \gamma,
$$

where

$$
\gamma=\frac{\Gamma(2 m+2-k-l)}{\Gamma(m) \Gamma(m+1-l)} \cdot \frac{(-1)^{k-1-m} \cdot 4^{k-1} \cdot N}{3} \times \prod_{p \backslash N}\left(1+p^{-1}\right),
$$

the product being taken over all prime divisors p of N. This modification of our number $\pi^{-k}\langle f, f\rangle^{-1} D(m, f, g)$ is just for convenience of our numerical computation of these numbers and does not affect the assertions of Theorem 1. Thus our theorem can be stated for our number $S(m, f, g)$ instead of $\pi^{-k}\langle f, f\rangle^{-1} D(m, f, g$) (see $\S 1$, Lemma 2). The number $S(m)$ can be computed by the method of Shimura ([4, Example p. 801]), and we write the principal ideal $(S(m))=\mathfrak{B} / \mathfrak{A}$ with mutually prime integral ideals \mathfrak{A} and \mathfrak{F} of K as in Theorem 1. We give here some numerical examples. In the prime factorization of our numerical data, we put * for large factors which we do not know whether they are primes or not. For any modular form $h(z)=\sum_{n=0}^{\infty} c(n) e(n z)$, we denote by $\boldsymbol{Q}(h)$ the field generated over \boldsymbol{Q} by $c(n)$ for all n. Now we take $N=13$ and $\chi=\bar{\chi}=\left(\frac{13}{}\right):$

Example 1. Let $k=6$ and $l=4$. We take $f \in S_{6}\left(\Gamma_{0}(13), \chi\right)$ and $g \in S_{4}\left(\Gamma_{0}(13), \bar{\chi}\right)$. Then we have $\operatorname{dim} S_{6}\left(\Gamma_{0}(13), \chi\right)=6, \operatorname{dim} S_{4}\left(\Gamma_{0}(13), \bar{\chi}\right)=2, \boldsymbol{Q}(g)=\boldsymbol{Q}(\sqrt{-1})$ and $\boldsymbol{Q}(f)$ $=\boldsymbol{Q}(\alpha)$ with a root α of the equation:

$$
\phi(x)=x^{6}+161 x^{4}+5856 x^{2}+18864=0 .
$$

Moreover we obtain the following numbers:

$$
\begin{aligned}
& S(5)= {\left[11 \alpha^{5}+2(1+12 \sqrt{-1}) \alpha^{4}+(1423+18 \sqrt{-1}) \alpha^{3}+46(4+45 \sqrt{-1}) \alpha^{2}\right.} \\
&+12(2831+126 \sqrt{-1}) \alpha+24(64+603 \sqrt{-1})] /\left[2 \cdot 7 \cdot \phi^{\prime}(\alpha)\right], \\
& N_{K / Q}(\text { Numerator of } S(5))=2^{54} \cdot 3^{26} \cdot 13^{16} \cdot 233 \cdot 12281 \cdot 18181,
\end{aligned}
$$

$$
\begin{aligned}
& N_{K / Q}\left(a(13)-b(13)^{\rho}\right)=2^{14} \cdot 3^{6} \cdot 13^{14} \cdot 233 \cdot 12281 \cdot 18181, \\
& N_{\boldsymbol{Q}(\alpha) / \boldsymbol{Q}}\left(\phi^{\prime}(\alpha)\right)=-2^{22} \cdot 3^{10} \cdot 23^{2} \cdot 37^{2} \cdot 113^{2} \cdot 131 \cdot 163^{2},
\end{aligned}
$$

where

$$
\begin{aligned}
& \phi^{\prime}(x)=\frac{d \phi}{d x}(x) \\
& a(13)=\left(5 \alpha^{5}-42 \alpha^{4}+721 \alpha^{3}-5682 \alpha^{2}+27276 \alpha-93960\right) / 144
\end{aligned}
$$

and

$$
b(13)=13(2-3 \sqrt{-1})
$$

Therefore, \mathfrak{B}_{K} coincides with the ideal $\left(a(13)^{\rho}\left\{a(13)-b(13)^{\rho}\right\}\right)_{K}$ up to the prime divisors of 2,3 and 13 . In this case, no prime divisors outside the ideal $\left(a(13)^{\rho}\left\{a(13)-b(13)^{\rho}\right\}\right)_{K}$ appear in \mathfrak{F}.

Example 2. Next we take $k=8$ and $l=4$, and g is as in Example 1. We take $f \in S_{8}\left(\Gamma_{0}(13), \chi\right)$. Then we have $\operatorname{dim} S_{8}\left(\Gamma_{0}(13), \chi\right)=6$, and $\boldsymbol{Q}(f)=\boldsymbol{Q}(\alpha)$ with a root α of the equation:

$$
\phi(x)=x^{6}+449 x^{4}+37224 x^{2}+205776=0 .
$$

We obtain that
(i) $S(6)=-\left[32 \alpha^{5}-(5-174 \sqrt{-1}) \alpha^{4}+5(2015-18 \sqrt{-1}) \alpha^{3}-5(227-6669 \sqrt{-1}) \alpha^{2}\right.$

$$
+3(132196-2520 \sqrt{-1}) \alpha+12(2495+37683 \sqrt{-1})] /\left[3 \cdot 5 \cdot 7 \cdot \phi^{\prime}(\alpha)\right]
$$

$N_{K / Q}($ Numerator of $S(6))=2^{56} \cdot 3^{24} \cdot 5^{25} \cdot 13^{16} \cdot 457 \cdot 5441^{2} \cdot 9202421$,
$N_{K / Q}\left(a(13)-b(13)^{\rho} \cdot 13\right)=2^{14} \cdot 3^{4} \cdot 5^{3} \cdot 13^{26} \cdot 457 \cdot 9202421$,
$N_{Q(\alpha) / Q}\left(\phi^{\prime}(\alpha)\right)=-2^{26} \cdot 3^{6} \cdot 5^{4} \cdot 41^{2} \cdot 1429 \cdot 25104281^{2}$,
where

$$
a(13)=\left(65 \alpha^{5}-78 \alpha^{4}+26845 \alpha^{3}-15990 \alpha^{2}+1696500 \alpha+511368\right) / 480
$$

and

$$
b(13)=13(2-3 \sqrt{-1})
$$

In this case, \mathfrak{B}_{F} is non-trivial and has a factor prime to the principal ideal $\left(a(13)-b(13)^{\rho} \cdot 13\right)$; namely, a prime factor of 5441 divides \mathfrak{V}_{F}. Note that the degree of this factor in F over \boldsymbol{Q} is 1 . The similar assertion holds for the prime factors of \mathfrak{V}_{K} except for some small primes. These phenomena occur persistently in the limit of our calculation we have already done.
(ii) $S(7)=\left[119 \alpha^{5}-(1-357 \sqrt{-1}) \alpha^{4}+(38053-27 \sqrt{-1}) \alpha^{3}-2(169-35469 \sqrt{-1}) \alpha^{2}\right.$

$$
+12(120419-129 \sqrt{-1}) \alpha+24(331+31185 \sqrt{-1})] /\left[7 \cdot 17 \cdot \phi^{\prime}(\alpha)\right],
$$

$N_{K / Q}($ Numerator of $S(7))=2^{57} \cdot 3^{18} \cdot 5^{10} \cdot 13^{28} \cdot 139^{2} \cdot 20535045284748713^{*}$,

$$
N_{K / Q}\left(a(13)-b(13)^{\rho}\right)=2^{19} \cdot 3^{4} \cdot 5^{4} \cdot 13^{18} \cdot 20535045284748713^{*}
$$

In this case, \mathfrak{V}_{F} has a prime factor of 139 which is prime to the principal ideal $\left(a(13)-b(13)^{\rho}\right)$ and has the degree 1 in F over \boldsymbol{Q}.

Example 3. Now we take Eisenstein series E_{1} and E_{2} of weight 2; namely we put $E_{1}=E\left(z ;\left(\frac{13}{}\right)\right.$, id. $)$ and $E_{2}=E\left(z\right.$; id., $\left.\left(\frac{13}{-}\right)\right)$. We take $f \in S_{8}\left(\Gamma_{0}(13), \chi\right)$. Then we have $\boldsymbol{Q}\left(E_{1}\right)=\boldsymbol{Q}\left(E_{2}\right)=\boldsymbol{Q}$ and $\boldsymbol{Q}(f)=\boldsymbol{Q}(\alpha)$ with α as in Example 2. We obtain that

$$
\begin{aligned}
& S\left(6, f, E_{1}\right)=- {\left[238 \alpha^{5}+475 \alpha^{4}+79244 \alpha^{3}+100817 \alpha^{2}+2407488 \alpha\right.} \\
&+21588] /\left[3 \cdot 7 \cdot 17 \cdot \phi^{\prime}(\alpha)\right], \\
& S\left(6, f, E_{2}\right)=- {\left[237 \alpha^{5}-495 \alpha^{4}+78667 \alpha^{3}-108677 \alpha^{2}+2392716 \alpha\right.} \\
&+38172] /\left[3 \cdot 7 \cdot 17 \cdot \phi^{\prime}(\alpha)\right], \\
& N_{Q(\alpha) / \mathbf{Q}}\left(\text { Numerator of } S\left(6, f, E_{1}\right)\right) \\
&=- 2^{22} \cdot 3^{8} \cdot 5^{6} \cdot 13^{11} \cdot 103 \cdot 109 \cdot 2411 \cdot 2593 \cdot 1678613, \\
& N_{Q(\alpha) / \boldsymbol{Q}}\left(a(13)-b^{\prime}(13)^{\rho} \cdot 13\right)=2^{5} \cdot 3^{3} \cdot 5^{3} \cdot 13^{6} \cdot 109 \cdot 2593 \cdot 1678613, \\
& N_{Q(\alpha) / Q}\left(\text { Numerator of } S\left(6, f, E_{2}\right)\right) \\
&=-2^{22} \cdot 3^{7} \cdot 5^{6} \cdot 13^{16} \cdot 103 \cdot 1861 \cdot 2087 \cdot 2411, \\
& N_{Q(\alpha) / Q}\left(a(13)-b^{\prime \prime}(13)^{\rho} \cdot 13\right)=2^{5} \cdot 3^{2} \cdot 5^{3} \cdot 13^{11} \cdot 1861 \cdot 2087,
\end{aligned}
$$

where

$$
\begin{aligned}
& a(13)=\left(65 \alpha^{5}-78 \alpha^{4}+26845 \alpha^{3}-15990 \alpha^{2}+1696500 \alpha+511368\right) / 480, \\
& b^{\prime}(13)=1,
\end{aligned}
$$

and

$$
b^{\prime \prime}(13)=13 .
$$

Let $S\left(6, f, E_{1}\right)=\mathfrak{B} / \mathfrak{A}$ with mutually prime integral ideals \mathfrak{A} and \mathfrak{B} of $\boldsymbol{Q}(\alpha)$ and let $S\left(6, f, E_{2}\right)=\mathfrak{D} / \mathbb{C}$ with mutually prime integral ideals \mathbb{C} and \mathfrak{D} of $\boldsymbol{Q}(\alpha)$. Then we observe that \mathfrak{F} and the principal ideal $\left(a(13)-b^{\prime}(13)^{\rho} \cdot 13\right)$ have prime divisors of 109,2593 and 1678613 in common and that \mathfrak{D} and the principal ideal $\left(a(13)-b^{\prime \prime}(13)^{\rho} \cdot 13\right)$ have prime divisors of 1861 and 2087 in common. The prime factors of 103 and 2411 in \mathfrak{B} are prime to the principal ideal $\left(a(13)-b^{\prime}(13)^{\rho} \cdot 13\right)$, but they are not real. Thus the analogue of the first assertion of Theorem 1 fails to hold in this case.

We list some other examples below in the case $N=5, \chi=\bar{\chi}=\left(\frac{5}{)}\right), 8 \leqq k \leqq 16$ and $l=6$. We write

$$
T=T(m)=N_{K / Q}(\text { Numerator of } S(m)),
$$

and

$$
L=L(m)=N_{K / Q}\left(a(5)-b(5)^{\rho} \cdot 5^{k-1-m}\right) .
$$

We give the table of $\operatorname{dim} S_{k}\left(\Gamma_{0}(5), \chi\right)$:

k	6	8	10	12	14	16
$\operatorname{dim} S_{k}\left(\Gamma_{0}(5), \chi\right)$	2	2	4	4	6	6

Table (I): The defining polynomial $\phi(x)$ for $\boldsymbol{Q}(f)$ and the discriminant of $\phi(x)$.

k	$\phi(x)$	Discriminant of $\phi(x)$
6	$x^{2}+44$	$-2^{4} \cdot 11$
8	$x^{2}+116$	$-2^{4} \cdot 29$
10	$x^{4}+1708 x^{2}+1216$	$2^{18} \cdot 3^{4} \cdot 5^{4} \cdot 19 \cdot 809^{2}$
12	$x^{4}+4132 x^{2}+2496256$	$2^{20} \cdot 3^{4} \cdot 5^{4} \cdot 7^{2} \cdot 11^{2} \cdot 179^{2} \cdot 199$
14	$x^{6}+41052 x^{4}+440779968 x^{2}+617678127104$	$-2^{52} \cdot 3^{20} \cdot 5^{12} \cdot 269^{2} \cdot 521 \cdot 7541^{2}$ $\times 10577429^{2}$
16	$x^{6}+117588 x^{4}+2455515648 x^{2}+4160982695936$	$-2^{70} \cdot 3^{12} \cdot 5^{12} \cdot 11 \cdot 29^{4} \cdot 31 \cdot 863^{2}$ $\times 1061^{2} \cdot 53497637^{2}$

Table (II): The denominators of $S(m)$.

k	m	
8	7	$3 \cdot \phi^{\prime}(\alpha)$
10	8	$2^{3} \cdot 7 \cdot \phi^{\prime}(\alpha)$
	9	$-13 \cdot \phi^{\prime}(\alpha)$
12	9	$2^{2} \cdot 3^{2} \cdot 5 \cdot \phi^{\prime}(\alpha)$
	10	$-2 \cdot 5 \cdot 13 \cdot \phi^{\prime}(\alpha)$
	11	$31 \cdot \phi^{\prime}(\alpha)$
14	10	$2^{2} \cdot 3^{2} \cdot 5 \cdot 11 \cdot \phi^{\prime}(\alpha)$
	11	$-2 \cdot 3 \cdot 11 \cdot 13 \cdot \phi^{\prime}(\alpha)$

k	m	
14	12	$2^{2} \cdot 3 \cdot 31 \cdot \phi^{\prime}(\alpha)$
	13	$-13 \cdot 313 \cdot \phi^{\prime}(\alpha)$
	11	$5 \cdot 7 \cdot 11 \cdot 13 \cdot \phi^{\prime}(\alpha)$
	12	$-2^{2} \cdot 7 \cdot 13^{2} \cdot \phi^{\prime}(\alpha)$
	13	$7 \cdot 13 \cdot 31 \cdot \phi^{\prime}(\alpha)$
	14	$-2 \cdot 7 \cdot 13 \cdot 313 \cdot \phi^{\prime}(\alpha)$
	15	$71 \cdot 521 \cdot \phi^{\prime}(\alpha)$

Here α is a root of $\phi(x)$ and $\phi^{\prime}(x)=\frac{d \phi}{d x}(x)$.
Table (III): $T(m)$ and $L(m)$.

k	m	
8	7	$T=3^{3} \cdot 5^{4} \cdot 11$
		$L=2^{6} \cdot 3^{3} \cdot 5^{8} \cdot 11$
10	8	$T=2^{40} \cdot 3^{4} \cdot 5^{18} \cdot 7^{8} \cdot 6011$
		$L=2^{14} \cdot 3^{4} \cdot 5^{22} \cdot 6011$
	9	$T=2^{24} \cdot 3^{4} \cdot 5^{31} \cdot 379 \cdot 39979$
		$L=2^{14} \cdot 3^{4} \cdot 5^{17} \cdot 379 \cdot 39979$
12	9	$T=2^{42} \cdot 3^{19} \cdot 5^{18} \cdot 7^{4} \cdot 11^{4} \cdot 31 \cdot 47$
		$L=2^{14} \cdot 3^{5} \cdot 5^{30} \cdot 31 \cdot 47$
	10	$T=2^{38} \cdot 3^{5} \cdot 5^{31} \cdot 7^{6} \cdot 31 \cdot 109^{2} \cdot 153877$
		$L=2^{14} \cdot 3^{5} \cdot 5^{25} \cdot 31 \cdot 153877$
	11	$T=2^{22} \cdot 3^{5} \cdot 5^{32} \cdot 7^{4} \cdot 31^{2} \cdot 389 \cdot 643 \cdot 3391$
		$L=2^{14} \cdot 3^{7} \cdot 5^{18} \cdot 7^{2} \cdot 389 \cdot 643 \cdot 3391$
14	10	$T=2^{118} \cdot 3^{71} \cdot 5^{54} \cdot 11^{6} \cdot 23^{2} \cdot 269^{4} \cdot 683 \cdot 5791$
		$L=2^{26} \cdot 3^{11} \cdot 5^{50} \cdot 683 \cdot 5791$
	11	$T=2^{108} \cdot 3^{40} \cdot 5^{69} \cdot 11^{4} \cdot 17^{2} \cdot 19^{2} \cdot 23^{3} \cdot 269^{4} \cdot 5903^{2} \cdot 18802789043$
		$L=2^{30} \cdot 3^{8} \cdot 5^{43} \cdot 23 \cdot 18802789043$
	12	$T=2^{114} \cdot 3^{49} \cdot 5^{66} \cdot 7^{4} \cdot 47 \cdot 251^{2} \cdot 269^{4} \cdot 619 \cdot 2833^{2} \cdot 4874017157$
		$L=2^{26} \cdot 3^{9} \cdot 5^{38} \cdot 7^{2} \cdot 47 \cdot 619 \cdot 4874017157$
	13	$T=2^{96} \cdot 3^{43} \cdot 5^{82} \cdot 7^{6} \cdot 11^{2} \cdot 269^{4} \cdot 353747^{2} \cdot 1684054484233184692772687 *$
		$L=2^{26} \cdot 3^{9} \cdot 5^{26} \cdot 1684054484233184692772687^{*}$

k	m	
16	11	$T=2^{106} \cdot 3^{24} \cdot 5^{58} \cdot 11^{11} \cdot 13^{4} \cdot 29^{8} \cdot 79^{2} \cdot 409^{2} \cdot 863^{4} \cdot 991 \cdot 5701^{2} \cdot 28549$
		$L=2^{22} \cdot 3^{6} \cdot 5^{64} \cdot 11 \cdot 991 \cdot 28549$
	12	$\begin{aligned} T= & 2^{134} \cdot 3^{18} \cdot 5^{74} \cdot 11^{2} \cdot 13^{4} \cdot 29^{8} \cdot 37^{2} \cdot 163 \cdot 257 \cdot 739^{2} \cdot 863^{4} \cdot 3929^{2} \cdot 38669 \\ & \times 107603 \end{aligned}$
		$L=2^{22} \cdot 3^{6} \cdot 5^{56} \cdot 163 \cdot 257 \cdot 38669 \cdot 107603$
	13	$\begin{aligned} T= & 2^{106} \cdot 3^{22} \cdot 5^{68} \cdot 7^{14} \cdot 11^{2} \cdot 13^{4} \cdot 29^{8} \cdot 863^{4} \cdot 920193557^{2} \\ & \times 18409196539129609^{*} \end{aligned}$
		$L=2^{22} \cdot 3^{10} \cdot 5^{48} \cdot 7^{2} \cdot 18409196539129609 *$
	14	$\begin{aligned} T= & 2^{126} \cdot 3^{22} \cdot 5^{86} \cdot 7^{6} \cdot 11^{3} \cdot 29^{8} \cdot 163 \cdot 223 \cdot 863^{4} \cdot 77628664507^{2} \\ & \times 72393747224211975379^{*} \end{aligned}$
		$L=2^{22} \cdot 3^{6} \cdot 5^{40} \cdot 11 \cdot 163 \cdot 223 \cdot 72393747224211975379 *$
	15	$\begin{aligned} T= & 2^{120} \cdot 3^{26 \cdot} \cdot 5^{52} \cdot 7^{4} \cdot 11^{2} \cdot 29^{8} \cdot 863^{4} \cdot 1259 \cdot 5009 \cdot 14831 \cdot 24379 \cdot 98299 \\ & 185110499^{2} \cdot 261306370933 \end{aligned}$
		$L=2^{22} \cdot 3^{6} \cdot 5^{28} \cdot 11^{2} \cdot 1259 \cdot 5009 \cdot 14831 \cdot 24379 \cdot 98299 \cdot 261306370933$

References

[1] T. Asai, On the Fourier coetficients of automorphic forms at various cusps and some applications to Rankin's convolution, J. Math. Soc. Japan, 28 (1976), 48-61.
[2] K. Doi and T. Miyake, Automorphic forms and number theory (in Japanese), Kinokuniya Shoten, Tokyo, 1976.
[3] E. Hecke, Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung II, Math. Ann., 114 (1937), 316-351.
[4] G. Shimura, The special values of the zeta functions associated with cusp forms, Comm. Pure Appl. Math., 29 (1976), 783-804.

Yoshitaka MAEDA
Department of Mathematics
Hokkaido University
Sapporo 060, Japan

