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As is well known, R. C. Lyndon [9] proved the preservation theorem for
homomorphisms and some related theorems by using his interpolation theorem
(cf. [8]). H. J. Keisler [4] gave a simple proof of a generalization of the
essential part of the above theorems of Lyndon on homomorphism9 by using his
theory of generalized atomic sets of formulas. On the other hand, L. Henkin [3]

proved an extended form of the Craig-Lyndon interpolation theorem which
includes the completeness theorem. Improving Henkin’s proof, A. Oberschelp
[12] proved an interpolation theorem of Lyndon type whose interpolant has
some information about the equality symbol. Before this, the Craig-Lyndon
interpolation theorem for the infinitary language $L_{\omega_{1}\omega}$ was given by E.G.K.
Lopez-Escobar [7].

The main purpose of this paper is to prove some interpolation theorems
whose interpolants have more information about the equality symbol and non-
logical symbols than those of the above well-known interpolation theorems, by
using a new notion of morphisms.

In Section 1, we shall introduce the notion of a morphism which can be
naturally obtained from the notion of a homomorphism by using a many-to-
many correspondence instead of a mapping. As preparation for the next
section, we shall state a theorem on morphisms which is an immediate varia-
tion of Lyndon-Keisler’s homomorphism theorem (cf. Lyndon [9; p. 151, lines
3-6], Keisler [4; Theorem 3]).

In Section 2, we shall prove the following interpolation theorem, which
may be regarded as a strengthened version of Craig’s, of Lyndon’s, and of
Oberschelp’s (cf. Craig [2; Theorem 5], Lyndon [8; p. 140], Oberschelp [12;

Theorem 2], and also Chang and Keisler [1; Theorems 2.2.20 and 2.2.24],

Robinson [14; Theorem 5.1.8], Shoenfield [15; p. 80]).

Let $\Phi$ and $\Psi$ be sentences of a first order language with the senlential
constants $\mathfrak{t}$ and $\mathfrak{f}$ and with or without equality such that $\Phi\models\Psi$ . Then there
exists a sentence $\Theta$ such that (1) $\Phi\models\Theta$ and $\Theta\models\Psi$, (2) all relation symbols oc-
curring Positively (resp. negatively) in $\Theta$ occur Positively (resp. negatively) in
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both $\Phi$ and $\Psi,$ (3) all operatiOn symbols (including constant symbols) occurring
in $\Theta$ occur in both $\Phi$ and $\Psi,$ (4) if the equality symbol occurs pOsitjvely(resp.
negatively) in $\Theta$ , then it occurs pOsitjvely in $\Phi$ (resp. negatively in $\Psi$ ).

This interpolation theorem (strictly speaking, a more general form which
can be immediately obtained from this interpolation theorem by using the
completeness theorem) was announced without proof by Oberschelp [11]. How-
ever, according to his paper [12], he found later that his proof covered
only some special cases of this theorem. The theorem on morphisms is the
cornerstone of our proof of this interpolation theorem.

In Section 3, by using Motohashi’s interpolation and characterization
theorems on primitive sets (cf. Motohashi [10; p. 116, Theorems 3.3 and 3.4]),

we shall show that our interpolation theorem can be extended to an analogous
theorem for the infinitary language $L_{\omega_{1}\omega}$ , which is a stronger form of the
interpolation theorem due to Lopez-Escobar [7; Theorem 4.1].

The author would like to express his hearty thanks to the referee and
Dr. N. Motohashi whose valuable advices led him to obtain the result of
Section 3.

\S 1. Terminologies, notations, and an immediate variation of
Lyndon-Keisler’s homomorphism theorem.

In this paper, every (object) language is assumed to be a first order
language with the sentential constants $\mathfrak{t}$ and $f$ . We shall be concerned only
with finitary languages in Sections 1 and 2, and with infinitary languages in
Section 3.

Let $L$ be a language with or without equality, and let $\mathfrak{U}$ be a structure
for $L$ . The domain of $\mathfrak{U}$ is denoted by $|\mathfrak{U}|$ , the relation of $\mathfrak{U}$ corresponding to
a relation symbol $r$ of $L$ is denoted by $(r)_{\mathfrak{A}}$ , and the operation of $\mathfrak{U}$ correspond-
ing to an operation symbol $f$ of $L$ is denoted by $(f)_{\mathfrak{A}}$ . A constant symbol is
regarded as a nullary operation symbol.

Let $t$ be a term of $L$ which contains at most some of the distinct variables
$x_{1},$ $\cdots,$ $x_{n}$ . Then $t$ is denoted by $t(x_{1},\cdots, x_{n})$ if the variables $x_{1},$ $\cdots,$ $x_{n}$ need to be
indicated. Let $\mathfrak{U}$ be a structure for $L$, and let $a_{1},$ $\cdots,$ $a_{n}$ be elements in $|\mathfrak{U}|$ .
We denote by $t[a_{1}, \cdots, a_{n}]$ the value of $t(x_{1}, \cdots, x_{n})$ when $x_{1},$ $\cdots,$ $x_{n}$ are assigned
the values $a_{1},$ $\cdots,$ $a_{n}$ respectively.

Let $\Theta$ be a formula of $L$ which contains at most some of the distinct
variables $x_{1},$ $\cdots,$ $x_{n}$ as free variables. Then $\Theta$ is denoted by $\Theta(x_{1}, \cdots, x_{n})$ if the
variables $x_{1},$ $\cdots,$ $x_{n}$ need to be indicated. Let $t_{1},$

$\cdots,$
$t_{n}$ be terms of $L$ . We denote

by $\Theta[t_{1}, \cdots, t_{n}]$ the formula obtained from $\Theta(x_{1}, \cdots, x_{n})$ by replacing all free
occurrences of $x_{1},$ $\cdots,$ $x_{n}$ by the terms $t_{1},$

$\cdots,$
$t_{n}$ respectively. Let $\mathfrak{U}$ be a structure

for $L$, and let $a_{1},$ $\cdots,$ $a_{n}$ be elements in $|\mathfrak{U}|$ . We write $\mathfrak{U}\models\Theta[a_{1}/x_{1}, \cdots, a_{n}/x_{n}]$ or
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simply $\mathfrak{U}\models\Theta[a_{1}, \cdots, a_{n}]$ , if $a_{1},$ $\cdots,$ $a_{n}$ satisfy $\Theta(x_{1}, \cdots, x_{n})$ in $\mathfrak{A}$ when the free
variables $x_{1},$ $\cdots,$ $x_{n}$ are assigned the values $a_{1},$ $\cdots,$ $a_{n}$ respectively. If $\mathfrak{U}\models\Theta[a_{1},$ $\cdots$ ,
$a_{n}]$ holds for any elements $a_{1},$ $\cdots,$ $a_{n}$ in $|\mathfrak{A}|$ , we say that $\Theta$ holds in $\mathfrak{A}$ and
write $\mathfrak{U}\models\Theta$ . If $\mathfrak{U}\models\Theta$ holds for every structure $\mathfrak{U}$ for $L$ , we write $\models\Theta$ .

Let $\Phi$ and $\Psi$ be formulas of $L$ . If $\models\Phi\leftrightarrow\Psi$ holds, we say that $\Phi$ and $\Psi$

are logically equivalent. Let $\Gamma$ and $\Delta$ be sets of formulas of $L$ . If any
formula in $\Gamma$ (resp. $\Delta$ ) is logically equivalent to some formula in $\Delta$ (resp. $\Gamma$ ),

we say that $\Gamma$ and $\Delta$ are logically equivalent and write $\Gamma\equiv l\Delta$ .
Let $\Sigma$ be a sentence or a set of sentences of $L$ . A structure $\mathfrak{U}$ for $L$

is called a model of $\Sigma$ if $\mathfrak{A}\models\Sigma$ or $\mathfrak{A}\models\Theta$ for every $\Theta$ in $\Sigma$ . We denote $byM(\Sigma)$

the class of all models of $\Sigma$ . We use $M_{L}(\Sigma)$ in place of $M(\Sigma)$ if the language
$L$ or the similarity type of models needs to be indicated. $\Sigma$ is said to be
consistent if $M(\Sigma)$ is non-empty. Furthermore, let $\Phi$ be a sentence of $L$ . If
$M_{L}(\Sigma)\subseteqq M_{L}(\Phi)$ , we say that $\Phi$ is a consequence of $\Sigma$ and write $\Sigma\models\Phi$ .

Let $L^{\prime}$ be a language included in $L$ , and let $\mathfrak{A}$ be a structure for $L$ . The
reduct of $\mathfrak{U}$ to $L^{\prime}$ is denoted by $\mathfrak{U}rL^{\prime}$ . Let $\Sigma$ be a set of sentences. We
denote by $L(\Sigma)$ the language with equality which is determined by all non-
logical symbols occurring in sentences of $\Sigma$ .

Two formulas are said to be congruent, if they differ only in their bound
occurrences of variables, and corresponding bound occurrences are bound by
corresponding quantifiers. (For the precise definition of congruence of formulas,
see Kleene [6; p. 153]).

A set $F$ of formulas of $L$ is called a generalized atomic set (or briefly,
$GA$ set) of $L$, if the following two conditions hold:
(1) If $\Theta(x_{1}, \cdots, x_{n})\in F$ and $y$ is a variable of $L$ whose new occurrences in

$\Theta[y, x_{2}, \cdots, x_{n}]$ are all free, then $\Theta[y, x_{2}, \cdots, x_{n}]\in F$ ;
(2) If $\Theta$ is a formula of $L$ which is congruent to some formula in $F$, then

$\Theta\in F$.
Let $F$ be a GA set of $L$ . We denote by $\mathcal{P}(F)$ or simply $\mathcal{P}F$ the set of all

formulas formed from formulas of $F$ by using only the $connectives\wedge,$ $\vee$ and
the quantifiers $\forall,$ $\exists$ . Here, and throughout this paper, the conjunction and
the disjunction of the empty set of formulas are allowed, and regarded as the
identically true sentential constant $f$ and the identically false sentential constant

$\mathfrak{f}$ respectively.
Let $\Theta$ be $a_{A}^{-}formula$ . Then the formula $\tilde{\Theta}$ is dePned by

$\tilde{\Theta}=\{\Phi\neg\Theta$

if $\Theta$ is of the form $\neg\Phi$ ,

otherwise.
Let $F$ be a set of formulas. The set $\{\tilde{\Theta}|\Theta\in F\}$ is denoted by $\tilde{F}$.

It is obvious that if $F$ is a GA set of $L$, then $\mathcal{P}F$ and $\tilde{F}$ are also GA sets
of $L$ . If $F$ and $G$ are GA sets of $L$, then $F\cup G$ and $F\cap G$ are also GA sets
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of $L$ .
Let $L_{1}$ and $L_{2}$ be languages with equality. We denote by $L_{1}\cap L_{2}$ the

language of all symbols that are contained in both $L_{1}$ and $L_{2}$ . Now let $F$ be
a set of formulas of $L_{1}\cap L_{2}$ , and let $\mathfrak{A}$ and $\mathfrak{B}$ be structures for $L_{1}$ and $L_{2}$

respectively. Let $M$ be a subset of the Cartesian product $|\mathfrak{A}|\times|\mathfrak{B}|$ . We
say that $M$ is an F-morphism of $\mathfrak{A}$ onto $\mathfrak{B}$ , if $M$ satisfies the following three
conditions:
(1) For any element $a$ in $|\mathfrak{U}|$ , there exists an element $b$ in $|\mathfrak{B}|$ such that

$\langle a, b\rangle\in M$ ;
(2) For any element $b$ in $|\mathfrak{B}|$ , there exists an element $a$ in $|\mathfrak{A}|$ such that

$\langle a, b\rangle\in M$ ;
(3) For any formula $\Theta(x_{1}, x_{n})$ in $F$ and any elements $\langle a_{1}, b_{1}\rangle,$

$\cdots,$
$\langle a_{n}, b_{n}\rangle$ in $M$,

$\mathfrak{U}\models\Theta[a_{1}, \cdots, a_{n}]$ implies $\mathfrak{B}\models\Theta[b_{1}, \cdots, b_{n}]$ .
An F-morphism $M$ is called an $F$-homomorphism, if $\langle a, b\rangle,$ $\langle a, c\rangle\in M$ implies
$b=c$ . We say that $\mathfrak{B}$ is an F-morphic (resp. F-homomorphic) image of $\mathfrak{A}$ , if
there exists an F-morphism (resp. F-homomorphism) of $\mathfrak{A}$ onto $\mathfrak{B}$ . If $M$ is an
F-morphism of $\mathfrak{A}$ onto $\mathfrak{B}$ , then the set $\{\langle b, a\rangle|\langle a, b\rangle\in M\}$ is denoted by $M^{-1}$ ,
and obviously $M^{-1}$ is an $F$-morphism of $\mathfrak{B}$ onto $\mathfrak{A}$ . If $M$ is an F-homomorphism
of $\mathfrak{A}$ onto $\mathfrak{B}$ and $\langle a, b\rangle\in M$, then $b$ is denoted by $M(a)$ or simply $Ma$ .

In the remainder part of this section, we want to state some properties
about morphisms, which will be used in the next section.

LEMMA 1.1. Let $L$ be a language with equality. Let $F$ be a $GA$ set of $L$,
and let $\mathfrak{A}$ and $\mathfrak{B}$ be structures for L. If $M$ is an $F$-morphjsm of $\mathfrak{U}$ onto $\mathfrak{B}$ ,
then $M$ is a $\mathcal{P}F$-morPhism of $\mathfrak{A}$ onto $\mathfrak{B}$ .

PROOF. This lemma can be easily proved by induction on formation of
formulas of $\mathcal{P}F$ .

The following theorem is an immediate variation of Lyndon-Keisler’s ho-
momorphism theorem (cf. Lyndon [9; p. 151, lines 3-6], Keisler [4; Theorem
3]).

THEOREM 1.2. Let $L$ be a language with equality. Let $F$ be a $GA$ set of
$L$ , and let $\mathfrak{A}$ and $\mathfrak{B}$ be structures for L. Then the following two conditions are
equivalent:

(i) Every sentence in $\mathcal{P}F$ that holds in $\mathfrak{A}$ also holds in $\mathfrak{B}$ ;
(ii) There exist an elementary extension $\mathfrak{A}^{*}$ of $\mathfrak{A}$ and an elementary extension

$\mathfrak{B}^{*}$ of $\mathfrak{B}$ such that $\mathfrak{B}^{*}$ is an F-morphic image of $\mathfrak{A}^{*}$ .
PROOF. $(ii)\Rightarrow(i)$ follows immediately from Lemma 1.1.

$(i)\Rightarrow(ii)$ can be proved in essentially the same manner as the well-known proof
of Lyndon-Keisler’s homomorphism theorem (cf. Keisler [4; Proofs of Theorems
1, 2 and 3], Chang and Keisler [1; The main part of Proof of Theorem 3.2.4],
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[1; Proofs of Lemma 5.2.9-Proposition 5.2.12]). We omit the detail of the
proof.

The following proposition is a modification of Theorem 1.2.
PROPOSITION 1.3. Let $L$ be a language with equality. Let $F$ be a $GA$ set

of $L$ , and let $\Sigma_{1}$ and $\Sigma_{2}$ be sets of sentences of L. Then the following two
conditions are equivalent:

(i) There exists no sentence $\Theta$ in $\mathcal{P}F$ such that $\Sigma_{1}\models\Theta$ and $\Sigma_{2}\models\neg\Theta$ ;
(ii) There exist a structure $\mathfrak{U}$ in $M_{L}(\Sigma_{1})$ and a structure $\mathfrak{B}$ in $M_{L}(\Sigma_{2})$ such

that $\mathfrak{B}$ is an F-morphjc image of $\mathfrak{U}$ .
PROOF. Since $(ii)\Rightarrow(i)$ is obvious from Lemma 1.1, we shall prove $(i)\Rightarrow(ii)$ .
Proof of $(i)\Rightarrow(ii)$ . Suppose that (i) holds. First we put

$\Delta_{1}=$ { $\neg\Theta|\Theta$ is a sentence in $\mathcal{P}F,$ $\Sigma_{2}\models\neg\Theta$ }.

Now assume, by way of contradiction, that $\Sigma_{1}\cup\Delta_{1}$ is not consistent. Then
by the compactness theorem, there exists a finite subset $\{\neg\Theta_{1}, \cdots, \neg\Theta_{n}\}$ of $\Delta_{1}$

such that

$\Sigma_{1}\cup\{\neg\Theta_{1}, \cdots, \neg\Theta_{n}\}$ is inconsistent.

Hence we have

$\Sigma_{1}\models\Theta_{1}\vee\cdots v\Theta_{n}$ and $\Sigma_{2}\models\neg(\Theta_{1}\vee\cdots v\Theta_{n})$ .
This contradicts the assumption (i), because $\Theta_{1}\vee\cdots\vee\Theta_{n}$ is a sentence in $\mathcal{P}F$.
Therefore $\Sigma_{1}\cup\Delta_{1}$ is consistent, and therefore there exists a structure $\mathfrak{C}$ in
$M_{L}(\Sigma_{1}\cup\Delta_{1})$ .

Next we put

$\Delta_{2}=$ { $\Theta|\Theta$ is a sentence in $\mathcal{P}F,$ $\mathfrak{C}\models\Theta$ }.

Now assume, by way of contradiction, that $\Sigma_{2}\cup\Delta_{2}$ is not consistent. Then
by the compactness theorem, there exists a finite subset $\{\Theta_{1}^{\prime}, \cdots, \Theta_{m}^{\prime}\}$ of $\Delta_{2}$

such that

$\Sigma_{2}\cup\{\Theta_{1}^{\prime}, \cdots, \Theta_{m}^{\prime}\}$ is inconsistent.

Therefore we have

$\Sigma_{2}\models\neg(\Theta_{1}^{\prime}\wedge\cdots\wedge\Theta_{m}^{\prime})$ and $\mathfrak{C}\models\Theta_{1}^{\prime}\wedge\cdots\wedge\Theta_{m}^{\prime}$ .
Hence we have

$\neg(\Theta_{1}^{\prime}\wedge\cdots\wedge\Theta_{m}^{\prime})\in\Delta_{1}$ and $\mathfrak{C}\models\Theta_{1}^{f}\wedge\cdots\wedge\Theta_{m}^{\prime}$ ,

because $\Theta_{1}^{\prime}\wedge\cdots\wedge\Theta_{m}^{\prime}$ is a sentence in $\mathcal{P}F$ . This contradicts the fact that $\mathfrak{C}$ is a
model of $\Delta_{1}$ . Therefore $\Sigma_{2}\cup\Delta_{2}$ is consistent, and therefore there exists a
structure $\mathfrak{D}$ in $M_{L}(\Sigma_{2}\cup\Delta_{2})$ .
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Since $\mathfrak{D}$ is a model of $\Delta_{2}$ , every sentence in $\mathcal{P}F$ that holds in $\mathfrak{C}$ also
holds in $\mathfrak{D}$ . Hence by $(i)\Rightarrow(ii)$ of Theorem 1.2, there exist an elementary ex-
tension $\mathfrak{A}$ of $\mathfrak{C}$ and an elementary extension $\mathfrak{B}$ of $\mathfrak{D}$ such that $\mathfrak{B}$ is an F-
morphic image of $\mathfrak{A}$ . From this, it follows immediately that (ii) holds.

\S 2. Applications to interpolation theorems.

In this section, we shall consider only formulas which are built up using
the connectives $\Lambda,$ $\vee,$ $\neg$ and the quantifiers $\forall,$ $\exists$ .

Let $L$ be a language with or without equality. Let $s$ be a symbol of $L$ ,
and let $\Phi$ be a sentence of $L$ . Then $s$ is said to occur positively (resp. nega-
tively) in $\Phi$ , if $s$ has an occurrence in $\Phi$ which is within the scope of an even
(resp. odd) number of negation symbols. Let $\Sigma$ be a set of sentences of $L$ .
Then $s$ is said to occur positively (resp. negatively) in $\Sigma$ , if $s$ occurs positively
(resp. negatively) in some sentence in $\Sigma$ .

LEMMA 2.1. Let $L$ be a language with equality, and let $\Phi$ be a sentence of
L. Let $G$ be the smallest $GA$ set of $L$ that satisfies the following two condi-
tions:
(1) If $r$ is an n-ary relation symbol which occurs positively in $\Phi$ , and $x_{1},$ $x_{n}$

are variables, then $r(x_{1}, \cdots, x_{n})\in G$ ;
(2) If $r$ is an n-ary relation symbol which occurs negatively in $\Phi$ , and $x_{1},$ $x_{n}$

are variables, then $\neg r(x_{1}, \cdots, x_{n})\in G$ .
Let $O$ be the smallest $GA$ set of $L$ that satisfies the following two conditions:
(1) If $f$ is an n-ary operation symbol which occurs in $\Phi$ , and $x,$ $x_{1},$ $\cdots,$ $x_{n}$ are

variables, then $f(x_{1}, \cdots, x_{n})=x\in O$ ;
(2) If $x$ and $y$ are variables, then $x=y\in O$ and $\neg x=y\in O$ ,
Let $O^{f}$ be the smallest $GA$ set of $L$ that satisfies the following two conditions:
(1) If $f$ is an n-ary operation symbol which occurs in $\Phi$, and $x,$ $x_{1},$ $\cdots,$ $x_{n}$ are

variables, then $\neg f(x_{1}, \cdots, x_{n})=x\in O^{\prime}$ ;
(2) If $x$ and $y$ are variables, then $\neg x=y\in O^{\prime}$ .
Then the following three assertions hold:

(i) $\Phi$ is logically equivalent to some sentence in $\mathcal{P}(G\cup O)$ ;
(ii) $\Phi$ is logically equivalent to some sentence in $\mathcal{P}(G\cup\tilde{O})$ ;

(iii) If the equality symbol does not occur positively in $\Phi$, then $\Phi$ is logically
equivalent to some sentence in $\mathcal{P}(G\cup O^{f})$ .

PROOF. This lemma can be easily proved by using De Morgan laws with
respect to $\wedge,$ $\vee$ and $\forall,$ $\exists$ , the law of double negation, and the following prop-
erty (S) concerning substitution of terms.

(S) Let $\Theta(x_{1}, x_{m})$ be a formula of $L$ , and let $t(y_{1}, y_{n})$ be a term of $L$ .
If all new occurrences of $y_{1},$ $y_{n}$ in $\Theta[t(y_{1}, y_{n}), x_{2}, \cdots, x_{m}]$ are free, and
each of $y_{1},$ $y_{n}$ differs from $x_{1}$ , then the following three formulas are logically
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equivalent:
(1) $\Theta[t(y_{1}, y_{n}), X_{2}, \cdots, x_{m}]$ ,
(2) $\exists x_{1}(t(y_{1}, y_{n})=x_{1}\wedge\Theta(x_{1}, \cdots, x_{m}))$ ,
(3) $\forall x_{1}(\neg t(y_{1}, y_{n})=x_{1}\vee\Theta(x_{1}, \cdots, x_{m}))$ .

Now we shall prove the following lemma, which may be regarded as a
stronger form of the Robinson joint consistency theorem for languages with
equality (cf. Chang and Keisler [1; Theorem 2.2.23], Shoenfield [15; p. 79]).

LEMMA 2.2. Let $L$ be a language with equality, and let $\Sigma_{1}$ and $\Sigma_{2}$ be sets
of sentences of L. Let $F_{1}$ be the smallest $GA$ set of $L$ that satisfies the follow-
ing four conditions:
(1) If $r$ is an n-ary relation symbol which occurs positively in $\Sigma_{1}$ , and $x_{1},$ $\cdots,$ $x_{n}$

are variables, then $r(x_{1}, \cdots, x_{n})\in F_{1}$ ;
(2) If $r$ is an n-ary relation symbol which occurs negatively in $\Sigma_{1}$ , and $x_{1},$ $\cdots,$ $x_{n}$

are variables, then $\neg r(x_{1}, \cdots, x_{n})\in F_{1}$ ;
(3) If $f$ is an n-ary operatiOn symbol which occurs in $\Sigma_{1}$ , and $x,$ $x_{1},$ $\cdots,$ $\mathfrak{r}_{n}$ are

variables, then $f(x_{1}, \cdots, x_{n})=x\in F_{1}$ ;
(4) If $x$ and $y$ are variables, then $x=y\in F_{1}$ and $\neg x=y\in F_{1}$ .
Let $F_{2}$ be the smallest $GA$ set of $L$ that satisfies the following four conditions:
(1) If $r$ is an n-ary relation symbol which occurs negatively in $\Sigma_{2}$ , and $x_{1},$ $\cdots,$ $x_{n}$

are variables, then $r(x_{1}, \cdots, x_{n})\in F_{2}$ ;
(2) If $r$ is an n-ary relation symbol which occurs pOsitjvely in $\Sigma_{2}$ , and $x_{1},$ $\cdots,$ $x_{n}$

are variables, then $\neg r(x_{1}, \cdots, x_{n})\in F_{2}$ ;
(3) Iff is an n-ary operation symbol which occurs in $\Sigma_{2}$ , and $x,$ $x_{1},$ $\cdots,$ $x_{n}$ are

variables, then $f(x_{1}, \cdots, x_{n})=x\in F_{2}$ ;
(4) If $x$ and $y$ are variables, then $x=y\in F_{2}$ ; and if the equality symbol occurs

positively in $\Sigma_{2}$ , and $x$ and $y$ are variables, then $\neg x=y\in F_{2}$ .
Let the $GA$ set $F_{1}\cap F_{2}$ be denoted by F. Then the following three conditions
are equivalent:

(i) There exists no sentence $\Theta$ in $\mathcal{P}F$ such that $\Sigma_{1}\models\Theta$ and $\Sigma_{2}\models\neg\Theta$ ;
(ii) There exist a structure $\mathfrak{A}$ in $M_{L}(\Sigma_{1})$ and a structure $\mathfrak{B}$ in $M_{L}(\Sigma_{2})$ such

that $\mathfrak{B}$ is an F-homomorphic image of $\mathfrak{A}$ ;
(iii) $\Sigma_{1}\cup\Sigma_{2}$ is consistent.

PROOF. $(iii)\Rightarrow(i)$ is obvious. Since $F$ contains all formulas of the form
$x=y$ , every F-morphism is an F-homomorphism. Hence $(i)\Rightarrow(ii)$ follows im-
mediately from $(i)\Rightarrow(ii)$ of Proposition 1.3. It remains only to prove $(ii)\Rightarrow(iii)$ .

Proof of $(ii)\Rightarrow(iii)$ . Assume that (ii) holds. And let $P$ be an F-homo-
morphism of $\mathfrak{U}$ onto $\mathfrak{B}$, where $\mathfrak{U}\in M_{L}(\Sigma_{1})$ and $\mathfrak{B}\in M_{L}(\Sigma_{2})$ .

First we construct a structure $\mathfrak{A}^{*}$ for $L$ as foIIows:
(1) $|\mathfrak{A}^{*}|=|\mathfrak{A}|$ ;
(2) If $r$ is a relation symbol such that $r(x_{1}, x_{n})\in F_{2}-F$ and $\neg r(x_{1}, \cdots, x_{n})\in$

$F_{2}-F$, then
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$(r)_{\mathfrak{A}^{*=}}\{\langle a_{1}, \cdots, a_{n}\rangle|\langle Pa_{1}, \cdots, Pa_{n}\rangle\in(r)_{\mathfrak{B}}\}$ ;

(3) If $r$ is a relation symbol such that $r(x_{1}, \cdots, x_{n})\in F_{2}-F$ and $\neg r(x_{1}, \cdots, x_{n})\not\in$

$F_{2}-F$, then
$(r)_{\mathfrak{A}^{e}}=(r)_{\mathfrak{A}}\cap\{\langle a_{1}, \cdots, a_{n}\rangle|\langle Pa_{1}, \cdots, Pa_{n}\rangle\in(r)_{\mathfrak{B}}\}$ ;

(4) If $r$ is a relation symbol such that $\neg r(x_{1}, \cdots, x_{n})\in F_{2}-F$ and $ r(x_{1}, \cdots, x_{n})\not\in$

$F_{2}-F$, then
$(r)_{\mathfrak{A}^{*}}=(r)_{\mathfrak{U}}\cup\{\langle a_{1}, \cdots, a_{n}\rangle|\langle Pa_{1}, \cdots, Pa_{n}\rangle\in(r)_{\mathfrak{B}}\}$ ;

(5) If $f$ is an operation symbol such that $f(x_{1}, \cdots, x_{n})=x\in F_{2}-F$, then $(f)_{\mathfrak{U}^{t}}$ is
defined so that

$P((f)_{\mathfrak{A}^{*}}(a_{1}, \cdots, a_{n}))=(f)_{\mathfrak{B}}(Pa_{1}, \cdots, Pa_{n})$

holds for any eIements $a_{1},$ $\cdots,$ $a_{n}$ in $|\mathfrak{A}^{*}|$ ;
(6) The other relations and operations are the same as those of $\mathfrak{U}$ .

Now it can be easily veriPed that the mapping $P$ is an $F_{2}$-homomorphism
of $\mathfrak{A}^{*}$ onto B. Hence $P^{-1}$ is an $F_{2}$-morphism of $\mathfrak{B}$ onto $\mathfrak{A}^{*}$ , and hence by
Lemma 1.1, $P^{-1}$ is a $\mathcal{P}\tilde{F}_{2}$-morphism of $\mathfrak{B}$ onto $\mathfrak{A}^{*}$ . By (ii) and (iii) of Lemma
2.1, each sentence in $\Sigma_{2}$ is logically equivalent to some sentence in $\mathcal{P}F_{2}$ .
Therefore, since $\mathfrak{B}\in M_{L}(\Sigma_{2})$ , we have $\mathfrak{A}^{*}\in M_{L}(\Sigma_{2})$ .

On the other hand, it is obvious that

$r(x_{1}, \cdots, x_{n})\in F_{1}$ implies $r(x_{1}, \cdots, x_{n})\not\in F_{2}-F$ ,
$\neg r(x_{1}, \cdots, x_{n})\in F_{1}$ implies $\neg r(x_{1}, \cdots, x_{n})\not\in F_{2}-F$ ,

$f(x_{1}, \cdots, x_{n})=x\in F_{1}$ implies $f(x_{1}, \cdots, x_{n})=x\not\in F_{2}-F$.
Hence it can be easily verified that the identity mapping $I$ of $|\mathfrak{A}|$ onto $|\mathfrak{A}^{*}|$

is an $F_{1}$-homomorphism of $\mathfrak{A}$ onto $\mathfrak{U}^{*}$ . Hence by Lemma 1.1, $I$ is a $\mathcal{P}F_{1^{-}}homo-$

morphism of $\mathfrak{U}$ onto $\mathfrak{A}^{*}$ . By (i) of Lemma 2.1, each sentence in $\Sigma_{1}$ is logically
equivalent to some sentence in $\mathcal{P}F_{1}$ . Therefore, since $\mathfrak{A}\in M_{L}(\Sigma_{1})$ , we have
$\mathfrak{A}^{*}\in M_{L}(\Sigma_{1})$ . Moreover, since $\mathfrak{A}^{*}\in M_{L}(\Sigma_{2})$ , we have $\mathfrak{A}^{*}\in M_{L}(\Sigma_{1}\cup\Sigma_{2})$ . Hence
$\Sigma_{1}\cup\Sigma_{2}$ is consistent. This completes the proof.

Let $\Phi$ and $\Psi$ be sentences of $L$ , and put $\Sigma_{1}=\{\Phi\}$ and $\Sigma_{2}=\{\neg\Psi\}$ in Lemma
2.2. Then the following interpolation theorem follows immediately from [not

$(iii)]\Rightarrow[not(i)]$ .
THEOREM 2.3. Let $L$ be a language with equality, and let $\Phi$ and $\Psi$ be

sentences of $L$ such that $\Phi\models\Psi$ . Then there exists a sentence $\Theta$ of $L$ which

satisfies the following four conditions:
(1) $\Phi\models\Theta$ and $\Theta\models\Psi$ ;
(2) All relation symbols occurring pOsitively(resp. negatively) in $\Theta$ occur posi-

tively (resp. negatively) in both $\Phi$ and $\Psi$ ;
(3) All oPeration symbols occurring in $\Theta$ occur in both $\Phi$ and $\Psi$ ;
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(4) If the equality symbol occurs negatively in $\Theta$ , then it occurs negatively in $\Psi$ .
REMARK 2.4. Applying this theorem to the sentences $\neg\Psi,$ $\neg\Phi$ with $\neg\Psi\models$

$\neg\Phi$ in place of $\Phi,$ $\Psi$ with $\Phi\models\Psi$ , the above condition (4) can be replaced by
the following:
(4) If the equality symbol occurs Positively in $\Theta$ , then it occurs pOsitively in $\Phi$ .

Theorem 2.3 can be improved so that $\Theta$ satisfies not only the conditions
(1) $-(4)$ but also (4). To show this, we shall first prove the following lemma,
which can be regarded as a generalization of the Robinson joint consistency
theorem for languages without equality (cf. Robinson [13; Theorem 2.9], [14;
Theorem 5.1.6]).

LEMMA 2.5. Let $L$ be a language with equality, and let $\Sigma_{i}(i=1,2)$ be a
set of sentences of $L$ in which the equality symbol does not occur positively.
Let $F_{i}(i=1,2)$ be the smallest $GA$ set of $L$ that satisfies the following two
conditions:
$(1_{t})$ If $r$ is an n-ary relation symbol occurring pOsjtjvely in $\Sigma_{i}$ , and $t_{1},$ $t_{n}$ are

tenns of $L(\Sigma_{t})$ , then $r(t_{1}, \cdots, t_{n})\in F_{i}$ ;
($2D$ If $r$ is an n-ary relation symbol occurring negatively in $\Sigma_{i}$ , and $t_{1},$

$\cdots,$
$t_{n}$

are term $s$ of $L(\Sigma_{i})$ , then $\neg r(t_{1}, \cdots, t_{n})\in F_{i}$ .
Let $F$ denote the $GA$ set $F_{1}\cap\tilde{F}_{2}$ , and let $O$ be the smallest $GA$ set of $L$ that
satisfies the following two conditions:
(1) If $f$ is an n-ary operation symbol of $L(\Sigma_{1})\cap L(\Sigma_{2})$ , and $x,$ $x_{1},$ $\cdots,$ $x_{n}$ are

variables, then $f(x_{1}, \cdots, x_{n})=x\in O$ ;
(2) If $x$ and $y$ are variables, then $x=y\in O$ .
Then the following four conditions are equivalent:

(i) There exists no sentence $\Theta$ in $\mathcal{P}F$ such that $\Sigma_{1}\models\Theta$ and $\Sigma_{2}\models\neg\Theta$ ;
(ii) There exist a structure $\mathfrak{A}$ in $M_{L}(\Sigma_{1})$ and a structure $\mathfrak{B}$ in $M_{L}(\Sigma_{2})$ such

that $\mathfrak{B}$ is an $F$-morphic image of $\mathfrak{A}$ ;
(iii) There exist a structure $\mathfrak{U}^{*}$ in $M_{L}(\Sigma_{1})$ and a structure $\mathfrak{B}^{*}$ in $M_{L}(\Sigma_{2})$ such

that $\mathfrak{B}^{*}$ is an $(F\cup O)$ -homomorPhic image of $\mathfrak{A}^{*};$

(iv) $\Sigma_{1}\cup\Sigma_{2}$ is consistent.
PROOF. $(iv)\Rightarrow(i)$ is obvious. $(i)\Rightarrow(ii)$ follows immediately from $(i)\Rightarrow(ii)$ of

Proposition 1.3. $(iii)\Rightarrow(iv)$ follows immediately from $(ii)\Rightarrow(iii)$ of Lemma 2.2,
because under the assumption of Lemma 2.5 that the equality symbol does not
occur positively in $\Sigma_{2},$ $F\cup O$ in Lemma 2.5 includes $F$ in Lemma 2.2, i.e. an
$(FUO)$ -homomorphism in Lemma 2.5 is an F-homomorphism in Lemma 2.2.
What remains is to prove the implication $(ii)\Rightarrow(iii)$ .

Before we describe the proof of $(ii)\Rightarrow(iii)$ , we define some GA sets as fol-
lows:

$G$ is the GA set of $L$ which consists of all formulas in $F$ not containing
any operation symbol.
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$G_{1}$ is the GA set of $L$ which consists of all formulas in $F_{1}$ not containing
any operation symbol.

$O_{1}$ is the smallest GA set of $L$ that satisfies the following two conditions:
(1) If $f$ is an n-ary operation symbol of $L(\Sigma_{1})$ , and $x,$ $x_{1},$ $\cdots,$ $x_{n}$ are variables,

then $f(x_{1}, \cdots, x_{n})=x\in O_{1}$ ;
(2) If $x$ and $y$ are variables, then $x=y\in O_{1}$ .

Proof of $(ii)\Rightarrow(iii)$ . We assume that (ii) holds, that is, we assume that there
exist a structure $\mathfrak{U}$ in $M_{L}(\Sigma_{1})$ and a structure $\mathfrak{B}$ in $M_{L}(\Sigma_{2})$ such that an F-
morphism $M$ of $\mathfrak{A}$ onto $\mathfrak{B}$ exists. Let $L^{f}$ be the language formed from $L$ by
omitting all operation symbols not belonging to $L(\Sigma_{1})\cap L(\Sigma_{2})$ , and let $\mathfrak{M}$ be the
substructure of $(\mathfrak{A}\times \mathfrak{B})rL^{\prime}$ generated by $M$, where $\mathfrak{A}\times \mathfrak{B}$ denotes the direct
product of $\mathfrak{A}$ and B.

First we shall prove that the mapping $P$ defined by

$P=\{\langle\langle a, b\rangle, a\rangle|\langle a, b\rangle\in|\mathfrak{M}|\}$

is a (GU0)-homomorphism of $\mathfrak{M}$ onto $\mathfrak{A}$ . (Note that $\tilde{G}\cup O$ is a GA set of $L^{\prime}.$)

Since it is obvious that $P$ is an O-homomorphism of $\mathfrak{M}$ onto $\mathfrak{A}$ , we shall
prove that $P$ is a G-homomorphism. To prove this, it suffices to prove that
$P^{-1}$ is a G-morphism of $\mathfrak{A}$ onto M.

Let $\Theta(x_{1}, \cdots, x_{n})$ be an atomic formula such that $\Theta(x_{1}, \cdots, x_{n})\in G$ , and let
$\langle a_{1}, \langle a_{1}, b_{1}\rangle\rangle,$

$\cdots,$
$\langle a_{n}, \langle a_{n}, b_{n}\rangle\rangle$ be members of $P^{-1}$ . Now suppose that

$(^{*})$ $\mathfrak{A}\models\Theta[a_{1}, \cdots, a_{n}]$ .
Since $\langle a_{1}, b_{1}\rangle,$

$\cdots,$
$\langle a_{n}, b_{n}\rangle$ are in $|\mathfrak{M}|$ , there exist terms $t_{1}(y_{1}, y_{m}),$ $\cdots$ ,

$t_{n}(y_{1}, y_{m})$ of $L(\Sigma_{1})\cap L(\Sigma_{2})$ and elements $\langle c_{1}, d_{1}\rangle,$
$\cdots,$

$\langle c_{m}, d_{m}\rangle$ in $M$ such that

$a_{i}=t_{i}[c_{1}, \cdots, c_{m}]$ , $i=1,$ 2, , $n$ ;

$b_{i}=t_{i}[d_{1}, \cdots, d_{m}]$ , $i=1,2,$ $\cdots,$ $n$ .

Hence from $(*)$ , we have

$\mathfrak{A}\models\Theta[t_{1}, \cdots, t_{n}][c_{1}/y_{1}, ’ c_{m}/y_{m}]$ .
This implies that

$\mathfrak{B}\models\Theta[t_{1}, ’ t_{n}][d_{1}/y_{1}, \cdots, d_{m}/y_{m}]$ ,

because $\Theta[t_{1}, \cdots, t_{n}]\in F$ and $M$ is an F-morphism of $\mathfrak{A}$ onto B. Therefore we
have

$\mathfrak{B}\models\Theta[b_{1}, \cdots, b_{n}]$ .

Hence from $(^{*})$ and the definition of $\mathfrak{M}$ , we obtain

$\mathfrak{M}\models\Theta[\langle a_{1}, b_{1}\rangle, \cdots, \langle a_{n}, b_{n}\rangle]$ .
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Next let $\Theta(x_{1}, \cdots, x_{n})$ be an atomic formula such that $\neg\Theta(x_{1}, \cdots, x_{n})\in G$ , and
let $\langle a_{1}, \langle a_{1}, b_{1}\rangle\rangle,$

$\cdots,$
$\langle a_{n}, \langle a_{n}, b_{n}\rangle\rangle$ be members of $P^{-1}$ . Now suppose that

$\mathfrak{A}\models\neg\Theta[a_{1}, \cdots, a_{n}]$ .
Then

$\mathfrak{Y}f\models\neg\Theta[\langle a_{1}, b_{1}\rangle, \cdots, \langle a_{n}, b_{n}\rangle]$

follows immediately from the definition of $\mathfrak{M}$ .
By the above arguments, we have that $P^{-1}$ is a G-morphism. Hence $P$ is

a $(\tilde{G}U0)$ -homomorphism of $\mathfrak{M}$ onto $\mathfrak{A}$ .
Now we construct a structure $\mathfrak{A}^{*}$ for $L$ as follows:

(1) $|\mathfrak{U}^{*}|=|\mathfrak{M}|$ ;
(2) If $r$ is a relation symbol such that $r(x_{1}, \cdots, x_{n})\in\tilde{G}_{1}-\tilde{G}$ and $\neg r(x_{1}, \cdots, x_{n})\in$

$\tilde{G}_{1}-\tilde{G}$ , then

$(r)_{\mathfrak{A}^{*=}}\{\langle\langle a_{1}, b_{1}\rangle, \cdots, \langle a_{n}, b_{n}\rangle\rangle|\langle a_{1}, \cdots, a_{n}\rangle\in(r)_{\mathfrak{A}}\}$ ;

(3) If $r$ is a relation symbol such that $r(x_{1}, \cdots, x_{n})\in\tilde{G}_{1}-\tilde{G}$ and $\neg r(x_{1}, \cdots, x_{n})\not\in$

$\tilde{G}_{1}-\tilde{G}$ , then

$(r)_{\mathfrak{A}^{*}}=(r)_{\mathfrak{M}}\cap\{\langle\langle a_{1}, b_{1}\rangle, \cdots, \langle a_{n}, b_{n}\rangle\rangle|\langle a_{1}, \cdots, a_{n}\rangle\in(r)_{\mathfrak{A}}\}$ ;

(4) If $r$ is a relation symbol such that $\neg r(x_{1}, \cdots, x_{n})\in\tilde{G}_{1}-\tilde{G}$ and $ r(x_{1}, \cdots, x_{n})\not\in$

$\tilde{G}_{1}-\tilde{G}$ , then
$(r)_{\mathfrak{A}^{*}}=(r)_{\mathfrak{M}}U\{\langle\langle a_{1}, b_{1}\rangle, \cdots, \langle a_{n}, b_{n}\rangle\rangle|\langle a_{1}, -, a_{n}\rangle\in(r)_{\mathfrak{A}}\}$ ;

(5) If $f$ is an n-ary operation symbol of $L$ such that $f(x_{1}, \cdots, x_{n})=x\not\in O$ , then
$(f)_{\mathfrak{A}^{*}}$ is defined so that

$P((f)_{\mathfrak{A}^{*}}(\langle a_{1}, b_{1}\rangle, \cdots, \langle a_{n}, b_{n}\rangle))=(f)_{\mathfrak{A}}(a_{1}, \cdots, a_{n})$

holds for any elements $\langle a_{1}, b_{1}\rangle,$
$\cdots,$

$\langle a_{n}, b_{n}\rangle$ in $|\mathfrak{A}^{*}|$ ;
(6) The other relations and operations are the same as those of $\mathfrak{M}$ .
Then by using the fact that $P$ is a $(\tilde{G}\cup O)$ -homomorphism of $\mathfrak{M}$ onto $\mathfrak{U}$ , it
can be easily verified that $P$ is a $(\tilde{G}_{1}\cup O_{1})$ -homomorphism of $\mathfrak{A}^{*}$ onto $\mathfrak{A}$ .
Hence $P^{-1}$ is a $(G_{1}\cup\tilde{O}_{1})$-morphism of $\mathfrak{A}$ onto $\mathfrak{A}^{*}$ , and hence by Lemma 1.1,
$P^{-1}$ is a $\mathcal{P}(G_{1}U\tilde{O}_{1})$ -morphism of $\mathfrak{A}$ onto $\mathfrak{A}^{*}$ . By (iii) of Lemma 2.1, each
sentence in $\Sigma_{1}$ is logically equivalent to some sentence in $\mathcal{P}(G_{1}U\tilde{O}_{1})$ .
Therefore, since $\mathfrak{U}\in M_{L}(\Sigma_{1})$ , we have $\mathfrak{A}^{*}\in M_{L}(\Sigma_{1})$ .

Hereafter, we shall prove that the mapping $Q$ defined by

$Q=\{\langle\langle a, b\rangle, b\rangle|\langle a, b\rangle\in|\mathfrak{A}^{*}|\}$

is an $(FUO)$ -homomorphism of $\mathfrak{A}^{*}$ onto B.
First we have that $Q$ is an O-homomorphism of $\mathfrak{A}^{*}$ onto $\mathfrak{B}$ , because

$(f)_{\mathfrak{A}^{*}}=(f)_{\mathfrak{M}}$ for all operation symbols $f$ occurring in formulas in $0$ and $Q$ is
obviously an O-homomorphism of $\mathfrak{M}$ onto B.
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Next we shall show that $Q$ is a G-morphism (G-homomorphism) of $\mathfrak{A}^{*}$ onto
B.

Let $\Theta(x_{1}, \cdots, x_{n})$ be an atomic formula formed from a relation symbol $r$

such that $\Theta(x_{1}, \cdots, x_{n})\in G$ , and let $\langle\langle a_{1}, b_{1}\rangle, b_{1}\rangle,$
$\cdots,$

$\langle\langle a_{n}, b_{n}\rangle, b_{n}\rangle$ be members of
$Q$ . Now suppose that

$\mathfrak{A}^{*}\models\Theta[\langle a_{1}, b_{1}\rangle, \cdots, \langle a_{n}, b_{n}\rangle]$ .
Since $\Theta(x_{1}, \cdots, x_{n})\in G$ i.e. $\neg\Theta(x_{1}, \cdots, x_{n})\in\tilde{G},$

$(r)_{\mathfrak{A}*}\subseteqq(r)_{\mathfrak{M}}$ follows from the defini-
tion of $\mathfrak{A}^{*}$ . Hence we have

$\mathfrak{M}\models\Theta[\langle a_{1}, b_{1}\rangle, \cdots, \langle a_{n\prime}b_{n}\rangle]$ .
Therefore by the definition of $\mathfrak{M}$ , we have

$\mathfrak{B}\models\Theta[b_{1\prime} ’ b_{n}]$ .
Next let $\Theta(x_{1}, \cdots, x_{n})$ be an atomic formula formed from a relation symbol

$\gamma$ such that $\neg\Theta(x_{1}, \cdots, x_{n})\in G$, and let $\langle\langle a_{1}, b_{1}\rangle, b_{1}\rangle,$
$\cdots,$

$\langle\langle a_{n}, b_{n}\rangle, b_{n}\rangle$ be members
of $Q$ . Now suppose that

$\mathfrak{A}^{*}\models\neg\Theta[\langle a_{1}, b_{1}\rangle, ’ \langle a_{n}, b_{n}\rangle]$ .
Since $\neg\Theta(x_{1}, \cdots, x_{n})\in G$ i.e. $\Theta(x_{1}, \cdots, x_{n})\in\tilde{G},$

$(r)_{\mathfrak{A}^{*}}\supseteqq(r)_{\mathfrak{M}}$ follows from the defini-
tion of $\mathfrak{A}^{*}$ . Hence we have

$\mathfrak{M}\models\neg\Theta[\langle a_{1}, b_{1}\rangle, \cdots, \langle a_{n}, b_{n}\rangle]$ .
Therefore by the definition of $\mathfrak{M}$, we have

$\mathfrak{A}\models\neg\Theta[a_{1}, \cdots, a_{n}]$ or $\mathfrak{B}\models\neg\Theta[b_{1}, \cdots, b_{n}]$ .
Since $\langle a_{1}, b_{1}\rangle,$

$\cdots,$
$\langle a_{n}, b_{n}\rangle$ are in $|\mathfrak{A}^{*}|$ i.e. in $|\mathfrak{M}|$ , there exist terms $t_{1}(y_{1},$ $\cdots$ ,

$y_{m}),$ $\cdots,$ $t_{n}(y_{1}, y_{m})$ of $L(\Sigma_{1})\cap L(\Sigma_{2})$ and elements $\langle c_{1}, d_{1}\rangle,$
$\cdots,$

$\langle c_{m}, d_{m}\rangle$ in $M$

such that

$a_{i}=t_{i}[c_{1},$ , $cM$ , $i=1,$ 2, , $n$ ;

$b_{i}=t_{i}[d_{1}, \cdots, d_{m}]$ , $i=1,2,$ $\cdots,$ $n$ .
Hence, in the case where

$\mathfrak{A}\models\neg\Theta[a_{1}, \cdots, a_{n}]$ ,

we have

$\mathfrak{A}\models\neg\Theta[t_{1}, \cdots, t_{n}][c_{1}/y_{1}, \cdots, c_{m}/y_{m}]$ .

This implies that

$\mathfrak{B}\models\neg\Theta[t_{1}, \cdots, t_{n}][d_{1}/y_{1}, \cdots, d_{m}/y_{m}]$ ,

because $\neg\Theta[t_{1}, \cdots, t_{n}]\in F$ and $M$ is an F-morphism of $\mathfrak{U}$ onto $\mathfrak{B}$ . Therefore
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we have

$\mathfrak{B}\models\neg\Theta[b_{1}, ’ b_{n}]$ .
Hence in any case, we have

$\mathfrak{B}\models\neg\Theta[b_{1}, ’ b_{n}]$ .
By the above arguments, we have that $Q$ is a G-morphism of $\mathfrak{A}^{*}$ onto $\mathfrak{B}$ .

Therefore $Q$ is a (GUO)-homomorphism of $\mathfrak{A}^{*}$ onto $\mathfrak{B},$ $b^{\alpha\cap}.auseQ$ is an O-ho-
momorphism of $\mathfrak{A}^{*}$ onto $\mathfrak{B}$ . Hence by Lemma 1.1, $Q$ is a $\mathcal{P}(GUO)$ -homomor-
phism of $\mathfrak{A}^{*}$ onto $\mathfrak{B}$ . Therefore we have that $Q$ is an $(FUO)$ -homomorphism
of $\mathfrak{A}^{*}$ onto $\mathfrak{B}$ , because $\mathcal{P}(F\cup O)\equiv l\mathcal{P}(G\cup O)$ is obvious from (S) in the proof of
Lemma 2.1. Hence, if we put $\mathfrak{B}^{*}=\mathfrak{B}$ , then we have (iii). This completes the
proof of Lemma 2.5.

Let $\Phi$ be a sentence of $L$ in which the equality symbol does not occur
positively, and let $\Psi$ be a sentence of $L$ in which the equality symbol does
not occur negatively. Put $\Sigma_{1}=\{\Phi\}$ and $\Sigma_{2}=\{\neg\Psi\}$ in Lemma 2.5. Then the
following interpolation theorem follows immediately from [not $(iv)$] $\Rightarrow[not(i)]$ .

THEOREM 2.6. Let $L$ be a language with equality, and let $\Phi$ and $\Psi$ be
sentences of $L$ such that $\Phi\models\Psi$ . Assume that the equality symbol does not occur
positively in $\Phi$ and does not occur negatively in $\Psi$ . Then there exists a sentence
$\Theta$ of $L$ which satisfies the following four conditions:
(1) $\Phi\models\Theta$ and $\Theta\models\Psi$ ;
(2) All relation symbols occurring Positively (resp. negatively) in $\Theta$ occur posi-

tively (resp. negatively) in both $\Phi$ and $\Psi$ ;
(3) All operation symbols occurring in $\Theta$ occur in both $\Phi$ and $\Psi$ ;
(4) The equality symbol does not occur in $\Theta$ .

The following interpolation theorem which is the aim of this section follows
immediately from the collection of Theorem 2.3, Remark 2.4, and Theorem 2.6.

THEOREM 2.7. Let $L$ be a language with or without equality, and let $\Phi$ and
$\Psi$ be sentences of $L$ such that $\Phi\models\Psi$ . Then there exists a sentence $\Theta$ of $L$

which satisfies the following four conditions:
(1) $\Phi\models\Theta$ and $\Theta\models\Psi$ ;
(2) All relation symbols that occur p0sitively (resp. negatively) in $\Theta$ occur posi-

tively (resp. negatively) in both $\Phi$ and $\Psi$ ;
(3) All operati0n symbols that occur in $\Theta$ occur in both $\Phi$ and $\Psi$ ;
(4) If the equality symbol occurs p0sitively (resp. negatively) in $\Theta$ , then it occurs

p0sitively in $\Phi$ (resp. negatively in $\Psi$).

\S 3. An extension of the interpolation theorem to $L_{\omega_{1}\omega}$ .

In this section, we shall consider only languages with a set of $\omega_{1}$ variables.
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Let $L$ be a usual first order language with or without equality. We denote by
$L_{\omega_{1}\omega}$ the infinitary language which has the same symbols as $L$ and in which
the conjunction symbol $\wedge$ and disjunction symbol $\vee$ may be applied to count-
able sets of formulas. For the infinitary language $L_{\omega_{1}\omega}$ , we use the same
terminologies and notations as those for a finitary language, except that we
use $\mathcal{P}^{*}$ instead of $\mathcal{P}$ . However, in our discussion, we shall be concerned only
with formulas having finitely many free variables. To make sure, we want to
state some of the terminologies and notations.

A set $F$ of formulas of $L_{\omega_{1}\omega}$ is called a $GA$ set of $L_{\omega_{1}\omega}$ , if the following
three conditions hold:
(1) Each formula of $F$ has only finitely many free variables;
(2) If $\theta(x_{1}, \cdots, x_{n})\in F$ and $y$ is a variable of $L$ whose new occurrences in

$\Theta[y, x_{2}, \cdots, x_{n}]$ are all free, then $\Theta[y, x_{2}, \cdots, x_{n}]\in F$ ;
(3) If $\Theta$ is a formula of $L_{\omega_{1}\omega}$ which is congruent to some formula in $F$, then

$\Theta\in F$ .
Let $F$ be a GA set of $L_{\omega_{1}\omega}$ . We denote by $\mathcal{P}^{*}(F)$ or simply $\mathcal{P}^{*}F$ the set of

all formulas of $L_{\omega_{1}\omega}$ which are formed from formulas of $F$ by using only the
(countable) connectives $\Lambda,$ $\vee$ and the quantifiers $\forall,$

$\exists$ and each of which has
only finitely many free variables. Note that $\mathcal{P}^{*}F$ is also a GA set of $L_{\omega_{1}\omega}$ .

The following lemma, which is analogous to Lemma 1.1, can be easily
obtained.

LEMMA 3.1. Let $L$ be a language with equality. Let $F$ be a $GA$ set of
$L_{\omega_{1}\omega}$ , and let $\mathfrak{A}$ and $\mathfrak{B}$ be structures for L. If $M$ is an $F$-morphism of $\mathfrak{A}$ onto

$\mathfrak{B}$ , then $M$ is a $\mathcal{P}^{*}F$-morPhism of $\mathfrak{U}$ onto B.
Let $F$ be a GA set of $L_{\omega_{1}\omega}$ , and let $G$ be a subset of $F$ . If the smallest

GA set of $L_{\omega_{1}\omega}$ including $G$ coincides with $F$, then we say that $F$ is generated
by $G$ . If $F$ is generated by a countable set, then we say that $F$ is countably
generated. Note that if $F$ is generated by $G$ , then every G-morphism is an
F-morphism, (and obviously, every F-morphism is a G-morphism).

The following proposition, which is analogous to Proposition 1.3, can be
immediately obtained from Motohashi’s interpolation and characterization
theorems on primitive sets (cf. Motohashi [10; p. 116, Theorems 3.3 and 3.4]).

PROPOSITION 3.2. Let $L$ be a language with equality. Let $F$ be a count-
ably generated $GA$ set of $L_{\omega_{1}\omega}$ , and let $\Phi_{1}$ and $\Phi_{2}$ be sentences of $L_{\omega_{1}\omega}$ . Then
the following two conditions are equivalent:
(i) There exists no sentence $\Theta$ in $\mathcal{P}^{*}F$ such that $\Phi_{1}\models\Theta$ and $\Phi_{2}\models\neg\Theta$ ;

(ii) There exist a structure $\mathfrak{A}$ in $M_{L}(\Phi_{1})$ and a structure $\mathfrak{B}$ in $M_{L}(\Phi_{2})$ such that
$\mathfrak{B}$ is an $F$-morphic image of $\mathfrak{A}$ .

We are now in a position to show the following theorem, which is an ex-
tension of Theorem 2.7 and which is a strengthening of Lopez-Escobar’s in-
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terpolation theorem (cf. Lopez-Escobar [7; Theorem 4.1], or also Keisler [5;

Theorems 4, 6 and $6A$]).

THEOREM 3.3. Let $L$ be a language with or without equality, and let $\Phi$ and
$\Psi$ be sentences of $L_{\omega_{1}\omega}$ such that $\Phi\models\Psi$ . Then there exists a sentence $\Theta$ of
$L_{\omega_{1}\omega}$ which satisfies the following four conditions:
(1) $\Phi\models\Theta$ and $\Theta\models\Psi$ ;
(2) All relation symbols that occur posiiively(resp. negatively) in $\Theta$ occur posi-

tively (resp. negatively) in both $\Phi$ and $\Psi$ ;
(3) All operatjOn symbols that occur in $\Theta$ occur in both $\Phi$ and $\Psi$ ;
(4) If the equality symbol occurs positively(resp. negatively) in $\Theta$ , then it occurs

positively in $\Phi$ (resp. negatively in $\Psi$).

PROOF. Change the description of Section 2 as follows:
(1) Sentence3 of $L$ are replaced by sentences of $L_{\omega_{1}\omega}$ ;
(2) GA sets of $L$ are replaced by GA sets of $L_{\omega_{1}\omega}$ ;
(3) $\mathcal{P}$ is replaced by $\mathcal{P}^{*};$

(4) $\Sigma_{1}$ and $\Sigma_{2}$ in Lemma 2.2 and in Lemma 2.5 are assumed to be unit sets;
(5) Lemma 1.1 and Proposition 1.3 are replaced by Lemma 3.1 and Proposition

3.2 respectively.
Then, it can be easily seen that all the above modified arguments hold. Hence
we have Theorem 3.3.
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