On the genus field of an algebraic number field of odd prime degree

By Makoto ISHIDA

(Received June 12, 1974)

Let K be an algebraic number field of finite degree. Then the genus field \tilde{K} of K is defined as the maximal abelian extension of K, which is a composite of an abelian extension \tilde{k}_0 of Q with K and is unramified at all the finite prime ideals of K (cf. Fröhlich [1]). The extension degree of \tilde{K} over K is also called the genus number of K.

In the preceding paper [3], we have shown how we can construct explicitly the genus field \tilde{K} of K, under the assumption that the degree and the discriminant of K are coprime.

The purpose of this paper is to determine the genus field and the genus number of an (arbitrary) algebraic number field K of odd prime degree l.

1. Let l be an odd prime number and let K be an algebraic number field of degree l.

Consider the p^n -th cyclotomic number field $k = Q(\zeta_{pn})$, where p is a prime number and ζ_{pn} is a primitive p^n -th root of unity. Suppose that the decomposition of p in K as follows:

(1)
$$p = \mathfrak{p}_1^{e_1} \mathfrak{p}_2^{e_2} \cdots \mathfrak{p}_m^{e_m}, \qquad N \mathfrak{p}_i = p^{f_i},$$

where we have

(2)
$$\sum_{i=1}^{m} e_i f_i = [K: \mathbf{Q}] = l.$$

For a subfield k_0 , of degree d > 1, of $k = Q(\zeta_{pn})$, if the composite field $k_0 K$ is unramified (at all the finite prime ideals of K, i. e. at $\mathfrak{p}_1, \mathfrak{p}_2, \dots, \mathfrak{p}_m$), then, in (1), d divides e_1, e_2, \dots, e_m and so, by (2), d divides l i. e. we have d = l. So m = 1, $e_1 = l$, $f_1 = 1$, i. e. p is totally ramified in K. On the other hand, as d divides $\varphi(p^n) = p^{n-1}(p-1) = [k: Q]$, there are two cases:

(i) $p \neq l$. Then d = l divides p-1 and so we have $k_0 \subset Q(\zeta_p)$, i.e. k_0 is the unique subfield, of degree l, of $Q(\zeta_p)$. In this case, as is shown in [3], the converse assertion holds. That is, if $p \equiv 1 \pmod{l}$ is totally ramified in K then k_0K is unramified over K.

(ii) p = l. Then we have $k_0 \subset Q(\zeta_{l^2})$, i.e. k_0 is the unique subfield, of de-

M. Ishida

gree l, of $Q(\zeta_{l^2})$. So the problem to be considered is to decide when k_0K is unramified over K.

2. Let $k = Q(\zeta_{l^2})$ and let k_0 the unique subfield, of degree l, of k. Of course, k_0 is contained in the maximal real subfield k' of k. On the other hand, let K be an algebraic number field of degree l, in which l is totally ramified.

As in [3], we use the terminologies of class field theory. Let $A_l(Q)$ be the group of all the ideals, prime to l, in Q and let $S_{l^2}(Q)$ be the 'Strahl' mod l^2 in Q i.e. the subgroup of $A_l(Q)$ consisting of all (principal) ideals (a) with $a \equiv 1 \pmod{l^2}$ (multiplicative congruence). Then the subfield k_0 of k' corresponds to the ideal group

$$H_{l^2}(\mathbf{Q}) = \{ (a) \in A_l(\mathbf{Q}) \mid a^{l-1} \equiv 1 \pmod{k^2} \},\$$

in Q, with defining modulus l^2 . So the 'Verschiebungssatz' implies that $k_0 K$ is the abelian extension of K corresponding to the ideal group

$$H_{l^2}(K) = \{ \mathfrak{a} \mid (\mathfrak{a}, l) = 1, N\mathfrak{a}^{l-1} \equiv 1 \pmod{l^2} \},\$$

in K, with defining modulus l^2 . Hence we see that k_0K is unramified over K if and only if $H_{l^2}(K)$ contains all the principal ideals, prime to l, in K.

Now as l is totally ramified in K, we can find a primitive element π of K, whose minimal polynomial is of Eisenstein type with respect to l:

(3)
$$f(X) = X^{l} + a_{1}X^{l-1} + \dots + a_{l} \in \mathbf{Z}[X]$$

with $l | a_i (i=1, 2, \dots, l)$ and $l^2 \nmid a_l (cf. [2])$.

(A) Suppose that k_0K is unramified over K. Then, for the integer $\gamma = 1-y\pi$ in K ($y \in \mathbb{Z}$), we must have

$$N_K \gamma^{l-1} = N(\gamma)^{l-1} \equiv 1 \pmod{l^2}.$$

On the other hand, as $l | a_i$, we have

$$N_K \gamma^{l-1} = (1 + a_1 y + \dots + a_l y^l)^{l-1}$$

$$\equiv 1 - (a_1 y + \dots + a_l y^l) \pmod{l^2}.$$

So it holds that

$$a_1y + a_2y^2 + \dots + a_ly^l \equiv 0 \pmod{l^2}$$

for any y in Z. Writing $a_i = lb_i$ $(b_i \in Z)$, we see that

 $b_1 + b_2 y + \dots + b_l y^{l-1} \equiv 0 \pmod{l}$

for $y=1, 2, \dots, l-1$. Then, as $l \nmid b_l$, we must have

$$b_1 + b_2 Y + \dots + b_l Y^{l-1} \equiv b_l (Y^{l-1} - 1) \pmod{l}$$

as a polynomial of Y over Z. Hence we have

290

$$l | b_2, \cdots, b_{l-1} ; b_1 \equiv -b_l \pmod{l},$$

i.e. the coefficients a_i of f(X) satisfy the following condition:

(#)
$$l^2 | a_2, \cdots, l^2 | a_{l-1} ; a_1 + a_l \equiv 0 \pmod{l^2}$$
.

(B) Conversely suppose that the coefficients a_i of the minimal polynomial f(X) of π satisfy the condition (#). We need the following

LEMMA. Let X_1, X_2, \dots, X_l be l independent variables and consider a monomial $M = X_1^{k_1} X_2^{k_2} \cdots X_l^{k_l}$ with $k_1 \ge 2$. Let $F(X_1, X_2, \dots, X_l)$ be the 'smallest' symmetric polynomial containing M as its term. Using the fundamental symmetric polynomials $Y_1 = X_1 + X_2 + \cdots + X_l$, $Y_2 = X_1 X_2 + \cdots + X_l X_j + \cdots + X_{l-1} X_l$, $\cdots, Y_l = X_1 X_2 \cdots X_l$, we can write

$$F(X_1, X_2, \dots, X_l) = c + aY_1 + bY_l + \dots \in \mathbb{Z}[Y_1, Y_2, \dots, Y_l].$$

Then we have c = a = 0 and $b \equiv 0 \pmod{l}$.

PROOF.

$$c = F(0, 0, \dots, 0) = 0.$$

$$a = \frac{\partial F}{\partial X_1}(0, 0, \dots, 0) = 0.$$

$$b \equiv \frac{\partial^l F}{\partial X_1 \partial X_2 \dots \partial X_l}(0, 0, \dots, 0) = 0 \pmod{l}.$$

In fact, consider the coefficient s_N of $X_1X_2 \cdots X_l$ in a monomial $N = Y_1^{h_1}Y_2^{h_2} \cdots Y_l^{h_l}$ as a polynomial of X_1, X_2, \cdots, X_l . Of course, we may restrict our consideration to such an N with $h_1 + 2h_2 + \cdots + lh_l = l$. Then

(a) $h_l \neq 0 \Rightarrow N = Y_l \Rightarrow s_N = 1$,

(b) $h_l = 0 \Rightarrow$ for an index $j(\langle l), h_j \neq 0 \Rightarrow s_N$ is a multiple of ${}_lC_j \Rightarrow s_N \equiv 0 \pmod{l}$.

COROLLARY. In our case (i.e. under the assumption (\sharp)), let $\pi = \pi^{(1)}, \pi^{(2)}, \dots, \pi^{(l)}$ be all the conjugates of π over Q. Then we have

$$F(\pi^{(1)}, \pi^{(2)}, \cdots, \pi^{(l)}) \equiv 0 \pmod{l^2}.$$

PROOF.

$$F(\pi^{(1)}, \pi^{(2)}, \cdots, \pi^{(l)}) \equiv b\pi^{(1)}\pi^{(2)}\cdots\pi^{(l)} = -ba_l \equiv 0 \pmod{l^2}.$$

Let $l = l^{l}$ in K, where l is a prime ideal of K. Then we have $l \parallel \pi$. Let Q_{l} be the *l*-adic completion of Q and K_{l} the *l*-adic completion of K. As is well-known, π is a prime element of K_{l} and $1, \pi, \dots, \pi^{l-1}$ constitute the integral basis of K_{l} over Q_{l} (K_{l} is totally ramified over Q_{l}). So any *l*-adic integer Γ in K_{l} can be written as

$$\Gamma = x_0 + x_1 \pi + \dots + x_{l-1} \pi^{l-1}$$

with *l*-adic integers x_i in Q_l . Then, by Corollary of Lemma, we have

M. Ishida

(4)
$$N_{K_{1}/\boldsymbol{Q}_{l}}\Gamma = N_{K_{1}/\boldsymbol{Q}_{l}}(x_{0} + x_{1}\pi + \cdots x_{l-1}\pi^{l-1})$$
$$\equiv N_{K_{1}/\boldsymbol{Q}_{l}}(x_{0} + x_{1}\pi) = x_{0}^{l} - a_{1}x_{0}^{l-1}x_{1} + \cdots - a_{l}x_{1}^{l}$$
$$\equiv x_{0}^{l} - a_{1}x_{0}^{l-1}x_{1} - a_{l}x_{1}^{l}$$
$$= x_{0}^{l} - lx_{1}(b_{1}x_{0}^{l-1} + b_{l}x_{1}^{l-1}) \pmod{l^{2}}.$$

Then Γ is prime to l if and only if x_0 is prime to l. Moreover, if $l \not\mid x_0$ and $l \not\mid x_1$, then $b_1 x_0^{l-1} + b_l x_1^{l-1} \equiv b_1 + b_l \equiv 0 \pmod{l}$. Hence, for an l-adic integer Γ , prime to l, we have, by (4),

$$N_{K_1/Q_1} \Gamma^{l-1} \equiv x_0^{l(l-1)} \equiv 1 \pmod{l^2}.$$

So, for any integer γ , prime to 1, of K, we have

$$N(\gamma)^{l-1} = N_K \gamma^{l-1} = N_{K_1/Q_1} \gamma^{l-1} \equiv 1 \pmod{l^2}$$

which implies that $k_0 K$ is unramified over K as stated above.

As a remark, in the case where K is cyclic over Q and l is totally ramified in K, we know that k_0K is unramified over K. In fact, it is known that if lis totally ramified in an abelian extension L (of degree l^2) over Q, then L is cyclic over Q.

3. Combining the results obtained in [3] and 2, we have the following

THEOREM. Let l be an odd prime number and let K be an algebraic number field of degree l. For all the prime numbers p_1, p_2, \dots, p_t such that p_i is totally ramified in K and $p_i \equiv 1 \pmod{l}$, put

 $k_1 = the composite field of all the (unique) subfields, of degree l, of <math>Q(\zeta_{p_i})$ (i=1, 2, ..., t).

Moreover, when l is totally ramified in K, take a primitive element π of K whose minimal polynomial $f(X) = X^{l} + a_{1}X^{l-1} + \cdots + a_{l} \in \mathbb{Z}[X]$ is of Eisenstein type with respect to l. Consider the condition

(#)
$$l^2 | a_2, \cdots, l^2 | a_{l-1}; a_1 + a_l \equiv 0 \pmod{l^2}$$

and put

$$k_0 = \begin{cases} \text{the unique subfield, of degree l, of } Q(\zeta_{l^2}), & \text{if ($$$$$$$$$$) is satisfied,} \\ Q, & \text{otherwise.} \end{cases}$$

Then, for the abelian extension $\tilde{k}_0 = k_1 k_0$ of Q, $\tilde{K} = \tilde{k}_0 K$ is the genus field of K. So the genus number g_K of K is given as follows:

(i) K is not cyclic over Q.

(5) $g_{\kappa} = \begin{cases} l^{l+1}, & \text{if } l \text{ is totally ramified in } K \text{ and } (\#) \text{ is satisfied,} \\ l^{l}, & \text{otherwise.} \end{cases}$

(ii) K is cyclic over Q.

292

(6)
$$g_{K} = \begin{cases} l^{t}, & \text{if } l \text{ is totally ramified in } K, \\ l^{t-1}, & \text{otherwise.} \end{cases}$$

In our case, the genus number g_K of K is, of course, a divisor of the class number h_K of K. Moreover, as the Galois group of \tilde{k}_0 is of type (l, l, \dots, l) , the *l*-rank of the ideal class group C_K of K is not less than $\log g_K/\log l$ (=*t*+1, *t*, *t*, *t*-1 respectively).

References

- [1] A. Fröhlich, The genus field and genus group in finite number fields I, II, Mathematika, 6 (1959), 40-46, 142-146.
- [2] M. Ishida, Class numbers of algebraic number fields of Eisenstein type, J. Number Theory, 2 (1970), 404-413.
- [3] M. Ishida, Some unramified abelian extensions of algebraic number fields, J. Reine Angew. Math., 268/269 (1974), 165-173.

Makoto Ishida

Department of Mathematics Faculty of Science Tokyo Metropolitan University Fukazawa, Setagaya-ku Tokyo, Japan