On the genus field of an algebraic number field of odd prime degree

By Makoto ISHIDA

(Received June 12, 1974)

Let K be an algebraic number field of finite degree. Then the genus field \tilde{K} of K is defined as the maximal abelian extension of K, which is a composite of an abelian extension \tilde{k}_{0} of \boldsymbol{Q} with K and is unramified at all the finite prime ideals of K (cf. Fröhlich [1]). The extension degree of \widetilde{K} over K is also called the genus number of K.

In the preceding paper [3], we have shown how we can construct explicitly the genus field \tilde{K} of K, under the assumption that the degree and the discriminant of K are coprime.

The purpose of this paper is to determine the genus field and the genus number of an (arbitrary) algebraic number field K of odd prime degree l.

1. Let l be an odd prime number and let K be an algebraic number field of degree l.

Consider the p^{n}-th cyclotomic number field $k=\boldsymbol{Q}\left(\zeta_{p n}\right)$, where p is a prime number and $\zeta_{p n}$ is a primitive p^{n}-th root of unity. Suppose that the decomposition of p in K as follows:

$$
\begin{equation*}
p=p_{1}^{e_{1} p_{2}^{e}} \cdots p_{m}^{e_{m}}, \quad N \mathfrak{p}_{i}=p^{f_{i}}, \tag{1}
\end{equation*}
$$

where we have

$$
\begin{equation*}
\sum_{i=1}^{m} e_{i} f_{i}=[K: \boldsymbol{Q}]=l . \tag{2}
\end{equation*}
$$

For a subfield k_{0}, of degree $d>1$, of $k=\boldsymbol{Q}\left(\zeta_{p n}\right)$, if the composite field $k_{0} K$ is unramified (at all the finite prime ideals of K, i. e. at $\mathfrak{p}_{1}, \mathfrak{p}_{2}, \cdots, \mathfrak{p}_{m}$), then, in (1), d divides $e_{1}, e_{2}, \cdots, e_{m}$ and so, by (2), d divides l i. e. we have $d=l$. So $m=1$, $e_{1}=l, f_{1}=1$, i. e. p is totally ramified in K. On the other hand, as d divides $\varphi\left(p^{n}\right)=p^{n-1}(p-1)=[k: \boldsymbol{Q}]$, there are two cases:
(i) $p \neq l$. Then $d=l$ divides $p-1$ and so we have $k_{0} \subset \boldsymbol{Q}\left(\zeta_{p}\right)$, i. e. k_{0} is the unique subfield, of degree l, of $\boldsymbol{Q}\left(\zeta_{p}\right)$. In this case, as is shown in [3], the converse assertion holds. That is, if $p \equiv 1(\bmod l)$ is totally ramified in K then $k_{0} K$ is unramified over K.
(ii) $p=l$. Then we have $k_{0} \subset \boldsymbol{Q}\left(\zeta_{l_{2}}\right)$, i. e. k_{0} is the unique subfield, of de-
gree l, of $\boldsymbol{Q}\left(\zeta_{l 2}\right)$. So the problem to be considered is to decide when $k_{0} K$ is unramified over K.
2. Let $k=\boldsymbol{Q}\left(\zeta_{l 2}\right)$ and let k_{0} the unique subfield, of degree l, of k. Of course, k_{0} is contained in the maximal real subfield k^{\prime} of k. On the other hand, let K be an algebraic number field of degree l, in which l is totally ramified.

As in [3], we use the terminologies of class field theory. Let $A_{l}(\boldsymbol{Q})$ be the group of all the ideals, prime to l, in \boldsymbol{Q} and let $S_{l^{2}}(\boldsymbol{Q})$ be the 'Strahl' mod l^{2} in \boldsymbol{Q} i.e. the subgroup of $A_{l}(\boldsymbol{Q})$ consisting of all (principal) ideals (a) with $a \equiv 1\left(\bmod ^{\times} l^{2}\right)$ (multiplicative congruence). Then the subfield k_{0} of k^{\prime} corresponds to the ideal group

$$
H_{l 2}(\boldsymbol{Q})=\left\{(a) \in A_{l}(\boldsymbol{Q}) \mid a^{l-1} \equiv 1\left(\bmod ^{\times} l^{2}\right)\right\},
$$

in \boldsymbol{Q}, with defining modulus l^{2}. So the 'Verschiebungssatz' implies that $k_{0} K$ is the abelian extension of K corresponding to the ideal group

$$
H_{l^{2}}(K)=\left\{\mathfrak{a} \mid(\mathfrak{a}, l)=1, N a^{l-1} \equiv 1\left(\bmod ^{\times} l^{2}\right)\right\},
$$

in K, with defining modulus l^{2}. Hence we see that $k_{0} K$ is unramified over K if and only if $H_{l^{2}}(K)$ contains all the principal ideals, prime to l, in K.

Now as l is totally ramified in K, we can find a primitive element π of K, whose minimal polynomial is of Eisenstein type with respect to l :

$$
\begin{equation*}
f(X)=X^{l}+a_{1} X^{l-1}+\cdots+a_{l} \in \boldsymbol{Z}[X] \tag{3}
\end{equation*}
$$

with $l \mid a_{i}(i=1,2, \cdots, l)$ and $l^{2} \nmid a_{l}$ (cf. [2]).
(A) Suppose that $k_{0} K$ is unramified over K. Then, for the integer $\gamma=$ $1-y \pi$ in $K(y \in \boldsymbol{Z})$, we must have

$$
N_{K} \gamma^{l-1}=N(\gamma)^{l-1} \equiv 1 \quad\left(\bmod l^{2}\right)
$$

On the other hand, as $l \mid a_{i}$, we have

$$
\begin{aligned}
N_{K} \gamma^{l-1} & =\left(1+a_{1} y+\cdots+a_{l} y^{l}\right)^{l-1} \\
& \equiv 1-\left(a_{1} y+\cdots+a_{l} y^{l}\right) \quad\left(\bmod l^{2}\right)
\end{aligned}
$$

So it holds that

$$
a_{1} y+a_{2} y^{2}+\cdots+a_{l} y^{l} \equiv 0\left(\bmod l^{2}\right)
$$

for any y in \boldsymbol{Z}. Writing $a_{i}=l b_{i}\left(b_{i} \in \boldsymbol{Z}\right)$, we see that

$$
b_{1}+b_{2} y+\cdots+b_{l} y^{l-1} \equiv 0 \quad(\bmod l)
$$

for $y=1,2, \cdots, l-1$. Then, as $l \chi b_{l}$, we must have

$$
b_{1}+b_{2} Y+\cdots+b_{l} Y^{l-1} \equiv b_{l}\left(Y^{l-1}-1\right) \quad(\bmod l)
$$

as a polynomial of Y over \boldsymbol{Z}. Hence we have

$$
l \mid b_{2}, \cdots, b_{l-1} ; \quad b_{1} \equiv-b_{l}(\bmod l)
$$

i. e. the coefficients a_{i} of $f(X)$ satisfy the following condition:
(\#)

$$
l^{2}\left|a_{2}, \cdots, l^{2}\right| a_{l-1} ; \quad a_{1}+a_{l} \equiv 0\left(\bmod l^{2}\right)
$$

(B) Conversely suppose that the coefficients a_{i} of the minimal polynomial $f(X)$ of π satisfy the condition (\#). We need the following

Lemma. Let $X_{1}, X_{2}, \cdots, X_{l}$ be l independent variables and consider a monomial $M=X_{1}{ }^{k_{1}} X_{2}{ }^{k_{2}} \cdots X_{l}{ }^{k_{l}}$ with $k_{1} \geqq 2$. Let $F\left(X_{1}, X_{2}, \cdots, X_{l}\right)$ be the 'smallest' symmetric polynomial containing M as its term. Using the fundamental symmetric polynomials $Y_{1}=X_{1}+X_{2}+\cdots+X_{l}, Y_{2}=X_{1} X_{2}+\cdots+X_{i} X_{j}+\cdots+X_{l-1} X_{l}$, $\cdots, Y_{l}=X_{1} X_{2} \cdots X_{l}$, we can write

$$
F\left(X_{1}, X_{2}, \cdots, X_{l}\right)=c+a Y_{1}+b Y_{l}+\cdots \in \boldsymbol{Z}\left[Y_{1}, Y_{2}, \cdots, Y_{l}\right]
$$

Then we have $c=a=0$ and $b \equiv 0(\bmod l)$.
Proof.

$$
\begin{aligned}
& c=F(0,0, \cdots, 0)=0 \\
& a=\frac{\partial F}{\partial X_{1}}(0,0, \cdots, 0)=0 \\
& b \equiv \frac{\partial^{l} F}{\partial X_{1} \partial X_{2} \cdots \partial X_{l}}(0,0, \cdots, 0)=0 \quad(\bmod l)
\end{aligned}
$$

In fact, consider the coefficient s_{N} of $X_{1} X_{2} \cdots X_{l}$ in a monomial $N=Y_{1}{ }^{h_{1}} Y_{2}{ }^{h_{2}} \ldots$ $Y_{l}^{h_{l}}$ as a polynomial of $X_{1}, X_{2}, \cdots, X_{l}$. Of course, we may restrict our consideration to such an N with $h_{1}+2 h_{2}+\cdots+l h_{l}=l$. Then
(a) $h_{l} \neq 0 \Rightarrow N=Y_{l} \Rightarrow s_{N}=1$,
(b) $h_{l}=0 \Rightarrow$ for an index $j(<l), h_{j} \neq 0 \Rightarrow s_{N}$ is a multiple of $C_{j} \Rightarrow s_{N} \equiv 0(\bmod l)$.

Corollary. In our case (i.e. under the assumption (\#)), let $\pi=\pi^{(1)}, \pi^{(2)}$, $\cdots, \pi^{(l)}$ be all the conjugates of π over \boldsymbol{Q}. Then we have

$$
F\left(\pi^{(1)}, \pi^{(2)}, \cdots, \pi^{(l)}\right) \equiv 0 \quad\left(\bmod l^{2}\right)
$$

Proof.

$$
F\left(\pi^{(1)}, \pi^{(2)}, \cdots, \pi^{(l)}\right) \equiv b \pi^{(1)} \pi^{(2)} \cdots \pi^{(l)}=-b a_{l} \equiv 0 \quad\left(\bmod l^{2}\right) .
$$

Let $l=\mathfrak{l}^{l}$ in K, where \mathfrak{r} is a prime ideal of K. Then we have $\mathfrak{r} \| \pi$. Let \boldsymbol{Q}_{l} be the l-adic completion of \boldsymbol{Q} and $K_{\mathfrak{r}}$ the \mathfrak{l}-adic completion of K. As is well-known, π is a prime element of $K_{\mathfrak{I}}$ and $1, \pi, \cdots, \pi^{l-1}$ constitute the integral basis of $K_{\mathfrak{I}}$ over \boldsymbol{Q}_{l} ($K_{\mathfrak{r}}$ is totally ramified over \boldsymbol{Q}_{l}). So any \mathfrak{l}-adic integer Γ in $K_{\mathfrak{l}}$ can be written as

$$
\Gamma=x_{0}+x_{1} \pi+\cdots+x_{l-1} \pi^{l-1}
$$

with l-adic integers x_{i} in \boldsymbol{Q}_{l}. Then, by Corollary of Lemma, we have

$$
\begin{align*}
N_{K_{1} / \mathbf{Q}!} \Gamma & =N_{K_{1} / \mathbf{l}_{l}}\left(x_{0}+x_{1} \pi+\cdots x_{l-1} \pi^{l-1}\right) \tag{4}\\
& \equiv N_{K_{1} / \boldsymbol{Q}_{l}}\left(x_{0}+x_{1} \pi\right)=x_{0}^{l}-a_{1} x_{0}^{l-1} x_{1}+\cdots-a_{l} x_{1}^{l} \\
& \equiv x_{0}^{l}-a_{1} x_{0}^{l-1} x_{1}-a_{l} x_{1}^{l} \\
& =x_{0}^{l}-l x_{1}\left(b_{1} x_{0}^{l-1}+b_{l} x_{1}^{l-1}\right) \quad\left(\bmod l^{2}\right) .
\end{align*}
$$

Then Γ is prime to \mathfrak{l} if and only if x_{0} is prime to l. Moreover, if $l \nmid x_{0}$ and $l \nmid x_{1}$, then $b_{1} x_{0}^{l-1}+b_{l} x_{1}^{l-1} \equiv b_{1}+b_{l} \equiv 0(\bmod l)$. Hence, for an \mathfrak{l}-adic integer Γ, prime to \mathfrak{l}, we have, by (4),

$$
N_{K_{1} / a_{l}} \Gamma^{l-1} \equiv x_{0}^{l(l-1)} \equiv 1 \quad\left(\bmod l^{2}\right) .
$$

So, for any integer γ, prime to \mathfrak{l}, of K, we have

$$
N(\gamma)^{l-1}=N_{K} \gamma^{l-1}=N_{K_{1} / Q_{l}} \gamma^{l-1} \equiv 1 \quad\left(\bmod l^{2}\right),
$$

which implies that $k_{0} K$ is unramified over K as stated above.
As a remark, in the case where K is cyclic over \boldsymbol{Q} and l is totally ramified in K, we know that $k_{0} K$ is unramified over K. In fact, it is known that if l is totally ramified in an abelian extension L (of degree l^{2}) over \boldsymbol{Q}, then L is cyclic over \boldsymbol{Q}.
3. Combining the results obtained in [3] and 2, we have the following Theorem. Let l be an odd prime number and let K be an algebraic number field of degree l. For all the prime numbers $p_{1}, p_{2}, \cdots, p_{t}$ such that p_{i} is totally ramified in K and $p_{i} \equiv 1(\bmod l)$, put
$k_{1}=$ the composite field of all the (unique) subfields, of degree l, of $\boldsymbol{Q}\left(\zeta_{p_{i}}\right)$ ($i=1,2, \cdots, t$).
Moreover, when l is totally ramified in K, take a primitive element π of K whose minimal polynomial $f(X)=X^{l}+a_{1} X^{l-1}+\cdots+a_{l} \in \boldsymbol{Z}[X]$ is of Eisenstein type with respect to l. Consider the condition

$$
l^{2}\left|a_{2}, \cdots, l^{2}\right| a_{l-1} ; \quad a_{1}+a_{l} \equiv 0\left(\bmod l^{2}\right)
$$

and put

$$
k_{0}=\left\{\begin{array}{l}
\text { the unique subfield, of degree l, of } \boldsymbol{Q}\left(\zeta_{12}\right), \text { if }(\#) \text { is satisfied, } \\
\boldsymbol{Q}, \quad \text { otherwise. }
\end{array}\right.
$$

Then, for the abelian extension $\tilde{k}_{0}=k_{1} k_{0}$ of $\boldsymbol{Q}, \tilde{K}=\tilde{k}_{0} K$ is the genus field of K. So the genus number g_{K} of K is given as follows:
(i) K is not cyclic over \boldsymbol{Q}.

$$
g_{K}= \begin{cases}l^{t+1}, & \text { if } l \text { is totally ramified in } K \text { and }(\#) \text { is satisfied, }, \tag{5}\\ l^{t}, & \text { otherwise. }\end{cases}
$$

(ii) K is cyclic over \boldsymbol{Q}.

$$
g_{K}=\left\{\begin{array}{lc}
l^{t}, & \text { if } l \text { is totally ramified in } K, \\
l^{t-1}, & \text { otherwise } .
\end{array}\right.
$$

In our case, the genus number g_{K} of K is, of course, a divisor of the class number h_{K} of K. Moreover, as the Galois group of \tilde{k}_{0} is of type (l, l, \cdots, l), the l-rank of the ideal class group C_{K} of K is not less than $\log g_{K} / \log l(=t+1$, $t, t, t-1$ respectively).

References

[1] A. Fröhlich, The genus field and genus group in finite number fields I, II, Mathematika, 6 (1959), 40-46, 142-146.
[2] M. Ishida, Class numbers of algebraic number fields of Eisenstein type, J. Number Theory, 2 (1970), 404-413.
[3] M. Ishida, Some unramified abelian extensions of algebraic number fields, J. Reine Angew. Math., 268/269 (1974), 165-173.

Makoto Ishida
Department of Mathematics
Faculty of Science
Tokyo Metropolitan University
Fukazawa, Setagaya-ku
Tokyo, Japan

