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On the genus field of an algebraic number field
of odd prime degree
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Let $K$ be an algebraic number field of finite degree. Then the genus field
$\tilde{K}$ of $K$ is defined as the maximal abelian extension of $K$, which is a composite
of an abelian extension $\tilde{k}_{0}$ of $Q$ with $K$ and is unramified at all the finite
prime ideals of $K$ (cf. Fr\"ohlich [1]). The extension degree of $\tilde{K}$ over $K$ is
also called the genus number of $K$.

In the preceding paper [3], we have shown how we can construct expli-
citly the genus field $\tilde{K}$ of $K$, under the assumption that the degree and the
discriminant of $K$ are coprime.

The purpose of this paper is to determine the genus field and the genus
number of an (arbitrary) algebraic number field $K$ of odd prime degree 1.

1. Let $l$ be an odd prime number and let $K$ be an algebraic number field
of degree 1.

Consider the $P^{n}$ -th cyclotomic number field $k=Q(\zeta_{pn})$ , where $p$ is a prime
number and $\zeta_{p^{n}}$ is a primitive $p^{n}$ -th root of unity. Suppose that the decom-
position of $p$ in $K$ as follows:

(1) $p=\mathfrak{p}_{1}^{e_{1}}\otimes^{2}\cdots \mathfrak{p}_{m}^{e_{m}}$ , $N\mathfrak{p}_{i}=p^{f_{i}}$ ,

where we have

(2) $\sum_{t=1}^{m}e_{i}f_{t}=[K;Q]=l$ .

For a subfield $k_{0}$ , of degree $d>1$ , of $k=Q(\zeta_{pn})$ , if the composite field $k_{0}K$ is
unramified (at all the finite prime ideals of $K,$ $i$ . $e$ . at $\mathfrak{p}_{1},$ $\mathfrak{p}_{2},$ $\cdots$ , $\mathfrak{p}_{m}$ ), then, in (1),
$d$ divides $e_{1},$ $e_{2},$ $\cdots$ , $e_{m}$ and so, by (2), $d$ divides 1 $i$ . $e$ . we have $d=l$ . So $m=1$ ,
$e_{1}=l,$ $f_{1}=1,$ $i$ . $e$ . $p$ is totally ramified in $K$. On the other hand, as $d$ divides
$\varphi(P^{n})=p^{n- 1}(p-1)=[k:Q]$ , there are two cases:

(i) $p\neq l$ . Then $d=l$ divides $P-1$ and so we have $k_{0}\subset Q(\zeta_{p}),$ $i$ . $e$ . $k_{0}$ is the
unique subfield, of degree 1, of $Q(\zeta_{p})$ . In this case, as is shown in [3], the
converse assertion holds. That is, if $p\equiv 1(mod l)$ is totally ramified in $K$ then
$k_{0}K$ is unramified over $K$.

(ii) $p=l$ . Then we have $k_{0}\subset Q(\zeta_{l^{2}}),$ $i$ . $e$ . $k_{0}$ is the unique subfield, of de-
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gree 1, of $Q(\zeta_{l^{2}})$ . So the problem to be considered is to decide when $k_{0}K$ is
unramified over $K$.

2. Let $k=Q(\zeta_{l^{2}})$ and let $k_{0}$ the unique subfield, of degree 1, of $k$ . Of
course, $k_{0}$ is contained in the maximal real subfield $k^{\prime}$ of $k$ . On the other hand,
let $K$ be an algebraic number field of degree 1, in which 1 is totally ramified.

As in [3], we use the terminologies of class field theory. Let $A_{l}(Q)$ be
the group of all the ideals, prime to 1, in $Q$ and let $S_{l^{2}}(Q)$ be the ‘Strahl’ mod $l^{2}$

in $Qi$ . $e$ . the subgroup of $A_{l}(Q)$ consisting of all (principal) ideals $(a)$ with
$a\equiv 1(mod^{x}l^{2})$ (multiplicative congruence). Then the subfield $k_{0}$ of $k^{\prime}$ corre-
sponds to the ideal group

$H_{l^{2}}(Q)=$ { $(a)\in A_{l}(Q)|a^{l- 1}\equiv 1$ (modx $l^{2})$ } ,

in $Q$ , with defining modulus $l^{2}$ . So the ‘Verschiebungssatz’ implies that $k_{0}K$ is
the abelian extension of $K$ corresponding to the ideal group

$H_{t^{2}}(K)=$ { $\mathfrak{a}|(\mathfrak{a},$ $1)=1,$ $N\mathfrak{a}^{l-1}\equiv 1$ (modx 12)},

in $K$, with defining modulus $l^{2}$ . Hence we see that $k_{0}K$ is unramified over $K$

if and only if $H_{l^{2}}(K)$ contains all the principal ideals, prime to $l$ , in $K$.
Now as 1 is totally ramified in $K$, we can find a primitive element $\pi$ of $K$,

whose minimal polynomial is of Eisenstein type with respect to 1:

(3) $f(X)=X^{l}+a_{1}X^{l-1}+\cdots+a_{l}\in Z[X]$

with $l|a_{i}$ $(i=1,2, \cdots , 1)$ and $l^{2}\nmid a_{l}$ (cf. [2]).
(A) Suppose that $k_{0}K$ is unramified over $K$. Then, for the integer $\gamma=$

$ 1-y\pi$ in $K(y\in Z)$ , we must have

$N_{K}\gamma^{l-1}=N(\gamma)^{l-1}\equiv 1$ $(mod l^{2})$ .
On the other hand, as $l|a_{t}$ , we have

$N_{K}\gamma^{l-1}=(1+a_{1}y+\cdots+a_{l}y^{l})^{l-1}$

$\equiv 1-(a_{1}y+\cdots+a_{l}y^{l})$ $(mod l^{2})$ .
So it holds that

$a_{1}y+a_{2}y^{2}+\cdots+a_{l}y^{l}\equiv 0$ (mcd $l^{2}$ )

for any $y$ in $Z$. Writing $a_{i}=lb_{i}(b_{i}\in Z)$ , we see that

$b_{1}+b_{2}y+\cdots+b_{l}y^{l-1}\equiv 0$ $(mod 1)$

for $y=1,2,$ $\cdots$ , 1–1. Then, as $l\nmid b_{l}$ , we must have

$b_{1}+b_{2}Y+\cdots+b_{l}Y^{l-1}\equiv b_{l}(Y^{l-1}-1)$ $(mod l)$

as a polynomial of $Y$ over $Z$. Hence we have
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$l|b_{2},$ $\cdots$ , $b_{l-1}$ ; $b_{1}\equiv-b_{l}(mod l)$ ,

$i$.a the coefficients $a_{\mathfrak{t}}$ of $f(X)$ satisfy the following condition:

$(\#)$ $l^{2}|a_{2},$ $\cdots$ , $l^{2}|a_{l-1}$ ; $a_{1}+a_{l}\equiv 0(mod l^{2})$ .
(B) Conversely suppose that the coefficients $a_{i}$ of the minimal polynomial

$f(X)$ of $\pi$ satisfy the condition $(\#)$ . We need the following
LEMMA. Let $X_{1},$ $X_{2},$ $\cdots$ , $X_{l}$ be $l$ independent variables and consider a mono.

mial $M=X_{1}^{k_{1}}X_{2}^{k_{2}}\cdots X_{f}^{k_{l}}$ with $k_{1}\geqq 2$ . Let $F(X_{1}, X_{2}, \cdots , X_{l})$ be the ‘smallest’
symmetric polynomial containing $M$ as its term. Using the fundamental sym-
metric polynomials $Y_{1}=X_{1}+X_{2}+\cdots+X_{l},$ $Y_{2}=X_{1}X_{2}+\cdots+X_{i}X_{j}+\cdots+X_{l- 1}X_{l}$ ,
... , $Y_{l}=X_{1}X_{2}\cdots X_{l}$ , we can write

$F(X_{1}, X_{2}, \cdots , X_{l})=c+aY_{1}+bY_{l}+\cdots\in Z[Y_{1}, Y_{2}, \cdots , Y_{l}]$ .
Then we have $c=a=0$ and $b\equiv 0(mod 1)$ .

PROOF.
$c=F(0,0, 0)=0$ .

$a=\frac{\partial F}{\partial X_{1}}(0,0, 0)=0$ .

$b\equiv\frac{\partial^{l}F}{\partial X_{1}\partial X_{2}\cdots\partial X_{l}}$ $(0,0, \cdots , 0)=0$ $(mod l)$ .

In fact, consider the coefficient $s_{N}$ of $X_{1}X_{2}\cdots X_{l}$ in a monomial $ N=Y_{1}^{h_{1}}Y_{2}^{h_{2}}\cdots$

$Y_{l}^{h_{l}}$ as a polynomial of $X_{1},$ $X_{2},$ $\cdots$ , $X_{l}$ . Of course, we may restrict our con-
sideration to such an $N$ with $h_{1}+2h_{2}+\cdots+lh_{l}=l$ . Then

(a) $h_{l}\neq 0\Rightarrow N=Y_{f}\Rightarrow s_{N}=1$ ,
(b) $h_{l}=0\Rightarrow for$ an index $j(<l),$ $h_{j}\neq 0\Rightarrow s_{N}$ is a multiple of ${}_{\iota}C_{j}\Rightarrow s_{N}\equiv 0(mod l)$ .
COROLLARY. In our case ( $i$ . $e$ . under the assumptjOn $(\#)$ ), let $\pi=\pi^{(1)},$ $\pi^{(2)}$ ,

... , $\pi^{(l)}$ be all the conjugates of $\pi$ over Q. Then we have

$F(\pi^{(1)}, \pi^{(2)}, r^{(l)})\equiv 0$ $(mod l^{2})$ .
PROOF.

$F(\pi^{(1)}, \pi^{(2)}, \pi^{(l)})\equiv b\pi^{(1)}\pi^{(2)}\cdots\pi^{(l)}=-ba_{l}\equiv 0$ $(mod l^{2})$ .

Let $l=I^{l}$ in $K$, where $\mathfrak{l}$ is a prime ideal of $K$. Then we have $\mathfrak{l}\Vert\pi$ . Let $Q_{l}$ be
the l-adic completion of $Q$ and $K_{I}$ the t-adic completion of $K$. As is well-known,
$\pi$ is a prime element of $K_{1}$ and 1, $\pi,$ $\cdots$ , $\pi^{l-1}$ constitute the integral basis of
$K_{I}$ over $Q_{l}$ ( $K_{I}$ is totally ramified over $Q_{l}$). So any l-adic integer $\Gamma$ in $K_{I}$ can
be written as

$\Gamma=x_{0}+x_{1}\pi+\cdots+x_{l- 1}\pi^{l- 1}$

with l-adic integers $x_{i}$ in $Q_{l}$ . Then, by Corollary of Lemma, we have
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(4) $N_{K(/Q},\Gamma=N_{K_{I}/Q_{l}}(x_{0}+x_{1}\pi+ x_{l-1}\pi^{l-1})$

$\equiv N_{KI/Q_{l}}(x_{0}+x_{1}\pi)=x_{0}^{l}-a_{1}x_{0}^{l-1}x_{1}+\cdots-a_{\iota^{X_{1}^{l}}}$

$\equiv\chi_{0}^{l}-a_{1}x_{0}^{l-1}x_{1}-O_{l}X_{1}^{l}$

$=\chi_{0}^{l}-lx_{1}(b_{1}x_{0}^{l-1}+b_{l}x_{1}^{l- 1})$ $(mod l^{2})$ .
Then $\Gamma$ is prime to $\mathfrak{l}$ if and only if $x_{0}$ is prime to $l$ . Moreover, if $l\nmid x_{0}$ and
$l\nmid X_{1}$ , then $b_{1}x_{0}^{l-1}+b_{l}x_{1}^{l-1}\equiv b_{1}+b_{l}\equiv 0(mod 1)$ . Hence, for an I-adic integer $\Gamma$ ,
prime to I, we have, by (4),

$N_{K(/Q_{l}}\Gamma^{l-1}\equiv x_{0}^{l(l-1)}\equiv 1$ $(mod l^{2})$ .
So, for any integer $\gamma$ , prime to $\mathfrak{l}$ , of $K$, we have

$N(\gamma)^{l-1}=N_{K}\gamma^{l-1}=N_{K_{I}/9_{l}}\gamma^{l-1}\equiv 1$ $(mod l^{2})$ ,

which implies that $k_{0}K$ is unramified over $K$ as stated above.
As a remark, in the case where $K$ is cyclic over $Q$ and $l$ is totally ramified

in $K$, we know that $k_{0}K$ is unramified over $K$. In fact, it is known that if 1
is totally ramified in an abelian extension $L$ (of degree $l^{2}$) over $Q$ , then $L$ is
cyclic over $Q$ .

3. Combining the results obtained in [3] and 2, we have the following
THEOREM. Let 1 be an odd Prime number and let $K$ be an algebraic num-

ber field of degree 1. For all the prime numbers $p_{1},$ $p_{2},$ $\cdots$ , $p_{t}$ such that $p_{i}$ is
totally ramified in $K$ and $P_{i}\equiv 1(mod 1)$ , put

$k_{1}=the$ composite field of all the (unique) subfields, of degree $l$ , of $Q(\zeta_{p_{i}})$

$(i=1, 2, t)$ .
Moreover, when 1 is totally ramified in $K$, take a Primitive element $\pi$ of $K$ whose
minimal Polynomial $f(X)=X^{l}+a_{1}X^{l-1}+\cdots+a_{l}\in Z[X]$ is of Eisenstein $tyPe$

with respect to $l$ . Consider the condition

$(\#)$ $l^{2}|a_{2},$ $\cdots$ , $l^{2}|a_{l- 1}$ ; $a_{1}+a_{l}\equiv 0(mod l^{2})$

and put

$k_{0}=\left\{\begin{array}{ll}the unique subfeld, of degree 1, of Q(\zeta_{l^{2}}), & if (\#) is satisfied,\\Q, otherwise. & \end{array}\right.$

Then, for the abelian extension $\tilde{k}_{0}=k_{1}k_{0}$ of $Q,$ $K=\tilde{k}_{0}K$ is the genus field of $K$.
So the genus number $g_{K}$ of $K$ is given as follows:

(i) $K$ is not cyclic over $Q$ .

(5) $g_{K}=\left\{\begin{array}{ll}l^{t+1}, & if 1 is totally ramified in K and (\#) is satisfied,\\lt , o & therwise.\end{array}\right.$

(ii) $K$ is cyclic over $Q$ .
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(6) $g_{K}=\left\{\begin{array}{ll}lt & if 1 is totally ramified in K,\\l^{t- 1} & otherwise.\end{array}\right.$

In our case, the genus number $g_{K}$ of $K$ is, of course, a divisor of the class
number $h_{K}$ of $K$. Moreover, as the Galois group of $\tilde{k}_{0}$ is of type $(l, l, \cdots , l)$ ,
the l-rank of the ideal class group $C_{K}$ of $K$ is not less than $1ogg_{K}/\log 1(=t+1$ ,
$t,$ $t,$ $t-1$ respectively).
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