On flat over-rings of a Krull domain

By Ken-ichi YOSHIDA

(Received Jan. 23, 1974)

Introduction.

Let A be an integral domain and let K be the quotient field of A. In this paper we are mainly concerned with a subring B of K containing A. For the sake of simplicity we shall call such an intermediate ring an over ring of A hereafter. The purpose of this paper is to study the relationship between an over ring B and subsets $F_A(B)$ and $F_A^*(B)$ of Spec A defined by

$$F_A(B) = \{ \mathfrak{p} \in \operatorname{Spec} A ; A_\mathfrak{p} \subseteq B \bigotimes_A A_\mathfrak{p} = B_\mathfrak{p} \}$$

and

$$F_{\mathcal{A}}^{*}(B) = \{ \mathfrak{p} \in F_{\mathcal{A}}(B) ; \text{ height } \mathfrak{p} = 1 \}$$

respectively. Among others it will be shown that if A is a Krull domain and B is a flat over-domain of A, then B is determined uniquely by $F_A^*(B)$. Moreover if B is a flat over-domain of A, B is finitely generated over A if and only if $F_A^*(B)$ is a finite set.

Following the usual terminology, rings are always understood to be commutative and to have the identity elements. For a ring A, Spec A stands for the set of all prime ideals of A and $Ht_1(A)$ is the set of all prime ideals of Awith height 1.

§ 1. On $F_A(B)$.

The following well-known fact will be used frequently in this paper, so we write down it as a lemma without proof (cf. [3]).

(1.1) LEMMA. Let A be a ring and B an A-algebra contained in the total quotient ring of A. Then the following four conditions are equivalent to each other:

(1) B is flat over A.

(2) $B_{\mathfrak{p}} = B \bigotimes_{A} A_{\mathfrak{p}}$ is flat over $A_{\mathfrak{p}}$ for any $\mathfrak{p} \in \operatorname{Spec} A$.

(3) $A_{A\cap\mathfrak{P}} = B_{\mathfrak{P}}$ for any $\mathfrak{P} \in \operatorname{Spec} B$.

(4) For every $\mathfrak{p} \in \operatorname{Spec} A$, either $\mathfrak{p} B = B$ or $A_{\mathfrak{p}} = B_{\mathfrak{p}}$.

Let A be an integral domain and let B be an over-ring of A. We shall introduce the sets:

Flat over-rings of a Krull domain

$$F_{A}(B) = \{ \mathfrak{p} \in \operatorname{Spec} A ; A_{\mathfrak{p}} \subseteq B_{\mathfrak{p}} \},\$$
$$F_{A}^{*}(B) = F_{A}(B) \cap \operatorname{Ht}_{\mathfrak{l}}(A) .$$

General properties of $F_A(B)$ and $F_A^*(B)$ are summarized in the following three lemmas.

(1.2) LEMMA. Let A be an integral domain and let B be an over-ring. Then $F_A(B)$ is closed under specializations. We have $F_A(B) = \emptyset$ if and only if $A = B^{1}$.

PROOF. Let \mathfrak{p} and q be prime ideals of A such that $\mathfrak{p} \subseteq q$. If q is not an element of $F_A(B)$, $A_q = B_q \supseteq B$. Therefore $A_{\mathfrak{p}} = (A_q)_{\mathfrak{p}A_q} \supseteq B$. Hence $A_{\mathfrak{p}} = B_{\mathfrak{p}}$ namely $\mathfrak{p} \notin F_A(B)$ proving the first half of the lemma. If $F_A(B) = \emptyset$, then $A = \bigcap_{\mathfrak{p} \in \text{Spec } A} A_{\mathfrak{p}} = \bigcap_{\mathfrak{p} \in \text{Spec } A} B_{\mathfrak{p}} \supseteq B$. Hence we have A = B. It is trivially seen that $F_A(A) = \emptyset$.

A maximal point of $F_A(B)$ is, by definition, a prime ideal of $F_A(B)$ which is minimal under inclusion.

(1.3) LEMMA. If A is a Krull domain, any maximal point of $F_A(B)$ has height 1.

PROOF. Let q be a maximal point of $F_A(B)$. We shall show that height q=1. Assuming the contrary, i. e., height q>1, we see that prime ideals which are properly contained in q are not in $F_A(B)$. Therefore $A_q = \bigcap_{\substack{\mathfrak{p} \in \mathrm{Ht}_1(A) \\ \mathfrak{p} \subseteq q}} A_{\mathfrak{p}}$

 $= \bigcap_{\substack{\mathfrak{p} \in \mathbf{Ht}_1(\mathcal{A}) \\ \mathfrak{p} \subseteq q}} B_{\mathfrak{p}} \supseteq B.$ Hence we have $A_q = B_q$. This is a contradiction.

(1.4) LEMMA. Let A be an integral domain and let B_1 and B_2 be over-rings of A such that $B_2 \supseteq B_1$. Then $F_A(B_2) \supseteq F_A(B_1)$.

PROOF. Let $\mathfrak{p} \in F_A(B_2)$. Then $A_{\mathfrak{p}} = (B_2)_{\mathfrak{p}} \supseteq (B_1)_{\mathfrak{p}}$. Hence $A_{\mathfrak{p}} = (B_1)_{\mathfrak{p}}$, i.e., $\mathfrak{p} \in F_A(B_1)$.

(1.5) THEOREM. Let A be an integral domain ond let B_1 and B_2 be overrings of A. Assume that B_2 is flat over A. Then $F_A(B_2) \supseteq F_A(B_1)$ if and only if $B_2 \supseteq B_1$.

PROOF. By (1.4) it suffices to prove the "only if" part. Let $\mathfrak{P} \in \operatorname{Spec} B_2$ and $\mathfrak{p} = \mathfrak{P} \cap A$. Since B_2 is flat over $A, A_{\mathfrak{p}} = (B_2)_{\mathfrak{P}}$ by (1.1). Hence $A_{\mathfrak{p}} \supseteq B_2$ and we see that $\mathfrak{p} \notin F_A(B_2)$. From the assumption it follows that $\mathfrak{p} \notin F_A(B_1)$, hence $A_{\mathfrak{p}} = (B_1)_{\mathfrak{p}}$. Since $B_1 \subseteq (B_1)_{\mathfrak{p}} = A_{\mathfrak{p}} = (B_2)_{\mathfrak{P}}$, we have $B_1 \subseteq \bigcap_{\mathfrak{P} \in \operatorname{Spec} B_2} (B_2)_{\mathfrak{P}} = B_2$.

(1.6) COROLLARY. Let A be an integral domain and let B_1 and B_2 be flat over-rings of A. Then $F_A(B_1) = F_A(B_2)$ if and only if $B_1 = B_2$.

(1.7) LEMMA. Let A be a Krull domain and let Δ be a subset of $Ht_1(A)$. Let $C = \bigcap A_{\mathfrak{p}}$. Then we have $F^*_{\mathcal{A}}(C) = Ht_1(A) - \Delta$.

¹⁾ We denote by \emptyset the empty set.

PROOF. As is well known, $\operatorname{Ht}_1(C) = \{C \cap \mathfrak{p}A_{\mathfrak{p}} | \mathfrak{p} \in \mathcal{A}\}$, from which the assertion follows easily.

From now on we shall mainly be concerned with flat over-rings B and we shall show how they are determined by $F_A(B)$.

(1.8) LEMMA. Let A be a Krull domain and B a flat over-ring of A. Then $B = \bigcap_{i \in A} A_{\mathfrak{p}}$, where $\Delta = \operatorname{Ht}_{1}(A) - F_{A}^{*}(B)$.

PROOF. Obvious by virtue of (1.1), (1.4).

(1.9) THEOREM. Let A be a Krull domain and let B be an over-ring of A. Then B is flat over A if and only if either $B_{\mathfrak{p}} = A_{\mathfrak{p}}$ or $\mathfrak{p}B = B$ holds for any \mathfrak{p} in $\operatorname{Ht}_1(A)$.

PROOF. From (1.1) it suffices to prove the "if part" of the theorem. If q is a prime ideal of A not in $F_A(B)$, then by definition $A_q = B_q$. Hence to prove the theorem it is sufficient to show that for any $q \in F_A(B)$ we have qB = B (cf. [1]). From (1.3) there exists a prime ideal \mathfrak{p} in $F_A^*(B)$ with $\mathfrak{p} \subseteq q$. Since $A_{\mathfrak{p}} \neq B_{\mathfrak{p}}$ the assumption implies that, we have $\mathfrak{p}B = B$, a fortiori, qB = B.

(1.10) THEOREM. Let A be a Krull domain and let B be an over-ring of A. If B is finitely generated over A, then $F_A^*(B)$ is a finite set. If we impose an additional assumption that B is flat over A, the converse also holds.

PROOF. Suppose B is finitely generated over A, then there exists an element $a \in A$ such that we have $B \subseteq A\left[\frac{1}{a}\right]$. Whence we see immediately that $F^*_A(B)$ is a finite set.

Conversely assume that B is a flat over-ring and $F_A^*(B)$ is a finite set, say, $F_A^*(B) = \{\mathfrak{p}_1, \dots, \mathfrak{p}_t\}$. Then $A_{\mathfrak{p}_i} \neq B_{\mathfrak{p}_i}$ and we must have $\mathfrak{p}_i B = B$ for $i = 1, \dots, t$ by (1.1). Hence we can find elements $a_k \in \mathfrak{p}_1 \cap \dots \cap \mathfrak{p}_t$ and $\alpha_k \in B$ such that $\sum_{k=1}^n a_k \alpha_k = 1$. Let $C = A[\alpha_1, \dots, \alpha_n]$. Then we have $\mathfrak{p}_i C = C$ for $i = 1, \dots, t$, and $F_A^*(C) \supseteq \{\mathfrak{p}_1, \dots, \mathfrak{p}_t\}$. On the other hand C is contained in B, hence we have the inclusion relation $F_A^*(C) \subseteq F_A^*(B) = \{\mathfrak{p}_1, \dots, \mathfrak{p}_t\}$. Therefore we have $F_A^*(C) =$ $F_A^*(B) = \{\mathfrak{p}_1, \dots, \mathfrak{p}_t\}$. For any prime ideal \mathfrak{p} of height 1 other than $\mathfrak{p}_1, \dots, \mathfrak{p}_t, \mathfrak{p}$ is not contained in $F_A^*(C)$, whence we have $A_{\mathfrak{p}} = C_{\mathfrak{p}}$. Then (1.9) implies that C is flat over A. Now B = C follows from (1.6).

§2. Relations between epimorphic over-rings and flat over rings.

In this section A and B are not necessarily integral domains. Let A be a ring and let B be an A-algebra with the structure homomorphism $f: A \rightarrow B$. A ring homomorphism $f: A \rightarrow B$ is called an epimorphism, if for any ring C and any two homomorphisms $g, g': B \rightarrow C$, the relation $g \circ f = g' \circ f$ implies g = g'.

(2.1) LEMMA. Let A be a ring and B an epimorphic A-algebra. Let M

be a B-module which admits a direct sum decomposition $M = M_1 \bigoplus M_2$ as A-modules. Then A-modules M_1 and M_2 have natural B-module structures and $M = M_1 \bigoplus M_2$ as B-modules. In particular if $B = B_1 \bigoplus B_2$ as A-modules, then B is a direct product of subrings B_1 and B_2 .

PROOF. Let b be an element of B. Then it is known that there are elements $b_1, b_2, \dots, b_r \in B, c_1, c_2, \dots, c_s \in B$ and $\beta_{ij} \in A$ $(1 \leq i \leq r \text{ and } 1 \leq j \leq s)$ such that $b = \sum_{i,j} \beta_{ij} b_i c_j$ and both $\sum_i \beta_{ij} b_i$ and $\sum_j \beta_{ij} c_j$ are in A (cf. [3]). Then for any $m \in M$ we have $b \otimes m = 1 \otimes bm$. Define a B-module homomorphism $\phi: B \otimes_A M \to M$ by $\phi(b \otimes m) = bm$ and a B-module homomorphism $\psi: M \to B \otimes_A M$ by $\phi(m) = 1 \otimes m$. Then the above consideration implies that $\psi \circ \phi = 1_{B \otimes M}$ and $\phi \circ \phi = 1_M$. Therefore $M \cong B \otimes_A M$ as B-modules. Now assume that M (regarded as A-module) is a direct sum of A-modules M_1 and M_2 . Then we have $B \otimes_A M = B \otimes_A M_1 \oplus B \otimes_A M_2$. Let m be any element of M_1 and let b be an element of B. Write $bm = m_1 + m_2$, where $m_1 \in M_1$ and $m_2 \in M_2$. Then $b \otimes m = \phi \circ \phi(b \otimes m) = \phi(bm) = \phi(m_1 + m_2) = 1 \otimes m_1 + 1 \otimes m_2$. Hence $b \otimes m - 1 \otimes m_1 = 1 \otimes m_2 \in B \otimes_A M_1$ has a B-module structure and similarly M_2 has a B-module structure. It is now immediate to see that $M = M_1 \oplus M_2$ as B-module.

(2.2) COROLLARY. Let A be a ring and B an epimorphic A-algebra. Let M be a B-module. Then M is an irreducible B-module if and only if M is an irreducible A-module.

The next lemma is proved in [3].

(2.3) LEMMA. Let A be a Noetherian local ring and let B be a local Aalgebra. If $f: A \rightarrow B$ is a local epimorphism, B is A-isomorphic to a localization of a finite A-algebra.

Making use of (3.3), we can give a relationship between flat over-rings and epimorphic over-rings.

(2.4) THEOREM. Let A be a Noetherian normal domain and B an over-ring of A. Then B is epimorphic over A if and only if B is flat over A.

PROOF. The "if" part was proved in [3] in a more general setting. Hence we shall give here a proof of the "only if" part of the theorem. Assume that B is epimorphic over A. Let \mathfrak{P} be any prime ideal in B and let $\mathfrak{p}=\mathfrak{P}\cap A$. Then $A_{\mathfrak{p}}\to B_{\mathfrak{P}}$ is a local epimorphism and $A_{\mathfrak{p}}$ is a Noetherian normal local domain. Hence by (3.3), $B_{\mathfrak{P}}$ is $A_{\mathfrak{p}}$ -isomorphic to a localization C_Q of a finite Aalgebra $C \subseteq K$, where K is the quotient field of A. Indeed there is a finite $A_{\mathfrak{p}}$ algebra C' and a prime ideal Q' such that we have $B_P = C'_{Q'}$. Then we can take C, Q as the images of C', Q' in K. Since $A_{\mathfrak{p}}$ is normal, $C = A_{\mathfrak{p}}$, so $B_{\mathfrak{P}} = A_{\mathfrak{p}}$. Therefore B is flat over A.

In the next theorem we shall determine the structure of epimorphic A-algebras.

K. Yoshida

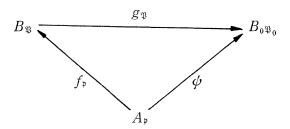
(2.5) THEOREM. Let A be a Noetherian normal domain and B an epimorphic Noetherian A-algebra. Let I be the torsion A-submodule of B. Then the following exact sequence of A-modules

$$0 \longrightarrow I \longrightarrow B \xrightarrow{g} B/I \longrightarrow 0$$

splits as A-module and B is isomorphic to $I \times B/I$ as B-algebra.

PROOF. First of all, we shall show that I is a prime ideal in B. Let $B_0 = B/I$. Since B is epimorphic over A, B_0 is also epimorphic over A with a ring homomorphism $gf: A \xrightarrow{f} B \xrightarrow{g} B_0$ where f is a structure homomorphism of B and g is the natural homomorphism. Then $f \otimes 1: A \otimes_A K \to B_0 \otimes_A K$ is also an epimorphism. Since $A \otimes_A K = K$ is a field $f \otimes 1$ must be an isomorphism and we see that $B_0 \otimes_A K$ is a field. Being a subdomain of $B_0 \otimes_A K, B_0$ is also an integral domain.

Next we shall show that g is a flat homomorphism. Let \mathfrak{P}_0 be an arbitrary prime ideal in B_0 , and let $\mathfrak{P} = g^{-1}(\mathfrak{P}_0)$ and $\mathfrak{p} = \mathfrak{P} \cap A$.



In the above diagram, ψ is a local epimorphism, $A_{\mathfrak{p}}$ is a Noetherian normal local domain, and $B_{\mathfrak{o}\mathfrak{P}_0}$ is an over-ring of $A_{\mathfrak{p}}$ (cf. [3]). Therefore by the proof of (3.4), ψ is an isomorphism, so $g_{\mathfrak{P}} \cdot f_{\mathfrak{p}} \cdot \psi^{-1} = 1_{B_0 \mathfrak{P}_0}$. Hence $B_{\mathfrak{P}}$ is a direct sum of $B_{\mathfrak{o}\mathfrak{P}_0}$ and ker $g_{\mathfrak{P}}$ as $A_{\mathfrak{p}}$ -modules. By (3.1), $B_{\mathfrak{P}}$ is a direct product of $B_{\mathfrak{o}\mathfrak{P}_0}$ and ker $g_{\mathfrak{P}}$ as rings because $B_{\mathfrak{P}}$ is epimorphic over $A_{\mathfrak{p}}$. On the other hand Spec $B_{\mathfrak{P}}$ is connected since $B_{\mathfrak{P}}$ is a local ring. Hence ker $g_{\mathfrak{P}} = 0$ and $g_{\mathfrak{P}}$ is an isomorphism. Therefore g is flat.

Since g is a flat surjective homomorphism, the morphism Spec $B_0 \rightarrow$ Spec B is an open and closed immersion. Therefore Spec $B = V \perp$ Spec B_0 for a closed subscheme V of Spec B. Since closed subscheme of an affine scheme are also affine ones, Spec B = Spec $B/J \perp$ Spec B/I for an ideal J in B. It is easy to show by using the Noetherian property of B that $B = B/I \times B/J$ and $B/J \cong I$.

References

 T. Akiba, Remarks on generalized rings of quotients, Proc. Japan Acad., 40 (1964), 801-806.

- [2] M. Nagata, Lecture on the fourteenth problem of Hilbert, Tata Inst. Fund Res., Bonbay, 1965.
- [3] P. Samuel, Les epimorphismes d'anneaux, Seminaire d'algebres commutative dirige par P. Samuel, Secretariat Math., Paris, 1968.

Ken-ichi YOSHIDA

Department of Mathematics Faculty of Science Osaka University Toyonaka, Osaka Japan