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\S 1. Introduction.

The purpose of this paper is to clarify the structure of finite groups
which satisfy the following condition:

(CI): The intersection of any two distinct Sylow 2-groups is contained
in the center of a Sylow 2-group.

From now on, we call a finite group a (CI)-group if it satisfies (CI). The
main result is the following:

THEOREM 1. Let $G$ be a (CI)-group. Then one of the following statements
holds.

(1) $G$ is a solvable group of 2-length 1.
(2) A Sylow 2-group of $G$ is Abelian.
(3) $G$ has a normal series $1\leqq N<M\leqq G$ where $N$ and $G/M$ have odd

order and $M/N$ is the central product of an Abelian 2-group and a group iso-
morphic to $SL(2,5)$ .

(4) $G$ contains a normal subgroup $M$ of odd index in $G$ which satisfies one
of the following conditions:

(4.1) $M$ is the direct product of an Abelian 2-group and a group isomorphic
to $Sz(q),$ $PSU(3, q)$ or $SU(3, q),$ $q$ a 2-power $>2$ .

(4.2) $M$ is the central pr0duct of an Abelian 2-group and a non-trivial
perfect central extension of $Sz(8)$ .

If we combine Theorem 1 with the theorems of Walter [13] and Bender
[2], we obtain the following result.

THEOREM 2. A non-Abelian simple $(CI)- grouP$ is isomorPhic to one of the
following groups:

$PSL(2, q),$ $q\equiv 0,3,5(mod 8)$ ,
$JR$ ,
$Sz(q)$ or
PS$U(3, q),$ $q$ a Power of 2.
Here $JR$ denotes the simple groups with Abelian Sylow 2-groups in which

the centralizer of an involution $t$ is a maximal subgroup and isomorphic to
$<t\rangle\times E$ where $PSL(2, q)\leqq E\leqq P\Gamma L(2, q)$ with odd $q>3$ . This definition is due



Finite groups with central Sylow 2-intersections 343

to [2]. A large amount of work has been done by many authors to classify
the groups $JR$ , and the structure of $JR$ is now very well known. In this
paper, however, we need no knowledge of the properties of $JR$ except those
which are proved easily.

A group satisfying (2) or (4) in Theorem 1, clearly, is a (CI)-group, while
a group satisfying (1) or (3) is not necessarily a (CI)-group. Let $G$ be a
group which satisfies (1). Then $G$ is 2-closed (resp. a (CI)-group) if and only
if $O_{2^{\prime},2}(G)$ is 2-closed (resp. a (CI)-group). The following result is concerned
with this situation.

THEOREM 3. Let $G$ be a group which is 2’-closed but not 2-closed and $Sa$

Sylow 2-group of G. We set $H=O(G)$ and $C=C_{S}(H)$ . If $G$ is a (CI)-group,

then one of the following statements is true.
(a) $S$ is Abelian.
(b) $C$ is contained in $Z(S)$ . $Z(S)/C$ is elementary Abelian. $S$ has a sub-

group $Q$ with the following proPerties: $Q\geqq C,$ $Q/C$ is a generalized quaternion
group and $S=QZ(S)$ . Furthermore, every compositiOn S-factor of $H$ is either
centralized by $S$ or inverted by the elements of $Z(Q)-C^{1)}$

Conversely, if $G$ satisfies (a) or (b), it is a (CI)-group.
Here, a composition S-factor of $H$ means a factor of a composition series

of $H$ as a group with the set $S$ of operators. Let $G$ be a group satisfying
(3) in Theorem 1, and let $S/N$ be a Sylow 2-group of $G/N$. It is easy to
prove that $G$ is a (CI)-group if and only if $S$ satisPes (CI). Therefore Theo-
rems 1 and 3 give us a necessary and sufficient condition for a group to be
a $(Cl)$ -group. Theorem 3 also plays an important role in the proof of
Theorem 1.

NOTATION AND REMARKS. Unexplained notation is either standard or
will be found in [5], especially pp. 4-5, pp. 519-520. All groups are assumed
to be finite. The group $G$ is said to be perfect if $G^{\prime}=G$ . A perfect group
$G$ is called semisimple provided $G/Z(G)$ is the direct product of non-Abelian
simple groups, and is called quasisimple provided $G/Z(G)$ is simple. It is not
difficult to show that a semisimple group $G$ is the central product of uni-
quely determined quasisimple subgroups, which we call the components of $G$ .
Every group $G$ has the unique maximal normal semisimple subgroup, which
we denote by $L(G)$ . We define $O_{2}^{*}(G)=O_{2}(G)L(G)$ . It is becoming well known
that $C_{G}(O_{2}^{*}(G))\leqq O_{2}(G)$ if $0(G)=1$ ([6], Theorem 2). A quasisimple group $G$

is said to be of type $\mathfrak{F}$ where $\mathfrak{F}$ is a family of simple groups provided
$G/Z(G)$ is isomorphic to a member of $\mathfrak{F}$ . The 2-element of the group $G$ is
called central in $G$ if it is contained in the center of a Sylow 2-group of $G$ .
A quaternion group is a non-Abelian 2-group which contains only one involu-

1) It is not difficult to show that $C$ has index 2 in $Z(Q)$ . See Section 4.
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tion. The group $G$ is called $\pi$-closed where $\pi$ is a set of primes, if the $\pi-$

elements of $G$ generate a $\pi$ -group. The symbol 2’ denotes the set of odd
primes. Throughout the paper, we use the fundamental theorem of Feit-
Thompson [3] implicitly.

\S 2. Preliminary results.

LEMMA 2.1. Let $S$ be a 2-group. Assume that $Z(S)$ contains distinct maxi-
mal subgroups $C_{1},$ $C_{2},$ $\cdots$ , $C_{n},$ $n\geqq 2$ , such that $C_{1}\cap C_{2}\cap\cdots\cap C_{n}=1$ and $S/C_{i}$ is
a quaternion group, $i=1,2,$ $\cdots$ , $n$ . Then $S$ is the direct pr0duct of an elemen-
tary Abelian group and a quaternion group.

PROOF. Induction on $n$ . Assume Prst $n=2$ . In this case we proceed
by induction on the order of $S$ . Clearly, $Z(S)$ is a four-group and $\Omega_{1}(S)=$

$Z(S)$ as $Z(S)/C_{1}$ is the unique subgroup of order 2 in $S/C_{1}$ . Assume $|S:Z(S)|$

$=4$ . Inspecting the known list of the groups of order 16, we know that
either $S$ is the direct product of a group of order 2 and a quaternion group
of order 8, or else $S$ is generated by the elements $a$ and $b$ subject to the
relations:

$a^{4}=1$ , $b^{4}=1$ , $a^{-1}ba=b^{-1}$

However, the latter does not satisfy the assumption of our lemma. There-
fore the assertion is true if $|S:Z(S)|=4$ ; so assume $|S:Z(S)|>4$ . Then $S$

contains a maximal subgroup $V$ containing $Z(S)$ such that $V/Z(S)$ is a dihe-
dral group. Since $V/C_{i}$ is a quaternion group, $i=1,2$ , we have $Z(V)=Z(S)$ .
The induction hypothesis now applies to $V$ . In particular, we see that $V$ is
not metacyclic. Since $S/Z(S)$ is a dihedral group, there is a maximal sub-
group $T$ of $S$ containing $Z(S)$ such that $T/Z(S)$ is cyclic. $T$ is Abelian and,
as $\Omega_{1}(T)=Z(S)$ , contains a cyclic maximal subgroup $U$ . Since $S/C_{i}$ is a
quaternion group, $i=1,2$ , elements of $S-T$ invert $U$ whence $U$ is a normaI
subgroup of $S$ . As is noticed above, $S$ is not metacyclic, and so there is a
subgroup $Q$ of $S$ such that $S=TQ$ and $T\cap Q=U$ . Since $Q$ is non-Abelian and
contains only one involution, $Q$ is a quaternion group. Thus the assertion
is true if $n=2$ .

Assume next $n>2$ . We apply the above argument to the group $S/C_{1}\cap C_{2}$

and find a maximal subgroup $T$ of $S$ containing $C_{1}\cap C_{2}$ such that $T/C_{1}\cap C_{z}$

is a quaternion group. By the inductive hypothesis, there is a quaternion
subgroup $Q$ such that $T=Z(T)Q$ (and $|Z(T)\cap Q|=2$). Since $Z(S)$ is ele-
mentary, the assertion is true in this case, too.

LEMMA 2.2. $JR$ has no non-trivial perfect central 2-extensions. If a 2-
automorphism of $JR$ centralizes a Sylow 2-group of $JR$ , then it is inner.
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PROOF. (i) Suppose there is a perfect central extension of $JR$ by a
group $Z$ of order 2, and let $S$ be its Sylow 2-group. Since $S$ is not extra-
special, as $|S|=16$ , and the normalizer of $S$ acts irreducibly on $S/Z,$ $S$ is
Abelian and so $S$ is elementary Abelian. A theorem of Gasch\"utz [8], Haup-
tsatz I, 17.4, yields a contradiction.

(ii) Let $a$ be a 2-automorphism of $G=JR$ centralizing a Sylow 2-group
$S$ of $G$ . We first embed $a$ and $G$ in the semidirect product $ c*=G\langle a\rangle$ . Let
$t$ be an involution of $S$ and let $H=C_{G}(t)=\langle t\rangle\times E$. By definition $E$ contains
a normal subgroup $K$ of odd index in $E$ isomorphic to $PSL(2, q),$ $q\equiv 3,5$ (mod
8). It is immediate that $a$ acts on $K$ as an inner automorphism induced by
an element $u$ of $T=S\cap E$ . Therefore in the group $ E^{*}=E\langle a\rangle$ , we have
$au^{-1}\in C_{E}.(O_{2}^{*}(E^{*}))\leqq O_{2}(E^{*})$ as $0(E^{*})=1$ . Since $E\cap O_{2}(E^{*})=1$ , we conclude
that $[E, au^{-1}]=1$ . Thus we have $[H, b]=1=[H, bt]$ for $b=au^{-1}$ . Let $A$ be
a complement of $S$ in $N_{G}(S)$ and let $B=N_{H}(S)\cap A$ . Counting the conjugates
of $A$ in $N_{G}(S)$ containing $B$ , we see that $A^{b}=A$ or $A^{b}=A^{t}$ . Therefore
$A^{c}=A$ for $c=b$ or $bt$ . A Sylow 7-group of $A/C_{A}(S)$ is centralized by $c$ , because
it is regular on $S$ and $c$ centralizes $S$ . So $c$ centralizes $A$ . Since $H$ is a
maximal subgroup of $G$ , this implies that $a$ acts on $G$ as an inner automor-
phism induced by $u$ or tu.

LEMMA 2.3. Let $S$ be a $2$-group of rank 2. If $Z(S)$ contains a maxima2
subgroup $D$ such that $S/D$ is a quaternion group, then $S$ has a cyclic charac-
teristic subgroup $\neq 1$ .

PROOF. Suppose false. Then every Abelian characteristic subgroup $\neq 1$

of $S$ is a homocyclic group of rank 2. Since $S/Z(S)$ is a dihedral group,
$S^{\prime}/S^{\prime}\cap Z(S)$ is cyclic and so $S^{\prime}$ is Abelian. Since both $S^{\prime}$ and $S^{\prime}\cap Z(S)$ are
homocyclic of rank 2 and $S^{\prime}/S^{\prime}\cap Z(S)$ is cyclic, we have $S^{\prime}\leqq Z(S)$ . If $S^{\prime}=$

$Z(S)$ , then $|S:S^{\prime}|=4$ , as $S/Z(S)$ is dihedral, and so $S$ is a 2-group of maxi-
mal class and contains a cyclic characteristic subgroup $\neq 1$ ([5], Theorem
5.4.5). So we assume $S^{\prime}\neq Z(S)$ . Since both $S^{\prime}$ and $Z(S)$ are homocyclic
groups, $S^{\prime}$ is contained in the Frattini subgroup of $Z(S)$ . Thus, $S^{\prime}\leqq D$ , a
contradiction.

LEMMA 2.4. Let $Y$ be a 2’-group of automorphisms of an Abelian 2-group
$T$ and $X$ a Proper subgroup of Y. Assume the following conditions:

(i) $T=W\times Q$ where $W$ and $Q$ are X-invariant subgroups of $T$ and $Q$ is
elementary Abelian.

(ii) $W\cap W^{y}=1$ for every $y\in Y-X$.
(iii) There exists a cyclic normal subgroup $R$ of $X$ which is regular on

$Q^{*}$ and centralizes $W$.
Then $W$ is cyclic (and $|Q|=4$ if $W\neq 1$).
In order to prove this, we can assume that $T$ is elementary Abelian, as
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$Y$ acts faithfully on $\Omega_{1}(T)$ ([5], Theorem 5.2.4). Therefore the last four
paragraphs of the proof of [2], (3.8), are applicable without changes.

\S 3. Properties of (CI)-groups.

We will discuss here elementary properties of (CI)-groups. We assume
$G$ to be a (CI)-group and $S$ its Sylow 2-group throughout the section.

LEMMA 3.1. $C_{S}(x)$ is a Sylow $2$-group of $C_{G}(x)$ for any $x$ in $S$.
PROOF. This is obvious, if $x$ is contained in $Z(S)$ ; so assume that $x$ is

not contained in $Z(S)$ . Let $T$ be a Sylow 2-group of $G$ such that $C_{T}(x)$ is a
Sylow 2-group of $C_{G}(x)$ containing $C_{s}(x)$ . If $S\neq T$ , then $S\cap T$ is contained
in the center $Z(U)$ of a Sylow 2-group $U$ of $G$ . Thus $\langle Z(S), x\rangle\leqq Z(U)$

whence $x\in Z(S)$ , contrary to our assumption. Therefore, $S=T$ and so $C_{S}(x)$

is a Sylow 2-group of $C_{G}(x)$ .
Lemma 3.1 in particular implies that a central 2-element of $G$ contained

in $S$ is necessarily contained in $Z(S)$ . Hence we have the following result.
LEMMA 3.2. If $T$ is a Sylow $2$-group of $G$ different from $S$, then $S\cap T$

$\leqq Z(S)\cap Z(T)$ .
The proof of the following lemma is easy, if we use the preceding lemma,

and is left to the reader.
LEMMA 3.3. Subgroups and quotient groups of a (CI)-group are also $(CI)-$

groups.
LEMMA 3.4. If $x$ is a 2-element of $G$ , then $C_{G}(x)$ acts transitively on the

Sylow 2-groups of $G$ containing $x$ .
PROOF. Let $S$ and $T$ be Sylow 2-groups of $G$ containing $x$ . If $S\neq T$ ,

then by Lemma 3.2, $S$ and $T$ are contained in $C_{G}(x)$ , and the assertion follows
from Sylow’s theorem.

In exactly the same way, we can prove the following:
LEMMA 3.5. If $x$ is an element of $S$ for which $C_{G}(x)$ is 2-closed, then $S$ is

the only Sylow 2-group that contains $x$ .
LEMMA 3.6. Two elements of $S$ which are conjugate in $G$ are already con-

jugate in $N_{G}(S)$ .
PROOF. Assume that $x$ and $x^{g}$ are contained in $S$ where $g\in G$ . By

Lemma 3.4, we find an element $c$ of $C_{G}(x)$ such that $gSg^{-1}=c^{-1}Sc$ . Then $cg$

normalizes $S$ and $x^{cg}=x^{g}$ .
LEMMA 3,7. If $C\neq 1$ is a cyclic characteristic subgroup of $S$, then the

involution of $C$ is contained in $Z^{*}(G)$ .
PROOF. Let $c$ be the involution of $C$ . Lemma 3.6 implies that if $c^{g}\in S$ ,

$g\in G$ , then $c^{g}=c$ . Glauberman’s $z*$ -theorem [4] yields $c\in Z^{*}(G)$ .
LEMMA 3.8. If $G$ is 2-constrained, then $G$ is a solvable group of 2-length 1.
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PROOF. We can assume $0(G)=1$ . Therefore $C_{G}(O_{2}(G))\leqq 0_{2}(G)$ by the
dePnition of 2-constraint. Thus, by (CI), $G$ is 2-closed.

\S 4. Proof of Theorem 3.

Let $G$ be a group which is 2’-closed but not 2-closed and $S$ its Sylow
2-group. We set $H=O(G)$ and $C=C_{S}(H)$ . We first assume that $G$ is a $(CI)-$

group with non-Abelian Sylow 2-groups, and prove that $G$ satisfies the con-
dition (b) in Theorem 3. Since $C$ is a normal 2-subgroup of $G$ and $G$ is not
2-closed, $C$ is contained in $Z(S)$ by (CI). Let $\{V_{1}, \cdots , V_{n}\}$ be the set of com-
position S-factors of $H$ not centralized by $S$ . Put $C_{i}=C_{S}(V_{i}),$ $1\leqq i\leqq n$ . It
is known that $C_{1}\cap C_{2}\cap\cdots\cap C_{n}=C$ (cf. Proof of [5], Theorem 5.3.2). Our
aim will be to prove the following: for each $i,$ $1\leqq i\leqq n$ ,

$C_{i}$ is a maximal subgroup of $Z(S)$ ,
$S/C_{i}$ is a quaternion group, and
elements of $Z(S)-C_{i}$ invert $V_{i}$ .

If this is true, then $Z(S)/C=Z(S/C)$ and we conclude from Lemma 2.1 that
$S$ has a subgroup $Q$ containing $C$ with the following Properties:

$Q/C$ is a quaternion group,
$S=QZ(S)$ , and
$|Q\cap Z(S):C|=2$ .

Furthermore, $Z(S)/C$ is elementary Abelian and $Z(Q)=Q\cap Z(S)$ . Since $C_{i}$

does not contain $Z(Q)$ as $S/C_{i}$ is quaternion, we have $C=C_{i}\cap Z(Q)$ . There-
fore elements of $Z(Q)-C$ invert each $V_{i}$ , and the condition (b) in Theorem
3 holds.

That $C_{i}$ satisfies the above italicized properties is proved in the following
way. Let $V_{i}=K_{i}/L_{f}$ where $K_{i}$ and $L_{i}$ are S-invariant subgroups of $H$ and
$L_{\iota}$ is normal in $K_{i}$ . We set $G_{i}=SK_{t}$ and $\overline{G}_{i}=G_{i}/L_{i}$ . Then $\overline{G}_{i}$ is 2’-closed
but not 2-closed, as $\overline{S}$ does not centralize $\overline{K}_{i}=V_{i}$ . Clearly, $C_{\overline{S}}(V_{i})=\overline{C}_{i}$ whence
$\overline{C}_{i}\leqq Z(\overline{S})$ , because $C_{i}$ is a normal 2-subgroup of a (CI)-group $\overline{G}_{i}$ . Thus, $ C_{i}\leqq$

$Z(S)$ . Let $A/C_{i}$ be a non-identity subgroup of $\overline{S}/\overline{C}_{\ell}$ . We argue that $C_{V_{i}}(\overline{A})$

$=1$ . This holds if $\overline{A}\leqq Z(\overline{S})$ , because $\overline{S}$ acts irreducibly on $V_{i}$ . We note
that $V_{i}$ is solvable by the Feit-Thompson theorem [3], and so it is elemen-
tary Abelian. If $\overline{A}\not\leqq Z(\overline{S})$ , then $\overline{S}$ is the only Sylow 2-group of $\overline{G}_{i}$ that con-
tains $\overline{A}$ (see Lemma 3.2). Since $\overline{S}$ is self-normalizing in $G_{\ell}$ , we again have
$C_{V_{l}}(\overline{A})=1$ . Hence $\overline{S}/\overline{C}_{i}$ is a regular group of automorphisms of $V_{i}$ whence
it is a quaternion group and its unique involution inverts $V_{i}$ ([5], Theorem
10.1.4, Theorem 10.3.1). Thus, $S/C_{i}$ is a quaternion group and elements of
$Z(S)-C_{i}$ , if $Z(S)\neq C_{l}$ , invert $V_{i}$ . We finally verify that $C_{i}$ is a maximal
subgroup of $Z(S)$ . Let $Z/C_{i}$ be the center of $S/C_{i}$ . Since $S/C_{t}$ is a quater-
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nion group, $C_{i}$ has index 2 in $Z$. Furthermore $Z/C_{i}$ is contained in cyclic
subgroups $A/C_{i}$ and $B/C_{i}$ of $S/C_{i}$ such that $S=AB$ . Since both $A$ and $B$

are Abelian, we conclude that $Z=Z(S)$ .
We next prove the converse. Assume that $G$ satisfies (a) or (b) in

Theorem 3. Note that if $G$ satisfies (b), then $C$ has index 2 in $Z(Q)=Q\cap Z(S)$ .
SuPpose that $G$ is a counterexample of minimal order to the assertion that
$G$ is a $(CI)- group$ . Then $S$ is not Abelian and, as $Z(S/C)=Z(S)/C,$ $C=1$

(see Lemma 3.2). Since $G$ is a counterexample, there is an element $h$ of
$H-N_{H}(S)$ such that $S\cap S^{h}$ is not contained in $Z(S)$ . Since $\Omega_{1}(S)=Z(S)$ ,
$S\cap S^{h}$ contains an involution which has a square root in S. By the same
reason, the involution of $Z(Q)$ is the only one that has a square root in $S$.
Hence $Z(Q)\leqq S\cap S^{\hslash}$ . Let $H/K$ be a composition S-factor of $H$ Suppose
that $S^{h}$ is contained in $SK$. In this case we may assume that $h$ is an ele-
ment of $K$. If $C_{S}(K)$ is not contained in $Z(S)$ , then we have $Z(Q)\leqq C_{S}(K)$

in exactly the same way as above. The condition (b) now implies that $S$

centralizes each composition S-factor of $K$, so even $K$ itself, contradicting
$S\neq S^{h}$ . Hence we assume $Z(Q)\not\leqq C_{S}(K)\leqq Z(S)$ . In this case, we can apply
the inductive hypothesis to $SK$ and conclude that $S\cap S^{h}\leqq Z(S)$ (see Lemma
3.2), contrary to the choice of $h$ . Therefore $S^{h}$ is not contained in $SK$. If
$S$ centralizes $H/K$, equivalently $[S, H]\leqq K$ , then we conclude readily that
$S^{h}\leqq SK$. Therefore $H/K$ is not centralized by $S$ , and so is inverted by the
involution of $Z(Q)$ . Put $\overline{G}=G/K$. Since the involution of $Z(\overline{Q})$ inverts $\overline{H}$,
$C_{\overline{s}}(\overline{H})\leqq Z(\overline{S})$ . So we can aPply the inductive hypothesis to $\overline{G}$ , if $K\neq 1$ . We
conclude that $\overline{S}=\overline{S}^{\overline{h}}$, or equivalently $S^{h}\leqq SK$, but this is not the case. Hence
$K=1$ , whence $S$ acts faithfully and irreducibly on $H$. In particular, every
central involution of $S$ acts fixed-point-freely on $H$. Hence $S$ is a quaternion
group and $S=C_{G}(Z(Q))=S^{h}$ . This contradiction completes the proof.

\S 5. Proof of Theorem 1.

We will begin the proof of Theorem 1. As a matter of fact, we first
prove Theorem 2 and obtain Theorem 1 as a corollary of Theorem 2 and a
few additional results. Let $\mathfrak{F}$ denote the family of simple groups on the
following list:

$PSL(2, q),$ $q\equiv 0,3,5(mod 8)$ ,
$JR$ ,
$Sz(q)$ or
$PSU(3, q),$ $q$ a power of 2.
In some places in this section, we shall use the properties of the auto-

morphism groups and representation groups of these groups. Necessary
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materials will be found in Lemma 2.2, [1], [8], [9], [10], etc.
LEMMA 5.1. Let $G$ be a $(CI)- grouP$ with $0(G)=1$ . Assume that every com-

ponent of $L(G)$ , if $L(G)\neq 1$ , is of tyPe $\mathfrak{F}$ Then $G$ satisfies one of the following
conditions:

(1) $G$ is 2-closed.
(2‘) A Sylow 2-group of $G$ is Abelian.
(3) $G$ contains a normal subgroup $M$ which has odd index in $G$ , and is

the central or direct Product of an Abelian $2$-group and a quasisimple group
isomorphic to one of the following groups:

$SL(2,5)$ ,
$\hat{S}z(8)$ : a non-trivial perfect central 2-extension of $Sz(8)$ ,
$Sz(q)$ or
$PSU(3, q),$ $q$ a power of 2 and $q>2$ .
PROOF. Let $S$ be a Sylow 2-group of $G$ . We set $L=L(G),$ $T=S\cap O_{2}^{*}(G)$

and $U=T\cap L$ . If $L=1$ , then $G$ is 2-constrained and so 2-closed by Lemma
3.8. So we can assume $L\neq 1$ . Since $G$ is a (CI)-group but not 2-closed, we
have $O_{2}(G)\leqq Z(S)$ .

Case 1. Assume $U\leqq Z(S)$ . Then each component of $L$ is of type $PSL(2, q)$ ,
$q\equiv 0,3,5$ (mod8), or $JR$ , and is normalized by $S$ . Let $K$ be a component of
$L$ , then $S$ induces a 2-group of automorphisms of $\overline{K}=K/Z(K)$ which cen-
tralizes a Sylow 2-group of $\overline{K}$. We conclude from Lemma 2.2 and the struc-
ture of $P\Gamma L(2, q)$ that $S$ induces a group of inner automorphisms of $\overline{K}$, and
even of $K$. Since $K$ is arbitrary, $S$ induces a group of inner automorphisms
of $L$ . Since $S$ as well as $L$ centralizes $O_{2}(G)$ , we have $S\leqq C_{G}(O_{2}^{*}(G))L\leqq O_{2}^{*}(G)$ .
Thus, $S=T$ and (2) holds.

Case 2. Assume $U\not\leqq Z(S)$ , then, as $G$ is a (CI)-group, $L$ is quasisimple
and $N_{G}(U)\leqq N_{G}(S)$ and so $G/L$ is 2-closed. Suppose that $U$ is Abelian. Then
we conclude from Lemma 2.2 and the known structure of the representation
group of $PSL(2, q)$ that $L$ is isomorphic to $PSL(2, q),$ $q\equiv 0,3,5(mod 8)$ , or
$JR$ . Since $U$ is normal in $S,$ $U\cap Z(S)\neq 1$ . Transitivity of $N_{L}(U)$ on $U^{\#}$ and
$N_{L}(U)\leqq N_{L}(S)$ yield $U\leqq Z(S)$ , contrary to assumption. Hence $U$ is non-
Abelian. Therefore $L$ is isomorphic to one of the groups mentioned in (3)

above. Note that $0(L)=1$ and that $SL(2, q),$ $q$ odd $>5$, is not a (CI)-group.

Set $C=C_{G}(L/Z(L))$ . Since $C\cap L=Z(L)$ is a 2-group and $G/L$ is 2-closed, $C$

is also 2-closed and $O_{2}(G)$ is the unique Sylow 2-group of $C$. It will thus
suffice to prove that $|G:CL|$ is odd. We first note that $G/C$ is isomorphic
to a subgroup of the automorphism group of $\overline{L}=L/Z(L)$ containing the
group of inner automorphisms of $\overline{L}$. If $L\cong SL(2,5)$ , then $G/C\cong PSL(2,5)$ or
$PGL(2,5)$ . However $PGL(2,5)$ is not a (CI)-group, as is easily verified by
Lemma 3.7. Hence $G/C\cong PSL(2,5)$ , or equivalently $G=CL$ . If $L\cong\hat{S}z(8)$ or
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$Sz(q)$ , then $|G:CL|$ is odd, because the outer automorphism group of $Sz(q)$

has odd order. In order to treat the case where $L\cong PSU(3, q),$ $q$ a power of
2, it will suffice to prove the following result.

LEMMA 5.2. Let $X$ be a subgroup of $P\Gamma U(3, q)$ containing $PSU(3, q),$ $q$ a
Power of 2. If $X$ is a $(CI)- grouP$ , then $|X:PSU(3, q)|$ is odd.

PROOF. Suppose false. We can assume that $ X=PSU(3, q)\langle a\rangle$ where $a$

is an involution represented by the involutive automorphism $\neq 1$ of $GF(q^{2})$ .
We find a Sylow 2-group $R$ of $PSU(3, q)$ normalized but not centralized by $a$

such that $a$ has a fixed point $b$ on $PSU(3, q)-N_{PSU(3,q)}(R)$ . Since $b$ does not
normalize $ R\langle a\rangle$ , (CI) forces $[R, a]=1$ . This contradiction completes the
proof.

LEMMA 5.3. Let $G$ be a (CI)-group. Assume that $\overline{G}=G/O(G)$ satisfies one
of the conditions $(1^{\prime})-(3^{\prime})$ in Lemma 5.1 ufhere for $G$ we read G. Then $G$

satisfies one of the conditions (1) $-(4)$ in Theorem 1.
PROOF. We need only consider the case where $\overline{G}$ contains a normal

subgroup which has odd index in $\overline{G}$ , and is the central or direct product of
an Abelian 2-group and a quasisimple group $\overline{L}$ isomorphic to one of the
following groups:

$\hat{S}z(8),$ $Sz(q)$ or $PSU(3, q),$ $q$ a power of 2.
Let $S$ be a Sylow 2-group of $G$ , then $S$ centralizes $0(G)$ , otherwise Theo-

rem 3 applied to $SO(G)$ yields that either $S$ is Abelian or $S/Z(S)$ is dihedral,
but this is not the case. Hence, if we denote by $L$ the unique minimal
normal subgroup of $G$ which covers $\overline{L},$ $L$ also centralizes $0(G)$ , because $L$ is
perfect and so is generated by its Sylow 2-groups. Therefore $L$ is a quasi-
simple group of type $Sz(q)$ or $PSU(3, q)$ , $q$ a power of 2. Furthermore,
$[S, O(G)]=1$ implies $O_{2^{\prime},2}(G)=O(G)\times O_{2}(G)$ . Hence $M=O_{2}(G)L$ is a normal
subgroup of $G$ which has odd index in $G$ and satisfies one of the conditions
(4.1) or (4.2) in Theorem 1. The proof is complete.

THEOREM 4. Let $G$ be a (CI)-group with $Z^{*}(G)=1$ . Assume that the cen-
tralizer of every central involution of $G$ is 2-constrained. Then one of the
following statements is true.

(i) A Sylow 2-group of $G$ is Abelian.
(ii) $G$ is a $(TI)$ -group.
PROOF. We recall from [11] that a group is called a $(TI)$ -group if two

distinct Sylow 2-groups have only the identity element in common. If the
centralizer of every central involution of $G$ is 2-closed, then Lemma 3.5 and
(CI) imply that $G$ is a (TI)-group. So we assume that the centralizer $H$ of a
central involution, say $x$ , is not 2-closed. Let $S$ be a Sylow 2-group of $G$ .
Theorem 3 applied to $O_{2^{\prime},2}(H)$ yields that either $S$ is Abelian or $Z(S)$ con-
tains a maximal subgroup $D$ such that $S/D$ is a quaternion group. In parti-
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cular, all involutions of $G$ are central. Lemma 3.7 and $Z^{*}(G)=1$ imply that
$Z(S)$ is non-cyclic; so $G$ is connected in the sense of [7]. If $m(G)\geqq 3$ , then
the ”balanced theorem” of Gorenstein-Walter [7], Theorem $B$ , yields $0(H)=1$

and so $H$ is 2-closed, contrary to the choice of $H$ Hence $m(G)=2$ . Suppose
that $S$ is non-Abelian, then Lemma 2.3 implies that $S$ contains a cyclic
characteristic subgroup $\neq 1$ , contradicting $Z^{*}(G)=1$ . Thus, $S$ is Abelian.
The proof is complete.

THEOREM 5. Let $G$ be a non-Abelian simple $(CI)- g\gamma oup$ . Assume that not
all centralizers of central involutions of $G$ are 2-constrained, and that each non-
Abelian $comPosition$ factor of every prOper subgroup of $G$ is isomorphic to a
member of $\mathfrak{F}$ . Then a Sylow 2-group of $G$ is Abelian.

PROOF. Let $S$ be a Sylow 2-group of $G$ . We begin with a few remarks.
Since $Z^{*}(G)=1$ , Lemma 3.7 implies that $S$ has no cyclic characteristic sub-
groups $\neq 1$ . Lemmas 5.1, 5.3 and the assumption imply that every proper
subgroup $X$ of $G$ satisfies one of the conditions (1) $-(4)$ in Theorem 1. How-
ever, $X$ does not satisfy (3) if $X$ contains a Sylow 2-group of $G$ , otherwise
$S^{\prime}$ will be a characteristic subgroup of $S$ of order 2. We divide the proof
into seven parts. Furthermore, we assume $S$ to be non-Abelian.

(I) Let $x$ be a central involution of $G$ for which $H=C_{G}(x)$ is not $2$-con-
strained. Then $H$ contains a normal subgroup $M$ which has odd index in $H$

and is the direct product of a non-cyclic Abelian 2-group and a quasisimple
group isomorphic to $Sz(q),$ $PSU(3, q)$ or $SU(3, q),$ $q$ a power of 2 and $q>2$ .

PROOF. Since $H$ is not 2-constrained and contains a Sylow 2-group of
$G$ , we conclude from preceding remarks that $H$ satisfies the condition (4) of
Theorem 1. We will eliminate the possibility of the condition (4.2). By way
of contradiction, we suppose that $H$ contains a normal subgroup which has
odd index in $H$ and is the central product of an Abelian 2-group and a group
isomorphic to $\hat{S}z(8)$ .

Let $T$ be a Sylow 2-group of $G$ different from $S$ such that $S\cap T\neq 1$ . We
will prove that $Z(S)=Z(T)$ . Let $y$ be an involution of $S\cap T$ and set $K=$

$C_{G}(y)$ . Since $S\neq T$ , Lemma 3.2 implies $S,$ $T\leqq K$ and so $K$ is not 2-closed.
Thus $K$ is not 2-constrained, otherwise Theorem 3 applied to $O_{2^{\prime},2}(K)$ implies
that either $S$ is Abelian or $S/Z(S)$ is dihedral, but this is not the case. So
$K$ contains a normal subgroup which has odd index in $K$ and satisfies the
condition (4.2) in Theorem 1. It follows immediately that $Z(S)=O_{2}(K)=Z(T)$ ,

as desired.
We argue that $L=N_{G}(Z(S))$ is a strongly embedded subgroup of $G$ . If

$|L\cap L^{g}|$ is even where $g\in G$ , then there exist Sylow 2-groups $P$ and $Q$ of
$L$ such that $P\cap Q^{g}\neq 1$ ; so $Z(P)=Z(Q^{g})=Z(Q)^{g}$ as is proved above. More-
over we have $Z(P)=Z(S)=Z(Q)$ , because $P\cap Q\geqq Z(S)$ . Thus, $Z(S)^{g}=Z(S)$
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and so $g\in L$ . This implies that $L$ is a strongly embedded subgroup of $G$ .
So $L$ has only one conjugate class of involutions ([5], Theorem 9.2.1),

but this is not the case since $S-Z(S)$ contains an involution. Therefore
(4.2) does not occur.

We have proved that $H$ contains a normal subgroup $M$ which has odd
index in $H$ and is the direct product of an Abelian 2-group $P$ and a group
isomorphic to $Sz(q),$ $PSU(3, q)$ or $SU(3, q),$ $q$ a power of 2 and $q>2$ . We have
to show that $P$ is not cyclic. Since $H=C_{G}(x),$ $P\neq 1$ . Let $T$ be a Sylow 2-
group of $H$, then $T=P\times R$ where $R$ is isomorphic to a Sylow 2-group of
$Sz(q)$ or $PSU(3, q)$ . If $P$ is cyclic, then $|P|=2$ , otherwise the Frattini group
of $Z(T)$ is a cyclic characteristic subgroup $\neq 1$ of $T$ . However, if $|P|=2$ ,

then Thompson’s fusion lemma [12], Lemma 5.38, implies that the involution
of $P$, or $x$ , is conjugate to an elementy of $R$ . Since $y$ is a square in $T$ , and
$x$ is conjugate to $y$ in $N_{G}(T)$ by Lemma 3.6, $x$ is also a square in $T$ , con-
tradicting $T^{2}\leqq R$ . Therefore $P$ is not cyclic.

(II) $S$ has the form $P\times R$ where $P$ is a non-cyclic Abelian 2-group and $R$

is isomorphic to a Sylow 2-group of $Sz(q)$ or $PSU(3, q),$ $q$ a Power of 2 and
$q>2$ . All involutions of $S$ are contained in $Z(S)$ .

PROOF. This is an immediate consequence of (I).

(III) Let $H$ be a pr0per subgroup of $G$ containing a Sylow 2-group of $G$ .
Then one of the following statements is true:

(i) $H$ is 2-closed.
(ii) $H$ contains a normal subgroup which has odd index in $H$, and is the

direct pr0duct of a non-cyclic Abelian 2-group and a quasisimple group isomor-
phic to $Sz(q),$ $PSU(3, q)$ or $SU(3, q),$ $q$ a p0wer of 2.

PROOF. Since $H$ satisfies (1) or (4) in Theorem 1, (II) implies that $H$

satisfies (ii), or else $H$ is a solvable group of 2-1ength 1. In the latter case,
Theorem 3 implies that $H$ is 2-closed, because $S/Z(S)$ is an elementary Abe-
lian group of order $>4$ .

(IV) $G$ contains no strongly embedded subgroups.
PROOF. Suppose that $G$ has a strongly embedded subgroup $H$. We can

assume $S\leqq H$. If $H$ satisfies the condition (ii) of (III), then $H$ has an Abelian
normal 2-subgroup $P\neq 1$ such that $H-P$ contains an involution. This is a
contradiction, since a strongly embedded subgroup of the group has only
one conjugate class of involutions. Consequently, $H$ is 2-closed and so $H=$

$N_{G}(S)$ . However, $N_{G}(S)\leqq N_{G}(S^{\prime})$ , and $S-S^{\prime}$ contains an involution, again a
contradiction. The proof is complete.

For each involution $x$ of $G$ , we define $M(x)$ to be the set of maximal
subgroups of $G$ containing $C_{G}(x)$ . In the following three steps, let $x$ be an
involution of $S$ and $H$ a member of $M(x)$ which is not 2-constrained. Such
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$x$ and $H$ exist by assumption. Note that $H$ satisfies the condition (ii) of (III).

The argument to be used in (V), (VI) and (VII) below appears in [2], (3.8),

(4.4) and (5.1).

(V) $M(y)=\{H\}$ for every involution $y$ of $O_{2}(H)$ .
PROOF. Let $y$ be an involution of $O_{2}(H)$ , and let $M$ be an element of

$M(y)$ . Since $L(H)\leqq C_{G}(y)\leqq M,$ $M$ also satisfies the condition (ii) of (III).

Since $M/L(M)$ is 2-closed, we have $L(H)\leqq L(M)$ . Also $S\leqq C_{G}(y)\leqq M$ ; so $x$

induces an inner automorphism on $L(M)$ . Thus, $L(H)$ is a $C_{L(M)}(z)$ -invariant
non-solvable subgroup of $L(M)$ where $z$ is an involution of $L(M)$ . Since
$L(M)$ is isomorphic to $Sz(q),$ $PSU(3, q)$ or $SU(3, q),$ $q$ a power of 2 and $q>2_{r}$

this forces $L(H)=L(M)$ . Therefore, $H=N_{G}(L(H))=M$.
(VI) $N_{G}(Z(S))\leqq H$.
PROOF. Suppose false. Let $Y$ and $X$ be the groups of automorphisms

ofT $=Z(S)inducedbyN_{G}(Z(S))andN_{H}(Z(S))$ , respectively. $SinceS\leqq C_{G}(Z(S)\rangle$

$\leqq C_{G}(x)\leqq H,$ $Y$ has odd order and $X$ is a proper subgroup of Y. Set $W=$

$O_{2}(H)$ and $Q=Z(S)\cap L(H)$ , then $T=W\times Q$ and $Q$ is elementary Abelian,

because $Q$ is the center of the Sylow 2-group $S\cap L(H)$ of $L(H)$ . Clearly,

both $W$ and $Q$ are X-invariant. Let $R$ be the group of automorphisms of $T$

induced by $N_{L(H)}(Z(S)\cap L(H))$ , then $R$ is a cyclic normal subgroup of $X$

acting regularly on $Q^{*}$ . Clearly, $R$ centralizes $W$. Suppose that $W\cap W^{n}\neq 1$

where $n\in N_{G}(Z(S))$ . Let $w$ be an involution of $W\cap W^{n}$ . It follows from
(V) that $M(w)=\{H\}=M(nwn^{-1})$ , whence $H=H^{n}$ and so $n\in N_{G}(H)=H$. This
implies that $W\cap W^{y}=1$ if $y\in Y-X$. Therefore all the conditions of Lemma
2.4 are satisfied. We conclude that $O_{2}(H)=W$ is cyclic, contradicting (III).
Therefore, $N_{G}(Z(S))\leqq H$.

(VII) $S$ is Abelian.
PROOF. Suppose false, then we can apply $(I)-(VI)$ . Let $x$ and $H$ be as

before. There is an involution $y$ of $S$ such that $C_{G}(y)\not\leqq H$, otherwise (VI)

implies that $H$ is a strongly embedded subgroup of $G$ , contradicting (IV).
Let $M$ be an element of $M(y)$ , then $M\not\leqq H$ and so $M$ is not 2-closed by (VI).

Therefore $M$ satisfies (ii) in (III). Set $K=L(H),$ $U=O_{2}(H),$ $L=L(M)$ and
$V=O_{2}(M)$ . Applying (V) to $M$, we have $M(v)=\{M\}$ for every involution $v$

of $V$ . As $H\neq M,$ $U\cap V=1$ . There is a subgroup $R$ of $N_{K}(S\cap K)$ which has
odd order and acts transitively on $Z(S\cap K)^{\#}$ . Since $R\leqq N_{K}(S\cap K)\leqq N_{G}(S)$

$\leqq M$ by (VI) aPplied to $M,$ $R$ normalizes $V$ . Since $C_{V}(R)=C_{S}(R)\cap V=U\cap V$

$=1$ , we have $V=[V, R]\leqq[Z(S), R]\leqq Z(S\cap K)$ . Therefore $V$ is elementary
Abelian and $V\leqq S^{2}$ . However, on the other hand, we have $ S=V\times(S\cap L\rangle$

whence $V\cap S^{2}=1$ . This is a contradiction. Hence $S$ is Abelian, and the
proof of Theorem 5 is complete.

It is now not difficult to prove Theorems 1 and 2. We first prove Theo-
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rem 2 by induction on the order of $G$ . Here, $G$ is a non-Abelian simple $(CI)-$

group. If the centralizer of every central involution of $G$ is 2-constrained,
then, by Theorem 4, either $G$ has Abelian Sylow 2-groups or $G$ is a $(TI)-$

group. By the results of Walter [13] and Suzuki [11], $G$ is isomorphic to
$PSL(2, q),$ $q\equiv 0,3,5(mod 8),$ $Sz(q)$ or $PSU(3, q),$ $q$ a power of 2. If not all
centralizers of central involutions of $G$ are 2-constrained, then the inductive
hypothesis and Theorem 5 implies that $G$ has Abelian Sylow 2-groups. Thus,
$G\cong JR$ . Theorem 1 is an immediate consequence of Theorem 2, Lemmas 5.1
and 5.3.
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Added in proof. Recently Goldschmidt [2-Fusion in finite groups (to

appear)] has proved the following remarkable result: Let G be a finite
group, T a Sylow $2$-group of G and A an Abelian strongly closed subgroup of
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$T$ with respect to $G$ , then non-cyclic compositjOn factors of the normal closure
of $A$ in $G$ are isomorphic to one of the groups on the list given in Theorem 2.
If $G$ is a (CI)-group with a Sylow 2-group $T$ , then $Z(T)$ is strongly closed in
$T$ with respect to $G$ by Lemma 3.1, so we can use this result to shorten the
proof of Theorem 1.
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