Finite groups with central Sylow 2 -intersections

By Kensaku Gomi

(Received July 6, 1972)

§ 1. Introduction.

The purpose of this paper is to clarify the structure of finite groups which satisfy the following condition:
(CI): The intersection of any two distinct Sylow 2-groups is contained in the center of a Sylow 2-group.

From now on, we call a finite group a (CI)-group if it satisfies (CI). The main result is the following:

Theorem 1. Let G be a (CI)-group. Then one of the following statements holds.
(1) G is a solvable group of 2 -length 1 .
(2) A Sylow 2-group of G is Abelian.
(3) G has a normal series $1 \leqq N<M \leqq G$ where N and G / M have odd order and M / N is the central product of an Abelian 2-group and a group isomorphic to $S L(2,5)$.
(4) G contains a normal subgroup M of odd index in G which satisfies one of the following conditions:
(4.1) M is the direct product of an Abelian 2-group and a group isomorphic to $\operatorname{Sz}(q), \operatorname{PSU}(3, q)$ or $\operatorname{SU}(3, q), q$ a 2 -power >2.
(4.2) M is the central product of an Abelian 2-group and a non-trivial perfect central extension of $S z(8)$.

If we combine Theorem 1 with the theorems of Walter [13] and Bender [2], we obtain the following result.

Theorem 2. A non-Abelian simple (CI)-group is isomorphic to one of the following groups:
$\operatorname{PSL}(2, q), q \equiv 0,3,5(\bmod 8)$,
$J R$,
Sz(q) or
$\operatorname{PSU}(3, q), q$ a power of 2 .
Here $J R$ denotes the simple groups with Abelian Sylow 2-groups in which the centralizer of an involution t is a maximal subgroup and isomorphic to $\langle t\rangle \times E$ where $P S L(2, q) \leqq E \leqq P \Gamma L(2, q)$ with odd $q>3$. This definition is due
to [2]. A large amount of work has been done by many authors to classify the groups $J R$, and the structure of $J R$ is now very well known. In this paper, however, we need no knowledge of the properties of $J R$ except those which are proved easily.

A group satisfying (2) or (4) in Theorem 1, clearly, is a (CI)-group, while a group satisfying (1) or (3) is not necessarily a (CI)-group. Let G be a group which satisfies (1). Then G is 2 -closed (resp. a (CI)-group) if and only if $O_{2^{\prime}, 2}(G)$ is 2 -closed (resp. a (CI)-group). The following result is concerned with this situation.

Theorem 3. Let G be a group which is 2^{\prime}-closed but not 2 -closed and S a Sylow 2-group of G. We set $H=O(G)$ and $C=C_{S}(H)$. If G is a (CI)-group, then one of the following statements is true.
(a) S is Abelian.
(b) C is contained in $Z(S) . ~ Z(S) / C$ is elementary Abelian. S has a subgroup Q with the following properties: $Q \geqq C, Q / C$ is a generalized quaternion group and $S=Q Z(S)$. Furthermore, every composition S-factor of H is either centralized by S or inverted by the elements of $Z(Q)-C .{ }^{1)}$

Conversely, if G satisfies (a) or (b), it is a (CI)-group.
Here, a composition S-factor of H means a factor of a composition series of H as a group with the set S of operators. Let G be a group satisfying (3) in Theorem 1, and let S / N be a Sylow 2 -group of G / N. It is easy to prove that G is a (CI)-group if and only if S satisfies (CI). Therefore Theorems 1 and 3 give us a necessary and sufficient condition for a group to be a (CI)-group. Theorem 3 also plays an important role in the proof of Theorem 1.

Notation and Remarks. Unexplained notation is either standard or will be found in [5], especially pp. 4-5, pp. 519-520. All groups are assumed to be finite. The group G is said to be perfect if $G^{\prime}=G$. A perfect group G is called semisimple provided $G / Z(G)$ is the direct product of non-Abelian simple groups, and is called quasisimple provided $G / Z(G)$ is simple. It is not difficult to show that a semisimple group G is the central product of uniquely determined quasisimple subgroups, which we call the components of G. Every group G has the unique maximal normal semisimple subgroup, which we denote by $L(G)$. We define $O_{2}^{*}(G)=O_{2}(G) L(G)$. It is becoming well known that $C_{G}\left(O_{2}^{*}(G)\right) \leqq O_{2}(G)$ if $O(G)=1$ ([6], Theorem 2). A quasisimple group G is said to be of type \mathfrak{F} where \mathfrak{F} is a family of simple groups provided $G / Z(G)$ is isomorphic to a member of \mathfrak{F}. The 2 -element of the group G is called central in G if it is contained in the center of a Sylow 2 -group of G. A quaternion group is a non-Abelian 2-group which contains only one involu-

1) It is not difficult to show that C has index 2 in $Z(Q)$. See Section 4.
tion. The group G is called π-closed where π is a set of primes, if the π elements of G generate a π-group. The symbol 2^{\prime} denotes the set of odd primes. Throughout the paper, we use the fundamental theorem of FeitThompson [3] implicitly.

§ 2. Preliminary results.

Lemma 2.1. Let S be a 2-group. Assume that $Z(S)$ contains distinct maximal subgroups $C_{1}, C_{2}, \cdots, C_{n}, n \geqq 2$, such that $C_{1} \cap C_{2} \cap \cdots \cap C_{n}=1$ and S / C_{i} is a quaternion group, $i=1,2, \cdots, n$. Then S is the direct product of an elementary Abelian group and a quaternion group.

Proof. Induction on n. Assume first $n=2$. In this case we proceed by induction on the order of S. Clearly, $Z(S)$ is a four-group and $\Omega_{1}(S)=$ $Z(S)$ as $Z(S) / C_{1}$ is the unique subgroup of order 2 in S / C_{1}. Assume $|S: Z(S)|$ $=4$. Inspecting the known list of the groups of order 16 , we know that either S is the direct product of a group of order 2 and a quaternion group of order 8, or else S is generated by the elements a and b subject to the relations:

$$
a^{4}=1, \quad b^{4}=1, \quad a^{-1} b a=b^{-1} .
$$

However, the latter does not satisfy the assumption of our lemma. Therefore the assertion is true if $|S: Z(S)|=4$; so assume $|S: Z(S)|>4$. Then S contains a maximal subgroup V containing $Z(S)$ such that $V / Z(S)$ is a dihedral group. Since V / C_{i} is a quaternion group, $i=1$, 2, we have $Z(V)=Z(S)$. The induction hypothesis now applies to V. In particular, we see that V is not metacyclic. Since $S / Z(S)$ is a dihedral group, there is a maximal subgroup T of S containing $Z(S)$ such that $T / Z(S)$ is cyclic. T is Abelian and, as $\Omega_{1}(T)=Z(S)$, contains a cyclic maximal subgroup U. Since S / C_{i} is a quaternion group, $i=1,2$, elements of $S-T$ invert U whence U is a normal subgroup of S. As is noticed above, S is not metacyclic, and so there is a subgroup Q of S such that $S=T Q$ and $T \cap Q=U$. Since Q is non-Abelian and contains only one involution, Q is a quaternion group. Thus the assertion is true if $n=2$.

Assume next $n>2$. We apply the above argument to the group $S / C_{1} \cap C_{2}$ and find a maximal subgroup T of S containing $C_{1} \cap C_{2}$ such that $T / C_{1} \cap C_{2}$ is a quaternion group. By the inductive hypothesis, there is a quaternion subgroup Q such that $T=Z(T) Q$ (and $|Z(T) \cap Q|=2$). Since $Z(S)$ is elementary, the assertion is true in this case, too.

Lemma 2.2. JR has no non-trivial perfect central 2-extensions. If a 2 automorphism of $J R$ centralizes a Sylow 2-group of $J R$, then it is inner.

Proof. (i) Suppose there is a perfect central extension of $J R$ by a group Z of order 2, and let S be its Sylow 2 -group. Since S is not extraspecial, as $|S|=16$, and the normalizer of S acts irreducibly on $S / Z, S$ is Abelian and so S is elementary Abelian. A theorem of Gaschütz [8], Hauptsatz I, 17.4, yields a contradiction.
(ii) Let a be a 2-automorphism of $G=J R$ centralizing a Sylow 2-group S of G. We first embed a and G in the semidirect product $G^{*}=G\langle a\rangle$. Let t be an involution of S and let $H=C_{G}(t)=\langle t\rangle \times E$. By definition E contains a normal subgroup K of odd index in E isomorphic to $\operatorname{PSL}(2, q), q \equiv 3,5(\bmod$ 8). It is immediate that a acts on K as an inner automorphism induced by an element u of $T=S \cap E$. Therefore in the group $E^{*}=E\langle a\rangle$, we have $a u^{-1} \in C_{E^{*}} \cdot\left(O_{2}^{*}\left(E^{*}\right)\right) \leqq O_{2}\left(E^{*}\right)$ as $O\left(E^{*}\right)=1$. Since $E \cap O_{2}\left(E^{*}\right)=1$, we conclude that $\left[E, a u^{-1}\right]=1$. Thus we have $[H, b]=1=[H, b t]$ for $b=a u^{-1}$. Let A be a complement of S in $N_{G}(S)$ and let $B=N_{H}(S) \cap A$. Counting the conjugates of A in $N_{G}(S)$ containing B, we see that $A^{b}=A$ or $A^{b}=A^{t}$. Therefore $A^{c}=A$ for $c=b$ or b. A Sylow 7 -group of $A / C_{A}(S)$ is centralized by c, because it is regular on S and c centralizes S. So c centralizes A. Since H is a maximal subgroup of G, this implies that a acts on G as an inner automorphism induced by u or $t u$.

Lemma 2.3. Let S be a 2-group of rank 2. If $Z(S)$ contains a maximal subgroup D such that S / D is a quaternion group, then S has a cyclic characteristic subgroup $\neq 1$.

Proof. Suppose false. Then every Abelian characteristic subgroup $\neq 1$ of S is a homocyclic group of rank 2. Since $S / Z(S)$ is a dihedral group, $S^{\prime} / S^{\prime} \cap Z(S)$ is cyclic and so S^{\prime} is Abelian. Since both S^{\prime} and $S^{\prime} \cap Z(S)$ are homocyclic of rank 2 and $S^{\prime} / S^{\prime} \cap Z(S)$ is cyclic, we have $S^{\prime} \leqq Z(S)$. If $S^{\prime}=$ $Z(S)$, then $\left|S: S^{\prime}\right|=4$, as $S / Z(S)$ is dihedral, and so S is a 2-group of maximal class and contains a cyclic characteristic subgroup $\neq 1$ ([5], Theorem 5.4.5). So we assume $S^{\prime} \neq Z(S)$. Since both S^{\prime} and $Z(S)$ are homocyclic groups, S^{\prime} is contained in the Frattini subgroup of $Z(S)$. Thus, $S^{\prime} \leqq D$, a contradiction.

Lemma 2.4. Let Y be a 2'-group of automorphisms of an Abelian 2-groupp T and X a proper subgroup of Y. Assume the following conditions:
(i) $T=W \times Q$ where W and Q are X-invariant subgroups of T and Q is elementary Abelian.
(ii) $W \cap W^{y}=1$ for every $y \in Y-X$.
(iii) There exists a cyclic normal subgroup R of X which is regular on $Q^{\#}$ and centralizes W.

Then W is cyclic (and $|Q|=4$ if $W \neq 1$).
In order to prove this, we can assume that T is elementary Abelian, as
Y acts faithfully on $\Omega_{1}(T)$ ([5], Theorem 5.2.4). Therefore the last four paragraphs of the proof of [2], (3.8), are applicable without changes.

§ 3. Properties of (CI)-groups.

We will discuss here elementary properties of (CI)-groups. We assume G to be a (CI)-group and S its Sylow 2 -group throughout the section.

Lemma 3.1. $C_{S}(x)$ is a Sylow 2-group of $C_{G}(x)$ for any x in S.
Proof. This is obvious, if x is contained in $Z(S)$; so assume that x is not contained in $Z(S)$. Let T be a Sylow 2 -group of G such that $C_{T}(x)$ is a Sylow 2 -group of $C_{G}(x)$ containing $C_{S}(x)$. If $S \neq T$, then $S \cap T$ is contained in the center $Z(U)$ of a Sylow 2 -group U of G. Thus $\langle Z(S), x\rangle \leqq Z(U)$ whence $x \in Z(S)$, contrary to our assumption. Therefore, $S=T$ and so $C_{S}(x)$ is a Sylow 2 -group of $C_{G}(x)$.

Lemma 3.1 in particular implies that a central 2 -element of G contained in S is necessarily contained in $Z(S)$. Hence we have the following result.

Lemma 3.2. If T is a Sylow 2-group of G different from S, then $S \cap T$ $\leqq Z(S) \cap Z(T)$.

The proof of the following lemma is easy, if we use the preceding lemma, and is left to the reader.

Lemma 3.3. Subgroups and quotient groups of a (CI)-group are also (CI)groups.

Lemma 3.4. If x is a 2-element of G, then $C_{G}(x)$ acts transitively on the Sylow 2-groups of G containing x.

Proof. Let S and T be Sylow 2 -groups of G containing x. If $S \neq T$, then by Lemma 3.2, S and T are contained in $C_{G}(x)$, and the assertion follows from Sylow's theorem.

In exactly the same way, we can prove the following:
Lemma 3.5. If x is an element of S for which $C_{G}(x)$ is 2 -closed, then S is the only Sylow 2-group that contains x.

Lemma 3.6. Two elements of S which are conjugate in G are already conjugate in $N_{G}(S)$.

Proof. Assume that x and x^{g} are contained in S where $g \in G$. By Lemma 3.4, we find an element c of $C_{G}(x)$ such that $g S g^{-1}=c^{-1} S c$. Then $c g$ normalizes S and $x^{c g}=x^{g}$.

Lemma 3.7. If $C \neq 1$ is a cyclic characteristic subgroup of S, then the involution of C is contained in $Z^{*}(G)$.

Proof. Let c be the involution of C. Lemma 3.6 implies that if $c^{g} \in S$, $g \in G$, then $c^{g}=c$. Glauberman's Z^{*}-theorem [4] yields $c \in Z^{*}(G)$.

Lemma 3.8. If G is 2 -constrained, then G is a solvable group of 2 -length 1 .

Proof. We can assume $O(G)=1$. Therefore $C_{G}\left(O_{2}(G)\right) \leqq O_{2}(G)$ by the definition of 2 -constraint. Thus, by (CI), G is 2 -closed.

§4. Proof of Theorem 3.

Let G be a group which is 2^{\prime}-closed but not 2 -closed and S its Sylow 2 -group. We set $H=O(G)$ and $C=C_{s}(H)$. We first assume that G is a (CI)group with non-Abelian Sylow 2-groups, and prove that G satisfies the condition (b) in Theorem 3. Since C is a normal 2-subgroup of G and G is not 2 -closed, C is contained in $Z(S)$ by (CI). Let $\left\{V_{1}, \cdots, V_{n}\right\}$ be the set of composition S-factors of H not centralized by S. Put $C_{i}=C_{S}\left(V_{i}\right), 1 \leqq i \leqq n$. It is known that $C_{1} \cap C_{2} \cap \cdots \cap C_{n}=C$ (cf. Proof of [5], Theorem 5.3.2). Our aim will be to prove the following: for each $i, 1 \leqq i \leqq n$,
C_{i} is a maximal subgroup of $Z(S)$,
S / C_{i} is a quaternion group, and
elements of $Z(S)-C_{i}$ invert V_{i}.
If this is true, then $Z(S) / C=Z(S / C)$ and we conclude from Lemma 2.1 that S has a subgroup Q containing C with the following properties:
Q / C is a quaternion group,
$S=Q Z(S)$, and
$|Q \cap Z(S): C|=2$.
Furthermore, $Z(S) / C$ is elementary Abelian and $Z(Q)=Q \cap Z(S)$. Since C_{i} does not contain $Z(Q)$ as S / C_{i} is quaternion, we have $C=C_{i} \cap Z(Q)$. Therefore elements of $Z(Q)-C$ invert each V_{i}, and the condition (b) in Theorem 3 holds.

That C_{i} satisfies the above italicized properties is proved in the following way. Let $V_{i}=K_{i} / L_{i}$ where K_{i} and L_{i} are S-invariant subgroups of H and L_{i} is normal in K_{i}. We set $G_{i}=S K_{i}$ and $\bar{G}_{i}=G_{i} / L_{i}$. Then \bar{G}_{i} is 2^{\prime}-closed but not 2 -closed, as \bar{S} does not centralize $\bar{K}_{i}=V_{i}$. Clearly, $C_{\bar{S}}\left(V_{i}\right)=\bar{C}_{i}$ whence $\bar{C}_{i} \leqq Z(\bar{S})$, because \bar{C}_{i} is a normal 2 -subgroup of a (CI)-group \bar{G}_{i}. Thus, $C_{i} \leqq$ $Z(S)$. Let \bar{A} / \bar{C}_{i} be a non-identity subgroup of \bar{S} / \bar{C}_{i}. We argue that $C_{V_{i}}(\bar{A})$ $=1$. This holds if $\bar{A} \leqq Z(\bar{S})$, because \bar{S} acts irreducibly on V_{i}. We note that V_{i} is solvable by the Feit-Thompson theorem [3], and so it is elementary Abelian. If $\bar{A} \pm Z(\bar{S})$, then \bar{S} is the only Sylow 2 -group of \bar{G}_{i} that contains \bar{A} (see Lemma 3.2). Since \bar{S} is self-normalizing in \bar{G}_{i}, we again have $C_{V_{i}}(\bar{A})=1$. Hence \bar{S} / \bar{C}_{i} is a regular group of automorphisms of V_{i} whence it is a quaternion group and its unique involution inverts V_{i} ([5], Theorem 10.1.4, Theorem 10.3.1). Thus, S / C_{i} is a quaternion group and elements of $Z(S)-C_{i}$, if $Z(S) \neq C_{i}$, invert V_{i}. We finally verify that C_{i} is a maximal subgroup of $Z(S)$. Let Z / C_{i} be the center of S / C_{i}. Since S / C_{i} is a quater-
nion group, C_{i} has index 2 in Z. Furthermore Z / C_{i} is contained in cyclic subgroups A / C_{i} and B / C_{i} of S / C_{i} such that $S=A B$. Since both A and B are Abelian, we conclude that $Z=Z(S)$.

We next prove the converse. Assume that G satisfies (a) or (b) in Theorem 3. Note that if G satisfies (b), then C has index 2 in $Z(Q)=Q \cap Z(S)$. Suppose that G is a counterexample of minimal order to the assertion that G is a (CI)-group. Then S is not Abelian and, as $Z(S / C)=Z(S) / C, C=1$ (see Lemma 3.2). Since G is a counterexample, there is an element h of $H-N_{H}(S)$ such that $S \cap S^{h}$ is not contained in $Z(S)$. Since $\Omega_{1}(S)=Z(S)$, $S \cap S^{h}$ contains an involution which has a square root in S. By the same reason, the involution of $Z(Q)$ is the only one that has a square root in S. Hence $Z(Q) \leqq S \cap S^{h}$. Let H / K be a composition S-factor of H. Suppose that S^{h} is contained in $S K$. In this case we may assume that h is an element of K. If $C_{S}(K)$ is not contained in $Z(S)$, then we have $Z(Q) \leqq C_{S}(K)$ in exactly the same way as above. The condition (b) now implies that S centralizes each composition S-factor of K, so even K itself, contradicting $S \neq S^{h}$. Hence we assume $Z(Q) \nsubseteq C_{S}(K) \leqq Z(S)$. In this case, we can apply the inductive hypothesis to $S K$ and conclude that $S \cap S^{h} \leqq Z(S)$ (see Lemma 3.2), contrary to the choice of h. Therefore S^{h} is not contained in $S K$. If S centralizes H / K, equivalently $[S, H] \leqq K$, then we conclude readily that $S^{n} \leqq S K$. Therefore H / K is not centralized by S, and so is inverted by the involution of $Z(Q)$. Put $\bar{G}=G / K$. Since the involution of $Z(\bar{Q})$ inverts \bar{H}, $C_{\bar{S}}(\bar{H}) \leqq Z(\bar{S})$. So we can apply the inductive hypothesis to \bar{G}, if $K \neq 1$. We conclude that $\bar{S}=\bar{S}^{\bar{n}}$, or equivalently $S^{h} \leqq S K$, but this is not the case. Hence $K=1$, whence S acts faithfully and irreducibly on H. In particular, every central involution of S acts fixed-point-freely on H. Hence S is a quaternion group and $S=C_{G}(Z(Q))=S^{h}$. This contradiction completes the proof.

§ 5. Proof of Theorem 1.

We will begin the proof of Theorem 1. As a matter of fact, we first prove Theorem 2 and obtain Theorem 1 as a corollary of Theorem 2 and a few additional results. Let \mathfrak{F} denote the family of simple groups on the following list:
$\operatorname{PSL}(2, q), q \equiv 0,3,5(\bmod 8)$,
$J R$,
$S z(q)$ or
$\operatorname{PSU}(3, q), q$ a power of 2 .
In some places in this section, we shall use the properties of the automorphism groups and representation groups of these groups. Necessary
materials will be found in Lemma 2.2, [1], [8], [9], [10], etc.
Lemma 5.1. Let G be a (CI)-group with $O(G)=1$. Assume that every component of $L(G)$, if $L(G) \neq 1$, is of type \mathfrak{F}. Then G satisfies one of the following conditions:
(1') G is 2 -closed.
(2') A Sylow 2-group of G is Abelian.
(3') G contains a normal subgroup M which has odd index in G, and is the central or direct product of an Abelian 2-group and a quasisimple group isomorphic to one of the following groups:
$S L(2,5)$,
$\hat{S} z(8)$: a non-trivial perfect central 2-extension of $S z(8)$,
$S z(q)$ or
$\operatorname{PSU}(3, q), q$ a power of 2 and $q>2$.
Proof. Let S be a Sylow 2-group of G. We set $L=L(G), T=S \cap O_{2}^{*}(G)$ and $U=T \cap L$. If $L=1$, then G is 2 -constrained and so 2 -closed by Lemma 3.8. So we can assume $L \neq 1$. Since G is a (CI)-group but not 2 -closed, we have $O_{2}(G) \leqq Z(S)$.

Case 1. Assume $U \leqq Z(S)$. Then each component of L is of type $\operatorname{PSL}(2, q)$, $q \equiv 0,3,5(\bmod 8)$, or $J R$, and is normalized by S. Let K be a component of L, then S induces a 2 -group of automorphisms of $\bar{K}=K / Z(K)$ which centralizes a Sylow 2-group of \bar{K}. We conclude from Lemma 2.2 and the structure of $P \Gamma L(2, q)$ that S induces a group of inner automorphisms of \bar{K}, and even of K. Since K is arbitrary, S induces a group of inner automorphisms of L. Since S as well as L centralizes $O_{2}(G)$, we have $S \leqq C_{G}\left(O_{2}^{*}(G)\right) L \leqq O_{2}^{*}(G)$. Thus, $S=T$ and (2^{\prime}) holds.

Case 2. Assume $U \nsubseteq Z(S)$, then, as G is a (CI)-group, L is quasisimple and $N_{G}(U) \leqq N_{G}(S)$ and so G / L is 2 -closed. Suppose that U is Abelian. Then we conclude from Lemma 2.2 and the known structure of the representation group of $\operatorname{PSL}(2, q)$ that L is isomorphic to $\operatorname{PSL}(2, q), q \equiv 0,3,5(\bmod 8)$, or $J R$. Since U is normal in $S, U \cap Z(S) \neq 1$. Transitivity of $N_{L}(U)$ on $U^{\#}$ and $N_{L}(U) \leqq N_{L}(S)$ yield $U \leqq Z(S)$, contrary to assumption. Hence U is nonAbelian. Therefore L is isomorphic to one of the groups mentioned in (3^{\prime}) above. Note that $O(L)=1$ and that $S L(2, q), q$ odd >5, is not a (CI)-group. Set $C=C_{G}(L / Z(L))$. Since $C \cap L=Z(L)$ is a 2 -group and G / L is 2 -closed, C is also 2 -closed and $O_{2}(G)$ is the unique Sylow 2 -group of C. It will thus suffice to prove that $|G: C L|$ is odd. We first note that G / C is isomorphic to a subgroup of the automorphism group of $\bar{L}=L / Z(L)$ containing the group of inner automorphisms of \bar{L}. If $L \cong S L(2,5)$, then $G / C \cong \operatorname{PSL}(2,5)$ or $P G L(2,5)$. However $P G L(2,5)$ is not a (CI)-group, as is easily verified by Lemma 3.7. Hence $G / C \cong P S L(2,5)$, or equivalently $G=C L$. If $L \cong \widehat{S} z(8)$ or
$S z(q)$, then $|G: C L|$ is odd, because the outer automorphism group of $S z(q)$ has odd order. In order to treat the case where $L \cong \operatorname{PSU}(3, q), q$ a power of 2 , it will suffice to prove the following result.

Lemma 5.2. Let X be a subgroup of $P \Gamma U(3, q)$ containing $\operatorname{PSU}(3, q), q$ a power of 2. If X is a (CI)-group, then $|X: \operatorname{PSU}(3, q)|$ is odd.

Proof. Suppose false. We can assume that $X=\operatorname{PSU}(3, q)\langle a\rangle$ where a is an involution represented by the involutive automorphism $\neq 1$ of $\operatorname{GF}\left(q^{2}\right)$. We find a Sylow 2-group R of $\operatorname{PSU}(3, q)$ normalized but not centralized by a such that a has a fixed point b on $\operatorname{PSU}(3, q)-N_{P S U(3, q)}(R)$. Since b does not normalize $R\langle a\rangle$, (CI) forces $[R, a]=1$. This contradiction completes the proof.

Lemma 5.3. Let G be a (CI)-group. Assume that $\bar{G}=G / O(G)$ satisfies one of the conditions ($\left.1^{\prime}\right)-\left(3^{\prime}\right)$ in Lemma 5.1 where for G we read \bar{G}. Then G satisfies one of the conditions (1)-(4) in Theorem 1.

Proof. We need only consider the case where \bar{G} contains a normal subgroup which has odd index in \bar{G}, and is the central or direct product of an Abelian 2-group and a quasisimple group \bar{L} isomorphic to one of the following groups:
$\hat{S} z(8), S z(q)$ or $\operatorname{PSU}(3, q), q$ a power of 2.
Let S be a Sylow 2 -group of G, then S centralizes $O(G)$, otherwise Theorem 3 applied to $S O(G)$ yields that either S is Abelian or $S / Z(S)$ is dihedral, but this is not the case. Hence, if we denote by L the unique minimal normal subgroup of G which covers \bar{L}, L also centralizes $O(G)$, because L is perfect and so is generated by its Sylow 2 -groups. Therefore L is a quasisimple group of type $S z(q)$ or $\operatorname{PSU}(3, q), q$ a power of 2 . Furthermore, $[S, O(G)]=1$ implies $O_{2^{\prime}, 2}(G)=O(G) \times O_{2}(G)$. Hence $M=O_{2}(G) L$ is a normal subgroup of G which has odd index in G and satisfies one of the conditions (4.1) or (4.2) in Theorem 1. The proof is complete.

Theorem 4. Let G be a (CI)-group with $Z *(G)=1$. Assume that the centralizer of every central involution of G is 2 -constrained. Then one of the following statements is true.
(i) A Sylow 2-group of G is Abelian.
(ii) G is a (TI)-group.

Proof. We recall from [11] that a group is called a (TI)-group if two distinct Sylow 2 -groups have only the identity element in common. If the centralizer of every central involution of G is 2 -closed, then Lemma 3.5 and (CI) imply that G is a (TI)-group. So we assume that the centralizer H of a central involution, say x, is not 2 -closed. Let S be a Sylow 2 -group of G. Theorem 3 applied to $O_{2^{\prime}, 2}(H)$ yields that either S is Abelian or $Z(S)$ contains a maximal subgroup D such that S / D is a quaternion group. In parti-
cular, all involutions of G are central. Lemma 3.7 and $Z *(G)=1$ imply that $Z(S)$ is non-cyclic ; so G is connected in the sense of [7]. If $m(G) \geqq 3$, then the "balanced theorem" of Gorenstein-Walter [7], Theorem B, yields $O(H)=1$ and so H is 2-closed, contrary to the choice of H. Hence $m(G)=2$. Suppose that S is non-Abelian, then Lemma 2.3 implies that S contains a cyclic characteristic subgroup $\neq 1$, contradicting $Z *(G)=1$. Thus, S is Abelian. The proof is complete.

Theorem 5. Let G be a non-Abelian simple (CI)-group. Assume that not all centralizers of central involutions of G are 2 -constrained, and that each nonAbelian composition factor of every proper subgroup of G is isomorphic to a member of \mathfrak{F}. Then a Sylow 2-group of G is Abelian.

Proof. Let S be a Sylow 2 -group of G. We begin with a few remarks. Since $Z^{*}(G)=1$, Lemma 3.7 implies that S has no cyclic characteristic subgroups $\neq 1$. Lemmas 5.1, 5.3 and the assumption imply that every proper subgroup X of G satisfies one of the conditions (1)-(4) in Theorem 1. However, X does not satisfy (3) if X contains a Sylow 2 -group of G, otherwise S^{\prime} will be a characteristic subgroup of S of order 2 . We divide the proof into seven parts. Furthermore, we assume S to be non-Abelian.
(I) Let x be a central involution of G for which $H=C_{G}(x)$ is not 2-constrained. Then H contains a normal subgroup M which has odd index in H and is the direct product of a non-cyclic Abelian 2-group and a quasisimple group isomorphic to $\operatorname{Sz}(q), \operatorname{PSU}(3, q)$ or $\operatorname{SU}(3, q), q$ a power of 2 and $q>2$.

Proof. Since H is not 2-constrained and contains a Sylow 2-group of G, we conclude from preceding remarks that H satisfies the condition (4) of Theorem 1. We will eliminate the possibility of the condition (4.2). By way of contradiction, we suppose that H contains a normal subgroup which has odd index in H and is the central product of an Abelian 2-group and a group isomorphic to $\widehat{S} z(8)$.

Let T be a Sylow 2-group of G different from S such that $S \cap T \neq 1$. We will prove that $Z(S)=Z(T)$. Let y be an involution of $S \cap T$ and set $K=$ $C_{G}(y)$. Since $S \neq T$, Lemma 3.2 implies $S, T \leqq K$ and so K is not 2-closed. Thus K is not 2-constrained, otherwise Theorem 3 applied to $O_{2^{\prime}, 2}(K)$ implies that either S is Abelian or $S / Z(S)$ is dihedral, but this is not the case. So K contains a normal subgroup which has odd index in K and satisfies the condition (4.2) in Theorem 1. It follows immediately that $Z(S)=O_{2}(K)=Z(T)$, as desired.

We argue that $L=N_{G}(Z(S))$ is a strongly embedded subgroup of G. If $\left|L \cap L^{g}\right|$ is even where $g \in G$, then there exist Sylow 2-groups P and Q of L such that $P \cap Q^{g} \neq 1$; so $Z(P)=Z\left(Q^{g}\right)=Z(Q)^{g}$ as is proved above. Moreover we have $Z(P)=Z(S)=Z(Q)$, because $P \cap Q \geqq Z(S)$. Thus, $Z(S)^{g}=Z(S)$
and so $g \in L$. This implies that L is a strongly embedded subgroup of G.
So L has only one conjugate class of involutions ([5], Theorem 9.2.1), but this is not the case since $S-Z(S)$ contains an involution. Therefore (4.2) does not occur.

We have proved that H contains a normal subgroup M which has odd index in H and is the direct product of an Abelian 2-group P and a group isomorphic to $\operatorname{Sz}(q), \operatorname{PSU}(3, q)$ or $\operatorname{SU}(3, q), q$ a power of 2 and $q>2$. We have to show that P is not cyclic. Since $H=C_{G}(x), P \neq 1$. Let T be a Sylow 2group of H, then $T=P \times R$ where R is isomorphic to a Sylow 2-group of $S z(q)$ or $\operatorname{PSU}(3, q)$. If P is cyclic, then $|P|=2$, otherwise the Frattini group of $Z(T)$ is a cyclic characteristic subgroup $\neq 1$ of T. However, if $|P|=2$, then Thompson's fusion lemma [12], Lemma 5.38, implies that the involution of P, or x, is conjugate to an element y of R. Since y is a square in T, and x is conjugate to y in $N_{G}(T)$ by Lemma 3.6, x is also a square in T, contradicting $T^{2} \leqq R$. Therefore P is not cyclic.
(II) S has the form $P \times R$ where P is a non-cyclic Abelian 2-group and R is isomorphic to a Sylow 2-group of $\operatorname{Sz}(q)$ or $\operatorname{PSU}(3, q), q$ a power of 2 and $q>2$. All involutions of S are contained in $Z(S)$.

Proof. This is an immediate consequence of (I).
(III) Let H be a proper subgroup of G containing a Sylow 2-group of G. Then one of the following statements is true:
(i) H is 2-closed.
(ii) H contains a normal subgroup which has odd index in H, and is the direct product of a non-cyclic Abelian 2-group and a quasisimple group isomorphic to $\operatorname{Sz}(q), \operatorname{PSU}(3, q)$ or $\operatorname{SU}(3, q), q$ a power of 2.

Proof. Since H satisfies (1) or (4) in Theorem 1, (II) implies that H satisfies (ii), or else H is a solvable group of 2-length 1. In the latter case, Theorem 3 implies that H is 2 -closed, because $S / Z(S)$ is an elementary Abelian group of order >4.
(IV) G contains no strongly embedded subgroups.

Proof. Suppose that G has a strongly embedded subgroup H. We can assume $S \leqq H$. If H satisfies the condition (ii) of (III), then H has an Abelian normal 2-subgroup $P \neq 1$ such that $H-P$ contains an involution. This is a contradiction, since a strongly embedded subgroup of the group has only one conjugate class of involutions. Consequently, H is 2 -closed and so $H=$ $N_{G}(S)$. However, $N_{G}(S) \leqq N_{G}\left(S^{\prime}\right)$, and $S-S^{\prime}$ contains an involution, again a contradiction. The proof is complete.

For each involution x of G, we define $M(x)$ to be the set of maximal subgroups of G containing $C_{G}(x)$. In the following three steps, let x be an involution of S and H a member of $M(x)$ which is not 2-constrained. Such
x and H exist by assumption. Note that H satisfies the condition (ii) of (III). The argument to be used in (V), (VI) and (VII) below appears in [2], (3.8), (4.4) and (5.1).
(V) $M(y)=\{H\}$ for every involution y of $O_{2}(H)$.

Proof. Let y be an involution of $O_{2}(H)$, and let M be an element of $M(y)$. Since $L(H) \leqq C_{G}(y) \leqq M, M$ also satisfies the condition (ii) of (III). Since $M / L(M)$ is 2 -closed, we have $L(H) \leqq L(M)$. Also $S \leqq C_{G}(y) \leqq M$; so x induces an inner automorphism on $L(M)$. Thus, $L(H)$ is a $C_{L(M)}(z)$-invariant non-solvable subgroup of $L(M)$ where z is an involution of $L(M)$. Since $L(M)$ is isomorphic to $\operatorname{Sz}(q), \operatorname{PSU}(3, q)$ or $\operatorname{SU}(3, q), q$ a power of 2 and $q>2$, this forces $L(H)=L(M)$. Therefore, $H=N_{G}(L(H))=M$.
(VI) $\quad N_{G}(Z(S)) \leqq H$.

Proof. Suppose false. Let Y and X be the groups of automorphisms of $T=Z(S)$ induced by $N_{G}(Z(S))$ and $N_{H}(Z(S))$, respectively. Since $S \leqq C_{G}(Z(S))$ $\leqq C_{G}(x) \leqq H, Y$ has odd order and X is a proper subgroup of Y. Set $W=$ $O_{2}(H)$ and $Q=Z(S) \cap L(H)$, then $T=W \times Q$ and Q is elementary Abelian, because Q is the center of the Sylow 2-group $S \cap L(H)$ of $L(H)$. Clearly, both W and Q are X-invariant. Let R be the group of automorphisms of T induced by $N_{L(H)}(Z(S) \cap L(H)$), then R is a cyclic normal subgroup of X acting regularly on $Q^{\#}$. Clearly, R centralizes W. Suppose that $W \cap W^{n} \neq 1$ where $n \in N_{G}(Z(S))$. Let w be an involution of $W \cap W^{n}$. It follows from (V) that $M(w)=\{H\}=M\left(n w n^{-1}\right)$, whence $H=H^{n}$ and so $n \in N_{G}(H)=H$. This implies that $W \cap W^{y}=1$ if $y \in Y-X$. Therefore all the conditions of Lemma 2.4 are satisfied. We conclude that $O_{2}(H)=W$ is cyclic, contradicting (III). Therefore, $N_{G}(Z(S)) \leqq H$.
(VII) S is Abelian.

Proof. Suppose false, then we can apply (I)-(VI). Let x and H be as before. There is an involution y of S such that $C_{G}(y) \neq H$, otherwise (VI) implies that H is a strongly embedded subgroup of G, contradicting (IV). Let M be an element of $M(y)$, then $M \neq H$ and so M is not 2 -closed by (VI). Therefore M satisfies (ii) in (III). Set $K=L(H), U=O_{2}(H), L=L(M)$ and $V=O_{2}(M)$. Applying (V) to M, we have $M(v)=\{M\}$ for every involution v of V. As $H \neq M, U \cap V=1$. There is a subgroup R of $N_{K}(S \cap K)$ which has odd order and acts transitively on $Z(S \cap K)^{\#}$. Since $R \leqq N_{K}(S \cap K) \leqq N_{G}(S)$ $\leqq M$ by (VI) applied to M, R normalizes V. Since $C_{V}(R)=C_{S}(R) \cap V=U \cap V$ $=1$, we have $V=[V, R] \leqq[Z(S), R] \leqq Z(S \cap K)$. Therefore V is elementary Abelian and $V \leqq S^{2}$. However, on the other hand, we have $S=V \times(S \cap L)$ whence $V \cap S^{2}=1$. This is a contradiction. Hence S is Abelian, and the proof of Theorem 5 is complete.

It is now not difficult to prove Theorems 1 and 2 . We first prove Theo-
rem 2 by induction on the order of G. Here, G is a non-Abelian simple (CI)group. If the centralizer of every central involution of G is 2 -constrained, then, by Theorem 4, either G has Abelian Sylow 2-groups or G is a (TI)group. By the results of Walter [13] and Suzuki [11], G is isomorphic to $\operatorname{PSL}(2, q), q \equiv 0,3,5(\bmod 8), S z(q)$ or $\operatorname{PSU}(3, q), q$ a power of 2 . If not all centralizers of central involutions of G are 2 -constrained, then the inductive hypothesis and Theorem 5 implies that G has Abelian Sylow 2-groups. Thus, $G \cong J R$. Theorem 1 is an immediate consequence of Theorem 2, Lemmas 5.1 and 5.3.

Department of Mathematics
University of Tokyo
Hongo, Bunkyo-ku, Tokyo
Japan

References

[1] J. L. Alperin and D. Gorenstein, The multiplicators of certain simple groups, Proc. Amer. Math. Soc., 17 (1966), 515-519.
[2] H. Bender, On groups with Abelian Sylow 2-subgroups, Math. Z., 117 (1970), 164-176.
[3] W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math., 13 (1963), 755-1029.
[4] G. Glauberman, Central elements of core-free groups, J. Algebra, 4 (1966), 403-420.
[5] D. Gorenstein, Finite groups, Harper and Row, New York, 1968.
[6] D. Gorenstein and J. H. Walter, The π-layer of a finite group, Illinois J. Math., 15 (1971), 555-565.
[7] D. Gorenstein and J. H. Walter, Centralizers of involutions in balanced groups, J. Algebra, 20 (1972), 284-319.
[8] B. Huppert, Endliche Gruppen, Springer-Verlag, Berlin/New York, 1968.
[9] R. Steinberg, Automorphisms of finite linear groups, Canad. J. Math., 12 (1960), 606-615.
[10] M. Suzuki, On a class of doubly transitive groups I, Ann. of Math., 75 (1962), 105-145.
[11] M. Suzuki, Finite groups of even order in which Sylow 2-subgroups are independent, Ann. of Math., 80 (1964), 58-77.
[12] J. G. Thompson, Non-solvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc., 74 (1968), 383-437.
[13] J.H. Walter, The characterization of finite groups with Abelian Sylow 2-subgroups, Ann. of Math., 89 (1969), 405-514.

Added in proof. Recently Goldschmidt [2-Fusion in finite groups (to appear)] has proved the following remarkable result: Let G be a finite group, T a Sylow 2-group of G and A an Abelian strongly closed subgroup of
T with respect to G, then non-cyclic composition factors of the normal closure of A in G are isomorphic to one of the groups on the list given in Theorem 2. If G is a (CI)-group with a Sylow 2 -group T, then $Z(T)$ is strongly closed in T with respect to G by Lemma 3.1, so we can use this result to shorten the proof of Theorem 1.

