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The present paper is a direct continuation of Part I (reference [1] which.
hereafter, will be referred to as (I)) and is concerned with the application
of the results obtained in (I) to the spectral and the scattering problems for
the self-adjoint elliptic differential operator

$Hu=\sum_{|\alpha|,|\beta|\leqq m}D^{\alpha}(a_{\alpha\beta}^{(1)}+a_{\alpha\beta}(x))D^{\beta}u$

in $R^{n}$ . Throughout the paper the same notations as in (I) will be used.
Theorems etc. given in (I) will be quoted as Theorem I.2.9 for theorems, as.
(I.3.7) for formulas, as [I.1] for references, etc.

Recently, S. Agmon investigated the self-adjoint elliptic operator
$\sum_{|\alpha|\leqq 2m}a_{\alpha}(x)D^{\alpha}u$ by the method of limiting absorption (or by a weighted elliptic

estimate) and announced the results in [I.1] and a lecture quoted in (I). The
result given in the present paper considerably overlaps with Agmon’s results.
In particular, Theorem 1.5 given below is essentially equivalent to what is
announced in [i.1]. The approach to the proof, however, is different. Our
work has been carried out independently of Agmon’s except for the last
stage where the proof of ii) of Theorem 1.5 (or Theorem I.5.21) was com-
pleted after having been stimulated by Agmon’s work.

We will treat the problem as an example to which the abstract methock
given in (I) can be applicable.1) The crucial tool which makes this applica-
tion possible is the trace theorem in the Sobolev spaces.

\S 1. Assumptions and main results.

Throughout the present Paper we write $D_{j}=-i\partial/\partial x_{j},$ $x=\langle x_{1},$ $\cdots$ , $x_{n}$) $\in R^{n}$ ,
and $D^{\alpha}=D_{1}^{a_{1}}\cdots D_{n^{n}}^{\alpha}$ , where $\alpha=$ $(\alpha_{1}, \cdots , \alpha_{n})$ is a multi-index and the differentia-

1) As is mentioned in \S 1 of (I), M. $\check{S}$ . Birman also investigated the scattering
theory for general differential operators by aPplying his abstract method. See, $e$ . $g.$ ,
[I.2].
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tion is taken in the sense of distribution. For a real number $s$ and a non-
negative integer $m$ we put

$L_{s}^{2}(R^{n})=\{u|(1+|x|^{2})^{s/2}u(x)\in L^{2}(R^{n})\}$ ,

$H_{s}^{m}(R^{n})=$ { $u|(1+|x|^{2})^{s/2}D^{\alpha}u(x)\in L^{2}(R^{n})$ , a $|\leqq m$ },

with the norm $\Vert u\Vert L_{s}^{2}(R_{n})=\Vert(1+|x|^{2})^{s/2}u\Vert_{L^{2}(R^{n})}$ and $\Vert u\Vert=H_{s}^{m}(R^{n})(\sum_{|\alpha|\leqq m}\Vert D^{\alpha}u\Vert^{2}L_{s}^{2}(R^{n}))^{1/2}$ .
In particular, $L_{0}^{2}(R^{n})=L^{2}(R^{n})$ is the usual $L^{2}$-space and $H_{0}^{m}(R^{n})=H^{m}(R^{n})$ is
the Sobolev space of order $m$ . The Fourier transform will be denoted by $\mathcal{F}$ ;

$(\mathcal{F}u)(\xi)=\frac{1}{(2\pi)^{n\sqrt{}}}2-\int_{R^{n}}u(x)e^{-i\xi x}dx$ ,

where $\xi=$ $(\xi_{1}, \cdots , \xi_{n})\in R^{n}$ and $\xi x=\xi_{1}x_{1}+\cdots+\xi_{n}x_{n}$ . We need to consider the
Sobolev spaces of functions of the variable $\xi$ . If necessary, we will mani-
fest the independent variable of a function space under consideration as
$L^{2}(R_{\xi}^{n})$ .

As the underlying Hilbert space we take $\mathfrak{H}=L^{2}(R^{n})=L^{2}(R_{x}^{n})$ . Our self-
adjoint operators $H_{1}$ and $H_{2}$ will be defined by quadratic forms associated
with the corresponding differential operators. Let us begin with $H_{1}$ . Let
$h_{1}$ be the sesqui-linear form on $H^{m}(R^{n})\times H^{m}(R^{n})$ defined as

(1.1) $h_{1}[u, v]=\sum_{|\alpha|.|\beta|\leqq m}(a_{\alpha\beta}^{(l)}D^{\beta}u, D^{\alpha}v)_{L^{2}(R^{n})}$ , $u,$ $v\in H^{m}(R^{n})$ ,

with constants $a_{a\beta}^{(1)}$ satisfying the following assumption.

ASSUMPTION 1.1. $a_{\alpha\beta}^{(J)}=a_{\theta^{a}}^{(1)}-$ and there exists $c_{1}>0$ such that

$\sum_{|\alpha|=|\beta|=m}a_{\alpha\beta}^{(1)}\xi^{\alpha+\beta}\geqq c_{1}|\xi|^{2m}$ , $\xi\in R^{n}$ .

It is well-known that $h_{1}$ is a Hermitian symmetric closed form with do-
main $\mathfrak{D}(h_{1})=H^{m}(R^{n})$ which is bounded below. Let $H_{1}$ be the self-adjoint
operator associated with $h_{1}$ in the sense of Friedrichs. Namely, $H_{1}$ is the
unique self-adjoint operator such that

$h_{1}[u, v]=(H_{1}u, v)$ , $u\in \mathfrak{D}(H_{1})$ , $v\in \mathfrak{D}(h_{1})$ .
Let $P_{1}$ be the polynomial given by

$P_{1}(\xi)=\sum_{|\alpha|,|\beta|\leqq m}a_{\alpha\beta}^{(1)}\xi^{\alpha+\beta}$ , $\xi=(\xi_{1}, \xi_{n})$ .

(Here and in what follows, $\alpha+\beta=(\alpha_{1}+\beta_{1}, \cdots , \alpha_{n}+\beta_{n})$ and $\xi^{\gamma}=\xi_{1}^{\gamma_{1}}\cdots\xi_{n}^{\gamma_{n}}$ for
$\gamma=$

$(\gamma_{1}, \cdots , \gamma_{n}).)$ It is again well-known that $\mathfrak{D}(H_{1})=H^{2m}(R^{n})$ and

$H_{1}u=P_{1}(D)u$ , $u\in H^{2m}(R^{n})$ .
Furthermore, the spectrum $\sigma(H_{1})$ of $H_{1}$ is equal to $[\lambda_{\min}, \infty$ ), where $\lambda_{\min}=$

$\inf_{\xi\in R^{n}}P_{1}(\xi)$ .
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For defining $H_{2}$ let us consider the sesqui-linear form

\langle 1.2) $h_{2}[u, v]=h_{1}[u, v]+\sum_{|\alpha|.|\beta|\leqq m}(a_{\alpha\beta}(x)D^{\beta}u, D^{\alpha}v)_{L^{2}(R^{n})}$ ,

$u,$ $v\in \mathfrak{D}(h_{2})=H^{m}(R^{n})$ .
On the coefficients $a_{\alpha\beta}(x)$ we first impose the following condition.

ASSUMPTION 1.2. i) $a_{\alpha\beta}(x)$ are bounded and measurable functions on $R^{n}$

and all $a_{\alpha\beta}$ with $|\alpha|=|\beta|=m$ are uniformly continuous on $R^{n}$ ; ii) $a.\beta(x)$

$=\overline{a_{\beta\alpha}(x)}$ ; iii) (uniform strong ellipticity) there exists $c_{2}>0$ such that

$\sum_{|\alpha|=|\beta|=m}\{a_{\alpha}^{(1}b+a_{\alpha\beta}(x)\}\xi^{\alpha+\beta}\geqq c_{2}|\xi|^{2m}$ , $x\in R^{n}$ $\xi\in R^{n}$

By virtue of the Garding inequality it follows from Assumption 1.2 that
$h_{2}$ is a closed Hermitian symmetric form which is bounded below. We now
define $H_{2}$ to be the self-adjoint operator associated with $h_{2}$ in the sense of
Friedrichs. Thus, $H_{2}$ is the self-adjoint realization of the formal differential
operator $\sum_{|\alpha|.|\beta|\leqq m}D^{\alpha}(a_{\alpha\beta}^{(1)}+a_{\alpha\beta}(x))D^{\beta_{\mathcal{U}}}$ .

The spectral measure associated with $H_{j},$ $j=1,2$ , will be denoted by

$E_{j}$ : $H_{j}=\int_{-\infty}^{\infty}\lambda E_{j}(d\lambda)$ .
The following assumption concerning the rate of decay at infinity of

the coefficients $a_{\alpha\beta}(x)$ of the perturbing operator will be the basis of the
entire discussion.

ASSUMPTION 1.3. There exist $\delta>1$ and $c_{3}>0$ such that

(1.3) $|a_{\alpha\beta}(x)|\leqq\frac{c_{3}}{(1+|x|)^{\delta}}$

for all $\alpha,$
$\beta$ with $|\alpha|,$ $|\beta|\leqq m$ and all $x\in R^{n}$ .

Following Agmon [I.1] we use the following notion.
DEFINITION 1.4. $\lambda\in R^{1}$ is said to be a critical value of the polynomial

$P_{1}$ if there exists $\xi\in R^{n}$ such that $ P_{1}(\xi)=\lambda$ and $gradP_{1}(\xi)=0$ .
By Sard’s theorem the set $e_{1}$ of all critical values of $P_{1}$ is a closed set

of measure zero. More strongly, it can be proved2) that $e_{1}$ is a finite set.
As is easily seen (see \S 2.2), $H_{1}$ is absolutely continuous in $R^{1}-e_{1}$ . Since
$H_{1}=P(D)$ does not possess eigenvalues, the finiteness of $e_{1}$ implies that $H_{1}$

itself is absolutely continuous.
We can now formulate our main theorems. The first theorem is con-

cerned with the nature of the spectrum of $H_{2}$ . As is mentioned in the intro-
duction, this theorem is the same as a theorem announced by Agmon except

that we are concerned with forms rather than differential operators.

2) The writer is indebted to the lecture of Professor Agmon quoted on p. 76 of
(I) for learning this fact.
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THEOREM 1.5. Let $e_{1}$ be the set of all critical values of $P_{1}$ and let $\lambda_{\min}$

$=\inf_{\xi\in R^{n}}P_{1}(\xi)(\lambda_{\min}\in e_{1})$ . i) The sPectrum of $H_{2}$ in $(-\infty, \lambda_{\min})$ consists (if not

$emPty)$ of a finite or infinite set $\{\mu_{n}\}$ of eigenvalues of finite multiPlicity. The
set $\{\mu_{n}\}$ is bounded from below and has no points of accumulation except pos-
sibly for $\lambda_{\min}$ . ii) The set $\{\lambda_{n}\}$ of all eigenvalues of $H_{2}$ in $(\lambda_{\min}, \infty)-e_{1}$ has no
Points of accumulation in $(\lambda_{\min}, \infty)-e_{1}$ . Each $\lambda_{n}$ is of finite multiplicity. iii)
$H_{2}$ restricted to $E_{2}((\lambda_{\min}, \infty)-(e_{1}\cup\{\lambda_{n}\}))\mathfrak{H}$ is absolutely continuous.

The next theorem concerning the scattering theory for the pair $\{H_{1}, H_{2}\}$

gives more information about the structure of the absolutely continuous
part.

THEOREM 1.6. $H_{2}$ restricted to $E_{2}((\lambda_{\min}, \infty)-(e_{1}\cup\{\lambda_{n}\}))\mathfrak{H}$ is unitarily equi-
valent to $H_{1}$ . This unitary equivalence is given via the wave operatOrs

$W_{\neq}=W_{\pm}(H_{2}, H_{1})=s-\lim_{c-\pm\infty}e^{\ell tH_{2}}e^{-ttH_{1}}$ ,

the limit on the right side being shown to exist. The Principle of invariance
of wave oPerators (cf. Theorem I.3.13) holds as well. $W_{\pm}$ can be constructed in
a time-independent way as in Theorems I.3.11 and I.3.12.

The principle of limiting absorption which is contained implicitly in the
proof may be stated as follows.

THEOREM 1.7. Let $u\in L3_{/2}(R^{n})$ , where $\delta$ is the constant appearing in As-
sumPtion 1.3, and let $v_{\zeta},$

${\rm Im}\zeta\neq 0$ , be the solution in $L^{2}(R^{n})$ of the equation
$(H_{2}-\zeta)v_{\zeta}=u$ , or equivalently, the solution of

$\sum_{\downarrow\alpha|,\}\beta|\leqq m}(\{a_{\alpha\beta}^{(1)}+a_{\alpha\beta}(x)\}D^{\beta}v_{\zeta}, D^{\alpha}w)-\zeta(v_{\zeta}, w)=(u, w)$ , $w\in H^{m}(R^{n})$ .

Then, the correspOndence $u\rightarrow v_{\zeta}$ determines a bounded operafOr $R_{2}(\zeta)$ from
$L3_{/2}(R^{n})\rightarrow H^{\underline{m}_{\delta’ 2}}(R^{n})$ . The $B(L3_{/2}, H^{\underline{m}_{\delta/2}})$-valued function $R_{2}$ on $\Pi^{\pm}=\{\zeta|{\rm Im}\zeta=<0\}$

can be extended to a locally Holder continuous function $R_{2}^{\pm};$ $\Pi^{\pm}\cup\{R^{1}-(e_{1}\cup\{\lambda_{n}\}$

$\cup\{\mu_{n}\})\}\rightarrow B(L\S_{/2}, H_{-\delta/2}^{m})$ . The exponent of Holder continuity can be taken as
min $((\delta-1)/2,1)$ if $\delta\neq 3$ and as any number $\theta,$ $0<\theta<1$ , if $\delta=3$ . In particular,

for each $\lambda\in(\lambda_{\min}, \infty)-(\{\lambda_{n}\}\cup e_{1})$ the limit $v_{\lambda\pm i0}=\lim_{\epsilon\downarrow 0}v_{\lambda\pm i\epsilon}$ exists in the norm
of $H_{-\delta/2}^{m}(R^{n})$ . $v_{\lambda\pm i0}$ satisfies
$\{(1.4)$

$\sum_{|\alpha|,|\beta|\leqq m}(\{a_{\alpha\beta}^{(1)}+a_{\alpha\beta}(x)\}D^{\beta}v_{\lambda\pm i0}, D^{\alpha}w)-\lambda(v_{\lambda\pm i0}, w)=(u, w)$ ,

$w\in H_{\delta/2}^{m}(R^{n})$ ,

where $(u, v)=\int u\partial dx$, not necessarily being the $L^{2}$-inner product.

When the coefficients of $H_{2}$ are sufficiently smooth, $H_{2}$ will be a genuine
differential operator defined on $H^{2m}(R^{n})$ . In that case $H_{-\delta/2}^{m}$ in the principle
of limiting absorption can be replaced by $H_{-\delta/2}^{2m}$ . Namely, we have the fol-
aowing theorem.
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THEOREM 1.8. Let $H_{1}$ and $H_{2}$ be differenti $al$ operators

$H_{1}u=\sum_{|\alpha|\leqq 2m}a_{a}^{(1)}D^{\alpha}u$ , $u\in H^{2m}(R^{n})$ ,

$H_{2}u=\sum_{|\alpha|\leqq 2m}(a_{a}^{(1)}+a_{\alpha}(x))D^{\alpha}u$ , $u\in H^{2m}(R^{n})$ .
We assume as before that $P_{1}(\xi)=_{t\alpha}\rho_{@2m}a_{\alpha}^{(1)}\xi^{\alpha}$ is a real elliptic polynomial so that
$H_{1}$ with $\mathfrak{D}(H_{1})=H^{2m}(R^{n})$ is self-adjoin $t$ in $L^{2}(R^{n})$ . We assume furthermore that
$H_{2}$ with $\mathfrak{D}(H_{2})=H^{2m}(R^{n})$ is also self-adjoint in $L^{2}(R^{n})^{3)}$ . SuppOse that $|a_{\alpha}(x)|$

$\leqq c(1+|x|)^{-\delta},$ $\delta>1,$ $|\alpha|\leqq 2m$ . Then, all the conclusions of Theorems 1.5 and
1.6 hold and the conclusion of Theorem 1.7 holds in a stronger form that $H^{\underline{m}_{\delta/2}}$

is rePlaced by $H_{-}^{2}3_{/2}$ . In Particular, for any comPact subset $K$ of $C^{1}-(e_{1}\cup\{\lambda_{n}\}$

$\cup\{\mu_{n}\})$ there exists a constant $c=c_{K}$ such that

(1.5) $\sum_{|\alpha|\leqq 2m}\int_{R^{n}}(1+|x|^{2})^{-\delta/2}|D^{\alpha}u(x))^{2}dx$

$\leqq c\int_{R^{n}}(1+|x|^{2})^{\delta/2}|(H_{2}-\zeta)u(x)|^{2}dx$

for any $\zeta\in K$ and $u\in H\wp_{/2}(R^{n})$ . ($(1.5)$ is exactly the estimate given by $ Agmon.\rangle$

\S 2. Proof of the theorems.

2.1. Definition of $\mathfrak{K},$ $A$ , etc. We first prove Theorems 1.5, 1.6, and 1.7 in
\S \S 2.1-2.4. In order to apply the results obtained in (I) we will dePne $\mathfrak{K},$ $A$ ,
$B$ , and $C$ suitably and verify the following sets of assumptions $(A.1)-(A.4)$

for an arbitrary interval $I=(a, b)\subset(\lambda_{\min}, \infty)$ such that $ I\cap e_{1}=\emptyset$ :
(A.1) Assumption I.2.1, the existence of $\theta,$ $0\leqq\theta\leqq 1/2$ , satisfying (I.2.13)

and (I.2.14), and formula (I.2.15);
(A.2) Assumptions $I.3.2-I.3.5$ ;
(A.3) Assumption I.5.4 and condition (1) in Theorem I.6.1;
(A.4) Assumptions I.5.12, I.5.13, I.5.15, I.5.19, and I.5.20.
Suppose that all these assumptions have been verified. Then, as can be

checked easily, conclusions ii) and iii) of Theorem 1.5 and the conclusions in
Theorem 1.6 follow from Theorems I.3.12, I.3.13, and I.5.21. Assertion i) of
Theorem 1.5 is well-known and may easily be deduced from Assumption
I.3.4. Theorem 1.7 will be proved at the end of \S 2.4.

We now proceed to the verification of the assumptions and begin with
defining $\mathfrak{K}$ etc. The Hilbert space $\mathfrak{K}$ is defined to be the direct sum Of copies

3) We do not need any smoothness assumption of $a_{a}$ other than that for ensuring
the self-adjointness of $H_{2}$ on $H^{2m}(R^{n})$ .
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of $L^{2}(R^{n})$ indexed by the multi-indices $\alpha$ and $\beta,$ $0\leqq|\alpha|,$
$|\beta|\leqq m:\mathfrak{K}=\sum_{\alpha,\beta}\oplus L^{2}(R_{n})$ .

A generic element of $\mathfrak{K}$ is denoted as $u=\{u_{\alpha\beta}\}$ . By definition $\mathfrak{D}(A)=\mathfrak{D}(B\rangle$

$=L^{2}(R^{n})\cap H_{-\delta/2}^{m}(R^{n})$ and

$Au=\{(1+|x|^{2})^{-\delta/4}D^{\alpha}u\}_{\alpha\beta}$ , $u\in \mathfrak{D}(A)$ ,

$Bu=\{(1+|x|^{2})^{-\delta/4}D^{\beta}u\}_{\alpha\beta}$ , $u\in \mathfrak{D}(B)$ .
More precisely, writing $Au=v=\{v_{\alpha\beta}\}$ , for example, we define $v_{\alpha\beta}$ as $v_{\alpha\beta}=$

$(1+|x|^{2})^{-\delta/4}D^{\alpha}u,$
$v_{\alpha\beta}$ being independent of $\beta$ . Evidently, $A$ and $B$ are one-to-

one. Finally, putting

$c_{\alpha\beta}(x)=(1+|x|^{2})^{\delta/2}a_{\alpha\beta}(x)\in L^{\infty}(R^{n})$ ,

we define $C\in B(\mathfrak{K})$ as
$Cu=\{c_{\alpha\beta}u_{\alpha\beta}\}$ , $u=\{u_{\alpha\beta}\}\in \mathfrak{K}$ .

We record the following proposition whose proof is straightforward.
PROPOSITION 2.1.

$\mathfrak{D}(A^{*})\supset\{u=\{u_{\alpha\beta}\}\in \mathfrak{K}|(1+|x|^{2})^{-\delta/4}u_{\alpha\beta}\in H^{1\mathfrak{U}}(R^{n})\}$

and for $u$ belonging to the right side we have

$A^{*}u=\sum_{\alpha,\beta}D^{\alpha}((1+|x|^{2})^{-\delta/4}u_{\alpha\beta})$ .

Let us first examine those assumptions which are easily veriPed. First
of all, it is clear that $A$ and $B$ are closed. Hence, Assumption I.2.1 is ful-
filled. The definition of $h_{1}$ and $h_{2}$ given in \S 1 implies that (I.2.13) holds with
$\theta=1/2,$ $\mathfrak{D}_{1/2}$ coinciding with $H^{m}(R^{n})$ . Then, (I.2.14) is obvious and (1.2) is
precisely (I.2.15). Thus, all the assumptions in group (A.1) have been verified.

In group (A.2) the last two assumptions are easy to verify. Indeed,
since $\Re(A^{*})$ is dense, Assumption I.3.5 is trivially fulfilled. To verify Assump-
tion I.3.4 we note that the range of $R_{1}(\zeta)$ is $H^{2m}(R^{n})$ , while $B$ is a differential
operator of order $m$ whose coefficients all tend to $0$ as $|x|\rightarrow\infty$ . Hence, by
Rellich’s theorem $BR_{1}(\zeta)$ is compact. (Similarly, $AR_{1}(\zeta)$ is compact.)

Group (A.3) is easy to handle. Assumption I.5.4 follows from the fact
that $H^{m}(R^{n})$ (or more strongly $C_{0}^{\infty}(R^{n})$ ) is a core of $A$ . Since $\theta=1/2$ , the
validity of condition (1) of Theorem 6.1 is seen as in the proof of Proposi-
tion I.5.8.

The remaining assumptions will be verified successively in the following
subsections. Hereafter, we fix $I=(a, b)\subset(\lambda_{\min}, \infty)$ such that $ I\cap e_{1}=\emptyset$ .

2.2. Unperturbed spectral representation. Let

$\Sigma_{\lambda}=\{\xi|P_{1}(\xi)=\lambda\}$ , $\lambda\in(a, b)$ ,
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$\Omega=\{\xi|P_{1}(\xi)\in(a, b)\}=\bigcup_{a<\lambda<}\sum_{b}\lambda$ .
We fix $c\in I$ and write $\Sigma=\Sigma_{c}$ . $\Sigma$ is a compact real analytic surface, to
which all $\Sigma_{\lambda},$ $\lambda\in I$, are diffeomorphic. Let $ d\sigma$ be the surface element of $\Sigma$

and let $L^{2}(\Sigma)$ be the space of functions on $\Sigma$ square integrable with respect
to $ d\sigma$ .

By the Fourier transform the space $E_{1}(I)\mathfrak{H}$ is mapped onto $L^{2}(\Omega)$ . The
latter is in turn put into one-to-one correspondence with $ L^{2}(I;L^{2}(\Sigma))\cong$

$L^{2}(I\times\Sigma)$ in a natural way. More precisely, this fact may be stated as fol-
lows. We denote a generic point of $ I\times\Sigma$ by $(\lambda, \omega)\in I\times\Sigma$ .

PROPOSITION 2.2. There exist a $C^{\infty}$-diffeomorphism $\phi$ from $ I\times\Sigma$ onto $\Omega$

and a positive $C^{\infty}$-function $p$ on $ I\times\Sigma$ satisfying the following properties: i)

for each $\lambda\in I,$ $\phi$ maps $\{\lambda\}\times\Sigma$ onto $\Sigma_{\lambda}$ ; ii) the mapping which sends $f\in L^{2}(\Omega)$

to

(2.1) $(\Gamma f)(\lambda, \omega)=p(\lambda, \omega)f(\phi(\lambda. \omega))$ , $(\lambda, \omega)\in I\chi\Sigma$ ,

determines a unitary operator $\Gamma$ from $L^{2}(\Omega)$ on $L^{2}(I\times\Sigma)\cong L^{2}(I;L^{2}(\Sigma))$ .
For the sake of completeness we shall sketch a proof of Proposition 2.2

in Appendix.
Let us now put $\mathfrak{C}=L^{2}(\Sigma)$ and define $F$ as

(2.2) $F=\Gamma \mathcal{F}|_{E_{1}(I)\S}\in B(E_{1}(I)\mathfrak{H}, L^{2}(I;L^{2}(\Sigma)))$ ,

where $\mathcal{F}|_{E_{1(I)\otimes}}$ is the restriction of the Fourier transform to $E_{1}(I)\mathfrak{H}$ . Then,

it is evident by Proposition 2.2 that $\mathfrak{C}$ and $F$ thus defined satisfy Assumption
I.3.2.

2.3. Trace operators. It is convenient to verify Assumption I.3.3 simul-
taneously with Assumption I.5.12. Let $A_{1}\in B(\mathfrak{K})$ be the operator of multi-
plication by $(1+|x|^{2})^{-\delta/4}$ in $\mathfrak{K}=\sum_{\alpha,\beta}\oplus L^{2}(R^{n})$ :

$A_{1}u=\{(1+|x|^{2})^{-\delta/4}u_{\alpha\beta}(x)\}$ , $u=\{u_{\alpha\beta}\}\in \mathfrak{K}$ .

We take this operator as $A_{1}$ in Assumption I.5.12. Then it is clear that

$\mathfrak{K}_{\gamma}=\sum_{\alpha,\beta}\oplus L_{\gamma\delta/2}^{2}(R^{n})$ ,

$A_{1}^{\gamma^{\prime}.\gamma}u=\{(1+|x|^{2})^{(\gamma-\gamma^{0})\delta/4}u_{\alpha\beta}\}$ , $u=\{u_{\alpha\beta}\}\in \mathfrak{K}_{\gamma}$ .
Let $D$ be the operator from $\mathfrak{H}$ to $\mathfrak{K}_{-1}$ defined by

(2.3)
$\left\{\begin{array}{l}\mathfrak{D}(D)=L^{2}(R^{n})\cap H_{-\delta/2}^{m}(R^{n}),\\Du=\{D^{\alpha}u\}_{\alpha\beta}\in\sum_{\alpha.\beta}\oplus L_{-\delta,2}^{2}(R^{n})=\mathfrak{K}_{-1},\end{array}\right.$

$u\in \mathfrak{D}(D)$ .

It is evident that Assumption I.5.12 is fulfilled with $A_{1}$ and $D$ defined as
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above. If $\gamma>\delta^{-1}$ (in particular if $\gamma\geqq 1$), then there is the ” trace operator“
from $H^{\gamma\delta/2}(R$“ $)$ to $L^{2}(\Sigma_{\lambda})$ and, roughly speaking, this operator depends H\"older

continuously on $\lambda$ . A precise formulation of this fact may be given as
follows.

PROPOSITION 2.3. Let $\gamma>\delta^{-1}$ . Then, there exists $\Gamma(\lambda)\in B(H^{\gamma\delta/2}(R\xi), L^{2}(\Sigma))$ ,
$\lambda\in I$, such that: i) $\Gamma(\lambda)$ depends locally Holder continuously on $\lambda$ in operatOr
norm, the expOnent being min $((\gamma\delta-1)/2,1)$ if $(\gamma\delta-1)/2\neq 1$ and any number less
than 1 if $(\gamma\delta-1)/2=1$ ; ii) if $f\in H^{\gamma\delta/2}(R\xi)$ , then

(2.4) $\Gamma(\lambda)f=(\Gamma f|_{\Omega})(\lambda)$ $a$ . $e$ . in $I$ ,

where $f|_{\Omega}$ is the restriction of $f$ to $\Omega$ . If we define
(2.5) $F(\lambda)=\Gamma(\lambda)\mathcal{F}\in B(L_{\gamma\delta/2}^{2}(R_{x}^{n}), L^{2}(\Sigma))$ , $\lambda\in I$ ,

then $F(\lambda)$ has the same kind of local Holder continuity as $\Gamma(\lambda)$ and for any
$u\in L_{\gamma\delta/2}^{2}(R_{x}^{n})$ we have

(2.6) $F(\lambda)u=(FE_{1}(I)u)(\lambda)$ $a$ . $e$ . in $I$ .
Furthermore, for any $P>2(n-1)/(\gamma\delta-1)$ one has

(2.7) $\left\{\begin{array}{l}\Gamma(\lambda)\in C_{p}(H^{\gamma\delta/2}(R_{\xi}^{n}), L^{2}(\Sigma)),\\F(\lambda)\in C_{p}(L_{\gamma\delta/2}^{2}(R_{x}^{n}), L^{2}(\Sigma)),\end{array}\right.$

where $C_{p}$ is the von Neumann-Schatten class (cf. \S 6.2 of (I)). ($(2.7)$ is needed
only in \S 3 where the scattering matrix is discussed.)

PROOF. The statements involving $F(\lambda)$ follow from those for $\Gamma(\lambda)$ im-
mediately. Let $\gamma(\lambda)$ be the trace operator from $H^{\gamma\delta/2}(R_{\xi}^{n})$ to $L^{2}(\Sigma_{\lambda}):\gamma(\lambda)f=$

$f|_{z_{\lambda}}$ . For any $f\in H^{\gamma\delta/2}(R_{\xi}^{n})$ define $\Gamma(\lambda)f$ as

(2.8) $(\Gamma(\lambda)f)(\omega)=p(\lambda, \omega)(\gamma(\lambda)f)(\phi(\lambda, w))$

$=p(\lambda, \omega)f(\phi(\lambda, \omega))$ , $\omega\in\Sigma$ ,

where $p$ and $\phi$ are as given in Proposition 2.2. (Note that $\phi(\lambda, w)\in\Sigma_{\lambda}$ by
i) of Proposition 2.2.) Then, the theorem of trace tells us that $\Gamma(\lambda)$ belongs
to $B(H^{\gamma\delta/2}(R_{\xi}^{n}), L^{2}(\Sigma))$ and has the local H\"older continuity as prescribed in
the proposition. (For the precise reasoning we cover $\Omega$ by an atlas and map
each chart of the atlas into $R^{n}$ so that the part of $\Sigma_{\lambda}$ in that chart becomes
flat.) Relation (2.4) is obvious by Proposition 2.2 and the second equality
of (2.8).

In order to prove (2.7) we note that the trace operator $\Gamma(\lambda)$ actually maps
$H^{\gamma\delta/2}(R_{\xi}^{n})$ into $H^{(\gamma\delta- 1-\eta)/2}(\Sigma)$ boundedly for any $\eta>0$ . (For the definition of
$H^{s}(\Sigma)$ over a surface $\Sigma$ and the fact mentioned above, see, $e$ . $g.$ , Lions and
Magenes [2; Chapt. 1].) However, it is essentially known and can be proved
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easily (cf. [I.13]) that the imbedding operator: $H^{s}(\Sigma)\rightarrow L^{2}(\Sigma),$ $s>0$ , belongs
to $C_{q}(H^{s}(\Sigma), L^{2}(\Sigma))$ for any $q>(n-1)/s$ . Hence, (2.7) follows. $q$ . $e$ . $d$ .

Let $s=\sum_{\alpha,\beta}\oplus S(R_{x}^{n})\subset \mathfrak{K}$ , where $S(R^{n})$ is the Schwartz space of rapidly

decreasing functions. ( $S$ will play the role of $\mathfrak{D}$ and $\mathfrak{D}^{\prime}$ in Assumption I.3.3.)
Let $u=\{u_{\alpha\beta}\}\in S$ and write $A_{1}u=v=\{v_{\alpha\beta}\}$ . By Proposition2.1 we have
$u\in \mathfrak{D}(A^{*})$ and $A^{*}u=\sum_{\alpha,\beta}D^{\alpha}v_{\alpha\beta}\in L_{s}^{2}(R^{n})$ for any $s>0$ . Hence, by (2.6) and (2.5)

we get

(2.9) $(FE_{1}(I)A^{*}u)(\lambda)=F(\lambda)A^{*}u=\Gamma(\lambda)\mathcal{F}A^{*}u$ .
Since

$(\mathcal{F}A^{*}u)(\xi)=\sum_{\alpha,\beta}\xi^{\alpha}\mathcal{F}v_{\alpha\beta}$
, we obtain by (2.4) and (2.1) that

(2.10)
$(\Gamma(\lambda)\mathcal{F}A^{*}u)(\omega)=p(\lambda, \omega)\sum_{\alpha.\beta}\phi(\lambda, \omega)^{\alpha}(\mathcal{F}v_{\alpha\beta})(\phi(\lambda, \omega))$

$=\sum_{\alpha,\beta}\phi(\lambda, \omega)^{\alpha}(\Gamma(\lambda)\mathcal{F}v_{a\beta})(\omega)$

$=\sum_{\alpha,\beta}\phi(\lambda, \omega)^{\alpha}(F(\lambda)v_{\alpha\beta})(\omega)$ .
Hence, if we define $\Phi(\lambda)\in B(\mathfrak{K}_{1}, \mathfrak{C})$ by

$\}\langle 2.11)$

$(\Phi(\lambda)v)(\omega)=\sum_{\alpha.\beta}\phi(\lambda, \omega)^{\alpha}(F(\lambda)v_{\alpha\beta})(\omega)$ , $\omega\in\Sigma$ ,

it follows from (2.9) and (2.10) that

$(FE_{1}(I)A^{*}u)(\lambda)=\Phi(\lambda)v=\Phi(\lambda)A_{1}^{1.0}u$ , $u\in S$ .
Since $\phi(\lambda, \omega)$ is a $C^{\infty}$-function, $\Phi(\lambda)$ has the same kind of local H\"older con-
tinuity as $F(\lambda)$ . Thus, if we define

$((2.12)$ $T(\lambda;A)=\Phi(\lambda)A_{1}^{10}$ , $\lambda\in I$ ,

then the part of Assumption I.3.3 which is concerned with $T(\lambda;A)$ are satisfied
with $\mathfrak{D}=S$ . Since $B$ has essentially the same form as $A$ , the other part of
Assumption I.3.3 is also satisPed with $T(\lambda;B)$ given as

$T(\lambda;B)=\Phi_{B}(\lambda)A_{1}^{10}$ , $\lambda\in I$ ,

$\Phi_{B}(\lambda)v=\sum_{\alpha,\beta}\phi(\lambda, )^{\beta}\Gamma(\lambda)\mathcal{F}v_{\alpha\beta}$ .

We will next verify Assumption I.5.15. Let $w\in \mathfrak{K}_{\gamma},$ $\gamma\geqq 0$ . By virtue of
Proposition 2.3 $\Gamma(\lambda)$ can be regarded as an operator in $B(H^{(1+r)\delta/2}, \mathfrak{C})$ , which
is locally H\"older continuous in $I$ with exponent min $(\{(\gamma+1)\delta-1\}/2,1)$ with
the usual modification in the case $(\gamma+1)\delta-1=2$ . Noting $\{(\gamma+1)\delta-1\}/2$

$\geqq\gamma/2+(\delta-1)/2>\gamma/2+(\delta-1)/4$ , we put $\rho_{0}=(\delta-1)/4$ . Then, $\Gamma(\lambda)$ (resp. $\Phi_{B}(\lambda)$)

is H\"older continuous as a $B(H^{(1+\gamma)\delta/2}, \mathfrak{C})$-valued (resp. $B(L_{(1+\gamma)\delta/2}^{2},$ $\mathfrak{C})$-valued)

function with exponent $\theta$ given in Assumption I.5.15. Since $w\in \mathfrak{K}_{\gamma}=L_{\gamma\delta/2}^{2}$
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implies $C^{*}w\in L_{\gamma\delta/2}^{2}$ , the first part of Assumption I.1.15 follows. Using (I.5.13)
we obtain (I.5.18) as follows: $\Vert\{T(\lambda;B)-T(\lambda^{\prime} ; B)\}C^{*}w\Vert_{\mathfrak{C}}\leqq c|\lambda-\lambda^{\prime}|^{\theta}\Vert A_{1}^{1,0}C^{*}w\Vert_{R_{1+}\gamma}$

$=c|\lambda-\lambda^{\prime}|^{\theta}\Vert C^{*}w\Vert_{\Re\gamma}\leqq c|\lambda-\lambda^{\prime}|^{\theta}\Vert w\Vert_{R\gamma}$ .

2.4. VeriPcation of other assumptions. i) Assumption I.5.13. By (2.3) $D$

maps $H^{m}(R^{n})$ boundedly into $\mathfrak{K}_{0}$ . Because of the ellipticity of $H_{1}$ , however,
the graph norm of $|H_{1}|^{1-\theta}=|H_{1}|^{1/2}$ is equivalent to the norm of $H^{m}(R^{n})$ .
Hence (I.5.15) follows.

ii) Assumption I.5.19. That $A$ is one-to-one is obvious. It is easy to
see that the space $\mathfrak{Y}$ defined in \S I.5.2 is exactly $H_{-\delta/2}^{m}(R^{n})$ and the operator
$A$ has the form

$Au=\{(1+|x|^{2})^{-\delta/4}D^{\alpha}u\}_{\alpha\beta}$ , $u\in H_{-\delta/2}^{m}(R^{n})$ .
Therefore, if $Au\in \mathfrak{K}_{1}(i. e. (1+|x|^{2})^{-\delta/4}D^{\alpha}u\in L_{\delta/2}^{2}(R^{n}))$ , then $D^{\alpha}u\in L^{2}(R^{n})$ and
hence $u\in H^{m}(R^{n})=\mathfrak{D}_{1/2}$ . Furthermore, $\Vert u\Vert_{L^{2}}\leqq\Vert u\Vert_{H^{m}}=c\Vert Au\Vert_{\Re_{1}}$ , so that (I.5.27)
holds.

iii) Assumption I.5.20. By the definition of $\mathfrak{S}$ (Definition I.5.3) and the
fact that $\mathfrak{Y}=H_{-\delta/2}^{m}(R^{n})$ it is evident that $H_{\delta/2}^{m}(R^{n})\subset \mathfrak{S}$ . Therefore, Assumption
I.5.20 is obviously satisfied.

We have thus verified all the assumptions in $(A.1)-(A.4)$ . As is mentioned
earlier, this proves Theorems 1.5 and 1.6.

PROOF OF THEOREM 1.7. We use the notation in Theorem I.6.1 and take
$\mathfrak{K}^{\prime}=$ { $u=\{u_{\alpha\beta}\}|u_{\alpha\beta}=0$ unless $\alpha=\beta=0$}. Then, evidently $\mathfrak{X}=\mathfrak{X}_{0}=L_{\delta/2}^{2}(R^{n})$ .
Since $\mathfrak{Y}=H^{\underline{m}_{\delta/2}}$ , Theorem 1.7 follows from Theorem I.6.1.

2.5. PROOF OF THEOREM 1.8. In this case we use an unsymmetric fac-
torization $H_{2}=H_{1}+B^{*}C^{*}A$ by shifting all the differentiation to $A$ . More
precisely, we define $\mathfrak{K}$ to be the direct sum of copies of $L^{2}(R^{n})$ indexed
by multi-indices $\alpha,$

$0\leqq|\alpha|\leqq 2m:\mathfrak{K}=\sum_{0\leqq|\alpha|\leqq 2m}\oplus L^{2}(R^{n})$ . Writing $a_{\alpha}(x)=$

$(1+|x|^{2})^{-\delta/2}c_{\alpha}(x),$ $c_{\alpha}\in L^{\infty}(R^{n})$ , we define $A,$ $B$ , and $C$ as follows: $\mathfrak{D}(A)=$

$L^{2}(R^{n})\cap H_{-\delta/2}^{2m}(R^{n}),$ $B\in B(\mathfrak{H}, \mathfrak{K}),$ $\mathfrak{H}=L^{2}(R^{n})$ ,

$Au=\{(1+|x|^{2})^{-\delta/4}D^{\alpha}u\}_{\alpha}$ , $u\in \mathfrak{D}(A)$ ,

$Bu=\{(1+|x|^{2})^{-\delta/4}u\}_{\alpha}$ , $u\in \mathfrak{H}$ ,

$Cu=\overline{\{c_{\alpha\beta}}u_{\alpha\beta}\}$ .
Then, it is clear that $H_{2}=H_{1}+B^{*}C^{*}A$ and (I.2.15) holds with $\theta=0$ (cf. Exam-
ple I.2.10). Sets of assumptions $(A.1)-(A.4)$ except for (1) in Theorem I.6.1
can be verified in essentially the same way as before. Thus, the conclusions
of Theorems 1.5 and 1.6 hold. In order to prove the principle of limiting
absorption in the desired form, we put $\mathfrak{K}^{\prime}=$ { $u=\{u_{\alpha}\}|u_{a}=0$ unless $\alpha=0$}.
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Then, $\mathfrak{X}=L_{\delta’ 2}^{2}$ . On the other hand we have $\mathfrak{Y}=H_{-\delta/2}^{2m}$ . Hence, $\mathfrak{X}$ and $\mathfrak{Y}$ satisfy
condition (2) of Theorem I.6.1. Thus, Theorem I.6.1 is applicable and yields
the desired result. $q$ . $e$ . $d$ .

\S 3. Scattering matrix.

Let $\lambda_{1}=\lambda_{\min}<\lambda_{2}<\ldots<\lambda_{r}$ be the enumeration of all critical values of
$P_{1}$ and let $\lambda_{r+1}=\infty$ . Let $I_{k}=(\lambda_{k}, \lambda_{k+1}),$ $k=1,$ $\cdots$ , $r$ . Then, obviously $\mathfrak{H}=$

$\sum_{k=1}^{r}\oplus E_{1}(I_{k})\mathfrak{H},$ $\mathfrak{H}=L^{2}(R^{n})$ . Let

$F_{k}=\Gamma_{k}\mathcal{F}|_{E_{1}(I_{k})\mathfrak{H}}\in B(E_{1}(I_{k})\mathfrak{H}, L^{2}(I_{k} ; L^{2}(\Sigma^{(k)})))$

be constructed as in (2.2), where $\Sigma^{(k)}=\Sigma_{\nu_{k}}$ for some $\nu_{k}\in I_{k}$ . Then, $F=$

$\sum_{k=1}^{r}\oplus F_{k}\in B(\mathfrak{H}, \sum\oplus L^{2}(I_{k} ; L^{2}(\Sigma^{(k)})))$ gives a spectral representation of $H_{1}$ . We

may and shall identify $\sum\oplus L^{2}(I_{k} ; L^{2}(\Sigma^{(k)}))$ with the direct integral space

$\int_{\lambda_{\min}}^{\infty}\oplus \mathfrak{H}_{\lambda}d\lambda$ , $\mathfrak{H}_{\lambda}=L^{2}(\Sigma(k))$ if $\lambda\in I_{k}$ .

Then, by means of the spectral representation $F$ the scattering operator
$S=W_{+}^{*}W_{-}$ is converted to a decomposable operator. Namely, $\tilde{S}=FSF^{-1}$ is
written as

$(\tilde{S}\phi)(\lambda)=S(\lambda)\phi(\lambda)$ , $\phi\in\int_{\lambda_{\min}}^{\infty}\oplus \mathfrak{H}_{\lambda}d\lambda$

where $S(\lambda)$ is a unitary operator in $\mathfrak{H}_{\lambda}$ .
THEOREM 3.1. Let $C_{r}$ be the von Neumann-Schatten class introduced in

I.6.2. Then,
$S(\lambda)-1\in C_{\eta}(L^{2}(\Sigma^{(k)}))$ , $\lambda\in I_{k}$ ,

for any $\eta>(n-1)/(\delta-1)$ . In particular, $S(\lambda)-1$ is of Hilbert-Schmidt class if
$\delta>(n+1)/2$ and of trace class if $\delta>n$ .

PROOF. Theorem follows from Corollary I.6.4, (2.7), (2.11), and (2.12) at
once.

Appendix.

PROOF OF PROPOSITION 2.2.
Consider the initial value problem

(A.1) $\frac{d}{d\lambda}f(\lambda;\omega)=\frac{(gradP)(f(\lambda;\omega))}{|(gradP)(f(\lambda,\omega))|^{2}}$ ,

(A.2) $f(c;\omega)=\omega\in\Sigma=\Sigma_{c}$

for the vector function $f(\lambda;\omega)=(f_{1}(\lambda;\omega), \cdots , f_{n}(\lambda;\omega))$ of the real variable $\lambda$ .
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Then, $\xi=f(\lambda;\omega)$ determines a curve $1_{\omega}$ in $\Omega$ with parameter $\lambda$ . Since
$(d/d\lambda)P(f(\lambda;\omega))=gradP(f(\lambda;\omega))\cdot(d/d\lambda)f(\lambda;\omega)=1$ and $P(f(c;\omega))=P(\omega)=c$ ,

we have $\lambda=P(f(\lambda;\omega))$ . Namely, the value of the parameter $\lambda$ at a point on
the curve coincides with the value of the polynomial $P$ at that point. On
the other hand, the denominator of (A.1) is not zero so far as $f(\lambda;\omega)$ stays

in $\Omega$ . We can therefore conclude that the solution of the initial value prob-

lem (A.1), (A.2) exists for $\lambda\in I$.
Let us now define the mapping $\phi:I\times\Sigma\rightarrow\Omega$ by

$\phi(\lambda, \omega)=f(\lambda;\omega)$ , $(\lambda, \omega)\in I\times\Sigma$ .

Then, it is immediately veriPed that $\phi$ is a one-to-one $C^{\infty}$-mapping from
$ I\times\Sigma$ onto $\Omega$ having property i) of Proposition 2.2.

In order to see that $\phi^{-1}$ is also $C^{\infty}$ , we show that the Jacobian of $\phi$

expressed in a local coordinate does not vanish in $ I\times\Sigma$ . The Jacobian does
not vanish on $\{c\}\times\Sigma$ because $\phi$ is essentially the identity on $\{c\}\times\Sigma$ by (A.2)

and the ”normal derivative” $(\partial/\partial\lambda)\phi(\lambda, \omega)=(\partial/\partial\lambda)f(\lambda;\omega)$ does not vanish by
(A.1). Next, take an arbitrary $(\lambda_{1}, \omega_{1})\in I\times\Sigma$ and consider a sufficiently small
neighbourhood $U$ of $(\lambda_{1}, \omega_{1})$ of the type $(a^{\prime}, b^{\prime})\times V$ , where $a^{\prime}<\lambda_{1}<b^{\prime}$ and $V$

is a neighbourhood of $\omega_{1}$ in $\Sigma$ . Let $U^{\prime}=(a^{\prime\prime}, b^{\prime\prime})\times V$ with $a^{\prime}=a^{\prime}+(c-\lambda_{1})$ ,
$b^{\nu}=b^{\prime}+(c-\lambda_{1})$ . Then, $\phi(U)$ is obtained by translating $\phi(U^{\prime})$ along the curves
determined by (A.1). More precisely, the mapping $\psi:\phi(U^{\prime})\rightarrow\Omega$ determined
by

$\psi f(\lambda;\omega)=f(\lambda-(c-\lambda_{1});\omega)$ , $(\lambda, \omega)\in U^{\prime}$

maps $\phi(U^{\prime})$ onto $\phi(U)$ and is one-to-one. Since $\psi$ is constructed by solving
differential equation (A.1), which can be solved either forward or backward,
it is clear that $\psi$ is a $C^{\infty}$-diffeomorphism. Finally, let $\tau;U^{\prime}\rightarrow U$ be defined
by $\tau(\lambda, \omega)=(\lambda-(c-\lambda_{1}), \omega)$ . Evidently, $\psi\circ\phi|_{U^{\prime}}=\phi|_{U}\circ\tau$ . In this formula, all
the mappings except for $\phi|_{U}$ have the non-vanishing Jacobian. Hence, the
Jacobian of $\phi$ does not vanish on $U$ . Thus, we have shown that $\phi$ is a $C^{\infty}-$

diffeomorphism.
Finally, we construct $p$ satisfying the requirement ii) of Proposition2.2.

First, $p$ is defined locally. Using a local coordinate $(y_{1}, y_{n-1})$ of $\Sigma$ , the
surface element $ d\sigma$ is written as $d\sigma=g(y_{1}, \cdots , y_{n-1})dy_{1}\cdots dy_{n-1}$ , where $g$ is a
positive $C^{\infty}$-function. In terms of the same local coordinate, let $\phi$ be ex-
pressed as $\xi_{j}=\phi_{j}(\lambda;y_{1}, y_{n-1}),$ $j=1,$ $\cdots$ , $n$ , and define $P$ as

$p(\lambda;y_{1}, y_{n-1})=|\frac{\partial(\phi_{1},\cdot.\cdot\cdot.’\phi_{n})}{\partial(\lambda;y_{1},\cdot,y_{n-1})}|^{1/2}g(y_{1}, y_{n-1})^{-1/2}$

Then, it can be checked easily that $p$ is a $C^{\infty}$-function which does not depend
on the choice of local coordinate and that
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(A.3) $ d\xi_{1}\cdots d\xi_{n}=p(\lambda, y_{1}, y_{n-1})^{2}d\sigma d\lambda$ .
By pasting these locally defined $p$ together, we get a $C^{\infty}$-function $ p;I\times\Sigma$

$\rightarrow(0, \infty)$ . The unitarity of $\Gamma$ defined by (2.1) follows from (A.3) at once.
$q$ . $e$ . $d$ .
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