Rings satisfying polynomial constraints

By Mohan S. Putcha and Adil Yaqub

(Received Feb. 12, 1972)

§ 1. Introduction.

In a well-known paper [1] Herstein proved that if an associative ring R has the property that for each x in R there exists a polynomial $f_{x}(\lambda)$ (depending on x) with integer coefficients such that $x-x^{2} f_{x}(x)$ is in the center of R, then R is commutative. In this paper, we generalize Herstein's Theorem by essentially considering conditions on n elements x_{1}, \cdots, x_{n} of R. We make extensive use of Herstein's methods throughout. A related problem has been recently investigated by the authors [5].

§ 2. Main results.

Throughout, R is an associate ring and x_{1}, \cdots, x_{n} are elements of R. A word $w\left(x_{1}, \cdots, x_{n}\right)$ is simply a product in which each factor is x_{i}, for some $i=1, \cdots, n$. A polynomial $f\left(x_{1}, \cdots, x_{n}\right)$ is, then, an expression of the form $f\left(x_{1}, \cdots, x_{n}\right)=c_{1} w_{1}\left(x_{1}, \cdots, x_{n}\right)+\cdots+c_{q} w_{q}\left(x_{1}, \cdots, x_{n}\right)$, where the c_{i} are integers.

Definition. Let n be a positive integer. An α_{n}-ring is an associative ring R with the property that for all x_{1}, \cdots, x_{n} in R, there exists a polynomial $f_{x_{1}, \cdots, x_{n}}\left(x_{1}, \cdots, x_{n}\right)$ (depending on $\left.x_{1}, \cdots, x_{n}\right)$ with integer coefficients such that: (a) degree of each x_{i} in every term of $f_{x_{1}, \cdots, x_{n}}\left(x_{1}, \cdots, x_{n}\right) \geqq 2$, and (b) $x_{1} \cdots x_{n}$ $-f_{x_{1}, \cdots, x_{n}}\left(x_{1}, \cdots, x_{n}\right) \in Z$, where Z denotes the center of R.

It is clear that subrings and homomorphic images of α_{n}-rings are again α_{n}-rings.

Our present object is to prove the following
Theorem (Principal Theorem). If R is an α_{n}-ring with center Z, then $R^{n} \cong Z$ (and conversely).

Since this theorem is true for $n=1$ (Herstein's Theorem), we shall assume that $n>1$ and
(2.0) Fundamental Induction Hypothesis. The above theorem is true for α_{n-1}-rings.

In preparation for the proof of this theorem, we first establish the following lemmas.

Lemma 2.0. Let R be an α_{n}-ring, and let $x_{1}, \cdots, x_{N} \in R$. Then, for each positive integer m, and for each $N \geqq n$, there exists a polynomial $g_{x_{1}, \cdots, x_{N}}\left(x_{1}, \cdots\right.$, x_{N}) such that
degree of x_{i} in every term of $g_{x_{1}, \cdots, x_{N}}\left(x_{1}, \cdots, x_{N}\right) \geqq m$, for each i,
and $x_{1} \cdots x_{N}-g_{x_{1}, \cdots, x_{N}}\left(x_{1}, \cdots, x_{N}\right) \in Z$,
where Z is the center of R.
This lemma follows by induction. We omit the details.
Lemma 2.1. In an α_{n}-ring R, all the idempotents of R are in the center Z of R.

Proof. Let $e^{2}=e \in R$, and let $x \in R$. Since R is an α_{n}-ring, there exists. a polynomial $f=f_{e, e, \cdots, e, e x-e x e}(e, e, \cdots, e, e x-e x e)$ such that $e(e x-e x e)-f \in Z$. Now, each word in this polynomial f involves e at least twice and involves. $e x-e x e$ at least twice (as a factor). Thus each word of f involves (ex-exe) ${ }^{2}$ $=0$, or involves (ex-exe)e=0, and hence $f=0$. Therefore, $e(e x-e x e) \in Z$, that is, $e x-e x e \in Z$. Hence, in particular, $e(e x-e x e)=(e x-e x e) e=0$. Thus, $e x=e x e$. A similar argument shows that $x e=e x e$, and the lemma is proved.

Lemma 2.2. An α_{n}-ring R with an identity element is commutative.
Proof. Since R is an α_{n}-ring, there exists a polynomial $f=f_{x, 1,1, \cdots, 1}(x, 1$, $1, \cdots, 1$) such that $x \cdot 1-f \in Z$, where f involves x at least twice (as a factor). Hence $f=x^{2} p_{x}(x)$ for some polynomial $p_{x}(x)$, and thus $x-x^{2} p_{x}(x) \in Z$. Therefore, by Herstein's Theorem [1], R is commutative.

Lemma 2.3. An α_{n}-ring R which is also semi-simple is commutative.
Proof. By Lemma 2.2 an α_{n}-complete matrix ring over a division ring. is a field. Since a subring and a homomorphic image of an α_{n}-ring is again an α_{n}-ring, it follows, using the Jacobson density theorem [3; p. 33], that a primitive α_{n}-ring is commutative. Hence, a semi-simple α_{n}-ring is commutative [3; p. 14].

The annihilator, $A(S)$, of the ideal S is defined by

$$
A(S)=\{x \in R \mid x S=(0)=S x\} .
$$

It is readily verified that $A(S)$ is an ideal in R.
Lemma 2.4. Let R be an α_{n}-ring with center Z such that R is subdirectly irreducible and not commutative. Let S be the minimal nonzero ideal in R, and let $A(S)$ be the annihilator of S. Then (i) $S^{2}=(0)$, (ii) $S \cong Z$, and (iii). $R / A(S)$ is commutative.

Proof. First, since R is subdirectly irreducible, the intersection of all nonzero ideals in R is a nonzero ideal S in R. Let J be the Jacobson radical of R. If $J=(0)$, then R is commutative (by Lemma 2.3), a contradiction. Hence $J \neq(0)$, and therefore $S \subseteq J$. Let $s \in S, s \neq 0$. By Lemma 2.0, there
exists a polynomial $p(s)$ (depending on s) with integer coefficients such that

$$
\begin{equation*}
\left.c=s^{n}-s^{2 n+1} p(s) \in Z, c \in S \text { (since } s \in S\right), c \in J \text { (since } S \subseteq J \text {). } \tag{2.2}
\end{equation*}
$$

Now, since $c \in Z, c S$ is an ideal in R and $c S \subseteq S$. Hence $c S=S$ or $c S=(0)$. If $c S=S$, then $c^{2} S=S$, and hence there exists an $x \in S$ such that $c=c^{2} x$ (since $c \in S$). This implies that $c x$ is idempotent (since $c \in Z$) and $c x \in S \cong J$. Hence $c x=0$. Thus $c=0$, and hence $S=c S=(0)$, a contradiction. Therefore $c S \neq S$, and thus $c S=(0)$. Hence $c s=0$, and therefore by (2.2), $s^{n+1}-s^{2 n+2} p(s)$ $=0$. Thus $s^{n+1} p(s)$ is idempotent, and $s^{n+1} p(s) \in J$. Therefore $s^{n+1} p(s)=0$, and hence $s^{n+1}=s^{2 n+2} p(s)=0$. Thus $s^{n+1}=0$ for all $s \in S$. Hence, S is locally nilpotent [2; p. 28]. We now assume that $S^{2}=S$ and get a contradiction. Let $s_{1}, \cdots, s_{n} \in S$. Then the subring, $\left\langle s_{1}, \cdots, s_{n}\right\rangle$, generated by s_{1}, \cdots, s_{n} is nilpotent. Let r be the index of nilpotency of this subring. Now by Lemma 2.0 , there exists a polynomial $f=f\left(s_{1}, \cdots, s_{n}\right)$ such that

$$
s_{1} \cdots s_{n}-f\left(s_{1}, \cdots, s_{n}\right) \in Z \text {; degree of each } s_{i} \text { in every term of } f \geqq r .
$$

Hence $f=0$, and thus $s_{1} \cdots s_{n} \in Z$. Therefore, $S^{n} \cong Z$. But $S=S^{n}$ (since $S^{2}=S$) and hence $S \subseteq Z$. Since, moreover, $S^{2}=S \neq(0)$, there exists an $s \in S$ such that $s S \neq\{0\}$. Hence $s S=S$ (recall that $s \in Z$), and thus $S=S^{n+1}=(s S)^{n+1}=$ $s^{n+1} S^{n+1}=(0)$, since $s^{n+1}=0$. Hence $S=(0)$, a contradiction. This contradiction shows that $S^{2}=(0)$.

To prove (ii), let $x=r_{1} \cdots r_{n-1}$ s, where $r_{1}, \cdots, r_{n-1} \in R$. Since R is an α_{n}. ring, there exists a polynomial $f\left(r_{1}, \cdots, r_{n-1}, s\right)$ where, in particular, the degree of s in every term of $f\left(r_{1}, \cdots, r_{n-1}, s\right) \geqq 2$, and, moreover, $r_{1} \cdots r_{n-1} s-f\left(r_{1}, \cdots\right.$, $\left.r_{n-1}, s\right) \in Z$. Since $f\left(r_{1}, \cdots, r_{n-1}, s\right) \in S^{2}=(0)$, we get $r_{1} \cdots r_{n-1} s \in Z$. Hence $R^{n-1} S \subseteq Z$. Similarly, $S R^{n-1} \subseteq Z$. Moreover, since $R S \subseteq S$, we have $R S=S$ or $R S=(0)$. Similarly, $S R=S$ or $S R=(0)$. Now, if $R S=S$, then $S=R^{n-1} S \subseteq Z$ (as we have just shown). Similarly, if $S R=S$, then $S=S R^{n-1} \cong Z$. The only case left is that in which $S R=R S=(0)$. But, again, $S \cong Z$, and part (ii) is proved.

To prove part (iii), suppose $x, y \in R, s \in S$. Then, since $S \subseteq Z$, we have $(x y) s=x(y s)=(y s) x=y(s x)=y(x s)=(y x)$ s. Hence $(x y-y x) s=0$ for all $s \in S$, and thus $x y-y x \in A(S)$. Therefore $R / A(S)$ is commutative, and the lemma is proved.

Lemma 2.5. Let R be an α_{n}-ring, and let $x, y \in R$. Then $x y-y x$ is nilpotent.
Proof. The proof starts out as in [3; p. 221]. Thus suppose $z=x y-y x$, and suppose z is not nilpotent. Let M be the following nonvanishing m system:

$$
M=\left\{z^{i} \mid i \text { is a positive integer }\right\} .
$$

Since $0 \oplus M$, there exists, by Zorn's Lemma, an ideal P in R such that $M \cap P$ $=\emptyset$, and where P is maximal with respect to the property of not intersecting
M. Moreover, it is easy to show that P is indeed a prime ideal in $R[4 ; \mathrm{p}$. 65], and hence $\bar{R}=R / P$ is a prime ring. Now, since $z \in M, z \notin P$, and hence $x y-y x \notin P$. Therefore, R / P is not commutative. We claim that \bar{R} is not subdirectly irreducible. For, suppose \bar{R} is subdirectly irreducible. Since any homomorphic image of an α_{n}-ring is again an α_{n}-ring, it follows by Lemma 2.4, that the minimal nonzero ideal S of \bar{R} has the following properties: $S^{2}=(0), S \subseteq Z(Z=$ center of $\bar{R})$. Now, let $s \in S, s \neq 0$. Since s is in the center of \bar{R}, we have $s \bar{R} s=s^{2} \bar{R}=(0)$, and hence $s=0$, since \bar{R} is a prime ring. This contradiction shows that \bar{R} is not subdirectly irreducible, and hence the intersection of all nonzero ideals in \bar{R} is the zero ideal. Thus,

$$
\begin{equation*}
\bigcap_{B \nsupseteq P} B=P, \quad \text { where } B \text { is an ideal in } R . \tag{2.3}
\end{equation*}
$$

Now, by the maximality of P, each ideal B above intersects M. Hence, for any such ideal B, we have $z^{m} \in B$ for some positive integer m. Next, consider the difference ring R / B. Letting $\bar{z}=z+B$, we get,

$$
\begin{equation*}
\bar{z}^{m}=0(=\text { zero of } R / B) . \tag{2.4}
\end{equation*}
$$

Since R is an α_{n}-ring, R / B is an α_{n}-ring. Hence, by Lemma 2.0, we can find a polynomial $p(\bar{z})$ in which each term is of degree $\geqq m$ in \bar{z} and such that $\bar{z}^{n}-p(\bar{z}) \in Z(R / B)$, where $Z(R / B)=$ center of R / B. Since $p(\bar{z})=\bar{z}^{m} q(\bar{z})$ for some polynomial $q(\bar{z})$, it follows by (2.4) that $p(\bar{z})=0$, and hence $\bar{z}^{n} \in Z(R / B)$. Next, let $\bar{r} \in R / B$. By Lemma 2.0 again, there exists a polynomial $f=f\left(\bar{z}^{n}, \cdots, \bar{z}^{n}, \bar{r}\right)$. with integer coefficients such that

$$
\begin{equation*}
\bar{z}^{n} \cdots \bar{z}^{n} \bar{r}-f\left(\bar{z}^{n}, \cdots, \bar{z}^{n}, \bar{r}\right) \in Z(R / B) ; \text { degree of } \bar{z}^{n} \text { in each term of } f \geqq m . \tag{2.5}
\end{equation*}
$$

Since $\bar{z}^{n} \in Z(R / B)$, we may collect together all the \bar{z}^{n} factors in each word in the polynomial f in (2.5). Once this is done, it is easily seen by (2.4) and (2.5), that $f=0$ and hence $\left(\bar{z}^{n}\right)^{n-1} \bar{r} \in Z(R / B)$. Let $q=n(n-1)$. Again, since $\bar{z}^{n} \in Z(R / B), \bar{z}^{q} \in Z(R / B)$. Hence, $\quad \bar{z}^{q+1}=\bar{z}^{q}(\bar{x} \bar{y}-\bar{y} \bar{x})=\left(\bar{z}^{q} \bar{x}\right) \bar{y}-\bar{z}^{q} \bar{y} \bar{x}=\bar{y}\left(\bar{z}^{q} \bar{x}\right)-$ $\bar{z}^{q} \bar{y} \bar{x}=\bar{y}\left(\bar{x} \bar{z}^{q}\right)-\bar{z}^{q}(\bar{y} \bar{x})=\bar{y}\left(\bar{x} \bar{z}^{q}\right)-(\bar{y} \bar{x}) \bar{z}^{q}=0$. Thus $\bar{z}^{q+1}=0$, and hence $z^{q+1} \in B$ for all ideals $B \supseteq P$. Hence, by (2.3), $z^{q+1} \in P$, a contradiction, since $z^{q+1} \in M$ and $M \cap P=\emptyset$. This contradiction proves the lemma.

Lemma 2.6. Let R be an α_{n}-ring, and suppose $x \in R$. Suppose that there exists a positive integer k such that $x^{k} R^{n-1} \cup R^{n-1} x^{k} \cong Z$, where Z is the center of R. Then $x R^{n-1} \cup R^{n-1} x \subseteq Z$.

Proof. Let m be the smallest positive integer such that $x^{m} R^{n-1} \cup R^{n-1} x^{m}$ $\subseteq Z$. We now assume $m>1$ and get a contradiction. Since $x^{m} R^{n-1} \cup R^{n-1} x^{m}$ $\subseteq Z$, we have $R x^{m} R^{n-1} \cup R^{n-1} x^{m} R \subseteq Z$. Now, let $y_{1}, \cdots, y_{n-1} \in R$. By Lemma 2.0, there exists a polynomial $g=g\left(x^{m-1} y_{1}, \cdots, x^{m-1} y_{n-1}, x^{m-1}\right)$ such that

$$
\begin{gathered}
\left(x^{m-1} y_{1}\right) \cdots\left(x^{m-1} y_{n-1}\right) x^{m-1}-g \in Z ; \text { each argument in } g \text { occurs } \\
\text { more than } m n \text { times in every term of } g .
\end{gathered}
$$

Then, as can be easily verified, each word in $g \in R x^{m} R^{n-1} \subseteq Z$. Hence, $\left(x^{m-1} R\right)^{n-1} x^{m-1} \subseteq Z$. Therefore

$$
\begin{aligned}
R\left(x^{m-1} R\right)^{n+1} & =\left[R\left(x^{m-1} R\right)^{n-1} x^{m-1}\right] R x^{m-1} R \\
& =\left[\left(x^{m-1} R\right)^{n-1} x^{m-1} R\right] R x^{m-1} R \subseteq\left(x^{m-1} R\right)\left(x^{m-1} R\right)^{n-1} x^{m-1} R \\
& =\left(x^{m-1} R\right) R\left(x^{m-1} R\right)^{n-1} x^{m-1} \\
& \subseteq\left(x^{m-1} R\right)\left(x^{m-1} R\right)\left(x^{m-1} R\right)^{n-2} x^{m-1} \\
& \subseteq\left(x^{m-1} R\right)\left(x^{m-1} R\right)^{n-2} x^{m-1}=\left(x^{m-1} R\right)^{n-1} x^{m-1} \subseteq Z .
\end{aligned}
$$

Hence, $R\left(x^{m-1} R\right)^{n+1} \cong Z$. Now, by Lemma 2.0, there exists a polynomial $h=h\left(x^{m-1}, y_{1}, \cdots, y_{n-1}\right)$ such that

$$
x^{m-1} y_{1} \cdots y_{n-1}-h \in Z ; \text { degree of } x^{m-1} \text { in every term of } h \geqq 2 n+3 .
$$

Now, each word in $h \in R\left(x^{m-1} R\right)^{n+1} \cong Z$, and hence $x^{m-1} y_{1} \cdots y_{n-1} \in Z$. Similarly, $y_{1} \cdots y_{n-1} x^{m-1} \in Z$. Thus, $x^{m-1} R^{n-1} \cup R^{n-1} x^{m-1} \subseteq Z$, contradicting the minimality of m. This contradiction shows that $m=1$, and hence $x R^{n-1} \cup R^{n-1} x \subseteq Z$. This proves the lemma.

LEMMA 2.7. Let R be an α_{n}-ring with center Z, and let x be a nilpotent element in R. Then $x R^{n-1} \subseteq Z$ and $R^{n-1} x \subseteq Z$. Moreover the set of all nilpotent elements of $R^{2(n-1)}$ is contained in the center of $R^{2(n-1)}$, and hence form an ideal of $R^{2(n-1)}$.

Proof. Since x is nilpotent, $x^{k}=0$ for some positive integer k, and hence $x^{k} R^{n-1} \subseteq Z$ and $R^{n-1} x^{k} \subseteq Z$. Hence, by Lemma 2.6, $x R^{n-1} \cup R^{n-1} x \subseteq Z$.

Next, suppose $r_{1}, \cdots, r_{2 n-2} \in R$. Then, since $x R^{n-1} \cup R^{n-1} x \cong Z$,

$$
\begin{aligned}
x r_{1} \cdots r_{2 n-2} & =\left(r_{n} \cdots r_{2 n-2}\right) x\left(r_{1} \cdots r_{n-1}\right)=\left(r_{n} \cdots r_{2 n-2} x\right)\left(r_{1} \cdots r_{n-1}\right) \\
& =\left(r_{1} \cdots r_{n-1}\right)\left(r_{n} \cdots r_{2 n-2} x\right)=r_{1} \cdots r_{2 n-2} x .
\end{aligned}
$$

Hence, the set of all nilpotent elements of $R^{2 n-2}$ is contained in the center of $R^{2 n-2}$, and thus form an ideal of $R^{2 n-2}$.

Now, an easy combination of Lemmas 2.5 and 2.7 yields the following
Corollary 2.8. Let R be an α_{n}-ring. Then the commutator ideal of $R^{2 n-2}$ is contained in its center.

LEMMA 2.9. Let R be an α_{n}-ring which is subdirectly irreducible and not commutative, and let S be the minimal nonzero ideal in R. If, further, the commutator ideal of R is contained in the center Z of R, then $A(S) R^{n-1} \subseteq Z$ and $R^{n-1} A(S) \subseteq Z$, where $A(S)$ is the annihilator of S.

Proof. Let $x \in A(S)$. By Lemma 2.0, there exist integers $\alpha_{i}, \beta_{i}, m, p$
such that

$$
\begin{gather*}
x^{n}-\sum_{i=2 n}^{m} \alpha_{i} x^{i} \in Z, \tag{2.6}\\
x^{n+1}-\sum_{i=2 n+2}^{p} \beta_{i} x^{i} \in Z \tag{2.7}
\end{gather*}
$$

Let $[x, y]=x y-y x$. We claim that $x^{n}[x, y]=0$ for all y in R. For, suppose that $x^{n}[x, y] \neq 0$ for some y in R. Then $x^{n-1}[x, y] \neq 0$. Now, by (2.6), we get

$$
\begin{equation*}
\left[x^{n}, y\right]=\sum_{i=2 n}^{m} \alpha_{i}\left[x^{i}, y\right] . \tag{2.8}
\end{equation*}
$$

Moreover, our hypothesis implies that $[x, y]$ commutes with x. Using this fact, an easy induction shows that [3; p. 221]

$$
\begin{equation*}
\left[x^{k}, y\right]=k x^{k-1}[x, y], \quad k \text { any positive integer } . \tag{2.9}
\end{equation*}
$$

Combining (2.8) and (2.9), we get

$$
\begin{equation*}
n x^{n-1}[x, y]=\sum_{i=2 n}^{m} \alpha_{i} i x^{i-1}[x, y]=\left(\sum_{i=2 n}^{m} \alpha_{i} i x^{i-n}\right) x^{n-1}[x, y] . \tag{2.10}
\end{equation*}
$$

A similar argument, now applied to (2.7), yields

$$
\begin{equation*}
(n+1) x^{n}[x, y]=\left(\sum_{i=2 n+2}^{p} \beta_{i} i x^{i-n-1}\right) x^{n}[x, y] . \tag{2.11}
\end{equation*}
$$

Now, let $s \in S, s \neq 0$. By Lemma 2.4, $S \subseteq Z$. Moreover, since $x^{n}[x, y] \neq 0$ and $x^{n-1}[x, y] \neq 0$ and S is the minimal nonzero ideal in S, we get

$$
\begin{equation*}
s \in\left(x^{n-1}[x, y]\right) \cap\left(x^{n}[x, y]\right) . \tag{2.12}
\end{equation*}
$$

Furthermore, since $x^{n-1}[x, y]$ and $x^{n}[x, y]$ are both in the commutator ideal of R, we have, by hypothesis, that

$$
\begin{equation*}
x^{n-1}[x, y] \in Z \quad \text { and } \quad x^{n}[x, y] \in Z . \tag{2.13}
\end{equation*}
$$

Now, an easy combination of (2.10), (2.11), (2.12), and (2.13), together with the hypothesis that $x \in A(S)$, yields

$$
\begin{equation*}
n s=\left(\sum_{i=2 n}^{m} \alpha_{i} i x^{i-n}\right) s=0 \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
(n+1) s=\left(\sum_{i=2 n+2}^{p} \beta_{i} i x^{i-n-1}\right) s=0 \tag{2.15}
\end{equation*}
$$

Hence $s=(n+1) s-n s=0$, a contradiction. This contradiction shows that $x^{n}[x, y]=0$ for all y in R. Combining this with (2.9), we get

$$
\left[x^{k}, y\right]=k x^{k-n-1}\left(x^{n}[x, y]\right)=0 \quad \text { for all } k \geqq n+1,
$$

and hence

$$
\begin{equation*}
x^{k} \in Z \quad \text { for all integers } k \geqq n+1 \text {, and all } x \in A(S) \text {. } \tag{2.16}
\end{equation*}
$$

Combining (2.16) and (2.6), we get $x^{n} \in Z$, and hence

$$
\begin{equation*}
x^{k} \in Z \quad \text { for all integers } k \geqq n \text {, and all } x \in A(S) \text {. } \tag{2.17}
\end{equation*}
$$

Now, suppose $x, y \in A(S)$. By Lemma 2.0, there exists a polynomial $f=f\left(y_{1}, x^{n+1}, \cdots, x^{n+1}\right)$ such that

$$
\underbrace{y x^{n+1} \cdots x^{n+1}-f\left(y, x^{n+1}, \cdots, x^{n+1}\right) \in Z ;}_{(n-1)} \begin{align*}
& \text { degree of each argument } \tag{2.18}\\
& \text { in every term in } f \geqq n+1 .
\end{align*}
$$

Since, by (2.17), $x^{n+1} \in Z$, we can find integers α_{i} such that f has the form

$$
\begin{equation*}
f\left(y, x^{n+1}, \cdots, x^{n+1}\right)=\sum_{i} \alpha_{i}\left(x^{n+1}\right)^{s} i y^{l_{i}} ; \quad l_{i} \geqq n+1, \text { each } i . \tag{2.19}
\end{equation*}
$$

Therefore, by (2.17) and (2.19), we get $f\left(y, x^{n+1}, \cdots, x^{n+1}\right) \in Z$, and hence by (2.18),

$$
\begin{equation*}
y\left(x^{n+1}\right)^{n-1}=\left(x^{n+1}\right)^{n-1} y \in Z . \tag{2.20}
\end{equation*}
$$

Hence, $x^{(n+1)(n-1)+1} R^{n-1}=x^{(n+1)(n-1)}\left(x R^{n-1}\right) \subseteq x^{(n+1)(n-1)} A(S) \subseteq Z$. Combining this with (2.16), we get $x^{k} R^{n-1} \cup R^{n-1} x^{k} \cong Z$ (where $k=(n+1)(n-1)+1$). Hence, by Lemma 2.6, we have $x R^{n-1} \cup R^{n-1} x \subseteq Z$ for all $x \in A(S)$, and the lemma follows.

Corollary 2.10. Under all the hypotheses of Lemma 2.9, if $A(S)=R$, then $R^{n} \cong Z$.

Lemma 2.11. Let R be a ring satisfying all the hypotheses of Lemma 2.9. If, further, $A(S) \neq R$, then $s R=S$ for all $s \in S, s \neq 0$.

Proof. The proof is as in [1]. Thus, suppose $s \in S, s \neq 0$. By Lemma 2.4, $S \subseteq Z$, and hence $s R$ is an ideal in R. Since $s R \cong S$, we must have $s R=S$ or $s R=(0)$. If $s R=(0)$, then $A=\{x \mid x \in S, x R=(0)\}$ is a nonzero ideal in R, and hence $S \subseteq A$. This implies that $S R=(0)$. Since $S \subseteq Z$, we also have $R S=(0)$, which contradicts the hypothesis $A(S) \neq R$. Hence $s R \neq(0)$ and thus $s R=S$. This proves the lemma.

Lemma 2.12. Under all the hypotheses of Lemma 2.11, we have that $R / A(S)$ is a commutative ring with identity. Indeed, there exists an element $e \in Z$ such that $e+A(S)$ is the identity element of $R / A(S)$.

Proof. First, by Lemma 2.4, $R / A(S)$ is commutative and $S \cong Z$. Now, since $A(S) \neq R$, there exists an element $x \in R, x \notin A(S)$. Let $s \in S, s \neq 0$. Suppose that $s x=0$. We shall show that this leads to a contradiction. Now, $(R s) x=R(s x)=(0)$. But, by Lemma 2.11 and the fact that $s \in Z$, we get $R s=$ $s R=S$, and hence $x S=S x=(R s) x=(0)$. Thus $x \in A(S)$, a contradiction. Hence $s x \neq 0$, and thus by Lemma 2.11, $R(s x)=(s x) R=S$. Therefore, for some $y \in R$, $s=y s x=s y x$, since $s \in Z$. Let $e=y x$. Then, for all $r \in R$, $s(r e-r)=0$. Thus $R s(r e-r)=(0)$, and hence (by Lemma 2.11 again) $S(r e-r)=(0)$. Thus $r e-r$
$\in A(S)$. Similarly, $s(e r-r)=0$, and hence $R s(e r-r)=(0)$, which implies $S(e r-r)$ $=(0)$. Thus er $-r \in A(S)$. Hence $e+A(S)$ is the identity of $R / A(S)$. Moreover, $e^{2}-e \in A(S)$, and hence, by Lemma 2.9, $e^{n+1}-e^{n}=\left(e^{2}-e\right) e^{n-1} \in Z$. Now, if $e \notin Z$, then there exists an element y in R such that $[e, y]=e y-y e \neq 0$. Since $\left[e^{n+1}-e^{n}, y\right]=0$, we have $\left[e^{n+1}, y\right]=\left[e^{n}, y\right]$. Hence, by $(2.9),(n+1) e^{n}[e, y]$ $=n e^{n-1}[e, y]$. Therefore, $\left((n+1) e^{n}-n e^{n-1}\right)[e, y]=0$. Now, let $s \in S, s \neq 0$. Since $([e, y]) \neq(0)$, we must have $s \in([e, y])$. But, by hypothesis, $[e, y] \in Z$. These facts, together with the equation $(n+1) e^{n}[e, y]-n e^{n-1}[e, y]=0$, show that $\left((n+1) e^{n}-n e^{n-1}\right) s=0$. Hence $(n+1) e^{n}-n e^{n-1} \in A(S)$, and thus $e \in A(S)$ (since $e+A(S)$ is the identity of $R / A(S)$). This implies that $R=A(S)$, a contradiction. Thus the assumption that $e \notin Z$ led to a contradiction. Hence $e \in Z$, and the lemma is proved.

Lemma 2.13. In the notation, and under all the hypotheses, of Lemma 2.12, we have that the ring $(e R)^{n-1} \subseteq Z(e R)$.

Proof. Since R is an α_{n}-ring, we have that for all r_{1}, \cdots, r_{n} in R, there exists a polynomial $f=f\left(e, r_{1}, \cdots, r_{n-1}\right)$ such that

$$
\begin{align*}
e r_{1} \cdots r_{n-1}-f\left(e, r_{1}, \cdots, r_{n-1}\right) \in Z ; & \text { degree of each argument } \tag{2.21}\\
& \text { in every term of } f \geqq 2 .
\end{align*}
$$

Moreover, by Lemma 2.12,

$$
\begin{equation*}
e \in Z \text { and } e+A(S) \text { is the identity of } R / A(S) \tag{2.22}
\end{equation*}
$$

Now, let $w_{i}=w_{i}\left(e, r_{1}, \cdots, r_{n-1}\right)$ be a typical word in f. Then, since $e \in Z$,

$$
\begin{equation*}
w_{i}=w_{i}\left(e, r_{1}, \cdots, r_{n-1}\right)=e^{k i} w_{i}{ }^{\prime}\left(r_{1}, \cdots, r_{n-1}\right)=e^{k i} w_{i}^{\prime} ; \quad k_{i} \geqq 2 . \tag{2.23}
\end{equation*}
$$

Let

$$
\begin{equation*}
l_{i}=\text { degree of } r_{1} \text { in } w_{i}^{\prime}+\cdots+\text { degree of } r_{n-1} \text { in } w_{i}^{\prime} \tag{2.24}
\end{equation*}
$$

By (2.22), $e^{k_{i}}-e^{l_{i}} \in A(S)$, and hence by Lemma 2.9, we have

$$
\begin{equation*}
\left(e^{k_{i}}-e^{l_{i}}\right) w_{i}^{\prime}\left(r_{1}, \cdots, r_{n-1}\right) \in Z \tag{2.25}
\end{equation*}
$$

Moreover, since $e \in Z$, we have by (2.24), $w_{i}{ }^{\prime}\left(e r_{1}, \cdots, e r_{n-1}\right)=e^{l_{i}} w_{i}{ }^{\prime}\left(r_{1}, \cdots, r_{n-1}\right)$. Combining this with (2.23) and (2.25), we get

$$
\begin{equation*}
w_{i}\left(e, r_{1}, \cdots, r_{n-1}\right)-w_{i}^{\prime}\left(e r_{1}, \cdots, e r_{n-1}\right) \in Z \tag{2.26}
\end{equation*}
$$

Let

$$
\begin{align*}
& f\left(e, r_{1}, \cdots, r_{n-1}\right)=\sum_{i} c_{i} w_{i}\left(e, r_{1}, \cdots, r_{n-1}\right) \tag{2.27}\\
& g\left(e r_{1}, \cdots, e r_{n-1}\right)=\sum_{i} c_{i} w_{i}{ }^{\prime}\left(e r_{1}, \cdots, e r_{n-1}\right)
\end{align*} \text { (the } c_{i} \text { integers). }
$$

Then, by (2.26), $f\left(e, r_{1}, \cdots, r_{n-1}\right)--g\left(e r_{1}, \cdots, e r_{n-1}\right) \in Z$, and hence by (2.21), we get

$$
\begin{equation*}
e r_{1} \cdots r_{n-1}-g\left(e r_{1}, \cdots, e r_{n-1}\right) \in Z \tag{2.28}
\end{equation*}
$$

Now, by (2.22), $e^{n-1}-e \in A(S)$, and hence by Lemma 2.9,

$$
\begin{equation*}
\left(e^{n-1}-e\right) r_{1} \cdots r_{n-1} \in Z . \tag{2.29}
\end{equation*}
$$

By (2.22), $e^{n-1} r_{1} \cdots r_{n-1}=\left(e r_{1}\right) \cdots\left(e r_{n-1}\right)$. Combining this with (2.29) and (2.28), we get

$$
\begin{equation*}
\left(e r_{1}\right) \cdots\left(e r_{n-1}\right)-g\left(e r_{1}, \cdots, e r_{n-1}\right) \in Z \tag{2.30}
\end{equation*}
$$

Moreover, by (2.23) and (2.21), each word $w_{i}{ }^{\prime}\left(r_{1}, \cdots, r_{n-1}\right)$ involves every r_{j} at least twice, and hence the degree of each $e r_{j}$ in every term of $g\left(e r_{1}, \cdots, e r_{n-1}\right)$ $\geqq 2$. This, together with (2.30), now shows that $e R$ is an α_{n-1}-ring. Hence, by (2.0), $(e R)^{n-1} \subseteq Z(e R)$, and the lemma is proved.

Lemma 2.14. Suppose $R, Z, S, A(S)$, e are as in Lemmas 2.11 and 2.12, and suppose that all the hypotheses of Lemma 2.11 hold. Then $R^{n} \cong Z$.

Proof. Let $r_{1}, \cdots, r_{n} \in R$. By Lemma 2.12, $e^{n} r_{1}-r_{1} \in A(S)$ and $e \in Z$. Hence, by Lemma 2.9, $e^{n} r_{1} \cdots r_{n}-r_{1} \cdots r_{n} \in Z$. Let $y \in R$. By Lemma 2.13,

$$
\begin{aligned}
{\left[r_{1} \cdots r_{n}, y\right] } & =\left[e^{n} r_{1} \cdots r_{n}, y\right]=e^{n} r_{1} \cdots r_{n} y-y e^{n} r_{1} \cdots r_{n} \\
& =\left[\left(e r_{1} r_{2}\right)\left(e r_{3}\right) \cdots\left(e r_{n}\right)\right](e y)-(e y)\left[\left(e r_{1} r_{2}\right)\left(e r_{3}\right) \cdots\left(e r_{n}\right)\right] \\
& =0 .
\end{aligned}
$$

Thus, $\left[r_{1} \cdots r_{n}, y\right]=0$, and the lemma is proved.
Now, an easy combination of Corollary 2.10, Lemma 2.14, and Birkhoff's Theorem that every ring is isomorphic to a subdirect sum of subdirectly irreducible rings [3; p. 219], yields

Corollary 2.15. Let R be an α_{n}-ring such that the commutator ideal in R is contained in the center Z of R. Then $R^{n} \subseteq Z$.

We are now in a position to prove the Principal Theorem.
Proof of the Principal Theorem: By Corollary 2.8 and Corollary 2.15, we have

$$
\begin{equation*}
R^{(2 n-2) n} \text { is a commutative ring. } \tag{2.31}
\end{equation*}
$$

Now, suppose $x, y \in R^{(2 n-2) n}$, and suppose $r \in R$. Then $y r \in R^{(2 n-2) n}, r x \in R^{(2 n-2) n}$, and hence using (2.31), we get

$$
(x y) r=x(y r)=(y r) x=y(r x)=(r x) y=r(x y) .
$$

Thus $x y$ is in the center $Z(R)$ of R. Therefore

$$
\begin{equation*}
\left(R^{(2 n-2) n}\right)^{2} \subseteq Z(R) \tag{2.32}
\end{equation*}
$$

Now, let $y_{1}, \cdots, y_{n} \in R$. Then, by Lemma 2.0 we can find a polynomial $f=f_{y_{1}, \cdots, y_{n}}\left(y_{1}, \cdots, y_{n}\right)$ such that

$$
\begin{align*}
y_{1} \cdots y_{n}-f_{y_{1}, \cdots, y_{n}}\left(y_{1}, \cdots, y_{n}\right) \in Z ; & \text { degree of } y_{1} \text { in each } \tag{2.33}\\
& \text { term of } f \geqq 2(2 n-2) n .
\end{align*}
$$

Since $f \in R^{2(2 n-2) n} \cong Z$ (by (2.32)), we have $f \in Z$. Combining this with (2.33), we obtain $y_{1} \cdots y_{n} \in Z$, and hence $R^{n} \cong Z$. The converse, of course, is trivial. This proves the theorem.

Finally, we remark that in [5], the authors have given examples which show that the hypotheses regarding the degrees (in the definition of an α_{n} ring) are indeed essential for the validity of our principal theorem.

Department of Mathematics
University of California
Santa Barbara, California, 93106
U.S. A.

References

[1] I. N. Herstein, The structure of a certain class of rings, Amer. J. Math., 75 (1953), 864-871.
[2] I. N. Herstein, Theory of Rings, Univ. of Chicago Math. Lecture Notes, 1961.
[3] N. Jacobson, Structure of rings, A. M. S. Collog. Publications 37, 1964.
[4] N.H. McCoy, The Theory of Rings, MacMillan Company, 1964.
[5] M.S. Putcha and A. Yaqub, Structure of rings satisfying certain polynomial identities, J. Math. Soc. Japan, 24 (1972), 123-127.

