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\S 1. Introduction.

In a well-known paper [1] Herstein proved that if an associative ring $R$

has the Property that for each $x$ in $R$ there exists a polynomial $f_{x}(\lambda)$ (de-

pending on x) with integer coefficients such that $x-x^{2}f_{x}(x)$ is in the center
of $R$ , then $R$ is commutative. In this paper, we generalize Herstein’s Theo-
rem by essentially considering conditions on $n$ elements $x_{1},$

$\cdots$ , $x_{n}$ of $R$ . We
make extensive use of Herstein’s methods throughout. A related problem
has been recently investigated by the authors [5].

\S 2. Main results.

Throughout, $R$ is an associate ring and $x_{1},$
$\cdots$ , $x_{n}$ are elements of $R$ . A

word $w(x_{1}, \cdots , x_{n})$ is simply a product in which each factor is $x_{i}$ , for some
$i=1,$ $\cdots$ , $n$ . A Polynomial $f(x_{1}, \cdots , x_{n})$ is, then, an expression of the form

$f(x_{1}, \cdots , x_{n})=c_{1}w_{1}(x_{1}, \cdots , x_{n})+\cdots+c_{q}w_{q}(x_{1}, \cdots , x_{n})$ , where the $c_{i}$ are integers.
DEFINITION. Let $n$ be a positive integer. An $\alpha_{n}$-ring is an associative

ring $R$ with the property that for all $x_{1},$
$\cdots$ , $x_{n}$ in $R$ , there exists a polynomial

$J_{x_{1},\cdots,x_{n}}(x_{1}, \cdots , x_{n})$ (depending on $x_{1},$
$\cdots$ , $x_{n}$) with integer coefficients such that:

(a) degree of each $x_{i}$ in every term of $f_{x_{1},\ldots,x_{n}}(x_{1}, \cdots , x_{n})\geqq 2$ , and (b) $x_{1}\cdots x_{n}$

$-f_{x_{1},\ldots,x_{n}}(x_{1}, \cdots , x_{n})\in Z$, where $Z$ denotes the center of $R$ .
It is clear that subrings and homomorphic images of $\alpha_{n}$ -rings are again

$a_{n}$-rings.
Our present object is to prove the following
THEOREM (Principal Theorem). If $R$ is an $\alpha_{n}$-ring with center $Z$, then

$R^{n}\subseteqq Z$ (and conversely).

Since this theorem is true for $n=1$ (Herstein’s Theorem), we shall assume
that $n>1$ and

\langle 2.0) FUNDAMENTAL INDUCTION HYPOTHESIS. The above theorem is true
for $\alpha_{n- 1}$-rings.

In preparation for the proof of this theorem, we first establish the fol-
lowing lemmas.
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LEMMA 2.0. Let $R$ be an $\alpha_{n}$-ring, and let $X_{1},$
$\cdots$ , $x_{N}\in R$ . Then, for each

$p_{ositive}$ integer $m$ , and for each $N\geqq n$ , there exists a polynomial $g_{x_{1},\cdots,x_{N}}(x_{1},$ $\cdots$ ,
$x_{N})$ such that

degree of $x_{i}$ in every term of $g_{x_{1},\cdots,x_{N}}(x_{1}, \cdots , x_{N})\geqq m$ , for each $i$,
(2.1)

and $x_{1}\cdots x_{N}-g_{x_{1},\ldots,x_{N}}(x_{1}, x_{N})\in Z$ ,

where $Z$ is the center of $R$ .
This lemma follows by induction. We omit the details.
LEMMA 2.1. In an $\alpha_{n}$ -ring $R$ , all the idempotents of $R$ are. in the center

$Z$ of $R$ .
PROOF. Let $e^{2}=e\in R$ , and let $x\in R$ . Since $R$ is an $\alpha_{n}$ -ring, there exists

a polynomial $f=f_{e,e,\cdots,e,ex- exe}(e, e, e, ex-exe)$ such that $e(ex-exe)-f\in Z$.
Now, each word in this polynomial $f$ involves $e$ at least twice and involves
$ex-exe$ at least twice (as a factor). Thus each word of $f$ involves ($ex-$ exe)2
$=0$, or involves $(ex-exe)e=0$ , and hence $f=0$ . Therefore, $e(ex-exe)\in Z$,
that is, $ex-exe\in Z$. Hence, in particular, $e(ex-exe)=(ex-exe)e=0$ . Thus,
$ex=exe$ . A similar argument shows that $xe=exe$ , and the lemma is proved-

LEMMA 2.2. An $\alpha_{n}$-ring $R$ with an identity element is commutative.
PROOF. Since $R$ is an $\alpha_{n}$-ring, there exists a polynomial $f=f_{x,1,1,\cdots,1}(x,$ $1_{r}$

1, 1) such that $x\cdot 1-f\in Z$, where $f$ involves $x$ at least twice (as a factor).

Hence $f=x^{2}p_{x}(x)$ for some polynomial $p_{x}(x)$ , and thus $x-x^{2}p_{x}(x)\in Z$. There-
fore, by Herstein’s Theorem [1], $R$ is commutative.

LEMMA 2.3. An $\alpha_{n}$-ring $R$ which is also seml’-simple is commutative.
PROOF. By Lemma 2.2, an $\alpha_{n}$-complete matrix ring over a division ring

is a field. Since a subring and a homomorphic image of an $\alpha_{n}$ -ring is again
an $\alpha_{n}$-ring, it follows, using the Jacobson density theorem [3; p. 33], that a
primitive $\alpha_{n}$-ring is commutative. Hence, a semi-simple $\alpha_{n}$-ring is commuta-
tive [3; p. 14].

The annihilator, $A(S)$ , of the ideal $S$ is defined by

$A(S)=\{x\in R|xS=(0)=Sx\}$ .

It is readily verified that $A(S)$ is an ideal in $R$ .
LEMMA 2.4. Let $R$ be an $\alpha_{n}$-ring with center $Z$ such that $R$ is subdirectly

irreducible and not commutative. Let $S$ be the minimal nonzero ideal in $R_{r}$

and let $A(S)$ be the annihilator of S. Then (i) $S^{2}=(0)$ , (ii) $S\subseteqq Z$, and (iii)

$R/A(S)$ is commutative.
PROOF. First, since $R$ is subdirectly irreducible, the intersection of alll

nonzero ideals in $R$ is a nonzero ideal $S$ in $R$ . Let $J$ be the Jacobson radical
of $R$ . If $J=(O)$ , then $R$ is commutative (by Lemma 2.3), a contradiction.
Hence $J\neq(O)$ , and therefore $S\subseteqq J$. Let $s\in S,$ $s\neq 0$ . By Lemma 2.0, there
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exists a polynomial $p(s)$ (depending on s) with integer coefficients such that

(2.2) $c=s^{n}-s^{2n+1}p(s)\in Z,$ $c\in S$ (since $s\in S$), $c\in J$ (since $S\subseteqq J$).

Now, since $c\in Z,$ $cS$ is an ideal in $R$ and $cS\subseteqq S$ . Hence $cS=S$ or $cS=(O)$ .
If $cS=S$, then $c^{2}S=S$, and hence there exists an $x\in S$ such that $c=c^{2}x$

(since $c\in S$ ). This implies that $cx$ is idempotent (since $c\in Z$) and $cx\in S\subseteqq J$.
Hence $cx=0$ . Thus $c=0$ , and hence $S=cS=(O)$ , a contradiction. Therefore
$cS\neq S$, and thus $cS=(O)$ . Hence $cs=0$ , and therefore by (2.2), $s^{n+1}-s^{2n+2}p(s)$

$=0$ . Thus $s^{n+1}p(s)$ is idempotent, and $s^{n+1}p(s)\in J$. Therefore $s^{n+1}p(s)=0$ , and
hence $s^{n+1}=s^{2n+2}p(s)=0$ . Thus $s^{n+1}=0$ for all $s\in S$ . Hence, $S$ is locally nil-
potent [2; p. 28]. We now assume that $S^{2}=S$ and get a contradiction. Let
$s_{1},$

$\cdots$ , $s_{n}\in S$ . Then the subring, $\langle s_{1}, \cdots , s_{n}\rangle$ , generated by $s_{1},$ $\cdots$
$s_{n}$ is nil-

potent. Let $r$ be the index of nilpotency of this subring. Now by Lemma
2.0, there exists a polynomial $f=f(s_{1}, \cdots , s_{n})$ such that

$s_{1}\cdots s_{n}-f(s_{1}, \cdots s_{n})\in Z$ ; degree of each $s_{i}$ in every term of $f\geqq r$ .
Hence $f=0$ , and thus $s_{1}\cdots s_{n}\in Z$. Therefore, $S^{n}\subseteqq Z$. But $S=S^{n}$ (since $S^{2}=S$ )

and hence $S\subseteqq Z$. Since, moreover, $S^{2}=S\neq(0)$ , there exists an $s\in S$ such
that $sS\neq\{0\}$ . Hence $sS=S$ (recall that $s\in Z$), and thus $S=S^{n+1}=(sS1^{n+1}=$

$s^{n+1}S^{n+1}=(0)$ , since $s^{n+1}=0$ . Hence $S=(O)$ , a contradiction. This contradiction
shows that $S^{2}=(0)$ .

To prove (ii), let $x=r_{1}\cdots r_{n- 1}s$ , where $r_{1},$ $r_{n-1}\in R$ . Since $R$ is an $\alpha_{n^{-}}$

ring, there exists a polynomial $f(r_{1}, \cdots , r_{n-1}, s)$ where, in particular, the degree
of $s$ in every term of $f(r_{1}, \cdots , r_{n- 1}, s)\geqq 2$ , and, moreover, $r_{1}$ $r_{n-1}s-f(r_{1},$ $\cdots$ ,
$r_{n- 1},$ $s$) $\in Z$. Since $f(r_{1}, \cdots , r_{n-1}, s)\in S^{2}=(0)$ , we get $r_{1}$ $r_{n-1}s\in Z$. Hence
$R^{n- 1}S\subseteqq Z$. Similarly, $SR^{n-1}\subseteqq Z$. Moreover, since $RS\subseteqq S$, we have $RS=S$ or
$RS=(O)$ . Similarly, $SR=S$ or $SR=(O)$ . Now, if $RS=S$, then $S=R^{n-1}S\subseteqq Z$

\langle as we have just shown). Similarly, if $SR=S$, then $S=SR^{n-1}\subseteqq Z$. The only
case left is that in which $SR=RS=(O)$ . But, again, $S\subseteqq Z$, and part (ii) is
proved.

To prove part (iii), suppose $x,$ $y\in R,$ $s\in S$ . Then, since $S\subseteqq Z$, we have
\langle $xy$ )$s=x(ys)=(ys)x=y(sx)=y(xs)=(yx)s$ . Hence $(xy-yx)s=0$ for all $s\in S$,

and thus $xy-yx\in A(S)$ . Therefore $R/A(S)$ is commutative, and the lemma
is proved.

LEMMA 2.5. Let $R$ be an $\alpha_{n}$-ring, and let $x,$ $y\in R$ . Then $xy-yx$ is nilPotent.
PROOF. The proof starts out as in [3; p. 221]. Thus suppose $z=xy-yx$ ,

and suppose $z$ is not nilpotent. Let $M$ be the following nonvanishing m-
system:

$M=$ { $z^{i}|i$ is a positive integer}.

Since $O\not\in M$, there exists, by Zorn’s Lemma, an ideal $P$ in $R$ such that $M\cap P$

$=\emptyset$ , and where $P$ is maximal with respect to the property of not intersecting
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$M$. Moreover, it is easy to show that $P$ is indeed a prime ideal in $R[4;p$.
65], and hence $\overline{R}=R/P$ is a prime ring. Now, since $z\in M,$ $z\not\in P$, and hence
$xy-yx\not\in P$. Therefore, $R/P$ is not commutative. We claim that $\overline{R}$ is not
subdirectly irreducible. For, suppose $\overline{R}$ is subdirectly irreducible. Since any
homomorphic image of an $\alpha_{n}$-ring is again an $\alpha_{n}$-ring, it follows by Lemma
2.4, that the minimal nonzero ideal $S$ of $\overline{R}$ has the following properties:
$S^{2}=(()),$ $S\subseteqq Z$ ($Z=center$ of $\overline{R}$ ). Now, let $s\in S,$ $s\neq 0$ . Since $s$ is in the
center of $\overline{R}$ , we have $sRs=s^{2}\overline{R}=(0)$ , and hence $s=0$ , since $\overline{R}$ is a prime ring.
This contradiction shows that $\overline{R}$ is not subdirectly irreducible, and hence the
intersection of all nonzero ideals in $\overline{R}$ is the zero ideal. Thus,

(2.3)
$\bigcap_{B_{\Rightarrow}\supset P}B=P$

, where $B$ is an ideal in $R$ .

Now, by the maximality of $P$, each ideal $B$ above intersects $M$. Hence,

for any such ideal $B$ , we have $z^{m}\in B$ for some positive integer $m$ . Next,

consider the difference ring $R/B$ . Letting $\overline{z}=z+B$ , we get,

(2.4) $\overline{z}^{m}=0$ ($=zero$ of $R/B$).

Since $R$ is an $\alpha_{n}$-ring, $R/B$ is an $\alpha_{n}$-ring. Hence, by Lemma 2.0, we can find
a polynomial $p(\overline{z})$ in which each term is of degree $\geqq m$ in $\overline{z}$ and such that
$\overline{z}^{n}-p(\overline{z})\in Z(R/B)$ , where $Z(R/B)=center$ of $R/B$ . Since $p(\overline{z})=\overline{z}^{m}q(\overline{z})$ for some
polynomial $q(\overline{z})$ , it follows by (2.4) that $p(\overline{z})=0$ , and hence $\overline{z}^{n}\in Z(R/B)$ . Next,

let $\overline{r}\in R/B$ . By Lemma 2.0 again, there exists a polynomial $ f=f(\overline{z}^{n}, \cdots , \overline{z}^{n}, r)\rightarrow$

with integer coefficients such that

(2.5) $\overline{z}^{n}\cdots\overline{z}^{n}\overline{r}-f(\overline{z}^{n}, \overline{z}^{n},\overline{r})\in Z(R/B)$ ; degree of $\overline{z}^{n}$ in each term of $f\geqq m$ .

Since $\overline{z}^{n}\in Z(R/B)$ , we may collect together all the $\overline{z}^{n}$ factors in each word
in the polynomial $f$ in (2.5). Once this is done, it is easily seen by (2.4) and
(2.5), that $f=0$ and hence $(\overline{z}^{n})^{n-1}\overline{r}\in Z(R/B)$ . Let $q=n(n-1)$ . Again, since
$\overline{z}^{n}\in Z(R/B),\overline{z}^{q}\in Z(R/B)$ . Hence, $\overline{z}^{q+1}=\overline{z}^{q}(\overline{x}\overline{y}-\overline{y}\overline{x})=(\overline{z}^{q}\overline{x})\overline{y}-\overline{z}^{q}\overline{y}\overline{x}=\overline{y}(\overline{z}^{q}\overline{x})-$

$\overline{z}^{q}\overline{y}\overline{x}=\overline{y}(\overline{x}\overline{z}^{q})-\overline{z}^{q}(\overline{y}\overline{x})=\overline{y}(\overline{x}\overline{z}^{q})-(\overline{y}\overline{x})\overline{z}^{q}=0$ . Thus $\overline{z}^{q+1}=0$ , and hence $z^{q+1}\in B$ for
all ideals $B\supsetneqq P$. Hence, by (2.3), $z^{q+1}\in P$, a contradiction, since $z^{q+1}\in M$ and
$ M\cap P=\emptyset$ . This contradiction proves the lemma.

LEMMA 2.6. Let $R$ be an $\alpha_{n}$-ring, and suppOse $x\in R$ . SuppOse that there
exists a positive integer $k$ such that $x^{k}R^{n- 1}\cup R^{n- 1}x^{k}\subseteqq Z$, where $Z$ is the center
of R. Then $xR^{n-1}\cup R^{n- 1}x\subseteqq Z$.

PROOF. Let $m$ be the smallest positive integer such that $x^{m}R^{n- 1}\cup R^{n-1}x^{m}$

$\subseteqq Z$. We now assume $m>1$ and get a contradiction. Since $x^{m}R^{n- 1}\cup R^{n- 1}x^{m}$

$\subseteqq Z$, we have $Rx^{m}R^{n- 1}\cup R^{n-1}x^{m}R\subseteqq Z$. Now, let $y_{1},$ $y_{n-1}\in R$ . By Lemma
2.0, there exists a polynomial $g=g(x^{m- 1}y_{1}, \cdots , x^{m- 1}y_{n- 1}, x^{m- 1})$ such that
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$(x^{m-1}y_{1})\cdots(x^{m-1}y_{n-1})x^{m-1}-g\in Z$ ; each argument in $g$ occurs
more than $mn$ times in every term of $g$ .

Then, as can be easily verified, each word in $g\in Rx^{m}R^{n-1}\subseteqq Z$. Hence,
$(x^{m-1}R)^{n-1}x^{m-1}\subseteqq Z$. Therefore

$R(x^{m-1}R)^{n+1}=[R(x^{m- 1}R)^{n- 1}x^{m- 1}]Rx^{m- 1}R$

$=[(x^{m- 1}R)^{n- 1}x^{m- 1}R]Rx^{m-1}R\subseteqq(x^{m- 1}R)(x^{m- 1}R)^{n-1}x^{m- 1}R$

$=(x^{m- 1}R)R(x^{m- 1}R)^{n- 1}x^{m- 1}$

$\subseteqq(x^{m- 1}R)(x^{m- 1}R)(x^{m- 1}R)^{n- 2}x^{m- 1}$

$\subseteqq(x^{m-1}R)(x^{m- 1}R)^{n- 2}x^{m- 1}=(x^{m- 1}R)^{n- 1}x^{m-1}\subseteqq Z$ .
Hence, $R(x^{m-1}R)^{n+1}\subseteqq Z$. Now, by Lemma 2.0, there exists a polynomial
$h=h(x^{m-1}, y_{1}, \cdots , y_{n- 1})$ such that

$x^{m-1}y_{1}\cdots y_{n-1}-h\in Z$ ; degree of $x^{m-1}$ in every term of $h\geqq 2n+3$ .
Now, each word in $h\in R(x^{m-1}R)^{n+1}\subseteqq Z$, and hence $x^{m- 1}y_{1}\cdots y_{n-1}\in Z$. Similarly,
$y_{1}\cdots y_{n- 1}x^{m-1}\in Z$. Thus, $x^{m-1}R^{n- 1}\cup R^{n- 1}x^{m- 1}\subseteqq Z$, contradicting the minimality
of $m$ . This contradiction shows that $m=1$ , and hence $xR^{n-1}\cup R^{n-1}x\subseteqq Z$.
This proves the lemma.

LEMMA 2.7. Let $R$ be an $\alpha_{n}$ -ring with center $Z$, and let $x$ be a nilPotent
element in R. Then $xR^{n- 1}\subseteqq Z$ and $R^{n-1}x\subseteqq Z$. Moreover the set of all nilpOtent
elements of $R^{2(n-1)}$ is contained in the center of $R^{2(n-1)}$ , and hence form an ideal
of $R^{2(n-1)}$ .

PROOF. Since $x$ is nilpotent, $x^{k}=0$ for some positive integer $k$ , and hence
$x^{k}R^{n-1}\subseteqq Z$ and $R^{n-1}x^{k}\subseteqq Z$. Hence, by Lemma 2.6, $xR^{n-1}\cup R^{n-1}x\subseteqq Z$.

Next, suppose $r_{1},$ $\cdots$ , $r_{2n- 2}\in R$ . Then, since $xR^{n- 1}\cup R^{n- 1}x\subseteqq Z$ ,

$xr_{1}$ ... $r_{2n-2}=$ $(r_{n}$ ... $r_{2n- 2})x(r_{1}$ ... $r_{n- 1})=(r_{n}$ ... $r_{2n- 2}x)(r_{1}$ ... $r_{n-1})$

$=$ $(r_{1}$ . .. $r_{n- 1})(r_{n}$ ... $r_{2n- 2}x)=r_{1}$ ... $r_{2n- 2}x$ .
Hence, the set of all nilpotent elements of $R^{2n-2}$ is contained in the center of
$R^{2n-2}$ , and thus form an ideal of $R^{2n-2}$ .

Now, an easy combination of Lemmas 2.5 and 2.7 yields the following
COROLLARY 2.8. Let $R$ be an $\alpha_{n}$-ring. Then the commutator ideal of $R^{2n- 2}$

is contained in its center.
LEMMA 2.9. Let $R$ be an $\alpha_{n}$-ring which is subdirectly irreducible and not

commutative, and let $S$ be the minimal nonzero ideal in R. If, further, the
commutator ideal of $R$ is contained in the center $Z$ of $R$ , then $A(S)R^{n-1}\subseteqq Z$

and $R^{n- 1}A(S)\subseteqq Z$, where $A(S)$ is the annihilator of $S$ .
PROOF. Let $x\in A(S)$ . By Lemma 2.0, there exist integers $\alpha_{i},$

$\beta_{i},$ $m,$ $p$
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such that

(2.6) $x^{n}-\sum_{i=2n}^{m}\alpha_{i}x^{i}\in Z$ ,

\langle 2.7) $x^{n+1}-\sum_{i=2n+2}^{p}\beta_{i}x^{i}\in Z$ .

Let $[x, y]=xy-yx$. We claim that $x^{n}[x, y]=0$ for all $y$ in $R$ . For, suppose
that $x^{n}[x, y]\neq 0$ for some $y$ in $R$ . Then $x^{n-1}[x, y]\neq 0$ . Now, by (2.6), we get

\langle 2.8) $[x^{n}, y]=\sum_{i=2n}^{m}\alpha_{i}[x^{i}, y]$ .

Moreover, our hypothesis implies that $[x, y]$ commutes with $x$. Using this
fact, an easy induction shows that [3; p. 221]

(2.9) $[x^{k}, y]=kx^{k-1}[x, y]$ , $k$ any positive integer.

Combining (2.8) and (2.9), we get

(2.10) $nx^{n-1}[x, y]=\sum_{i=2n}^{m}\alpha_{i}ix^{i-1}[x, y]=(\sum_{i=2n}^{m}\alpha_{i}ix^{i- n})x^{n-1}[x, y]$ .
A similar argument, now applied to (2.7), yields

(2.11) $(n+1)x^{n}[x, y]=(\sum_{i=2n+2}^{p}\beta_{i}ix^{i-n-1})x^{n}[x, y]$ .

Now, let $s\in S,$ $s\neq 0$ . By Lemma 2.4, $S\subseteqq Z$. Moreover, since $x^{n}[x, y]\neq 0$ and
$x^{n-1}[x, y]\neq 0$ and $S$ is the minimal nonzero ideal in $S$, we get

(2.12) $s\in(x^{n- 1}[x, y])\cap(x^{n}[x, y])$ .
Furthermore, since $x^{n-1}[x, y]$ and $x^{n}[x, y]$ are both in the commutator ideal
of $R$ , we have, by hypothesis, that

(2.13) $x^{n- 1}[x, y]\in Z$ and $x^{n}[x, y]\in Z$ .
Now, an easy combination of (2.10), (2.11), (2.12), and (2.13), together with the
hypothesis that $x\in A(S)$ , yields

(2.14) $ns=(\sum_{i=2n}^{m}\alpha_{i}ix^{i- n})s=0$ ,

and

(2.15) $(n+1)s=(\sum_{i=2n+2}^{p}\beta_{i}ix^{i- n- 1})s=0$ .

Hence $s=(n+1)s-ns=0$ , a contradiction. This contradiction shows that
$x^{n}[x, y]=0$ for all $y$ in $R$ . Combining this with (2.9), we get

$[x^{k}, y]=kx^{k- n- 1}(x^{n}[x, y])=0$ for all $k\geqq n+1$ ,
and hence
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(2.16) $x^{k}\in Z$ for all integers $k\geqq n+1$ , and all $x\in A(S)$ .
Combining (2.16) and (2.6), we get $x^{n}\in Z$, and hence

(2.17) $x^{k}\in Z$ for all integers $k\geqq n$ , and all $x\in A(S)$ .
Now, suppose $x,$ $y\in A(S)$ . By Lemma 2.0, there exists a polynomial

$f=f(y_{1}, x^{n+1}, \cdots , x^{n+1})$ such that

(2.18)
$y^{+1}\frac{x^{n+1}\cdots x^{n}}{(n-1)}-f(y, x^{n+1}, \cdots , x^{n+1})\in Z_{j}ineveryterminf\geqq n+ldegreeofeachargument$

.

Since, by (2.17), $x^{n+1}\in Z$, we can find integers $\alpha_{i}$ such that $f$ has the form

(2.19) $f(y, x^{n+1}, x^{n+1})=\sum_{i}\alpha_{i}(x^{n+1})^{S}y^{l}$ ; $l_{i}\geqq n+1$ , each $i$ .

Therefore, by (2.17) and (2.19), we get $f(y, x^{n+1}, x^{n+1})\in Z$, and hence by
(2.18),

\langle 2.20) $y(x^{n+1})^{n- 1}=(x^{n+1})^{n-1}y\in Z$ .
Hence, $x^{(n+1)(n-1)+1}R^{n- 1}=x^{(n+1)(n- 1)}(xR^{n- 1})\subseteqq x^{(n+1)(n- 1)}A(S)\subseteqq Z$. Combining this
with (2.16), we get $x^{k}R^{n-1}\cup R^{n-1}x^{k}\subseteqq Z$ (where $k=(n+1)(n-1)+1$). Hence, by
Lemma 2.6, we have $xR^{n-1}\cup R^{n-1}x\subseteqq Z$ for all $x\in A(S)$ , and the lemma follows.

COROLLARY 2.10. Under all the hyp0theses of Lemma 2.9, if $A(S)=R$ ,
then $R^{n}\subseteqq Z$.

LEMMA 2.11. Let $R$ be a ring satisfying all the hypotheses of Lemma 2.9.
If, further, $A(S)\neq R$ , then $sR=S$ for all $s\in S,$ $s\neq 0$ .

PROOF. The proof is as in [1]. Thus, suppose $s\in S,$ $s\neq 0$ . By Lemma
2.4, $S\subseteqq Z$, and hence $sR$ is an ideal in $R$ . Since $sR\subseteqq S$, we must have $sR=S$

or $sR=(O)$ . If $sR=(O)$ , then $A=\{x|x\in S, xR=(O)\}$ is a nonzero ideal in $R$ ,
and hence $S\subseteqq A$ . This implies that $SR=(O)$ . Since $S\subseteqq Z$, we also have
$RS=(O)$ , which contradicts the hypothesis $A(S)\neq R$ . Hence $sR\neq(O)$ and thus
$sR=S$. This proves the lemma.

LEMMA 2.12. Under all the hypOtheses of Lemma 2.11, we have that $R/A(S)$

is a commutative ring with identity. Indeed, there exists an element $e\in Z$ such
that $e+A(S)$ is the identity element of $R/A(S)$ .

PROOF. First, by Lemma 2.4, $R/A(S)$ is commutative and $S\subseteqq Z$. Now,
since $A(S)\neq R$ , there exists an element $x\in R,$ $x\not\in A(S)$ . Let $s\in S,$ $s\neq 0$ .
Suppose that $sx=0$ . We shall show that this leads to a contradiction. Now,

\langle $Rs$)$x=R(sx)=(O)$ . But, by Lemma 2.11 and the fact that $s\in Z$, we get $Rs=$

$sR=S$, and hence xS $=Sx=(Rs)x=(O)$ . $Thusx\in A(S)$ , acontradiction. Hence
$sx\neq 0$, and thus by Lemma 2.11, $R(sx)=(sx)R=S$ . Therefore, for some $y\in R$ ,
$s=ysx=syx$, since $s\in Z$. Let $e=yx$ . Then, for all $r\in R,$ $s(re-r)=0$ . Thus
$Rs(re-r)=(O)$ , and hence (by Lemma 2.11 again) $S(re-r)=(O)$ . Thus $re-r$
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$\in A(S)$ . Similarly, $s(er-r)=0,$ $andhenceRs(er-r)=(O),$ $whichimpliesS(er-r\rangle$

$=(0)$ . Thus $er-r\in A(S)$ . Hence $e+A(S)$ is the identity of $R/A(S)$ . More-
over, $e^{2}-e\in A(S)$ , and hence, by Lemma 2.9, $e^{n+1}-e^{n}=(e^{2}-e)e^{n-1}\in Z$. Now,
if $e\not\in Z$, then there exists an element $y$ in $R$ such that $[e, y]=ey-ye\neq 0$ .
Since $[e^{n+1}-e^{n}, y]=0$ , we have $[e^{n+1}, y]=[e^{n}, y]$ . Hence, by (2.9), $(n+1)e^{n}[e, y]$

$=ne^{n-1}[e, y]$ . Therefore, $((n+1)e^{n}-ne^{n- 1})[e, y]=0$ . Now, let $s\in S,$ $s\neq 0$ .
Since $([e, y])\neq(0)$ , we must have $s\in([e, y])$ . But, by hypothesis, $[e, y]\in Z$.
These facts, together with the equation $(n+1)e^{n}[e, y]-ne^{n-1}[e, y]=0$ , show
that $((n+1)e^{n}-ne^{n- 1})s=0$ . Hence $(n+1)e^{n}-ne^{n- 1}\in A(S)$ , and thus $e\in A(S)$

(since $e+A(S)$ is the identity of $R/A(S)$). This implies that $R=A(S)$ , a con-
tradiction. Thus the assumption that $e\not\in Z$ led to a contradiction. Hence
$e\in Z$, and the lemma is proved.

LEMMA 2.13. In the notation, and under all the hypotheses, of Lemma 2.12,
we have that the ring $(eR)^{n-1}\subseteqq Z(eR)$ .

PROOF. Since $R$ is an $\alpha_{n}$-ring, we have that for all $r_{1},$ $r_{n}$ in $R$ , there
exists a polynomial $f=f(e, r_{1}, \cdots r_{n-1})$ such that

(2.21) $er_{1}\cdots r_{n- 1}-f(e, r_{1}, r_{n- 1})\in Z$ ; degree of each argument
in every term of $f\geqq 2$ .

Moreover, by Lemma 2.12,

(2.22) $e\in Z$ and $e+A(S)$ is the identity of $R/A(S)$ .
Now., let $w_{i}=w_{i}(e, r_{1}, \cdots , r_{n-1})$ be a typical word in $f$. Then, since $e\in Z$,

(2.23) $w_{i}=w_{i}(e, r_{1}, \cdots , r_{n- 1})=e^{k_{i}}w_{i^{\prime}}(r_{1}, r_{n- 1})=e^{k}{}^{t}w_{i^{\prime}}$ ; $k_{i}\geqq 2$ .

Let

(2.24) $l_{i}=degree$ of $r_{1}$ in $w_{i^{\prime}}+\cdots+degree$ of $r_{n- 1}$ in $w_{i^{\prime}}$

By (2.22), $e^{k_{i}}-e^{l_{i}}\in A(S)$ , and hence by Lemma 2.9, we have

(2.25) $(e^{k_{i}}-e^{\iota_{i}})w_{l^{\prime}}(r_{1}, r_{n- 1})\in Z$ .
Moreover, since $e\in Z$, we have by (2.24), $w_{i}^{\prime}(er_{1}, \cdots , er_{n-1})=e^{\iota_{i}}w_{i^{\prime}}(r_{1}, r_{n-1})_{\sim}$

Combining this with (2.23) and (2.25), we get

(2.26) $w_{i}(e, r_{1}, r_{n- 1})-w_{i^{\prime}}(er_{1}, er_{n- 1})\in Z$ .
Let

$f(e, r_{1}, r_{n- 1})=\sum_{i}c_{i}w_{i}(e, r_{1}, r_{n- 1})$

(2.27) (the $c_{i}$ integers).
$g(er_{1}, \cdots er_{n- 1})=\sum_{i}c_{i}w_{i}^{\prime}(er_{1}, er_{n- 1})$

Then, by (2.26), $f(e, r_{1}, \cdots , r_{n- 1})-g(er_{1}, \cdots , er_{n-1})\in Z$, and hence by (2.21), we
get
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(2.28) $er_{1}\cdots r_{n- 1}-g(er_{1}, \cdots , er_{n- 1})\in Z$ .
Now, by (2.22), $e^{n- 1}-e\in A(S)$ , and hence by Lemma 2.9,

(2.29) $(e^{n- 1}-e)r_{1}\cdots r_{n- 1}\in Z$ .
By (2.22), $e^{n- 1}r_{1}\cdots r_{n- 1}=(er_{1})\cdots(er_{n- 1})$ . Combining this with (2.29) and (2.28),

we get

(2.30) $(er_{1})\cdots(er_{n- 1})-g(er_{1}, er_{n- 1})\in Z$ .
Moreover, by (2.23) and (2.21), each word $w_{i^{\prime}}(r_{1}, r_{n- 1})$ involves every $r_{j}$ at
least twice, and hence the degree of each $er_{j}$ in every term of $g(er_{1},$ $ er_{n-1}\rangle$

$\geqq 2$ . This, together with (2.30), now shows that $eR$ is an $\alpha_{n- 1}$ -ring. Hence,
by (2.0), $(eR)^{n-1}\subseteqq Z(eR)$ , and the lemma is proved.

LEMMA 2.14. SuppOse $R,$ $Z,$ $S,$ $A(S),$ $e$ are as in Lemmas 2.11 and 2.12,
and suppOse that all the hypOtheses of Lemma 2.11 hold. Then $R^{n}\subseteqq Z$.

PROOF. Let $r_{1},$ $r_{n}\in R$ . By Lemma 2.12, $e^{n}r_{1}-r_{1}\in A(S)$ and $e\in Z$.
Hence, by Lemma 2.9, $e^{n}r_{1}$ $r_{n}-r_{1}\cdots r_{n}\in Z$. Let $y\in R$ . By Lemma 2.13,

$[r_{1}\cdots r_{n}, y]=[e^{n}r_{1}\cdots r_{n}, y]=e^{n}r_{1}\cdots r_{n}y-ye^{n}r_{1}\cdots r_{n}$

$=[(er_{1}r_{2})(er_{3})\cdots(er_{n})](ey)-(ey)[(er_{1}r_{2})(er_{3})\cdots(er_{n})]$

$=0$ .
Thus, $[r_{1}\cdots r_{n}, y]=0$ , and the lemma is proved.

Now, an easy combination of Corollary 2.10, Lemma 2.14, and Birkhoff’s
Theorem that every ring is isomorphic to a subdirect sum of subdirectly
irreducible rings [3; p. 219], yields

COROLLARY 2.15. Let $R$ be an $\alpha_{n}$ -ring such that the commutator ideal in
$R$ is contained in the center $Z$ of R. Then $R^{n}\subseteqq Z$.

We are now in a position to prove the Principal Theorem.
PROOF OF THE PRINCIPAL THEOREM: By Corollary 2.8 and Corollary 2.15,

we have

(2.31) $R^{(2n- 2)n}$ is a commutative ring.

Now, suppose $x,$ $y\in R^{(2n- 2)n},$ $andsupposer\in R$ . $Thenyr\in R^{(2n- 2)n},$ $rx\in R^{(2n- 2)n}$ ,

and hence using (2.31), we get

$(xy)r=x(yr)=(yr)x=y(rx)=(rx)y=r(xy)$ .
Thus $xy$ is in the center $Z(R)$ of $R$ . Therefore

(2.32) $(R^{(2n- 2)n})^{2}\subseteqq Z(R)$ .
Now, let $y_{1},$ $y_{n}\in R$ . Then, by Lemma 2.0, we can find a polynomial
$f=f_{y_{1},\cdots,y_{n}}(y_{1}, y_{n})$ such that
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(2.33) $y_{1}\cdots y_{n}-f_{y_{1},\cdots,y_{n}}(y_{1}, \cdots , y_{n})\in Z$ ; degree of $y_{1}$ in each
term of $f\geqq 2(2n-2)n$ .

Since $f\in R^{2(2n- 2)n}\subseteqq Z$ (by (2.32)), we have $f\in Z$. Combining this with (2.33),
we obtain $y_{1}\cdots y_{n}\in Z$, and hence $R^{n}\subseteqq Z$. The converse, of course, is trivial.
This proves the theorem.

Finally, we remark that in [5], the authors have given examples which
show that the hypotheses regarding the degrees (in the definition of an $\alpha_{n^{-}}$

ring) are indeed essential for the validity of our principal theorem.
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