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Products of two semi-algebraic groups
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\S 1. Introduction.

Let $R$ and $C$ denote the field of real numbers and complex numbers,
respectively. For a field $\Phi$ , we denote by $GL(n, \Phi)$ the group of all $n$ by $n$

non-singular matrices over $\Phi$ . A subgroup $A$ of $GL(n, \Phi)$ is called algebraic
if there exists a family of polynomials of $n^{2}$ variables over $\Phi$ which defines
$A$ . In this paper, we are mainly interested in subgroups of $GL(n, R)$ . A
subgroup $P$ of $GL(n, R)$ is said to be $pre- algebraic^{2)}$ if there exists an alge-
braic subgroup $A$ of $GL(n, R)$ which contains $P$ as a subgroup of finite index.
A pre-algebraic group is closed, and a closed subgroup $G$ of $GL(n, R)$ is Pre-
algebraic if and only if the Lie algebra $\mathcal{G}$ of $G$ is algebraic and $G$ has only
finitely many connected components. For any subgroup $G$ of $GL(n, R)$ , we
can find the smallest Pre-algebraic $\cdot$ group $d(G)$ containing $G$ . Let us call
$d(G)$ the Pre-algebraic hull of $G$ . For a topological group $G$ , we adopt the
notation $G_{e}$ for the identity component group of $G$ . The identity component
of $d((\neg I)$ will be denoted by $d_{e}(G),$ $i.e$ . $\mathcal{A}_{e}(G)=(\mathcal{A}(G))_{e}$ .

Let $G$ be a connected Lie subgroup of $GL(n, R)$ . Then the pre-algebraic
hull $d(G)$ is connected, and the commutator subgroup of $d(G)$ is closed and
is contained in $G$ . In Goto [4], the author defined $G$ to be semi-algebraic if
$G$ contains a maximal compact subgroup of .,4(G). If $G$ is semi-algebraic,
then $G$ is a closed normal subgroup of $d(G)$ such that the factor group
$d(G)/G$ is isomorphic with a vector group $R^{k}$ of a certain dimension $k$ , and
vice versa. Let us extend the definition of semi-algebraic groups to the
non-connected case.

DEFINITION. A closed subgroup $S$ of $GL(n, R)$ is said to be semi-algebraic
if $S$ is a normal subgroup of its pre-algebraic hull $\mathcal{A}(S)$ and the factor group
$d(S)/S$ is a vector group.

It is obvious that this generalizes the definition of the connected case
and that a pre-algebraic group is semi-algebraic.

Let $S$ be a semi-algebraic group. Then $S_{c}d_{e}(S)$ is of finite index in $d(S)_{k}$
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and so is $Sd_{e}(S)/S$ in $d(S)/S$ . Since $d(S)/S$ is connected, we have that
$d(S)=Sd_{e}(S)$ , and accordingly $d(S)/S\cong d_{e}(S)/d_{e}(S)\cap S$ . Because $d(S)/S$

is simply connected, $d_{e}(S)\cap S$ is connected and coincides with $S_{e}$ . Hence
we have $d(S)/d_{e}(S)\cong S/S_{e}$ and $d(S)/S\cong d_{e}(S)/S_{e}$ . Hence, in particular, $S_{e}$

is of finite index in $S$ , and $d_{e}(S)/S_{e}$ is a vector group. Also the finiteness
of $S/S_{e}$ implies that $Sd(S_{e})=d(S)$ , and so $\leftrightarrow q(S_{e})=\mathcal{A}_{e}(S)$ . Therefore $S_{e}$ is
semi-algebraic. Thus we have the following proposition.

PROPOSITION. If $S$ is semi-algebraic, then $S_{e}$ is semi-algebraic and is of
finite index in $S$ , and conversely.

The purpose of this paper is to prove the following theorem.
THEOREM. Let $A$ and $B$ be semi-algebraic subgrouPs of $GL(n, R)$ . Then

the set $AB=\{ab; a\in A, b\in B\}$ is locally comPact,
L. Pukanszky kindly informed the author that related or similar results

have been announced or published by C. Chevalley, J. Dixmier, L. Pukanszky

and M. Rosenlicht (cf. [2], [6] and [7]).

\S 2. Algebraic group case.

Let $A$ be an algebraic subgroup of $GL(n, R)$ . The set of polynomials
over $R$ defining $A$ in $GL(n, R)$ also dePnes an algebraic subgroup of $GL(n, C)$ ,

which will be caIled the complexificatiOn of $A$ . Let $B$ also be an algebraic
subgroup of $GL(n, R)$ , and let $\tilde{A}$ and $\tilde{B}$ denote the complexifications of $A$ and
$B$ , respectively. The product group $\tilde{A}\times\tilde{B}$ acts on $GL(n, C)$ as a group of
rational transformations: for $\alpha\in\tilde{A},$ $\beta\in\tilde{B}$ and $g\in GL(n, C)$ , let $g(\alpha, \beta)=$

$\alpha^{-1}g\beta$ . $\tilde{A}\tilde{B}$ is an orbit of the transformation group, and is Zariski open in the
Zariski closure of $\tilde{A}\tilde{B}$ , by a theorem of Chevalley [1]. Hence, in particular,
$\tilde{A}\tilde{B}$ is a locally compact set.

Let $\pi$ denote the map $\tilde{A}\times\tilde{B}\ni(\alpha, \beta)\vdash\pi(\alpha, \beta)=\alpha^{-1}\beta\in\tilde{A}\tilde{B}$ . Because $A\times\tilde{B}$

is a locally compact group which is a union of countably many compact sets
and $\tilde{A}\tilde{B}$ is a locally compact Hausdorff space, the map $\pi$ is open and induces
a homeomorphism between the coset space $D\backslash (\tilde{A}\times\tilde{B})=\{D(\alpha, \beta);\alpha\in\tilde{A}, \beta\in\tilde{B}\}$

and $\tilde{A}\tilde{B}$ , where $\tilde{C}=\tilde{A}\cap\tilde{B}$ and $D=\{(\gamma, \gamma);\gamma\in\tilde{C}\}$ .
We put $R=\tilde{A}\tilde{B}\cap GL(n, R)$ and $S=\pi^{-1}(R)$ . Then $R$ is a locally compact

set. In order to prove that $AB$ is open in $R$ , it suffices to show that $\pi^{-1}(AB)$

$=D(A\times B)$ is open in $S$ . On the other hand, the product group $\tilde{C}\times A\times B$ is
acting as a transformation group on $S$ : for $\gamma\in\tilde{C},$ $a\in A,$ $b\in B$ and $(\alpha, \beta)\in S$,
let $(\alpha, \beta)(\gamma, a, b)=(\gamma^{-1}\alpha a, \gamma^{-1}\beta b)$ . Then $\pi^{-1}(AB)$ is an orbit of the transforma-
tion group passing through $(e, e)$ , where $e$ denotes the identity matrix. Thus,
in order to prove the theorem for algebraic $A$ and $B$ , it is enough to find
an open set $U$ of $S$ with $D(A\times B)\supset U\ni(e, e)$ .
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For a matrix $\xi$ over $C$, let us denote by $\overline{\xi}$ the matrix whose entries are
the complex conjugate of the corresponding entries of $\xi$ . An element $\xi$ of
$GL(n, C)$ , sufficiently close to $e$ and satisfying $\xi\overline{\xi}=e$ , can be written as
$\xi=\exp X,$ $X+\overline{X}=0$ . Hence, putting $\eta=\exp\frac{1}{2}X$ we have that $\xi=\eta^{2}$ and

$\eta\overline{\eta}=e$ . Therefore we can find a neighborhood $V$ of $e$ in $\tilde{C}$ such that if $ V\ni\gamma$

and $\gamma\overline{\gamma}=e$ then there exists $\delta\in V$ with $\delta^{2}=\gamma$ and $\delta\overline{\delta}=e$ . For this $V$ , let us
take a neighborhood $W$ of $e$ in $\tilde{A}$ such that $ W\ni\alpha$ and $\overline{\alpha}\alpha^{-1}\in\tilde{C}$ implies that
$\overline{\alpha}\alpha^{-1}\in V$ .

Let us put $U=(W\times\tilde{B})\cap S$ . $U$ is an open subset of $S$ . For $(\alpha, \beta)\in U$

we have that $\alpha^{-1}\beta=\overline{\alpha^{-1}\beta}=\overline{\alpha}^{-1}\overline{\beta}$ . Since $\alpha\in\tilde{A}$ implies $\overline{\alpha}\in\tilde{A}$ , we have that
$\gamma=\overline{\alpha}\alpha^{-\rfloor}\lfloor=\overline{\beta}\beta^{-1}\in\tilde{C}$ . Hence $\gamma\in V$ . Because $\gamma\overline{\gamma}=e$ we can find $\delta\in\tilde{C}$ with
$\delta^{2}=\gamma$ and $\delta\overline{\delta}=e$ . Then $\overline{\delta\alpha}=\overline{\delta}\overline{\alpha}=\delta^{-1}\gamma\alpha=\delta\alpha$ , and $\delta\beta=\overline{\delta\beta}$. Hence $(\alpha, \beta)=$

$(\delta^{-1}, \delta^{-1})(\delta\alpha, \delta\beta)\in D(A\times B)$ .
Thus the theorem is proved for algebraic $A$ and $B$ .
REMARK. In Goto [3], the author mistakenly mentioned that for algebraic

groups $A$ and $B$ in $GL(n, R),$ AB is Zariski open in its Zariski closure. He
still does not know if it is true, although he has an impression it will not
be. However for the purposes of the paper [3], the result of this section is
sufficient.

\S 3. Proof of Theorem.

Let $A_{1}$ and $B_{1}$ be pre-algebraic subgroups of $GL(n, R)$ . Let $A_{2}$ and $B_{2}$

be the smallest algebraic groups containing $A_{1}$ and $B_{1}$ , respectively. We set

$A_{0}=(A_{1})_{e}=(A_{2})_{e}$ , $B_{0}=(B_{1})_{e}=(B_{2})_{e}$ ,

$C_{2}=A_{2}\cap B_{2}$ and $D_{2}=\{(c, c);c\in C_{2}\}$ .
Then obviously $D_{2}(A_{1}\times B_{1})$ is a union of cosets of $A_{0}\times B_{0}$ in the direct pro-
duct group $A_{2}\times B_{2}$ , and is open and closed in $A_{2}\times B_{2}$ . Hence $A_{1}B_{1}$ is open
and closed in $A_{2}B_{2}$ .

Next, let $A$ and $B$ be semi-algebraic subgroups of $GL(n, R)$ . We suppose
that $d(A)=A_{1}$ and $\mathcal{A}(B)=B_{1}$ . Then $A\times B$ is a closed normal subgroup of
$A_{1}\times B_{1}$ and the factor group $(A_{1}\times B_{1})/(A\times B)$ is a vector group. We set
$C_{1}=A_{1}\cap B_{1}$ and $D_{1}=\{(c, c);c\in C_{1}\}$ . Then $C_{1}$ is pre-algebraic, and has only
finitely many connected components. Hence $D_{0}=(D_{1})_{e}$ is of finite index in
$D_{1}$ . Because any connected Lie subgroup of a vector group is closed,
$D_{0}(A\times B)/(A\times B)$ is a closed subgroup of $(A_{1}\times B_{1})/(A\times B)$ , and so $D_{0}(A\times B)$ is
closed in $A_{1}\times B_{1}$ . On the other hand, $(A_{1}\times B_{1})/D_{0}(A\times B)$ is a vector group
and contains no element of Pnite order except the identity, and $D_{0}(A\times B)$ is
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of finite index in $D_{1}(A\times B)$ . Hence $D_{1}(A\times B)=D_{0}(A\times B)$ . Since $D_{1}(A\times B)$ is
closed in $A_{1}\times B_{1},$ AB is closed in $A_{1}B_{1}$ . This completes the proof of the
theorem.
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