On Gaussian sums attached to the general linear groups over finite fields

by Takeshi Kondo

(Received Sept. 25, 1962)

Introduction. Let $F(q)\left(=F_{q}\right)$ be the finite field with q elements, q being a power of a prime number p. We denote by $M_{n}\left(F_{q}\right)$ the total matric ring of degree n over F_{q}, and by $G L(n, q)$ the group of regular elements of $M_{n}\left(F_{q}\right)$. To any irreducible representation ξ of $G L(n, q)$ by complex matrices, we can attach Gaussian sums $W(\xi, A)$ as follows. For every positive integer d, and for every $\alpha \in F\left(q^{d}\right)$, put

$$
e_{\alpha}[\alpha]=\exp \left[\frac{2 \pi \sqrt{-1}}{p} \operatorname{Tr}_{F\left(q^{d) \mid F(p)}\right.}(\alpha)\right] .
$$

Then, for every $A \in M_{n}\left(F_{q}\right)$, we define $W(\xi, A)$ by

$$
W(\xi, A)=\sum_{X \in G(n, q)} \xi(X) e_{1}[\operatorname{tr}(A X)] .
$$

The matrices of this kind were investigated in E. Lamprecht [1] for the multicative groups of more general finite rings, but the explicit values of these matrices were not obtained.

The purpose of the present paper is to determine explicitly $W(\xi, A)$ for non-singular A and any irreducible representation ξ of $G L(n, q)$. To explain our result, first we note that, if $A \in G L(n, q)$,

$$
W(\xi, A)=\xi(A)^{-1} W\left(\xi, 1_{n}\right),
$$

where 1_{n} denotes the identity element of $M_{n}\left(F_{q}\right)$. Moreover, we see easily that $W\left(\xi, 1_{n}\right)$ is a scalar matrix. Then define a complex number $w(\xi)$ by

$$
W\left(\xi, 1_{n}\right)=w(\xi) \xi\left(1_{n}\right) .
$$

Fix once and for all an isomorphism θ of the multiplicative group of $F\left(q^{n!}\right)$ into the multiplicative group of complex numbers. Further fix a generator ε of the multiplicative group of $F\left(q^{n!}\right)$, and put, for every integer d such that $1 \leqq d \leqq n$,

$$
\varepsilon_{d}=\varepsilon^{\kappa}, \quad \kappa=\frac{q^{n!}-1}{q^{d}-1} .
$$

Then ε_{d} is a generator of the multiplicative group of $F\left(q^{d}\right)$. For every irreducible polynomial g of degree d with coefficients in $F(q)$, we define the usual

Gaussian sum $\tau(g)$ in the following way: taking a root ε_{d}^{k} of g, put

$$
\tau(g)=\sum_{\alpha \in F\left(q^{d}\right)} \theta(\alpha)^{k} e_{d}[\alpha]
$$

It is easily verified that $\tau(g)$ does not depend on the choice of k. Now, by J. A. Green [1], we can obtain all the irreducible characters of $G L(n, q)$. In view of his result, we can speak of the type ($\cdots g^{\nu(g)} \cdots$) of every irreducible character ξ, where the g are irreducible polynomials with coefficients in $F(q)$ and $\nu(g)$ is a certain partition of a non-negative integer (cf. Notation and §1.1). Then our principal result is stated as follows.

Theorem. If ξ is an irreducible representation of $G L(n, q)$ of type ($\left.\cdots g^{\nu(\xi)} \ldots\right)$, then

$$
w(\xi)=(-1)^{n-\Sigma|\nu(g)|} q^{\frac{n(n-1)}{2}} \prod_{g \in P} \tau(g)^{|\nu(g)|},
$$

where P is the set of polynomials defined in $\S 1.1$ and the $|\nu(g)|$ are non-negative integers defined in Notation.

In particular, the absolute value of $w(\xi)$ is $q^{\frac{n^{2}-k}{2}}$, if ξ is of type $\left(\cdots(X-1)^{\kappa} \ldots\right)$ and $k=|\kappa|$.

In $\S 1$, we recall the structure of the characters of $G L(n, q)$ given by J. A. Green, and in $\S 2.1$, we consider the character sums attached to certain characters $B^{\rho}(h)$ and prove a property of polynomials $Q_{\hat{\rho}}^{\lambda}(q)$ which appear in the calculation of the characters of $G L(n, q)$. Using this property of $Q_{\rho}^{\lambda}(q)$, the character sums attached to $B^{\rho}(h)$ can be expressed by the product of the usual Gaussian sums attached to finite fields. Then, in $\S 2.2$, the above theorem is proved by virtue of this fact. In $\S 2.3$, we make some remarks in the case where A is a singular matrix and explain the relation between the results of E. Lamprecht [2] and the ones of this paper.

The author wishes to express his gratitude to Proffesor G. Shimura for his advice and encouragement.

Notation. The notation used in the introduction, $F(q), M_{n}\left(F_{q}\right), G L(n, q)$, $e_{d}[\alpha], \tau(g), \theta, \varepsilon, \varepsilon_{d}, W(\xi, A), w(\xi)$ will be preserved throughout the paper. By a partition of a positive integer n, we mean, as usual, the expression of n as a sum of positive integers. If ρ is the partition of n defined by $n=\sum_{d=1}^{n} d s_{d}$ ($1 \leqq d \leqq n, 0 \leqq s_{d}$), we write

$$
\rho=\left(1^{s_{1}}, 2^{s_{2}}, \cdots\right) .
$$

For $\rho=\left(1^{s_{1}}, 2^{s_{2}}, \ldots\right)$, we put

$$
z_{\rho}=1^{s_{1}} s_{1}!2^{s_{2} S_{2}}!\cdots=\prod_{d=1}^{n} d^{s} d_{s_{d}}!.
$$

If ρ is a partition of a positive integer m, we put

$$
|\rho|=m
$$

In addition to this, we consider the partition of 0 , which will be denoted by 0 , and put

$$
\begin{gathered}
|0|=0 \\
z_{0}=1
\end{gathered}
$$

For a polynomial $F=X^{t}+a X^{t-1}+\cdots$, we denote by $d(F)$ the degree of F, and put $\operatorname{tr}(F)=-a$.

1. The character of $G L(n, q)$

In this section, we recall the structure of the characters of $G L(n, q)$ which are given in J. A. Green [1] ${ }^{11}$.
1.1. Symbol $\left(\cdots f^{\nu(f)} \ldots\right)$. Let P be the set of all irreducible polynomials f with coefficients in $F(q)$ such that

1) $1 \leqq d(f) \leqq n$,
2) the leading coefficient of f is 1 ,
3) f has not zero as its root.

Let $\nu(f)$ be a function on P which assigns a partition $\nu(f)$ to every $f \in P$, such that

$$
\sum_{f \in P}|\nu(f)| d(f)=n .
$$

For such a function $\nu(f)$, we define a symbol

$$
\left(\cdots f^{\nu(f)} \cdots\right)
$$

where f ranges over all elements of P. We call the polynomial $F=\Pi f^{\prime}$ the characteristic polynomial of the symbol ($\cdots f^{\nu(f)} \cdots$).

DEFINITION ${ }^{2}$. Let $\rho=\left(1^{s_{1}}, 2^{s_{2}}, \cdots\right)$ be a partition of n and F be a polynomial of degree n with coefficients in $F(q)$ whose leading coefficient is 1 and which has not zero as its root. By a ρ-decomposition r of F, we mean a decomposition into several polynomials which is given in the following two steps;

1) $F=\prod_{d=1}^{n} F_{d}, d\left(F_{d}\right)=d s_{d}$,
2) $F_{d}=\Pi f^{k_{f}(d)}$ and $\left.\frac{d}{d(f)} \right\rvert\, k_{f}(d)$,
where the second product runs over all the elements f of P such that $d(f)$
3) For details we refer the reader to J. A. Green [1],
4) Instead of the notion " mode from ρ-variables X^{ρ} into the symbol ($\cdots f^{\nu(f)} \ldots$)", which is used in [1, Definition 4.10, p. 423], we use "the ρ-decomposition of the characteristic polynomial of the symbol ($\cdots f^{\nu(f)} \ldots$)" for convenience of the calculation of Gaussian sums. It is easy to see that every mode from ρ-variables X^{ρ} to the symbol ($\cdots f^{\nu(f)} \ldots$) is canonically in one-to-one correspondence with every ρ-decomposition of the characteristic polynomial of the symbol ($\left.\ldots f^{\nu(f)} \ldots\right)$.
divides d.
For given F and ρ, it may happen that there is no ρ-decomposition of F. Further, a ρ-decomposition of F is not necessarily unique. For a ρ-decomposition r of F, and for an element f of P which appears in the decomposition r as above, we denote by $\rho(r, f)$ the partition of the integer $\sum_{d=1}^{n} k_{f}(d)$,

$$
\left(1^{t_{1}}, 2^{t_{2}}, \cdots\right), \quad t_{i}=\frac{k(i d(f))}{i} \quad(1 \leqq i \leqq n)
$$

Let H be a polynomial of degree $d s_{d}$ which is decomposed into the product $H=\Pi f^{k_{f}(d)}$ of the elements f of P such that $d(f)$ divides d. Assume that $\left.\frac{d}{d(f)} \right\rvert\, k_{f}(d)$. Then we define a positive integer $z_{d}(H)$ by

$$
z_{d}(H)=\prod_{d(f) \backslash d}\left(\frac{d}{d(f)}\right)^{d(f) \mid k_{f}(d)} d\left(\frac{d(f) k_{f}(d)}{d}\right)!,
$$

the product being over all elements f of P such that $d(f) \mid d$. It is easy to see that, if F is the characteristic polynomial of a symbol $\left(\cdots f^{\nu(f)} \cdots\right)$ and r is a ρ-decomposition of F, then

$$
\begin{equation*}
|\nu(f)|=|\rho(r, f)| \text { for every element } f \in P, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\prod_{f \in P} z_{\rho(r, f)}=\prod_{d=1}^{n} z_{d}\left(F_{d}\right) \quad \text { if } \quad F=\Pi F_{d} \tag{2}
\end{equation*}
$$

We note that every symbol $\left(\cdots f^{\nu(f)} \ldots\right)$ is canonically in one-to-one correspondence with every conjugate class of $G L(n, q)^{3}$. Later, in $\S 1.3$, we shall construct an irreducible representation of $G L(n, q)$ for every symbol ($\cdots f^{\nu(f)} \ldots$).
1.2. The character $B^{\rho}(h)$. If d is a positive integer and h is an arbitrary integer, we denote by $s_{d}(h ; x)$ the function on $F\left(q^{d}\right)$ defined by

$$
s_{d}(h ; x)=\theta(x)^{h}+\theta(x)^{h q}+\cdots+\theta(x)^{h q d-1} .
$$

If f is an element of P such that $d(f)$ divides d and if α is a root of f, $s_{d}(h ; \alpha)$ is independent of the choice of α. We can therefore write $s_{d}(h ; \alpha)$ $=s_{d}(h ; f)$.

Let $\rho=\left(1^{s_{1}}, 2^{s_{2}}, \cdots\right)$ be a partition of n and $h_{11}, h_{12}, \cdots, h_{1 s_{1}} ; h_{21}, \cdots, h_{2 s_{2}} ; \cdots$ be $\sum_{d=1}^{n} s_{d}$ integers. Then we define, for each d, a function $S_{d}\left(h_{d 1}, \cdots, h_{d s_{d}} ; x_{d 1}, \cdots, x_{d s_{d}}\right)$ on the product $F\left(q^{d}\right) \times \cdots \times F\left(q^{d}\right)$ of s_{d} copies of $F\left(q^{d}\right)$ by
(\#) $S_{a}\left(h_{d 1}, \cdots, h_{d s_{d}} ; x_{d 1}, \cdots, x_{d s_{d}}\right)=\sum_{1^{\prime}, 2^{2}, \cdots, s_{d}^{\prime}} s_{d}\left(h_{d 1^{\prime}} ; x_{d 1}\right) s_{d}\left(h_{d 2^{\prime}} ; x_{d 2}\right) \cdots s_{d}\left(h_{d s^{\prime} d} ; x_{d s_{d}}\right)$
the summation being over all permutations $1^{\prime}, 2^{\prime}, \cdots, s_{d}^{\prime}$ of $1,2, \cdots, s_{d}$.
Let H_{d} be a polynomial of degree $d s_{d}$ such that

[^0]$$
H_{d}=\Pi f^{k_{f}(d)}, \left.\frac{d}{d(f)} \right\rvert\, k_{f}(d) .
$$

For each f appearing in the product $\Pi f^{k_{f}(d)}$, choose $\frac{d(f) k_{f}(d)}{d}$ variables among the $x_{d i}\left(1 \leqq i \leqq s_{d}\right)$ in such a way that their join for all f becomes the whole $\left\{x_{d 1}, \cdots, x_{d s d}\right\}$. Substitute f for $x_{d i}$ in the expression (\#) if the variables $x_{d i}$ corresponds to f by our choice. Then we get from (\#) a complex number

$$
\begin{equation*}
1_{1^{\prime}, 2^{2}, \cdots, s_{d}^{\prime}}\left(\cdots s_{d}\left(h_{d *} ; f\right) \cdots s_{d}\left(h_{d *} ; f\right) \cdots\right) \tag{4}
\end{equation*}
$$

Since $S_{d}\left(h_{d 1}, \cdots, h_{d s_{d}} ; x_{d 1}, \cdots, x_{d s_{d}}\right)$ is symmetric in $x_{d 1}, \cdots, x_{d s d}$, this number is determined only by $h_{d 1}, \cdots, h_{d s_{d}}$ and H_{d}; it is independent of the choice of variables among the $x_{d i}$ corresponding to f. We denote by $S_{d}\left(h_{d 1}, \cdots, h_{d s d} ; H_{d}\right)$ the complex number (G).

Let $r_{1}, r_{2}, \cdots, r_{t}$ be all distinct ρ-decompositions of the characteristic polynomial $F=\Pi f^{|\nu(f)|}$ of a conjugate class $c=\left(\cdots f^{\nu(f)} \cdots\right)$, and write

$$
r_{i}: \quad F=\prod_{d=1}^{n} F_{d}^{(i)}, \quad F_{d}^{(i)}=\prod_{d(f) \backslash d} f_{f}^{k_{f}^{(i)}(d)} .
$$

Put

$$
\begin{equation*}
B_{\rho}\left(h ; r_{i}\right)=\prod_{d} S_{d}\left(h_{d 1}, \cdots, h_{d s_{d}} ; F_{d}^{(i)}\right) . \tag{3}
\end{equation*}
$$

Now, in [1], the polynomials $Q_{\rho}^{\lambda}(q)$ in q are defined ${ }^{4)}$, where λ, ρ are any two partitions of a non-negative integer. Using these polynomials $Q_{\rho}^{\lambda}(q)$, put

$$
\begin{equation*}
Q\left(r_{i} ; c\right)=\prod_{f \in P} \frac{Q_{\rho\left(r_{i}, f\right.}^{\nu}\left(q^{\alpha(f)}\right)}{z_{\rho\left(r_{i}, f\right)}} . \tag{4}
\end{equation*}
$$

(Remark that, by (1), $|\nu(f)|=|\rho(r, f)|$ for every $f \in P$.) Then there exists a character $B(h)^{5)}$ whose value at the conjugate class $c=\left(\cdots f^{\nu(f)} \ldots\right)$ is

$$
\begin{equation*}
B^{\rho}(h)(c)=\sum_{i=1}^{t} Q\left(r_{i} ; c\right) B_{\rho}\left(h ; r_{i}\right) . \tag{5}
\end{equation*}
$$

This character is fundamental for the calculation of irreducible characters of $G L(n, q)$ and Gaussian sums.
1.3. The irreducible character of type ($\cdots g^{\nu(g)} \cdots$). If a symbol e $=\left(\cdots g^{\nu(g)} \cdots\right)$ is given, we can construct an irreducible character of $G L(n, q)$ in the following way.

[^1]Let $\rho=\left(1^{s_{1}}, 2^{s_{2}}, \cdots\right)$ be a partition of n and r be a ρ-decomposition of the characteristic polynomial G of the symbol $e=\left(\cdots g^{\nu(g)} \cdots\right)$; and write

$$
r: \quad G=\Pi G_{d}, \quad G_{d}=\Pi g^{k} g^{(d)}
$$

For the ρ-decomposition r of G, we determine in the following way the integers $h_{d_{i}}$, which appear in the definition of $B^{\rho}(h)$.

For a moment we regard the $h_{d i}$ as variables. Consider a fixed $d(1 \leqq d \leqq n)$. Let $\varepsilon_{d(g)}^{c g}$ be a fixed root of every element g of P such that $d(g)$ divides d. Put

$$
n_{g}=c_{g} \frac{q^{d}-1}{q^{d(g)}-1}:
$$

For each g appearing in the product $G_{d}=\Pi g^{k} g^{(d)}$, choose $\frac{d(g) k_{g}(d)}{d}$ variables among the $h_{d i}$ in such a way that their join for all g becomes $\left\{h_{d 1}, \cdots, h_{d s d}\right\}$. Then, if $h_{d i}$ corresponds to g, we put

$$
h_{d i}=n_{g} .
$$

Since $\sum_{g \in P} \frac{d(g) k_{g}(d)}{d}=s_{d}, s_{d}$ integers $h_{d i}$ have been determined. The function $S_{d}\left(h_{d 1}, \cdots, h_{d s_{d}} ; x_{d 1}, \cdots, x_{d s_{d}}\right)$ with these values as the $h_{d i}\left(1 \leqq i \leqq s_{d}\right)$ is, as easily seen, determined only by G_{d}; it is independent of the choice of a root $\varepsilon_{d(g)}^{c g}$ of g and variables $h_{d i}$ corresponding to g. Thus the symbol ($\cdots g^{\nu(g)} \cdots$) and the ρ-decomposition r of its characteristic polynomial being given, the character $B^{\rho}(h)$ with these values as the $h_{d i}$ can be uniquely determined by the above process. We denote by $B^{\rho}(r h)$ the character $B^{\rho}(h)$ with these values as the $h_{d i}$.

Then the irreducible character of type $e=\left(\cdots g^{\nu(g)} \cdots\right)$ is

$$
\begin{equation*}
(-1)^{n-\Sigma|\nu(g)|} \sum_{\rho} \sum_{r} \chi(r, e) B^{\rho}(r h), \tag{6}
\end{equation*}
$$

where the first summation is over all partitions of n, the second one over all ρ-decompositions of the characteristic polynomial of the symbol $e=\left(\cdots g^{\nu(g)} \ldots\right)$, and $\chi(r, e)$ is the constant determined by the symbol $e=\left(\cdots g^{\nu(g)} \cdots\right)$ and the ρ-decomposition r of its characteristic polynomial ${ }^{6}$. All irreducible characters of $G L(n, q)$ are obtained in this way [1, Th. 14].

2. Gaussian sum $W\left(\xi, 1_{n}\right)$

2.1. Before calculating $W\left(\xi, 1_{n}\right)$, we consider the character sum attached to the character $B^{\rho}(h)$,

$$
W\left(B^{\rho}\right)=\sum_{X \in G L(n, q)} B^{\rho}(X) e_{1}[\operatorname{tr}(X)],
$$

[^2]where the $h_{d i}$ are dropped for simplicity. Put
\[

$$
\begin{aligned}
\psi_{n}(q) & =\prod_{i=1}^{n}\left(q^{i}-1\right), \\
c_{\rho}(q) & =\prod_{i=1}^{n}\left(q^{i}-1\right)^{s_{i}} \quad \text { if } \quad \rho=\left(1^{s_{1}}, 2^{s_{2}}, \cdots\right), \\
\tau_{d}\left(h_{d i}\right) & =\sum_{\alpha \in F\left(q^{d}\right)} \theta(\alpha)^{n_{d i}} e_{d}[\alpha]
\end{aligned}
$$
\]

Then we have the following
Lemma 1.

$$
W\left(B^{\rho}\right)=q^{\frac{n(n-1)}{2}} \frac{\psi_{n}(q)}{c_{\rho}(q)} \prod_{d, i} \tau_{i}\left(h_{d i}\right) .
$$

Proof. If c is the conjugate class which corresponds to the symbol $\left(\cdots f^{\nu(f)} \cdots\right)^{r)}$, then the centralizer in $G L(n, q)$ of an element of c is of order

$$
a_{c}(q)=\prod_{f \in \mathcal{P}} a_{\nu(f)}\left(q^{\alpha(f)}\right)^{8)}
$$

Therefore the number of elements of c is

$$
\frac{q^{\frac{n(n-1)}{2}} \psi_{n}(q)}{\prod_{f \in P} a_{\nu(f)}\left(q^{(x f)}\right)}
$$

since $q^{\frac{n(n-1)}{2}} \psi_{n}(q)$ is the order of $G L(n, q)$. Then we have

$$
W\left(B^{\rho}\right)=q^{\frac{n(n-1)}{2}} \psi_{n}(q) \sum_{c} \frac{B^{\rho}(c)}{a_{c}(q)} e_{1}\left[\operatorname{tr}\left(F_{c}\right)\right]
$$

the summation being over all conjugate classes of $G L(n, q), B^{\rho}(c)$ the value at the conjugate class c of the character $B^{\rho}(h)$, and F_{c} the characteristic polynomial of the conjugate class c. By (3), (4) and (5),

$$
\begin{align*}
B^{\rho}(c) & =\sum_{i} Q\left(r_{i}, c\right) B^{\rho}\left(h ; r_{i}\right) \tag{7}\\
& =\sum_{i} \prod_{f \in P} \frac{Q_{\rho(f i r i, f)}^{\nu\left(q^{d(f)}\right)}}{z_{\rho\left(r_{i}, f\right)}} \prod_{d=1}^{n} S_{d}\left(h_{d 1}, \cdots, h_{d s_{d}} ; F_{d}^{(i)}\right) .
\end{align*}
$$

If F is a polynomial of degree n, we consider the sum $\sum_{F=F_{c}} \frac{B^{\rho}(c)}{a_{c}(q)}$, extended over all conjugate classes whose characteristic polynomials are F. Then we have by (2) and (7)

$$
\sum_{F_{c}=F} \frac{B^{\rho}(c)}{a_{c}(q)}=\sum_{\nu\left(f^{\prime}\right) \mid} \sum_{r_{i}} \prod_{f} \frac{Q_{\rho}^{\nu(f)}\left(r_{i}, f\right)\left(q^{d(f)}\right)}{a_{\nu(f)}\left(q^{d(f)}\right)} \prod_{d} \frac{S_{d}\left(h_{d 1}, \cdots, h_{d s d} ; F_{d}^{(i)}\right)}{z_{d}\left(F_{d}^{(i)}\right)},
$$

[^3]the summation $\sum_{|\nu(f)|}$ being over all combinations of partitions of $|\nu(f)|$ for every $f \in P$.

Now we need a property of polynomials $Q_{\rho}^{\lambda}(q)$ which is not given in Green's paper.

Lemma 2.

$$
\begin{equation*}
\sum_{\lambda} \frac{Q_{\rho}^{\lambda}(q)}{a_{\lambda}(q)}=\frac{1}{c_{\rho}(q)}, \tag{8}
\end{equation*}
$$

the summation being over all partitions λ of n.
The proof will be given later.
We return to the proof of Lemma 1.
Since

$$
\begin{aligned}
& \sum_{|\nu(f)|} \prod_{f} \frac{Q_{\rho(f, f)}^{\nu(f)}\left(q^{d(f)}\right)}{a_{\nu(f)}\left(q^{\alpha(f)}\right)} \\
= & \prod_{r} \sum_{\lambda=|\nu(f)|} \frac{Q_{\hat{\rho}(r, f f}^{\lambda}\left(q^{\alpha(f)}\right)}{a_{\lambda}\left(q^{d(f)}\right)} \\
= & \prod_{r} \frac{1}{c_{\rho(r, f)}} \quad \quad \text { (by Lemma 2) } \\
= & \left.\frac{1}{c_{\rho}(q)} \quad \quad \text { (by the definition of } \rho(r, f)\right)
\end{aligned}
$$

we have

$$
\begin{equation*}
\sum_{F_{c}=F} \frac{B^{\rho}(c)}{a_{c}(q)}=\frac{1}{c_{\rho}(q)} \sum_{r_{i}} \Pi_{d} \frac{S_{d}\left(h_{d 1}, \cdots, h_{d s_{d}} ; F_{d}^{(i)}\right)}{z_{d}\left(F_{d}^{(i)}\right)} . \tag{9}
\end{equation*}
$$

Therefore we have

$$
\begin{equation*}
W\left(B^{\rho}\right)=\frac{q^{\frac{n(n-1)}{2}} \psi_{n}(q)}{c_{\rho}(q)} \sum_{F} \sum_{r} \prod_{d} \frac{S_{d}\left(h_{d 1}, \cdots, h_{d s_{d}} ; F_{d}\right)}{z_{d}\left(F_{d}\right)} e_{1}[\operatorname{tr}(F)], \tag{10}
\end{equation*}
$$

the first summation being over all polynomials F with coefficients in $F(q)$ of degree n such that the leading coefficient of F is 1 and F has not zero as its root, the second one over all ρ-decompositions r of $F\left(r: F=\prod_{d} F_{d}\right)$. On the other hand, it is obvious that

$$
\tau_{d}\left(h_{d i}\right)=\sum_{d(f) \mid d} \frac{d(f)}{d} s_{d}\left(h_{d i} ; f\right) e_{1}\left[\frac{d}{d(f)} \operatorname{tr}(f)\right],
$$

the summation being over all elements f of P such that $d(f)$ divides d. A direct computation shows

$$
\prod_{i=1}^{s d} \tau_{d}\left(h_{d i}\right)=\sum_{F_{d}} \frac{e_{1}\left[\operatorname{tr}\left(F_{a}\right)\right]}{z_{d}\left(F_{d}\right)} S_{d}\left(h_{d 1}, \cdots, h_{d s_{d}} ; F_{d}\right),
$$

the summation being over all polynomials F_{d} of degree $d s_{d}$ such that
$F_{d}=\prod_{d(f) \mid d} f^{k_{f}(d)}$ and $\frac{d}{d(f)}$ divides $k_{f}(d)$. By the definition of ρ-decomposition, we have

$$
\begin{equation*}
\prod_{d, i} \tau_{d}\left(h_{d i}\right)=\sum_{F} e_{1}[\operatorname{tr}(F)] \sum_{r} \prod_{d} \frac{S_{d}\left(h_{d 1}, \cdots, h_{d s d} ; F_{d}\right)}{z_{d}\left(F_{d}\right)}, \tag{11}
\end{equation*}
$$

where the ρ-decomposition r of F is $F=\prod_{d=1}^{n} F_{d}$. By (10) and (11), we obtain

This completes the proof of Lemma 1.
Proof ${ }^{93}$ of Lemma 2. This proceeds by induction on n. In the proof of the above Lemma 1, if $|\nu(f)|<n$, we may assume that (8) holds and, therefore, so does (9). We note that $|\nu(f)|=n$ can occur if and only if $F=l^{n}$ where l is a linear polynomial. If we put

$$
Y_{\rho}(q)=\sum_{\lambda} \frac{Q_{\hat{\lambda}}^{\lambda}(q)}{a_{\lambda}(q)},
$$

we have by (9)
(12) $\sum_{X \in G L(n, q)} B^{\rho}(X)=q^{\frac{n(n-1)}{2}} \psi_{n}(q)\left(Y_{\rho}(q) \sum_{F=1 n} \sum_{r} \prod_{d} \frac{S_{d}\left(h_{d 1}, \cdots, h_{d s d} ; F_{d}\right)}{z_{d}\left(F_{d}\right)}+\frac{1}{\left.c_{\rho}(q)_{F}\right)} \sum_{F i n} \sum_{r} \prod_{d} \frac{S_{d}\left(\cdots ; F_{d}\right)}{z_{d}\left(F_{d}\right)}\right)$.

On the other hand, if we put $s_{d}\left(h_{d i}\right)=\sum_{\alpha \in F\left(q^{d}\right)} \theta(\alpha)^{h_{d i}}$, we have a formula analogous to (11),

$$
\begin{equation*}
\prod_{d . i} s_{d}\left(h_{d i}\right)=\sum_{F} \sum_{r} \prod_{d} \frac{S_{a}\left(h_{d 1}, \cdots, h_{d s a} ; F_{d}\right)}{z_{d}\left(F_{d}\right)} . \tag{13}
\end{equation*}
$$

If we choose integers $h_{d i}$ so that $h_{d i} \equiv 0 \bmod q^{d}-1$ for some d and i, we have obviously

$$
\begin{equation*}
\prod_{d, i} s_{d}\left(h_{d i}\right)=0 \tag{14}
\end{equation*}
$$

Then we have by (13) and (14)

$$
\begin{aligned}
\sum_{F \neq l n} \sum_{r} \prod_{d} \frac{S_{a}\left(h_{d 1}, \cdots, h_{d s_{d}} ; F_{d}\right)}{z_{d}\left(F_{d}\right)} & =-\sum_{F=i n} \sum_{r} \prod_{d} \frac{S_{d}\left(h_{d 1}, \cdots, h_{d s_{d}} ; F_{d}\right)}{z_{d}\left(F_{d}\right)} \\
& \left.=\sum_{\alpha \in F(q)} \theta(\alpha)\right)^{\frac{L_{i}}{i} h_{d i}}
\end{aligned}
$$

where the last equality follows from the definition of $S_{d}\left(h_{d 1}, \cdots, h_{d s_{d}} ; F_{d}\right)$ and $z_{d}\left(F_{d}\right)$. Therefore by (12),

$$
\begin{equation*}
\sum_{x \in G L(n, q)} B^{\rho}(X)=q^{\frac{n(n-1)}{2}} \psi_{n}(q)\left(Y \rho(q)-\frac{1}{c_{\rho}(q)}\right)\left(\sum_{\alpha \in F(q)} \theta(\alpha) d^{\frac{\Sigma}{i} i^{n d i}}\right) . \tag{15}
\end{equation*}
$$

9) The proof is similar to that of [$\mathbf{1}$, Theorem 10, p. 431].

We have imposed on the integers $h_{d i}$ the condition $h_{d i} \equiv 0 \bmod q^{d}-1$ for some d and i. We can take the $h_{d i}$ so that they satisfy one more condition $\sum_{d, i} h_{d i} \equiv 0$. $\bmod q-1$. Then it follows from (15) that $\left(Y_{\rho}(q)-\frac{1}{c_{\rho}(q)}\right)(q-1)$ is always an integer for each prime power q since $\sum_{X \in G L(n, q)} B^{\rho}(X)$ is an integer divisible by the order $\left(=q^{\frac{n(n-1)}{2}} \psi_{n}(q)\right)$ of $G L(n, q)$ on account of an elementary property of group character. On the other hand, $\left(Y_{\rho}(q)-\frac{1}{c_{\rho}(q)}\right)(q-1)$ is a rational function in q whose numerator is of smaller degree than the denominator ${ }^{10}$, provided that $n>1$. This means that it must be identically zero, i.e.

$$
Y_{\rho}(q)=\frac{1}{c_{\rho}(q)} .
$$

This completes the proof of Lemma 2.
2.2. Proof of the Theorem. Let ξ be an irreducible character of type$e=\left(\cdots g^{\nu(g)} \cdots\right)$ whose structure is described in §1.3. Then we shall prove: that the character sum attached to $B^{\rho}(r h)$ is
if $\rho=\left(1^{s_{1}}, 2^{s_{2}}, \cdots\right)$. In fact, each $h_{d i}$ in $B^{\rho}(r h)$ is of the form $n_{g}=c_{g} \frac{q^{d}-1}{q^{d(g)}-1}$, where $\varepsilon_{d(g)}^{c g}$ is a root of an element g of P such that $d(g)$ divides d. Then by a well known property of usual Gaussian sums attached to finite fields ${ }^{11)}$, and. the definition of $\tau(g)$, we have

$$
\begin{aligned}
& \tau_{d}\left(c_{g} \frac{q^{d}-1}{q^{\alpha(g)}-1}\right) \\
&= \sum_{\alpha \in F\left(g^{d}\right)} \theta(\alpha)^{n} e_{d}[\alpha] \\
&= \sum_{\alpha \in F\left(q^{d}\right)} \theta(\mathrm{N}(\alpha))^{c}{ }^{c} e_{d(g)}[\operatorname{Tr}(\alpha)] \\
&=(-1)^{\frac{d}{d(g)}}-1 \\
&\left(g g^{\left.\frac{d}{}\right)^{(g)}(\underline{g}) 11},\right.
\end{aligned}
$$

where $\mathrm{N}(\boldsymbol{\alpha}), \operatorname{Tr}(\boldsymbol{\alpha})$ are norm and trace from $F\left(q^{d}\right)$ to $F\left(q^{d(g)}\right)$ respectively. Therefore, we have, by the above Lemma 1 and the definition of $B^{\rho}(r h)$

$$
\begin{equation*}
W\left(B^{\rho}(r h)\right)=(-1)^{\frac{\Sigma / \nu(g) \mid-\Sigma s i}{}} q^{\frac{n(n-1)}{2}} \psi_{n}(q) \prod_{g} \tau(g)^{|\nu(g)|} . \tag{16}
\end{equation*}
$$

Then, by (6) and (16), we have the matrix character of $W\left(\xi, 1_{n}\right)$

[^4]$$
=(-1)^{n-\Sigma!\nu(g) \mid} q^{\frac{n(n-1)}{2}}\left(\sum_{\rho, r} \chi(r, e) \frac{\psi_{n}(q)}{c_{\rho}(q)}(-1)^{\Sigma|\nu(g)|-\Sigma s i}\right) \prod_{g \in P} \tau(g)^{|\nu(g)|}
$$

Since $\sum_{\rho, r}(-1)^{F|L(g)|-\Sigma_{s_{i}}} \frac{\psi_{n}(q)}{c_{\rho}(q)} \chi(r, e)$ is the degree of the irreducible character of type $e=\left(\cdots g^{\nu(g)} \cdots\right)^{12)}$, we have, by the definition of $w(\xi)$,

$$
w(\xi)=(-1)^{n-\Sigma|\nu(g)|} q^{\underline{n(n-1)}} \prod_{g \in P} \tau(g)^{|\nu(g)|} .
$$

If $g=X-1$, by the definition of $\tau(g)$, we have $\tau(g)=-1$. Further, it is well known that, if $g \neq X-1$, the absolute value of $\tau(g)$ is $q^{\frac{d(g)}{2}}$. Therefore, if ξ is of type $\left(\cdots(X-1)^{\kappa} \cdots\right)$ and $|\kappa|=k$, the absolute value of $w(\xi)$ is $q^{\frac{n^{2}-k}{2}}$. This completes the proof of the theorem.
2.3. In [2], E. Lamprecht introduced some notions "vollkommen", "echt", "eigentlich", "quasi-echt", in order to explain the properties of Gaussian sums attached to finite rings. In the case of $M_{n}\left(F_{q}\right)$, it is easy to see that
(i) the additive character $e_{1}[\operatorname{tr}(A X)]$ is "echt", if and only if A is non singular;
(ii) if $A(\neq 0)$ is a singular matrix, $e_{1}[\operatorname{tr}(A X)]$ is "quasi-echt";
(iii) if ξ is not a trivial representation, ξ is "eigentlich".

Moreover, if ξ is of type ($\cdots g^{\nu(g)} \cdots$), ξ is "vollkommen" if and only if the characteristic polynomial of the symbol ($\cdots g^{\nu(g)} \cdots$) is not divisible by the polynomial $X-1^{133}$.

Let A be nonsingular. Then our theorem solves completely the case where multiplicative representation is arbitrary ("vollkommen" or " non-vollkommen") and additive character is "echt ${ }^{1{ }^{14}}$. However, if A is singular, Kor. 2 to Satz 3 of [2] says that $W(\xi, A)$ is a zero matrix if ξ is "vollkommen", while, if ξ is not "vollkommen", Kor. 1 to Satz 3 of [2] says only that the determinant of $W(\xi, A)$ is zero. In this case where A is singular and ξ is not " vollkommen", examples ${ }^{15)}$ show that $W(\xi, A)$ is not necessarily a zero matrix, but the author has been unable to obtain the numerical value of this matrix.
2.4. Finally, we note that the $W\left(\xi, 1_{n}\right)$ has a property analogous to that of the usual Gaussian sums attached to finite fields;

[^5]$$
W\left(\xi, 1_{n}\right) W\left(\bar{\xi}, 1_{n}\right)=\xi\left(-1_{n}\right) q^{n 2-k},
$$
where $\bar{\xi}$ is the irreducible representation of $G L(n, q)$ which is complex conjugate to ξ.

This follows easily from the fact that the absolute value of $w(\xi)$ is $q^{\left(n^{2}-k\right) / 2}$.

The College of General Education,
University of Tokyo

References

[1] J.A. Green, The characters of the finite general linear groups, Trans. Amer. Math. Soc., 80 (1955), 402-447.
[2] E. Lamprecht, Struktur und Relationen allgemeiner Gausscher Summen in endlichen Ringen I, II, J. Reine Angew. Math., 197 (1957), 1-48.

[^0]: 3) Cf. [1, p. 406].
[^1]: 4) For the definition of $Q_{\rho}^{\lambda}(q)$, we refer the reader to [1, Definition 4.1, p. 420]. The polynomials $Q_{\rho}^{\lambda}(q)$ have some interesting properties, but, later, we shall use only one property of $Q_{\rho}^{\lambda}(q)$ except for some properties which are easily seen from the definition. (Cf. footnote 10)).
 5) Cf. [1, Definition 6.2, p. 433]. $B^{\rho}(h)$ is not necessarily the character of a matrix representation, but $(-1)^{n-\Sigma_{s}} B^{\rho}(h)$ is so.
[^2]: 6) We need not the explicit formula of $\chi(r, e)$. For this formula we refer the reader to [1, Lemma 8.2, p. 441].
[^3]: 7) Cf. footnote 3).
 8) Cf. [1, p. 409 and Lemma 2.4, p. 410]. $a_{\lambda}(q)$ is a polynomial in q which is defined for every partition λ of a non-negative integer.
[^4]: 10) Cf. [1, Lemma 2.4 and Lemma 4.3].
 11) Cf. E. Lamprecht [2] S. 41, or, for example, A. Weil. Number of solutions of equations in finite fields. Bull. Amer. Math. Soc., 55 (1949).
[^5]: 12) This follows from (6) and the fact that the degree of $B^{\rho}(h)$ is $(-1)^{n-\Sigma s_{i}} \frac{\psi_{n}(q)}{c_{\rho}(q)}$. Cf. [1, p. 437].
 13) Cf. [1, Theorem 13], and [2].
 14) Cf. [2, Satz 4 and Satz 4 Kor. 2]. In the case where the finite ring is $M_{n}\left(F_{q}\right)$, our theorem implies Satz 4 of [2], and, if ξ is not "vollkommen", it is more precise than Kor. 2 to Satz 4 of [2],
 15) Cf. [2, S. 43-44].
