Univalent functions and non-convex domains

By Noriyuki Sone

(Received Sept. 14, 1962)
(Revised Nov. 16, 1962)

§ 1. Introduction.

The following theorem due to Noshiro [1] and Wolff [2] is well known.
Theorem A. If $f(z)$ is regular in a convex domain D and if $\Re f^{\prime}(z)>0$ in D, then $f(z)$ is univalent in D.

This theorem has been generalized by several authors from various points of view. Ozaki [3] proved the following:

THEOREM B. Suppose that $g(z)$ is a convex univalent function in a domain D. If $f(z)$ is regular and $\mathfrak{R}\left\{e^{i \alpha} f^{\prime}(z) / g^{\prime}(z)\right\}>0$ (α real) in D, then $f(z)$ is univalent in D.

Subsequently Kaplan [4] introduced a class of univalent mappings which he called 'close-to-convex'. These functions $f(z)$ defined in the unit disc, are characterized by an inequality of the form $\mathfrak{R}\left\{f^{\prime}(z) / g^{\prime}(z)\right\}>0$ where $g(z)$ is a convex univalent mapping of the unit disc. Obviously this characterization is a special case of the assumption of Theorem B. He further gave a characterization of these functions without reference to a convex function $g(z)$. It is essentially equivalent to the following Umezawa's criterion for univalence [5] i. e. the condition (i) of the following theorem, as Reade [8] points out.

THEOREM B'. Let $w=f(z)$ be regular in a simply-connected closed domain D_{z} whose boundary Γ_{z} consists of a regular curve and suppose $f^{\prime}(z) \neq 0$ on Γ_{z}. If there holds one of the following conditions:
(i) For arbitrary arcs C_{z} on Γ_{z}

$$
\int_{C_{z}} d \arg d f(z)>-\pi \text { and } \int_{\Gamma_{z}} d \arg d f(z)=2 \pi
$$

(ii) For arbitrary arcs C_{z} on $\Gamma_{z} \quad \int_{C_{z}} d \arg d f(z)<3 \pi$, then $f(z)$ is univalent in D_{z}.

Recently Reade [9] proved Theorem C stated below using the following:
Definition 1. Let φ be fixed, $0 \leqq \varphi<\pi$. Then a domain D is said to be ' almost convex' if any distinct two points z_{1}, z_{2} in D can be joined by a pair of straight line segments $\overline{z_{1} z_{3}}, \overline{z_{3} z_{2}}$ lying in D such that

$$
\left|\arg \left\{\left(z_{3}-z_{1}\right) /\left(z_{2}-z_{3}\right)\right\}\right| \leqq \varphi .
$$

Theorem C. If $f(z)$ is analytic in an 'almost convex' domain D, and if the relation $\left|\int_{C} d \arg f^{\prime}(z)\right|<\pi-\varphi$ holds for all arcs C in D, then $f(z)$ is univalent in D.

Quite recently Cowling and Royster [11] introduced the following Definition 2, and proved Theorem D mentioned below.

Definition 2. A domain D is said to have property U with a constant $\theta=\theta(D)$ if when z_{1} and z_{2} in D are given there exists a constant θ (independent of z_{1}, z_{2}), $\theta<\pi$, and a sequence of points $z_{1}=\zeta_{0}, \zeta_{1}, \zeta_{2}, \cdots, \zeta_{n}=z_{2}$ with the

$$
\begin{equation*}
\left|\arg \left\{\left(\zeta_{k+1}-\zeta_{k}\right) /\left(z_{2}-z_{1}\right)\right\}\right| \leqq \theta, \quad k=0,1, \cdots, n-1 \tag{2}
\end{equation*}
$$

Theorem D. Let D be a domain having the property U . Then if for some $\theta \leqq \alpha \leqq 2 \pi$, $\arg f^{\prime}(z)$ satisfies $\alpha+\theta<\arg f^{\prime}(z)<\pi+\alpha-\theta, \theta<\pi / 2$, for z in $D ; f(z)$ is univalent in D.

The first purpose of this note is to generalize the above four theorems and others in the form of Theorem 2 below, and the second one is to derive another criterion for univalence of the same functions $\int_{a}^{b} f(z, \theta) d \psi(\theta)$ treated in Theorem 2 by restricting $f_{z}(z, \theta) / g^{\prime}(z)$ (g univalent) in a circular domain as is indicated in Theorem 5. For these purposes, in $\S 2$ we introduce a new class which consists of the sets not necessarily convex and which we call 'at most φ-concave', and in $\S 5$ we employ a certain functional for which we use the symbol $\mu(D)$. Furthermore, concerning the functions in our main theorems, a coefficient theorem and the others are inserted in $\S 4$.

§ 2. The ' at most φ-concave' sets.

We introduce the following two definitions:
Definition 3. Let $\Gamma_{z}=\left[z_{1} \Gamma_{z} z_{2}\right]$ be a simple piece-wise analytic curve (in z-plane) with the end points z_{1}, z_{2} and with a finite number of corners, and let Γ_{z} have well-defined one-side tangent vectors at the end points and those corners. Then Γ_{z} is said to be '(an) at most φ-concave (curve)' joining the two points z_{1}, z_{2}, if the relation

$$
\begin{equation*}
\left|\int_{C_{z}} d \arg d z\right| \leqq \varphi \tag{3}
\end{equation*}
$$

holds for all sub-curves C_{z} of Γ_{z} and for a non-negative constant φ.
Remark 1. Throughout this paper we use the symbols $\left[z_{1} \Gamma_{z} z_{2}\right]$, $\left[z_{1} z_{3} z_{2}\right]$, etc. for the curves having the end points z_{1} and z_{2}.

Definition 4. A plane set E is said to be '(an) at most φ-concave (set)'
if when z_{1}, z_{2} in E are given there exists an at most φ-concave curve $\left[z_{1} \Gamma_{z} z_{2}\right]$ lying in E (where $\varphi=\varphi(E)$ is independent of z_{1} and z_{2}).

From the above definitions we have the following:
Theorem 1. (a) Every (plane) convex set is at most φ-concave for every $\varphi \geqq 0$, but the converse is not always true. But every at most 0 -concave set is convex.
(b) Every 'almost convex' domain is at most φ-concave, but the converse is not always true.
(c) Every domain D having the property U with constant $\theta=\theta(D)=\varphi / 2$ is at most φ-concave, but the converse is not always true.
(d) Every at most φ-concave set is not necessarily simply-connected, even if $0<\varphi<\pi$.

Proof. (a) This is obtained at once from the definitions.
(b) Let D be an 'almost convex domain', and let z_{1}, z_{2} be two points in D. Then there exists a broken line $\left[z_{1} z_{3} z_{2}\right]$ lying in D and satisfying (1). Hence (3) is satisfied for $\Gamma_{z}=\left[z_{1} z_{3} z_{2}\right]$. Therefore D is at most φ-concave. We next consider the domain D_{1} in the first quadrant bounded by two concentric circles. Obviously D_{1} is at most ($\pi / 2$)-concave, but if the difference between the radii of the two circles is sufficiently small then the domain does not satisfy the criterion of Definition 1. Thus (b) is proved.
(c) Suppose that D has the property U with a constant $\theta=\theta(D)=\varphi / 2$, and let z_{1}, z_{2} be two points in D. Then there is a broken line $\left[z_{1} \zeta_{1} \zeta_{2} \cdots \zeta_{n-1} z_{2}\right.$] lying in D and satisfying (2) with $\theta=\varphi / 2$. Hence (3) is satisfied for $\Gamma_{z}=\left[z_{1} \zeta_{1} \zeta_{2} \cdots \zeta_{n-1} z_{2}\right]$ and $\varphi=2 \theta$. Thus the first part of (c) follows. Consider the domain D_{2} : the full z-plane cut from 0 to $+\infty$, along the positive real axis. Clearly D_{2} is at most π-concave, but has not the property U with $\theta=\pi / 2$, since the two points $z_{1}=1-\varepsilon i, z_{2}=2+\varepsilon i$ (where $\varepsilon>0$ is sufficiently small) can not be joined by any broken line lying in D and satisfying (2) with $\theta=\pi / 2$. Thus (c) follows.
(d) We consider the domain D_{3} : the finite z-plane $|z|<+\infty$ with a hole which consists of a regular triangle and its interior. D_{3} is at most $(2 / 3) \pi$ concave and a doubly-connected domain (but every at most 0 -concave set i. e. every convex set is simply-connected). This proves (d).

§ 3. The first main theorem.

Now we prove the following principal:
Theorem 2. Suppose that $f(z, \theta)$ is continuous in (z, θ) for $z \in D, \theta \in[a, b]$ and regular in z for each fixed θ, where D is a domain (not necessarily simplyconnected if f is single-valued), and $[a, b]$ is a finite closed interval. Suppose
furthermore that $\zeta=g(z)$ is regular and univalent in D and maps D onto at most φ-concave domain D_{ζ}, φ being $<\pi$, and that for some $0 \leqq \alpha \leqq 2 \pi$, the relation

$$
\begin{equation*}
\left|\arg \left\{e^{i \alpha} \frac{f_{z}(z, \theta)}{g^{\prime}(z)}\right\}\right|<\frac{\pi-\varphi}{2} \quad \text { (where } f_{z} \text { means } \frac{\partial}{\partial z} f \text {) } \tag{4}
\end{equation*}
$$

holds for all $z \in D$ and $\theta \in[a, b]$. Then

$$
F(z)=\int_{a}^{b} f(z, \theta) d \psi(\theta)
$$

is regular and univalent in D, where $\psi(\theta)(\equiv$ constant $)$ is any bounded and monotone function defined for $[a, b]$.

Proof. We first note that $F(z)$ is regular and $F^{\prime}(z)=\int_{a}^{b} f_{z}(z, \theta) d \psi(\theta)$ in D. The proof of this fact is analogous to the case $\psi(\theta) \equiv \theta$, and may be omitted.

Let z_{1}, z_{2} be two distinct points in D, and let $\zeta=g(z), \zeta_{i}=g\left(z_{i}\right), i=1,2$. Since D_{ζ} is at most φ-concave, there exists an at most φ-concave curve [$\zeta_{1} \Gamma_{\zeta} \zeta_{2}$] lying in D_{ζ}, and hence we may construct a narrow band B_{ζ} (cf. [9] for a special case) satisfying the following conditions:
$1^{\circ} B_{\zeta}$ bounds a simply-connected domain $D_{\zeta^{\prime}}$ whose closure is in D_{ζ} and whose interior contains $\left[\zeta_{1} \Gamma_{\zeta} \zeta_{2}\right.$].
2° If we denote the oriented boundary curve of $D_{\zeta^{\prime}}$ by $\Gamma_{\zeta^{\prime}}, \Gamma_{\zeta^{\prime}}$ is a piecewise analytic curve having well-defined one-side tangent vectors at its corners.
3° Further we have

$$
\begin{equation*}
\int_{C^{\prime} \xi} d \arg d \zeta \geqq-\varphi \text { for all } \operatorname{arcs} C_{\zeta^{\prime}}^{\prime} \subset \Gamma_{\xi^{\prime}} \text {, and } \int_{\Gamma \zeta^{\prime}} d \arg d \zeta=2 \pi \text {. } \tag{5}
\end{equation*}
$$

Let g^{-1} be the inverse function of g, and let $B_{z}, D_{z}{ }^{\prime}, \Gamma_{z}{ }^{\prime}, C_{z}{ }^{\prime}$ and $\left[z_{1} \Gamma_{z} z_{2}\right]$ be the images of $B_{\zeta}, D_{\zeta}{ }^{\prime}, \Gamma_{\zeta}{ }^{\prime}, C_{\zeta}{ }^{\prime}$ and $\left[\zeta_{1} \Gamma_{\zeta} \zeta_{2}\right]$ by g^{-1} respectively. Then, since $g^{-1}(\zeta)$ is regular and univalent in D_{ζ}, these images also satisfy the conditions 1° and 2° with z instead of ζ.

Now we write for all $C_{z}{ }^{\prime} \subset \Gamma_{z}{ }^{\prime}$

$$
\begin{align*}
\int_{C^{\prime} z} d \arg d F(z) & =\int_{C^{\prime} z} d \arg \left[\left\{\int_{a}^{b} f_{z}(z, \theta) d \psi(\theta)\right\} d z\right] \tag{6}\\
& =\int_{C^{\prime} z} d \arg \left\{\int_{a}^{b} \frac{f_{z}(z, \theta)}{g^{\prime}(z)} d \psi(\theta)\right\}+\int_{C^{\prime} \xi} d \arg d \zeta .
\end{align*}
$$

Without loss of generality let $\psi(\theta) \uparrow$. Then

$$
\frac{1}{\psi(b)-\psi(a)} \int_{a}^{b} \frac{f_{z}(z, \theta)}{g^{\prime}(z)} d \psi(\theta) \equiv G(z)
$$

is the centroid of a non-negative 'mass distribution of total mass one' over the points $f_{z}(z, \theta) / g^{\prime}(z)(\theta \in[a, b])$ for each fixed $z \in C_{z}{ }^{\prime}$. Hence $G(z)$ lies in the convex hull of the set of these points. On the other hand from (4) the
convex hull lies in an angular domain $\left|\arg \left\{e^{i \alpha} \xi\right\}\right|<(\pi-\varphi) / 2$, and hence so does $G(z)$. Hence we have the fact that

$$
\begin{equation*}
\int_{a}^{b} \frac{f_{z}(z, \theta)}{g^{\prime}(z)} d \psi(\theta) \text { also lies in the same domain for } z \in C_{z}^{\prime} \text {. } \tag{7}
\end{equation*}
$$

Therefore we get

$$
\begin{equation*}
\int_{C^{\prime} z} d \arg \left\{\int_{a}^{b} \frac{f_{z}(z, \theta)}{g^{\prime}(z)} d \psi(\theta)\right\}>\varphi-\pi \text { for all } C_{z}^{\prime} \subset \Gamma_{z^{\prime}}, \tag{8}
\end{equation*}
$$

and especially

$$
\begin{equation*}
\int_{\Gamma^{\prime} z} d \arg \left\{\int_{a}^{b} \frac{f_{z}(z, \theta)}{g^{\prime}(z)} d \psi(\theta)\right\}=0 . \tag{9}
\end{equation*}
$$

Thus we have from (6), (8) and the first part of (5)

$$
\int_{C_{z}^{\prime}} d \arg d F(z)>-\pi \text { for all } C_{z}^{\prime} \subset \Gamma_{z}^{\prime}
$$

We also have from (6), (9) and the second part of (5)

$$
\int_{\Gamma^{\prime} z} d \arg d F(z)=2 \pi
$$

On the other hand from (4), in the same way as for (7), we get

$$
F^{\prime}(z)=g^{\prime}(z) \int_{a}^{b} \frac{f_{z}(z, \theta)}{g^{\prime}(z)} d \psi(\theta) \neq 0
$$

for all $z \in D_{z}{ }^{\prime} \cup \Gamma_{z}{ }^{\prime}$. Hence we can use Theorem B^{\prime}, in a slightly generalized form [9], to conclude that $F(z)$ is univalent in $D_{z}{ }^{\prime}$. Therefore $F\left(z_{1}\right) \neq F\left(z_{2}\right)$ for $z_{1} \neq z_{2}$. This completes the proof.

The special cases of the theorem are listed below.
Corollary 1: Theorem A: the case where $f(z, \theta) \equiv f(z), g(z) \equiv z,(\alpha=0)$ and $\varphi=0$.

Corollary 2: Theorem B: the case where $f(z, \theta) \equiv f(z)$ and $\varphi=0$.
Corollary 3: Theorem C: the case where $f(z, \theta) \equiv f(z), g(z) \equiv z$ and D is an 'almost convex' domain.

Corollary 4: Theorem D (with ($-\alpha-\pi / 2$) instead of α): the case where $f(z, \theta) \equiv f(z), g(z) \equiv z,(\varphi=2 \theta)$ and D is a domain having the property U with $\theta=\varphi / 2$.

A necessary and sufficient condition that $f(z)$ should be close-to-convex for $|z|<1$ is that the hypothesis of Corollary 2 (with $\alpha=0$) should be satisfied for $|z|<1$ instead of D. Hence we have

Corollary 5. (Ozaki-Kaplan's theorem [4]). Every close-to-convex function is univalent.

Furthermore we have the following interesting corollaries by specializing
the choice of at most φ-concave domains in such a case of Theorem 2 that $f(z, \theta) \equiv f(z)$ and $g(z) \equiv z$.

Corollary 6. (A generalization of Theorem 2.2 of [11].) Let D be a domain any two points z_{1}, z_{2} of which may be joined by a convex (or concave) curve $z=z(t)\left(t_{1} \leqq t \leqq t_{2}, z_{i}=z\left(t_{i}\right), i=1,2\right)$ lying in D and satisfying that

$$
\left|\arg d z_{1}-\arg d z_{2}\right| \leqq \varphi<\pi \quad(\varphi \text { constant }),
$$

where $d z_{i}$ are the one-side tangent vectors to the curve at the points z_{i}. Then if $f(z)$ is regular in D and if for some $0 \leqq \alpha \leqq 2 \pi$

$$
\begin{equation*}
\left|\arg \left\{e^{i \alpha} f^{\prime}(z)\right\}\right|<(\pi-\varphi) / 2 \tag{10}
\end{equation*}
$$

for all $z \in D, f(z)$ is univalent in D.
Corollary 7. (A generalization of Theorem 2.4 of [11].) Let D be a domain any two points of which may be joined by a finite number of line seg. ments lying in D and parallel to the oblique coordinate axis i.e. the set $\{z ; \mathfrak{j} z=0$ or $\left.\mathfrak{J}\left(e^{-i \varphi} z\right)=0,0<\varphi<\pi\right\}$ such that the x and y coordinates of the end points form either a non-decreasing or non-increasing sequence. Then if $f(z)$ is regular in D and if for some $0 \leqq \alpha \leqq 2 \pi$ and all $z \in D$ the relation (10) holds, $f(z)$ is univalent in D.

§4. A coefficient theorem and the others.

Theorem 3. Suppose that for each fixed $\theta \in[a, b]$

$$
f(z, \theta)=f_{1}(\theta) z+f_{2}(\theta) z^{2}+\cdots+f_{n}(\theta) z^{n}+\cdots
$$

is regular in the unit circle $|z|<1$, and that f is continuous in (z, θ) for $|z|<1$ and $\theta \in[a, b]$. Let

$$
g(z)=z+g_{2} z^{2}+\cdots+g_{n} z^{n}+\cdots
$$

be regular, univalent and convex for $|z|<1$. Then if the relations

$$
\begin{equation*}
\mathfrak{R}\left\{e^{i \alpha} f_{z}(z, \theta) / g^{\prime}(z)\right\}>0, \quad\left|f_{1}(\theta)\right| \leqq 1 \tag{11}
\end{equation*}
$$

hold for $|z|<1$ and $\theta \in[a, b]$ and for some $0 \leqq \alpha \leqq 2 \pi$;

$$
\begin{aligned}
F(z)=\int_{a}^{b} f(z, \theta) d \psi(\theta) & =c_{1} z+c_{2} z^{2}+\cdots+c_{n} z^{n}+\cdots \\
& (\psi(\theta) \uparrow, 0<\psi(b)-\psi(a)<+\infty)
\end{aligned}
$$

is regular and univalent for $|z|<1$, and we have

$$
\begin{equation*}
\left|c_{n}\right| \leqq n(\psi(b)-\psi(a)), n=1,2, \cdots \tag{12}
\end{equation*}
$$

These inequalities are sharp for every n.
Proof. The first part of the assertion is a special case of Theorem 2. Now by the hypothesis of $g(z)$ we get

$$
g(z) \ll z /(1-z) \text { and so } g^{\prime}(z) \ll 1 /(1-z)^{2}
$$

On the other hand, applying Carathéodory's theorom, from (11) we see that

$$
e^{i \alpha} \frac{f_{z}(z, \theta)}{g^{\prime}(\bar{z})}=e^{i \alpha} f_{1}(\theta)+\cdots \ll 1+2 \Re\left\{e^{i \alpha} f_{1}(\theta)\right\} \sum_{n=1}^{\infty} z^{n} \ll \frac{1+z}{1-z} .
$$

Therefore we get

$$
f(z, \theta)=\int_{0}^{z} \frac{f_{z}(z, \theta)}{g^{\prime}(z)} g^{\prime}(z) d z \ll \int_{0}^{z} \frac{1+z}{1-z} \frac{1}{(1-z)^{2}} d z=\frac{z}{(1-z)^{2}},
$$

and so

$$
\left|f_{n}(\theta)\right| \leqq n, \quad n=1,2, \cdots
$$

Hence, for each fixed z in $|z|<1$, the series $f(z, \theta)=f_{1}(\theta) z+f_{2}(\theta) z^{2}+\cdots$ is uniformly convergent for $a \leqq \theta \leqq b$, and so we may write

$$
F(z)=\sum_{n=1}^{\infty}\left[z^{n} \int_{a}^{b} f_{n}(\theta) d \psi(\theta)\right] \text { for }|z|<1 .
$$

Thus we have for each $n=1,2, \cdots$

$$
\left|c_{n}\right|=\left|\int_{a}^{b} f_{n}(\theta) d \psi(\theta)\right| \leqq \int_{a}^{b}\left|f_{n}(\theta)\right| d \psi(\theta) \leqq n(\psi(b)-\psi(a)) .
$$

For the special case such that $f(z, \theta)=f_{0}(z, \theta) \equiv z /(1-z)^{2}, g(z)=g_{0}(z) \equiv z /(1-z)$ and $\alpha=0$, the hypotheses of the theorem are satisfied, and then we have the equality in (12) for the function

$$
F_{0}(z)=\int_{a}^{b} f_{0}(z, \theta) d \psi(\theta)=\frac{z}{(1-z)^{2}}(\psi(b)-\psi(a)) .
$$

This completes the proof.
Corollary 8. Let $f(z)=z+c_{2} z^{2}+\cdots+c_{n} z^{n}+\cdots$ be close-to-convex for $|z|<1$, then $\left|c_{n}\right| \leqq n, n=2,3, \cdots$. These inequalities are sharp for every n [10].

Proof. In Theorem 3 if we put $f(z, \theta) \equiv f(z), f_{1}(\theta) \equiv 1, \alpha=0$ and $\psi(b)-\psi(a)$ $=1$, then we have this corollary.

Remark 2. Concerning this corollary, suppose that $w=f(z)=z+c_{2} z^{2}+\cdots$ $+c_{n} z^{n}+\cdots$ is close-to-convex and not starlike with respect to $w=1$ for $|z|<1$, then at least one of c_{n} is not member of the complex quadratic field K i.e. the set $\left\{a+i b N^{1 / 2}\right\}$, where a and b are rational numbers, and $N \geqq 1 \mathrm{~s}$ a rational integer having no square factor. This follows from the more general Corollary 10 stated below and from Corollary 5, in addition to the fict that the star mappings are included in the close-to-convex functions.

Corollary 9. Let $f(z)=z+c_{2} z^{2}+\cdots+c_{n} z^{n}+\cdots$ be regular for $|z| \leqq 1$, and let C be the part of $|z|=1$ on which

$$
1+\mathfrak{R}\left\{z f^{\prime \prime}(z) / f^{\prime}(z)\right\}>0
$$

Then if

$$
\int_{C}\left(1+\Re \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) d \theta<3 \pi \quad\left(z=e^{i \theta}\right),
$$

we have that $\left|c_{n}\right| \leqq n, n=2,3, \cdots[6]$.
Proof. In this case we can appeal to Theorem B^{\prime} to conclude that $f(z)$ is close-to-convex for $|z|<1$. Hence the corollary holds at once from Corollary 8.

Remark 3. As Umezawa [6] points out in this case $f(z)$ is not merely close-to-convex but also convex in one direction [12], [6], [7], etc..

Concerning Remark 2 we prove the following:
Theorem 4. Suppose that $w=f(z)=z^{k}\left(1+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}+\cdots\right)^{-\lambda}$ $=z^{k}\left(1+b_{1} z+b_{2} z^{2}+\cdots+b_{n} z^{n}+\cdots\right)$ is single-valued $(f(z) \neq 0)$, regular and $|k|-$ valent for $0<|z|<1$, where $k(\neq 0)$ is a rational integer, λ is a real number and $\lambda k>0$. Suppose further that $f(z)$ is not starlike with respect to $w=0$ for $|z|<1$. Then at least one of a_{n} is not a member of K as in Remark 2.

Proof. Let $a_{n} \in K$ for all $n \geqq 1$. Then by 'Theorem 4 in our previous paper [13], we see that $f(z)$ has the form $z^{k}\left\{(-1)^{m} \prod_{j=1}^{m}\left(z e^{i \theta_{j}}-1\right)\right\}^{-\lambda}\left(\theta_{j}\right.$ real) unless z^{k}. Hence $f(z)$ is.starlike with respect to $w=0$ for $|z|<1$ by 'Theorem 1 in [13]'. This contradicts the hypothesis, and so the theorem follows.

Remark 4. Let $\lambda=k=1$ in Theorem 4. Then, if $b_{n}(n \geqq 1)$ are integers in a given quadratic field, then $\alpha_{n}(n \geqq 1)$ are also integers in the same field, and vice versa [14]. Hence we have the following:

Corollary 10. Suppose that for $|z|<1 w=f(z)=z+c_{2} z^{2}+\cdots+c_{n} z^{n}+\cdots$ is regular, univalent and not starlike with respect to $w=0$, then at least one of c_{n} is not a member of K as above.

§ 5. The second main theorem.

We prove the following theorem using the method suggested by S. Ozaki.
Theorem 5. Suppose that f is continuous in (z, θ) for $z \in D$ and $\theta \in[a, b]$ and regular in z for each fixed θ, where D is a domain and $[a, b]$ is a finite closed interval. Suppose that $\zeta=g(z)$ is regular and univalent in D and maps D onto a domain D_{ζ}, and that for some complex constant $A \neq 0$, the relation

$$
\begin{equation*}
\left|A \frac{f_{z}(z, \theta)}{g^{\prime}(z)}-1\right|<\mu\left(D_{\zeta}\right) \equiv \inf _{\zeta_{1}, \zeta_{2} \in D_{\zeta}} \frac{\left|\zeta_{1}-\zeta_{2}\right|}{l\left(\zeta_{1}, \zeta_{2}\right)} \quad\left(\text { where } f_{z} \text { means } \frac{\partial f}{\partial z}\right) \tag{13}
\end{equation*}
$$

holds for all $z \in D$ and $\theta \in[a, b]$. Then

$$
F(z)=\int_{a}^{b} f(z, \theta) d \psi(\theta)
$$

is regular and univalent in D, where $l\left(\zeta_{1}, \zeta_{2}\right) \equiv \inf _{\left[\zeta_{1} \Gamma_{\zeta} \zeta_{2}\right] \subset D_{6}} L\left[\zeta_{1} \Gamma_{\zeta} \zeta_{2}\right]$, and $L\left[\zeta_{1} \Gamma_{\zeta} \zeta_{2}\right]$
is the length of the rectifiable curve $\left[\zeta_{1} \Gamma_{\zeta} \zeta_{2}\right]$ lying in D, and $\psi(\theta)$ (\equiv constant) is a bounded and monotone function defined for $[a, b]$.

Proof. Let z_{1}, z_{2} be two distinct points in D, and let $\zeta_{i}=g\left(z_{i}\right), i=1,2$. Then $\zeta_{1} \neq \zeta_{2}$ and $g^{\prime}(z) \neq 0$ in D since $g(z)$ is univalent in D. Let D^{*} be the closed disc $\left|\zeta-\zeta_{1}\right| \leqq r$ such that $D^{*} \subset D_{\zeta}$ and $\left|\zeta_{1}-\zeta_{2}\right|>r$, and let us set such that

$$
\begin{equation*}
\max _{\substack{\zeta \in D^{*} \\ \theta \in[a, b]}}\left|A \frac{f_{z}(z, \theta)}{g^{\prime}(z)}-1\right| \equiv \mu\left(D_{\zeta}\right)-\delta . \tag{14}
\end{equation*}
$$

Then from (13) we find that $\delta>0$. Hence there exists the curve $\Gamma \equiv\left[\zeta_{1} \Gamma \zeta_{2}\right]$ lying in D and satisfying that

$$
\begin{equation*}
0 \leqq L(\Gamma)-l\left(\zeta_{1}, \zeta_{2}\right)<r \delta / \mu\left(D_{\zeta}\right), \tag{15}
\end{equation*}
$$

where $L(\Gamma)$ is the length of Γ.
Now let us subdivide Γ in such a way that

$$
\Gamma=\left[\zeta_{1} \Gamma_{1} \zeta_{3}\right]+\left[\zeta_{3} \Gamma_{2} \zeta_{2}\right], \quad\left|\zeta_{1}-\zeta_{3}\right|=r \text { and }\left[\zeta_{1} \Gamma_{1} \zeta_{3}\right] \subset D^{*}
$$

Then, using the relations (14), (13) and (15), we may write for $\zeta \in \Gamma$

$$
\begin{aligned}
& \left|A\left\{F\left(z_{2}\right)-F\left(z_{1}\right)\right\}-\left(\zeta_{2}-\zeta_{1}\right) \int_{a}^{b} d \psi(\theta)\right| \\
& \quad \leqq\left|\int_{a}^{b} d \psi(\theta) \int_{\zeta_{1}}^{\zeta_{3}}\left\{A \frac{f_{z}(z, \theta)}{g^{\prime}(z)}-1\right\} d \zeta\right|+\left|\int_{a}^{b} d \psi(\theta) \int_{\zeta_{3}}^{\zeta_{2}}\left\{A \frac{f_{z}(z, \theta)}{g^{\prime}(z)}-1\right\} d \zeta\right| \\
& \quad \leqq\left[\left(\mu\left(D_{\zeta}\right)-\delta\right) \int_{\zeta_{1}}^{\zeta_{3}}|d \zeta|+\mu\left(D_{\zeta}\right) \int_{\zeta_{3}}^{\zeta_{2}}|d \zeta|\right]\left|\int_{a}^{b} d \psi(\theta)\right| \\
& \quad \leqq\left[\mu\left(D_{\zeta}\right) L(\Gamma)-\delta r\right]\left|\int_{a}^{b} d \psi(\theta)\right| \\
& \quad<\mu\left(D_{\zeta}\right) l\left(\zeta_{1}, \zeta_{2}\right)\left|\int_{a}^{b} d \psi(\theta)\right| \leqq\left|\left(\zeta_{1}-\zeta_{2}\right) \int_{a}^{b} d \psi(\theta)\right| .
\end{aligned}
$$

Thus the point $A\left\{F\left(z_{2}\right)-F\left(z_{1}\right)\right\}$ lies in the domain bounded by the circle with the centre $\left(\zeta_{2}-\zeta_{1}\right)|\psi(b)-\psi(a)|$ and the radius $\left|\zeta_{2}-\zeta_{1}\right||\psi(b)-\psi(a)|$. Hence $A\left\{F\left(z_{2}\right)-F\left(z_{1}\right)\right\} \neq 0$. This proves the theorem.

REMARK 5. For the case where $f(z, \theta) \equiv z, g(z) \equiv z$, and D is a convex domain, since $\mu(D)=1$, we have Theorem A again by making $A \rightarrow+0$.

We state the following theorem which illustrates the relation between Theorems 2 and 5 .

Theorem 6. Let Φ be the set of the at most φ-concave sets, φ being $<\pi$. Then for each $E \in \Phi$ the inequalities

$$
\begin{equation*}
\cos (\varphi / 2) \leqq \mu(E) \leqq 1 \tag{16}
\end{equation*}
$$

hold, where $\mu(E)$ is defined as in Theorem 5. (These inequalities hold not only in case where $\varphi=0$ and hence E is convex, but also in case when E is not con-
vex.) The second of these inequalities holds when E is the set obtained out of a convex set by excluding a finite number $(\neq 0)$ or an infinity of isolated points, and the first of them holds when E is the set whose boundary contains a pair $\left[z_{1} z_{3} z_{2}\right]$ of oriented straight line segments $\overrightarrow{z_{1} z_{3}} \overrightarrow{z_{3}} \overrightarrow{z_{2}}$ such that

$$
\begin{equation*}
\int_{\left[z_{1} 2_{3} z_{2}\right]} d \arg d z=-\varphi . \tag{17}
\end{equation*}
$$

Proof. Let z_{1}, z_{2} be two distinct points. Among the at most φ-concave curves $(\varphi<\pi)$ by each of which z_{1}, z_{2} are joined, the curve which has the maximum length consists of a pair of straight line segments $\overline{z_{1} z_{3}}, \overline{z_{3} z_{2}}$ such that $\left|z_{1}-z_{3}\right|=\left|z_{3}-z_{2}\right|$ and $\left|\arg \left(z_{3}-z_{1}\right) /\left(z_{2}-z_{3}\right)\right|=\varphi$. This may be proved geometrically. Hence the left-side inequality in (16) holds. The rest is easy and may be omitted.

By virtue of Theorem 6 we compare Theorem 2 and Theorem 5 in the case where $g(z) \equiv z$. If D is an at most φ-concave domain, $\varphi<\pi$, whose boundary contains a broken line segment $\left[z_{1} z_{3} z_{2}\right]$ satisfying (17) since $\mu(D)$ $=\cos (\varphi / 2)$, if (13) holds then (4) holds for $\alpha=\arg A$, but the converse is not always true. Hence for this case Theorem 2 is better than Theorem 5. But, for example, let D be an at most φ-concave domain any two points of which may be joined by a circular arc (lying in $D) z=z_{0}+a e^{i \beta}(\cos t+i \sin t)$, for which $t_{1} \leqq t \leqq t_{2}, 0 \leqq t_{1}, t_{2} \leqq \varphi, 0<\varphi<\pi$, and where $a>0, \beta$ real. (a, β may depend on the two points to be connected.) Then we get

$$
\cos \frac{\varphi}{2}<\left(\sin -\frac{\varphi}{2}\right) / \frac{\varphi}{2} \leqq \mu(D) \leqq 1 .
$$

Hence we find that for this case (13) does not imply (4) and (4) does not imply (13). Furthermore for the case where $\varphi \geqq \pi$, (4) is senseless, but there are some cases for which (13) makes sense. Thus we shall see that both of the theorems are worth stating.

I wish to express here my hearty gratitude to Prof. S. Ozaki for his kind guidance during my research.

Yamanashi University

Bibliography

[1] K. Noshiro, On the theory of schlicht functions, J. Fac. Sci., Hokkaido Imp. Univ., 2 (1934), 129-155.
[2] J. Wolff, L'intégrale d'une fonction holomorphe et à partie réelle positive dans un demi-plan est univalente, C. R. Acad. Sci. Paris, 198 (1934), 1209-1210.
[3] S. Ozaki, On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daigaku A, 2 (1935), 167-188.
[4] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J., 1 (1952), 169185.
[5] T. Umezawa, On the theory of univalent functions, Tohoku Math. J., 7 (1955), 212-228.
[6] T. Umezawa, Analytic functions convex in one direction, J. Math. Soc. Japan, 4 (1952), 194-202.
[7] T. Umezawa, Star-like theorems and convex-like theorems in an annulus, J. Math. Soc. Japan, 6 (1954), 68-75.
[8] M. O. Reade, On Umezawa's criteria for univalence, J. Math. Soc. Japan, 9 (1957), 234-237.
[9] M. O. Reade, On Umezawa's criteria for univalence II, J. Math. Soc. Japan, 10 (1958), 255-259.
[10] M. O. Reade, Sur une classe de fonctions univalentes, C. R. Acad. Sci. Paris, 239 (1954), 1758-1759.
[11] V. F. Cowling and W. C. Royster, Some applications of the Weierstrass mean value theorem, J. Math. Soc. Japan, 13 (1961), 104-108.
[12] M. S. Robertson, Analytic functions star-like in one direction, Amer. J. Math., 58 (1936), 465-472.
[13] N. Sone, Note on Bernardi's theorem, Mem. Fac. Liberal Arts \& Education Yamanashi Univ., 8 (1957), 124-127.
[14] S. D. Bernardi, Note on an inequality of Prawitz, Duke Math. J., 23 (1956), 385391.

