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\S 1. Introduction.

The following theorem due to Noshiro [1] and Wolff [2] is well known.
THEOREM A. If $f(z)$ is regular in a convex domain $D$ and if $\mathfrak{R}f^{\prime}(z)>0$ in

$D$, then $f(z)$ is univalent in $D$ .
This theorem has been generalized by several authors from various points

of view. Ozaki [3] proved the following:
THEOREM B. Suppose that $g(z)$ is a convex univalent function in a domain

D. If f$(z)$ is regular and $\mathfrak{R}\{e^{ia}f^{\prime}(z)/g^{\prime}(z)\}>0$ ( $\alpha$ real) in $D$ , then $f(z)$ is uni-
valent in $D$ .

Subsequently Kaplan [4] introduced a class of univalent mappings which
he called ‘ close-to-convex ’. These functions $f(z)$ defined in the unit disc, are
characterized by an inequality of the form $\mathfrak{R}\{f^{\prime}(z)/g^{\prime}(z)\}>0$ where $g(z)$ is a
convex univalent mapping of the unit disc. Obviously this characterization
is a special case of the assumption of Theorem B. He further gave a charac-
terization of these functions without reference to a convex function $g(z)$ . It
is essentially equivalent to the following Umezawa’s criterion for univalence
[5] $i$ . $e$ . the condition (i) of the following theorem, as Reade [8] points out.

THEOREM $B^{\prime}$ . Let $w=f(z)$ be regular in a simply-connected closed domain
$D_{z}$ whose boundary $\Gamma_{z}$ consists of a regular curve and suppose $f^{\prime}(z)\neq 0$ on $\Gamma_{z}$ .
If there holds one of the following conditions:

(i) For arbitrary arcs $C_{z}$ on $\Gamma_{z}$

$\int_{c_{z}}d\arg df(z)>-\pi$ and $\int_{\Gamma_{z}}d\arg df(z)=2\pi$ ,

(ii) For arbitrary arcs $C_{z}$ on $\Gamma_{z}$ $\int_{c_{z}}d\arg df(z)<3\pi$,

then $f(z)$ is univalent in $D_{z}$ .
Recently Reade [9] proved Theorem $C$ stated below using the following:
DEFINITION 1. Let $\varphi$ be fixed, $ 0\leqq\varphi<\pi$ . Then a domain $D$ is said to be

‘ almost convex ’ if any distinct two points $z_{1},$ $z_{2}$ in $D$ can be joined by a pair
of straight line segments $z_{1}z_{3},$ $z_{3}z_{2}$ lying in $D$ such that
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(1) $|\arg\{(z_{a}-z_{1})/(z_{2}-z_{3})\}|\leqq\varphi$ .
THEOREM C. If $f(z)$ is analytic in an ’ almost convex’ domain $D$, and if

the relation $|\int_{c}d\arg f^{\prime}(z)|<\pi-\varphi$ holds for all arcs $C$ in $D$ , then $f(z)$ is univalent

in $D$ .
Quite recently Cowling and Royster [11] introduced the following Defini-

tion 2, and proved Theorem $D$ mentioned below.
DEFINITION 2. A domain $D$ is said to have property $U$ with a constant

$\theta=\theta(D)$ if when $z_{1}$ and $z_{2}$ in $D$ are given there exists a constant $\theta$ (indepen-

dent of $z_{1},$ $z_{2}$), $\theta<\pi$ , and a sequence of points $z_{1}=\zeta_{0},$ $\zeta_{1},$ $\zeta_{2},$ $\cdots$ , $\zeta_{n}=z_{2}$ with the
property that the segments $\overline{\zeta_{0}\zeta_{1}},$ $\overline{\zeta_{1}\zeta_{2}},$

$\cdots$ , $\overline{\zeta_{n-1}\zeta}_{n}$ all belong to $D$ and

(2) $|\arg\{(\zeta_{k+1}-\zeta_{k})/(z_{2}-z_{1})\}|\leqq\theta$ , $h=0,1,$ $\cdots,$ $n-1$ .
THEOREM D. Let $D$ be a domain having the property U. Then if for some

$\theta\leqq\alpha\leqq 2\pi,$ $\arg f^{\prime}(z)$ satisfies $\alpha+\theta<\arg f^{\prime}(z)<\pi+\alpha-\theta,$ $\theta<\pi/2$ , forz in $D;f(z)$

is univalent in $D$ .
The first purpose of this note is to generalize the above four theorems

and others in the form of Theorem 2 below, and the second one is to derive

another criterion for univalence of the same functions $\int_{a^{b}}f(z, \theta)d\psi(\theta)$ treated

in Theorem 2 by restricting $f_{z}(z, \theta)/g^{\prime}(z)$ ($g$ univalent) in a circular domain as
is indicated in Theorem 5. For these purposes, in \S 2 we introduce a new
class which consists of the sets not necessarily convex and which we call ‘ at
most $\varphi$ -concave ‘, and in \S 5 we employ a certain functional for which we use
the symbol $/\ell(D)$ . Furthermore, concerning the functions in our main theorems,

a coefficient theorem and the others are inserted in \S 4.

\S 2. The ‘ at most $\varphi$-concave ’ sets.

We introduce the following two definitions:
DEFINITION 3. Let $\Gamma_{z}=[z_{1}\Gamma_{Z}z_{2}]$ be a simple piece-wise analytic curve (in

z-plane) with the end points $z_{1},$ $z_{2}$ and with a finite number of corners, and
let $\Gamma_{z}$ have well-defined one-side tangent vectors at the end points and those
corners. Then $\Gamma_{z}$ is said to be ’ (an) at most $\varphi$ -concave (curve)’ joining the
two points $z_{1},$ $z_{2}$ , if the relation

(3) $|\int_{c_{z}}d\arg dz|\leqq\varphi$

holds for all sub-curves $C_{z}$ of $\Gamma_{z}$ and for a non-negative constant $\varphi$ .
REMARK 1. Throughout this paper we use the symbols $[z_{1}\Gamma_{Z}z_{2}],$ $[z_{1}z_{3}z_{2}]$ ,

etc. for the curves having the end points $Z_{\ddagger}$ and $z_{2}$ .
DEFINITION 4. A plane set $E$ is said to be ’ (an) at most $\varphi$ -concave (set)’
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if when $z_{1},$ $z_{2}$ in $E$ are given there exists an at most $\varphi$ -concave curve $[z_{1}\Gamma_{Z}z_{2}]$

lying in $E$ (where $\varphi=\varphi(E)$ is independent of $z_{1}$ and $z_{2}$).
From the above definitions we have the following:
THEOREM 1. (a) Every (plane) convex set is at most $\varphi$ -concave for every

$\varphi\geqq 0$ , but the converse is not always true. But every at most O-concave set is
convex.

(b) Every ‘ almost convex’ domain is at most $\varphi$ -concave, but the converse is
not always true.

(c) Every domain $D$ having the property $U$ with constant $\theta=\theta(D)=\varphi/2$ is
at most $\varphi$ -concave, but the converse is not always true.

(d) Every at most $\varphi$ -concave set is not necessarily simply-connected, even if
$ 0<\varphi<\pi$ .

PROOF. (a) This is obtained at once from the definitions.
(b) Let $D$ be an ‘ almost convex domain ’, and let $z_{1},$ $z_{2}$ be two points in

$D$ . Then there exists a broken line $[z_{1}z_{3}z_{2}]$ lying in $D$ and satisfying (1).

Hence (3) is satisfied for $\Gamma_{z}=[z_{1}z_{3}z_{2}]$ . Therefore $D$ is at most $\varphi$ -concave.
We next consider the domain $D_{1}$ in the first quadrant bounded by two con-
centric circles. Obviously $D_{1}$ is at most (z/2)-concave, but if the difference
between the radii of the two circles is sufficiently small then the domain does
not satisfy the criterion of Definition 1. Thus (b) is proved.

(c) Suppose that $D$ has the property $U$ with a constant $\theta=\theta(D)=\varphi/2$ , and
let $z_{1},$ $z_{2}$ be two points in $D$ . Then there is a broken line $[z_{1}\zeta_{1}\zeta_{2}\cdots\zeta_{n-1}z_{2}]$

lying in $D$ and satisfying (2) with $\theta=\varphi/2$ . Hence (3) is satisfied for
$\Gamma_{z}=[z_{1}\zeta_{1}\zeta_{2}\cdots\zeta_{n-1}z_{2}]$ and $\varphi=2\theta$ . Thus the first part of (c) follows. Consider
the domain $D_{2}$ : the full z-plane cut from $ 0to+\infty$ along the positive real axis.
Clearly $D_{2}$ is at most $\pi$-concave, but has not the property $U$ with $\theta=\pi/2$ ,

since the two points $z_{1}=1-\epsilon i,$ $z_{2}=2+\epsilon i$ (where $e>0$ is sufficiently small)

can not be joined by any broken line lying in $D$ and satisfying (2) with
$\theta=\pi/2$ . Thus (c) follows.

(d) We consider the domain $D_{3}$ : the finite z-plane $|z|<+\infty$ with a hole
which consists of a regular triangle and its interior. $D_{3}$ is at most $(2/3)\pi-$

concave and a doubly-connected domain (but every at most O-concave set
$i$ . $e$ . every convex set is simply-connected). This proves (d).

\S 3. The first main theorem.

Now we prove the following principal:
THEOREM 2. Suppose that $f(z, \theta)$ is continuous in $(z, \theta)$ for $z\in D,$ $\theta\in[a, b]$

and regular in $z$ for each fixed $\theta$ , where $D$ is a domain (not necessarily simply-
connected if $f$ is single-valued), and $[a, b]$ is a finite closed interval. Suppose
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furthermore that $\zeta=g(z)$ is regular and univalent in $D$ and maps $D$ onto at
most $\varphi$ -concave domain $D_{\zeta},$ $\varphi$ being $<\pi$ , and that for some $ 0\leqq\alpha\leqq 2\pi$, the
relation

(4) $|\arg\{e^{i\alpha}\frac{f_{z}(z,\theta)}{g(z)}\}|<\frac{\pi-\varphi}{2}$ (where $f_{z}$ means $\frac{\partial}{\partial z}f$ )

holds for all $z\in D$ and $\theta\in[a, b]$ . Then

$F(z)=\int_{a^{b}}f(z, \theta)d\psi(\theta)$

is regular and univalent in $D$ , where $\psi(\theta)(\not\equiv constant)$ is any bounded and mono-
tone function defined for $[a, b]$ .

PROOF. We first note that $F(z)$ is regular and $F^{\prime}(z)=\int_{a^{b}}f_{z}(z, \theta)d\psi(\theta)$ in $D$ .
The proof of this fact is analogous to the case $\psi(\theta)\equiv\theta$ , and may be omitted.

Let $z_{1},$ $z_{2}$ be two distinct points in $D$ , and let $\zeta=g(z),$ $\zeta_{i}=g(z_{i}),$ $i=1,2$ .
Since $D_{\zeta}$ is at most $\varphi$ -concave, there exists an at most $\varphi$ -concave curve
$[\zeta_{1}\Gamma_{\zeta}\zeta_{2}]$ lying in $D_{\zeta}$ , and hence we may construct a narrow band $B_{\zeta}$ (cf. [9]

for a special case) satisfying the following conditions:
1 $B_{\zeta}$ bounds a simply-connected domain $D_{\zeta}^{\prime}$ whose closure is in $D_{\zeta}$ and

whose interior contains $[\zeta_{1}\Gamma_{\zeta}\zeta_{2}]$ .
2 If we denote the oriented boundary curve of $D_{\zeta}^{\prime}$ by $\Gamma_{\zeta^{\prime}},$ $\Gamma_{\zeta^{\prime}}$ is a piece-

wise analytic curve having well-defined one-side tangent vectors at its corners.
3 Further we have

(5) $\int_{c’\prime,\backslash }d\arg d\zeta\geqq-\varphi$ for all $arcsC_{\zeta^{\prime}}\subset\Gamma_{\zeta^{\prime}}$ , and $\int_{\tau_{\zeta}}d\arg d\zeta=2\pi$ .

Let $g^{-1}$ be the inverse function of $g$, and let $B_{z},$ $D_{z}^{\prime},$ $\Gamma_{z^{\prime}},$ $C_{z^{\prime}}$ and $[z_{1}\Gamma_{Z}z_{2}]$

be the images of $B_{\zeta},$ $D_{\zeta}^{\prime},$ $\Gamma_{\zeta^{\prime}},$ $C_{\zeta^{\prime}}$ and $[\zeta_{1}\Gamma_{\zeta}\zeta_{2}]$ by $g^{-1}$ respectively. Then,
since $g^{-1}(\zeta)$ is regular and univalent in $D_{\zeta}$, these images also satisfy the
conditions 1 and 2 with $z$ instead of $\zeta$ .

Now we write for all $C_{z^{\prime}}\subset\Gamma_{z}$ ‘

$\int_{c_{z}^{r}}d\arg dF(z)=\int_{c_{z}},d\arg[\{\int_{a^{b}}f_{z}(z, \theta)d\psi(\theta)\}dz]$

(6)

$=\int_{C_{z}^{\prime}}d\arg\{\int_{a^{b}}\frac{f_{z}(z,\theta)}{g(z)}d\psi(\theta)\}+\int_{C_{\zeta}^{\prime}}d\arg d\zeta$ .
Without loss of generality let $\psi(\theta)\uparrow$ . Then

$\frac{1}{\psi(b)-\psi(a)}\int_{a^{b}}\frac{f_{z}(z,\theta)}{g’(z)}d\psi(\theta)\equiv G(z)$

is the centroid of a non-negative ‘ mass distribution of total mass one ’ over
the points $f_{z}(z, \theta)/g^{\prime}(z)(\theta\in[a, b])$ for each fixed $z\in C_{z^{\prime}}$ . Hence $G(z)$ lies in
the convex hull of the set of these points. On the other hand from (4) the
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convex hull lies in an angular domain $|\arg\{e^{i\alpha}\xi\}|<(\pi-\varphi)/2$, and hence so
does $G(z)$. Hence we have the fact that

(7) $\int_{a^{b}}\frac{f_{z}(z,\theta)}{g(z)}d\psi(\theta)$ also lies in the same domain for $z\in C_{z^{\prime}}$ .

Therefore we get

(8) $\int_{c_{z}},d\arg\{\int_{a^{b}}\frac{f_{z}(z,\theta)}{g(z)}d\psi(\theta)\}>\varphi-\pi$ for all $C_{z}’\subset\Gamma_{z^{\prime}}$ ,

and especially

(9) $\int_{\Gamma^{\prime}z}d\arg\{\int_{a^{b}}\frac{f_{z}(z}{g}(\frac{\theta)}{z)}d\psi(\theta)\}=0$ .

Thus we have from (6), (8) and the first part of (5)

$\int_{c_{z}},d\arg dF(z)>-\pi$ for all $C_{z^{\prime}}\subset\Gamma_{z}^{\prime}$ .

We also have from (6), (9) and the second part of (5)

$\int_{\Gamma^{\prime}z}d\arg dF\xi z)=2\pi$ .

On the other hand from (4), in the same way as for (7), we get

$F^{\prime}(z)=g^{\prime}(z)\int_{a^{b}}\frac{f_{z}(z,\theta)}{g(z)}d\psi(\theta)\neq 0$

for all $z\in D_{z}^{\prime}U\Gamma_{z}$ . Hence we can use Theorem $B^{\prime}$ , in a slightly generalized
form [9], to conclude that $F(z)$ is univalent in $D_{z^{\prime}}$ . Therefore $F(z_{1})\neq F(z_{2})$

for $z_{1}\neq z_{2}$ . This completes the proof.
The special cases of the theorem are listed below.
COROLLARY 1: Theorem $A$ : the case where $f(z, \theta)\equiv f(z),$ $g(z)\equiv z,$ $(\alpha=0)$

and $\varphi=0$ .
COROLLARY 2: Theorem $B$ : the case where $f(z, \theta)\equiv f(z)$ and $\varphi=0$ .
COROLLARY 3: Theorem $C$ : the case where $f(z, \theta)\equiv f(z),g(z)\equiv z$ and $D$ is

$an$
‘ almost convex’ domain.
COROLLARY 4: Theorem $D$ (with $(-\alpha-\pi/2)$ instead of a): the case where

$f(z, \theta)\equiv f(z),g(z)\equiv z,$ $(\varphi=2\theta)$ and $D$ is a domain having the property $U$ with
$\theta=\varphi/2$ .

A necessary and sufficient condition that $f(z)$ should be close-to-convex
for $|z|<1$ is that the hypothesis of Corollary 2 (with $\alpha=0$) should be satisfied
for $|z|<1$ instead of $D$ . Hence we have

COROLLARY 5. (Ozaki-Kaplan’s theorem [4]). Every close-to-convex function
is univalent.

Furthermore we have the following interesting corollaries by specializing
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the choice of at most $\varphi$ -concave domains in such a case of Theorem 2 that
$f(z, \theta)\equiv f(z)$ and $g(z)\equiv z$ .

COROLLARY 6. (A generalization of Theorem 2.2 of [11].) Let $D$ be a
domain any two points $2_{1},$ $Z_{2}$ of which may be joined by a convex (or concave)

curve $z=z(t)(t_{1}\leqq t\leqq t_{2}, z_{i}=z(t_{i}),$ $i=1,2$) lying in $D$ and satisfying that

$|\arg dz_{1}-\arg dz_{2}|\leqq\varphi<\pi$ ( $\varphi$ constant),

where $dz_{i}$ are the one-side tangent vectors to the curve at the points $z_{i}$ . Then if
$f(z)$ is regular in $D$ and if for some $ 0\leqq\alpha\leqq 2\pi$

(10) $|\arg\{e^{t\alpha}f^{\prime}(z)\}|<(\pi-\varphi)/2$

for all $z\in D,f(z)$ is univalent in $D$ .
COROLLARY 7. (A generalization of Theorem 2.4 of [11].) Let $D$ be a

domain any two points of which may be joined by a finite number of line seg-
ments lying in $D$ and parallel to the oblique coordinate axis $i$ . $e$ . the set $\{z;^{\alpha}sz=0$

or $ s^{\alpha}(e^{-i\omega}z)=0,0<\varphi<\pi$ } such that the $x$ and $y$ coordinates of the end points
form either a non-decreasing or non-increasing sequence. Then if $f(z)$ is regular
in $D$ and if for some $ 0\leqq\alpha\leqq 2\pi$ and all $z\in D$ the relation (10) holds, $f(z)$ is
univalent in $D$ .

\S 4. A coefficient theorem and the others.

THEOREM 3. Suppose that for each fixed $\theta\in[a, b]$

$f(z, \theta)=f_{1}(\theta)z+f_{2}(\theta)z^{2}+$ $+f_{n}(\theta)z^{n}+\cdots$

is regular in the unit cirde $|z|<1$ , and that $f$ is continuous in $(z, \theta)$ for $|z|<1$

and $\theta\in[a, b]$ . Let

$g(z)=z+g_{2}z^{2}+$ $+g_{n}z^{n}+\cdots$

be regular, univalent and convex for $|z|<1$ . Then if the relations

(11) $\mathfrak{R}\{e^{i\alpha}f_{z}(z, \theta)/g^{\prime}(z)\}>0$ , $|f_{1}(\theta)|\leqq 1$

hold for $|z|<1$ and $\theta\in[a, b]$ and for some $ 0\leqq\alpha\leqq 2\pi$ ;

$F(z)=\int_{a^{b}}f(z, \theta)d\psi(\theta)=c_{1}z+c_{2}z^{2}+$ $+c_{n}z^{n}+\cdots$

$(\psi(\theta)\uparrow, 0<\psi(b)-\psi(a)<+\infty)$

is regular and univalent for $|z|<1$ , and we have

(12) $|c_{n}|\leqq n(\psi(b)-\psi(a)),$ $n=1,2,$ $\cdots$ .
These idequalities are sharp for every $n$ .

PROOF. The first part of the assertion is a special case of Theorem 2.
Now by the hypothesis of $g(z)$ we get
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$g(z)\ll z/(1-z)$ and so $g^{\prime}(z)\ll 1/(1-z)^{2}$ .
On the other hand, applying Carath\’eodory’s theorom, from (11) we see that

$e_{(\overline{z}}^{i\alpha_{\frac{f_{z}(z}{g}}}\theta_{\frac{)}{)}}=e^{i\alpha}f_{1}(\theta)+\cdots\ll 1+2\mathfrak{R}\{e^{i\alpha}f_{1}(\theta)\}\sum_{n=1}^{\infty}z^{n}\ll\frac{1+z}{1-z}$ .

Therefore we get

$f(z, \theta)=\int_{0^{z}}\frac{f_{z}(z,\theta)}{g(z)}g^{\prime}(z)dz\ll\int_{0}^{z}\frac{1+z1}{1-z(1-z)^{2}}dz=\frac{z}{(1-z)^{2}}$ ,

and so
$|f_{n}(\theta)|\leqq n$, $n=1,2,$ $\cdots$ .

Hence, for each fixed $z$ in $|z|<1$ , the series $ f(z, \theta)=f_{1}(\theta)z+f_{2}(\theta)z^{2}+\cdots$ is
uniformly convergent for $a\leqq\theta\leqq b$ , and so we may write

$F(z)=\sum_{n=1}^{\infty}[z^{n}\int_{a^{b}}f_{n}(\theta)d\psi(\theta)]$ for $|z|<1$ .
Thus we have for each $n=1,2,$ $\cdots$

$|c_{n}|=|\int_{a}^{b}f_{n}(\theta)d\psi(\theta)|\leqq\int_{a^{b}}|f_{n}(\theta)|d\psi(\theta)\leqq n(\psi(b)-\psi(a))$ .

For the special case such that $f(z, \theta)=f_{0}(z, \theta)\equiv z/(1-z)^{2},g(z)=g_{0}(z)\equiv z/(1-z)$

and $\alpha=0$ , the hypotheses of the theorem are satisfied, and then we have the
equality in (12) for the function

$F_{0}(z)=\int_{a^{b}}f_{0}(z, \theta)d\psi(\theta)=\frac{z}{(1-z)^{2}}(\psi(b)-\psi(a))$ .

This completes the proof.
COROLLARY 8. Let $ f(z)=z+c_{2}z^{2}+\cdots+c_{n}z^{n}+\cdots$ be close-to-convex for $|z|<1$ ,

then $|c_{n}|\leqq n,$ $n=2,3,$ $\cdots$ . These inequalities are sharp for every $n[10]$ .
PROOF. In Theorem 3 if we put $f(z, \theta)\equiv f(z),f_{1}(\theta)\equiv 1,$ $\alpha=0$ and $\psi(b)-\psi(a)$

$=1$ , then we have this corollary.
REMARK 2. Concerning this corollary, suppose that $ w=f(z)=z+c_{2}z^{2}+\cdots$

$+c_{n}z^{n}+\cdots$ is close-to-convex and not starlike with respect to $w=$ ( for $|z|<1_{f}$

then at least one of $c_{n}$ is not member of the complex quadratic field $Ki$ . $e$ .
the set $\{a+ibN^{1/2}\}$ , where $a$ and $b$ are rational numbers, and $N\geqq 1s$ a rational
integer having no square factor. This follows from the more $g\xi$ neral Corol-
lary $10$ stated below and from Corollary 5, in addition to the $f\lfloor ct$ that the
star mappings are included in the close-to-convex functions.

COROLLARY 9. Let $f(z)=z+c_{2}z^{2}+$ $+c_{n}z^{n}+\cdots$ be regular for $|z|\leqq 1$ , ancl
let $C$ be the part of 2 $|=1$ on which

$1+\mathfrak{R}\{zf^{\prime\prime}(z)/f^{\prime}(z)\}>0$ .
Then if
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$\int_{c}(1+\mathfrak{R}\frac{zf^{\prime\prime}(z)}{f(z)})d\theta<3\pi$ $(z=e^{i\theta})$ ,

we have that $|c_{n}|\leqq n,$ $n=2,3,$ $\cdots[6]$ .
PROOF. In this case we can appeal to Theorem $B^{\prime}$ to conclude that $f(z)$

is close-to-convex for $|z|<1$ . Hence the corollary holds at once from Corol-
lary 8.

REMARK 3. As Umezawa [6] points out in this case $f(z)$ is not merely
close-to-convex but also convex in one direction [12], [6], [7], etc..

Concerning Remark 2 we prove the following:
THEOREM 4. Suppose that $w=f(z)=z^{k}(1+a_{1}z+a_{2}z^{2}+ +a_{n}z^{n}+ )^{-\lambda}$

$=z^{k}(1+b_{1}z+b_{2}z^{2}+\cdots+b_{n}z^{n}+ )$ is single-valued $(f(z)\neq 0)$ , regular and $|k|-$

valent for $0<|z|<1$ , where $k(\neq 0)is$ a rational integer, $\lambda$ is a real number and
$\text{{\it \‘{A}}} k>0$ . Suppose further that $f(z)$ is not starlike with respect to $w=0$ for $|z|<1$ .
Then at least one of $a_{n}$ is not a member of $K$ as in Remark 2.

PROOF. Let $a_{n}\in K$ for all $n\geqq 1$ . Then by ’ Theorem 4 in our previous

paper [13] ’ we see that $f(z)$ has the form $z^{k}\{(-1)^{m_{\Pi}^{m}}(ze^{i\theta_{j}}-1)\}^{-\lambda}$ ( $\theta_{j}$ real)
$j\Leftarrow 1$

unless $z^{k}$ . Hence $f(z)$ is.starlike with respect to $w=0$ for $|z|<1$ by ‘ Theorem
1 in [13] ‘. This contradicts the hypothesis, and so the theorem follows.

REMARK 4. Let $\lambda=k=1$ in Theorem 4. Then, if $b_{n}(n\geqq 1)$ are integers
in a given quadratic field, then $a_{n}(n\geqq 1)$ are also integers in the same field,
and vice versa [14]. Hence we have the following:

COROLLARY 10. Suppose that for $|z|<1w=f(z)=z+c_{2}z^{2}+$ $+c_{n}z^{n}+\cdots$

is regular, univalent and not starlike with respect to $w=0$ , then at least one of
$c_{n}$ is not a member of $K$ as above.

\S 5. The second main theorem.

We prove the following theorem using the method suggested by S. Ozaki.
THEOREM 5. Suppose that $f$ is continuous in $(z, \theta)$ for $z\in D$ and $\theta\in[a, b]$

and regular in $z$ for each fixed $\theta$ , where $D$ is a domain and $[a, b]$ is a finite
closed interval. Suppose that $\zeta=g(z)$ is regular and univalent in $D$ and maps
$D$ onfo a domain $D_{\zeta}$, and that for some complex constant $A\neq 0$ , the relation

(13) $|A\frac{f_{z}(z,\theta)}{g(z)}1|<\mu(D_{\zeta})\equiv\inf_{\zeta_{1},\zeta_{2}\in D_{\zeta}}\frac{|\zeta_{1}-\zeta_{2}|}{l(\zeta_{1},\zeta_{2})}$ $(wheref_{z}$ means $\frac{\partial f}{\partial z})$

holds for all $z\in D$ and $\theta\in[a, b]$ . Then

$F(z)=\int_{a^{b}}f(z, \theta)d\psi(\theta)$

is regular and univalent in $D$, where
$l(\zeta_{1}, \zeta_{2})\equiv\inf_{[\zeta_{1}\Gamma_{\zeta}\zeta_{2}]CD_{\zeta}}L[\zeta_{1}\Gamma_{\zeta}\zeta_{2}]$

, and $L[\zeta_{1}\Gamma_{\zeta}\zeta_{2}]$
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is the length of the rectifiable curve $[\zeta_{1}\Gamma_{\zeta}\zeta_{2}]$ lying in $D$ , and $\psi(\theta)$ ($ constant)
is a bounded and monotone function defined for $[a, b]$ .

PROOF. Let $z_{1},$ $z_{2}$ be two distinct points in $D$, and let $\zeta_{i}=g(z_{i}),$ $i=1,2$ .
Then $\zeta_{1}\neq\zeta_{2}$ and $g^{\prime}(z)\neq 0$ in $D$ since $g(z)$ is univalent in $D$ . Let $D^{*}$ be the
closed disc $|\zeta-\zeta_{1}|\leqq r$ such that $D^{*}\subset D_{\zeta}$ and $|\zeta_{1}-\zeta_{2}|>\gamma$, and let us set such
that

(14) $\theta\in[a,b]\max_{\zeta\in D^{*}}|A\frac{f_{z}(z,\theta)}{g’(z)}1|\equiv\mu(D_{\zeta})-\delta$ .

Then from (13) we find that $\delta>0$ . Hence there exists the curve $\Gamma\equiv[\zeta_{1}\Gamma\zeta_{2}]$

lying in $D$ and satisfying that

(15) $0\leqq L(\Gamma)-l(\zeta_{1}, \zeta_{2})<r\delta/\mu(D_{\zeta})$ ,

where $L(\Gamma)$ is the length of $\Gamma$ .
Now let us subdivide $\Gamma$ in such a way that

$\Gamma=[\zeta_{1}\Gamma_{1}\zeta_{3}]+[\zeta_{3}\Gamma_{2}\zeta_{2}]$ , $|\zeta_{1}-\zeta_{3}|=r$ and $[\zeta_{1}\Gamma_{1}\zeta_{3}]\subset D^{*}$ .
Then, using the relations (14), (13) and (15), we may write for $\zeta\in\Gamma$

$|A\{F(z_{2})-F(z_{1})\}-(\zeta_{2}-\zeta_{1})\int_{a^{b}}d\prime p(\theta)|$

$\leqq|\int_{a^{b}}d\psi(\theta)\int_{\zeta_{1}^{3}}^{\zeta}\{A_{(\overline{z})}^{\theta\underline{)}}\frac{f_{z}(z}{g}-1\}d\zeta|+|\int_{a^{b}}d\psi(\theta)\int_{\zeta_{8}^{2}}^{\zeta}\{A\frac{f_{z}(z,\theta)}{g(z)}1\}d\zeta|$

$\leqq[(\mu(D_{\zeta})-\delta)\int_{\zeta_{1}^{3}}^{\zeta}|d\zeta|+\mu(D_{\zeta})\int_{\zeta_{3}^{2}}^{\zeta}|d\zeta|]|\int_{a^{b}}d\psi(\theta)|$

$\leqq[\mu(D_{\zeta})L(\Gamma)-\delta r]|\int_{a^{b}}d\psi(\theta)|$

$<\mu(D_{\zeta})l(\zeta_{1}, \zeta_{2})|\int_{a^{b}}d\psi(\theta)|\leqq|(\zeta_{1}-\zeta_{2})\int_{a^{b}}d\psi(\theta)|$ .

Thus the point $A\{F(z_{2})-F(z_{1})\}$ lies in the domain bounded by the circle with
the centre $(\zeta_{2}-\zeta_{1})|\psi(b)-\psi(a)|$ and the radius $|\zeta_{2}-\zeta_{1}||\psi(b)-\psi(a)|$ . Hence
$A\{F(z_{2})-F(z_{1})\}\neq 0$ . This proves the theorem.

REMARK 5. For the case where $f(z, \theta)\equiv z,$ $g(z)\equiv z$ , and $D$ is a convex
domain, since $\mu(D)=1$ , we have Theorem A again by making $A\rightarrow+O$ .

We state the following theorem which illustrates the relation between
Theorems 2 and 5.

THEOREM 6. Let $\Phi$ be the set of the at most $\varphi$ -concave sets, $\varphi$ being $<\pi$.
Then for each $ E\in\Phi$ the inequalities

(16) $\cos(\varphi/2)\leqq\mu(E)\leqq 1$

hold, where $\mu(E)$ is defined as in Theorem 5. (These inequalities hold not only
in case where $\varphi=0$ and hence $E$ is convex, but also in case when $E$ is not con-
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vex.) The second of these inequalities holds when $E$ is the set obtained out of
a convex set by excluding a finite number $(\neq 0)$ or an infinity of isolated points,
and the first of them holds when $E$ is the set whose boundary contains a pair
$[z_{1}z_{8}z_{2}]$ of oriented straight line segments $z_{1}z_{3}z_{3}z_{2}$ such that

(17) $\int_{[z_{1}z_{3}z_{2}]}d\arg dz=-\varphi$ .

PROOF. Let $z_{1},$ $z_{2}$ be two distinct points. Among the at most $\varphi$ -concave
curves $(\varphi<\pi)$ by each of which $z_{1},$ $z_{2}$ are joined, the curve which has the
maximum length consists of a pair of straight line segments $z_{1}z_{3},$ $z_{3}z_{2}$ such
that $|z_{1}-z_{3}|=|z_{3}-z_{2}|$ and $|\arg(z_{3}-z_{1})/(z_{2}-z_{8})|=\varphi$ . This may be proved
geometrically. Hence the left-side inequality in (16) holds. The rest is easy
and may be omitted.

By virtue of Theorem 6 we compare Theorem 2 and Theorem 5 in the
case where $g(z)\equiv z$ . If $D$ is an at most $\varphi$ -concave domain, $\varphi<\pi$ , whose
boundary contains a broken line segment $[z_{1}z_{3}z_{2}]$ satisfying (17) since $\mu(D)$

$=\cos(\varphi/2)$ , if (13) holds then (4) holds for $\alpha=\arg A$ , but the converse is not
always true. Hence for this case Theorem 2 is better than Theorem 5. But,
for example, let $D$ be an at most $\varphi$ -concave domain any two points of which
may be joined by a circular arc (lying in $D$) $z=z_{0}+ae^{i\beta}(\cos t+i\sin t)$ , for
which $t_{1}\leqq t\leqq t_{2},0\leqq t_{1},$ $t_{2}\leqq\varphi,$ $ 0<\varphi<\pi$ , and where $a>0,$ $\beta$ real. ( $a,$ $\beta$ may
depend on the two points to be connected.) Then we get

$\cos_{2^{-<}}^{\varphi}-(\sin_{2}^{\varphi}--)/-2^{-\leqq/\ell(D)\leqq 1}\varphi$ .

Hence we find that for this case (13) does not imply (4) and (4) does not
imply (13). Furthermore for the case where $\varphi\geqq\pi,$ (4) is senseless, but there
are some cases for which (13) makes sense. Thus we shall see that both of
the theorems are worth stating.

I wish to express here my hearty gratitude to Prof. S. Ozaki for his kind
guidance during my research.

Yamanashi University
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