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In recent years the logic with infinitely long expressions has been con-
sidered and developed by Berkeley school. (For this see [1], [2Z], and also
cf. [6]) In this paper, we shall consider ‘ constructive’ infinitely long expres-
sions. In the following we shall give a language for the logic with infinitely
long expressions and define a ‘formula with constructive infinitely long
expressions’ as a formula with infinitely long expressions (sometimes called
simply a formula) to which a so-called Godel number is assigned. We shall
show that the nesting number of a formula with constructive infinitely long
expressions (see below) is less than Church-Kleene’s w, (Theorem 1). Moreover
we shall establish a correspondence between formulas with constructive
infinitely long expressions and predicates in Kleene’s analytic hierarchy (cf.
[4]). We shall prove that a formula A with constructive infinitely long
expressions is representable in the X%, N T, -form, if the maximal number
of quantifiers nested in % is # (cf. n’(N) defined below) and especially, % is
representable in X} or I}, if the outermost logical symbol of % is 3 or V
(Theorem 2). On the other hand, any predicate expressible in the n-function
quantifier form is representable by a formula ¥ with constructive infinitely
long expressions such that n’(W)=#» (Theorem 3J). We shall also prove that
every hyperarithmetical formula is representable by a quantifier-free formula
with constructive infinitely long expressions (Theorem 4).

0. In this paper we shall use the following language:

Individual constants 0,1,2, - ;

Variables v,, vy, «*+, 04, -+ (< ®);

The predicate =;

Logical symbols /7, V, A, 3, V.

Prime formulas are of the formi=j,i=v,,v,=Jj and v, =v,, where 7 and
j are individual constants. Formulas are composed from prime formulas as
follows:

0.1. If A is a formula, then /A is a formula.
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0.2. If %A; are formulas for all i<w, VA, Ay, -, Wy, ---) and AQL, A, -,
A;, ---) are formlas, which are denoted by X A; (or VA and é\ A; (or AUy)
<@ 1 1<<w 1

respectively in the following. (Ordinary disjunction and conjunction of the
formulas A and B are considered as VA, B,B,---) and A, B, B, ---), respec-
tively.)

0.3. If A is a formula, then Fv,w,, -+ A and VYo, - A are formulas,
where v,,, v, -+ iS @ sequence of variables of order type w.

1. Let A be a formula. We shall define n(¥) (the nesting number of A)
and n’(%A) as follows:

1.1. If %A contains no logical symbol, then n(A)=0 and n’(A)=0.

1.2. If A is of the form 7B, then n(N)=n(B)+1 and n’(A)=n'(B).

13. If A is of the form lx» A; or il}u N;, then n(A)= {the least ordinal
number which is greater than n(2,) for all i < w} and n’(A) = {the least ordinal
number which is not less than n’(3;) for all i < w}.

14. If A is of the form Fv,,w,, -+ B or Yv,¥, -+ B, then n(A)=n(B)+1 and
n’(W) =n'(B)+1.

2. We shall assign at most one natural number to a formula % with
infinitely long expressions in the following and call a number the Godel num-
ber of N (denoted as A7) if it is assigned to A. Then a formula with the
Godel number is called a formula with constructive infinitely long expressions.
We define the Godel number of an individual constant ¢ to be 3! and the
Godel number of a variable v; to be 5/*1. The definition of the Godel number
of a formula is as follows:

211, Ti=jT=22.7s%1. 118+

2.1.2. Ti=p,1=22.78"1.1157%1,

2.13. Tp,=j1=22.75"1.11*,

214, Ty, =p;1=22.757 . 1157+,

22, T7M=2".7T" provided that A7 is defined.

231 TV N1 =227/, provided that M7 are defined for all i<w and f

defines ;7 recursively as the function of i.
232. TAA=2"-7, provided that M are defined for all i<w and f

defines ;7 recursively as the function of .

241, 30,00, - WT=212.78.111%  provided that MU is defined, the function
{g}(@@) is defined for all : and {g}(?)=#..

24.2. TN, - A1 =215.78.11™ ' provided that MA7 is defined, the function
{g}(@) is defined for all { and {g}(@)=#n,.

Let w, be the least non-constructive ordinal number.

THEOREM 1. (@) If W is a formula with constructive infinitely long expres-
stoms, then n(N) < w,.
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) If ais an ordinal number less than w,, then there exists a formula N
with constructive infinitely long expressions such that n() = «a.

PrROOF. (a) We shall define a partial recursive function ¢ with the fol-
lowing property: If @ is the Godel number of a formula % then ¢(a) is
defined, ¢(a) = O and | ¢(@)| = n(N).

Let 6(z,, n)zé)n() {z2}({y}(x)) (cf. [5] for 1;0) and p define 0(z,y, n) recur-

sively. It suffices for ¢ to take ¢(a)= {e}(a) where ¢ is a solution for z of

the following equation given by the recursion theorem (cf. [3. p. 352. Theorem
XXVIID:

{2}(@) = pt((a=22-Ts . 11®1 A t=2)
V (@=27-7@s \ t=25@3))
V (@=20-T@s \/ @=21-T@s ) A =355 = @3))
V ((@=28.793 . 11@1 \/ g=215.7@3 . ]]@4) A $=20(@1))

We can prove that ¢ has the required property by transfinite induction on
the nesting numbers of formulas with constructive infinitely long expressions.

(b) We shall define a partial recursive function & with the following
property: If ¢ <O, then &(a) is defined and is the Gédel number of a formula
with constructive infinitely long expressions.

Let {(z, 9, n) = {z}({y}(n,)) and ¢ define {(z, y, #) recursively. It suffices for
£ to take &(a)= {f}(«¢) where f is a solution for z of the following equation
given by the recursion theorem:

{zH@)= ptla=1Nt=22-73-118)
\Vi (CZ — 2(a)0 A (a>0 =+ 0 At= 27,7(2)(((1)0))
V(@=3-5@2 A t=2° 787 (g2, (g ).

Then we can prove that &(@) has the required property by induction on @ < O.

THEOREM 2. Let W be a formula with constructive infinitely long expressions
withn'M) < w. If n’'(M)y=n (n=0), Wis representable as a predicate in 3%, N iy
in Kleene hievavchy. Moreover if the outermost logical symbol of Wis a quantifier,
W is representable in X\- or IIL-form keeping the outermost quantifier in the
same kind.

PrROOF. We shall define inductively a predicate @,(a, @) satisfying the
following condition: If ¢ is the Gddel number of a formula ¥ with infinitely
long expressions such that n’(N) =< m, then Q,(a, ) represents A in the theory
of recursive functions (m =0). Moreover we shall give primitive recursive
predicates R,(a, u, wy, .-+, #,) and S,(a, %, u,, -, #,) satisfying the following
condition: If ¢ is the Godel number of a formula A with infinitely long
expressions such that n’(A) < m,



On predicates with constructive infinitely long expressions 179

Qm(a: a)‘:)#ﬂo o Vﬂmame(a; &(x): Eo(x): Tty B—m(x))
ZHBO T 3:Bmvxsm(a; C_l/(x): Bo(x): Tty Bm(x))
where # is V or 3 according as m is even or odd and i is 3 or V according

as £ is V or 3.
First we shall give some auxiliary notations. Let F(a, a) be

{(@); =331 A\ (@), =341 A\ (@)1 # 0 A (@)1 # 0 A (@)s,1 = (@)s,1)
V(@) = 3931 A (@), =542 N\ (@)s,1 # 0 A(@),2 # 0 A (@)s,1 — 1 = a(@)y, = 1))
V (@)s =532 A (@), = 3P4t A(@)s,a # 0 A (@)1 # 0 A a((@);e = 1) =(a)y,1 ~ 1)
V (@) =593,2 A (@), =542 A (@)g,3 7 0 A (@0 7 0 A (@), 1) = a((@)y,5 = 1)).

Then E(a, @) 3xE(a, @&(x)=2VxE\(a, d(x)) for some primitive recursive E, and
El-
The inductive definition of Q.(a, @) is given as follows:

Qa, )2 (a=22-7%s .11« A\ E(a, @)
V(a=2"-7 \ 7Qy(@)s, )
V(@ =2°-T A VuoT (@), ©, v)
A 3Nu(7 T1((@)s, 2, ) V Qo(U(ws), @0)))
V (@ =217 AYu,FoT(@), 2., )
A YuNu,(7 Ti((@)s, 1o, #1) V Qu(U(wty), ))) .
By substituting in (0) for “ Q,(e, @) ” the predicate expressions “ VF3xR(a, d(x),
B(x))” and “3BYxS,(a, a(x), B(x))” where R, u,v) and S,a, %, v) remain to be
selected, we obtain the following equivalences (1) and (2).
VAAxR (a, @(x), B(x))2(a =22-7%s . 1194 A AxE (a, A(x)))
V (@ =277 AYBIx 7 S(a)s, (%), B)))
V(@ =227 A\VuIoT,((@)s, %, v)

)

W A 3Nu(7 T(@)s, 2, w) V VBAXR(U(w), @(x), F(x))))
V (@ =217 A Yu,T,(@)s, #,, v)
A NN, (7 To((@)s, %o, 2,) V VxR (Ulaty), &(x), B(%)))).
ARV xSy (@, @(x), B(x) 2(a =22-Ts . 1194 A Yx,E (a, @(x,))
V (@ =2"-7% A\ Y%7 Ry(@)s, @(x),B(2)))
@ V(@=2°T9% A VuIoT (), u, v)

A VU7 T1(@)s, 2, 1) V 3BV 2,5 Ulw), &(x,), (%))
V(@=21-7%s A Yu, 0T (a),, Uy, V)
AN NuNu, (7 Ti{(@)s, 29, 1) V ABY %, S Uley), (%), E(xa)))) .
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We shall define Ry(a, #,v) and Sya, %, v) so that they will be primitive recursive
and (1) and (2) will be true. To find primitive recursive Ry (e, %, v) and Sy(a, %, v)
satisfying (1) and (2), we begin by observing that in the right member of (1)
the quantifiers can be advanced to give an equivalent of the form

(LD N uNu,Nu,¥ fIvIxF 05 a, 2, u, 4y, 1y, v, A(%), B(R))
where FR»S9(q, z, u, u,, u,, v, @(x), f(x)) is exactly the right member of (1) with
its quantifiers omitted. Next is equivalent to

VEFR(FR5(a, (2, A2, HR™0-3), FR-3Y,

((®)y = 3o, A()1 31y BE () =) A (), = 3)
where BF stands for 2:8(2%-3%+3),

Then we can see that (1.2) takes the form VYA3xME»Sq(a, a(x), B(x)). Simi-
larly as above we can reduce (2) to the form JRVxNZoS(q, @(x), f(x)). We can
obtain a partial recursive function (e, #,v) by using the recursion theorem
such that

(1.2)

(z-(a, u, v))o =0 —:M/Iaayz('r(a:,y,z))o=0,Axyz(r(a:,y,z))1=0(d, u, ?))
N Seq (%) A Seq () A 1h(z) =1h(v),

(’L'(CZ, u, v))l =0 Nl.ryz('r(x,y,z))o=0,Axyztr(x,y,z))1=0(a’ u, 1))
A Seq (#) A\ Seq () A 1h(z) =1h(v).

This is seen to be primitive recursive by course-of-values induction on .
(We omit here to give ME»S, NRBuSo and z(a, »,v) exactly, because it is not
difficult but laborious and needs too much space.) Now we propose to define
R, and S, by Ra, u,v)=(z(a, u,v)),=0 and Sya, «,v)(z(a, #,v)),=0 respec-
tively. Then R(a, u,v) and Sya, u,v) are primitive recursive,

VA3xR(a, a(x), f(x) =Y fAxMES(a, d(x), B(x))
and
3pVxSy(@, @(x), B(x)= ABYxNE-S(a, &%), B(%)) .
We can prove
(3) Qo(a: a) 2 VﬁaxRO(a’ C_l'(X), ‘E(x)) 2 EﬁVxSO(a, 0-((96'), ‘g(x))

under the presupposition that @ is the Godel number of a formula U with
infinitely long expressions such that n’(%)=0 by transfinite induction on the
nesting number of n(Y). The hypothesis of induction states that, for any b,
if b is the Godel number of a formula B with infinitely long expressions such
that n’(B) =0 and n(B) < n(W), then

Qu(b, @) VPIR(b, A(x), B(x)) =BV xS,(b, a(x), f(x)) .

By our presupposition one of four cases applies.
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Case 1. n(A)=0, i.e. =227 .114, This is obvious by (0), (1) and (2).
Case 2. A is of the form 7/8B, i.e. a=27-7s where (a), is the Godel
number of B. By the hypothesis of induction
Qy((@);, @) YAAXR((@)s, A(x), f(x)) = BV xS,(@)s, A(%), f(x)),
from which follows
7Qy(@)s, )2 VB3x 7 S(@)s, A(x), B()) 2BV 27 Ri((@)y, A(x), B(x)) .

From (0), (1), (2) and this follows (3).
Case 3. is of the form VU, i.e. @ =2°-7s where (@), defines recursively

the Godel numbers of A; as a function of i. If Q. e, «) then YuIvT(a)s, «,v)
and Q,({(@);}(?), @) for some i, which implies YA3xR,({(2);}(), &(x), f(x)) and
3BVYxS,({(@)s}(@), @(x), B(x)) by the hypothesis of induction. From above we
see easily that VA3xR(a, a(x), f(x)) and 3FYxS(a, a(x), B(x)). Conversely if
VBAxR(a, a(x), B(x)), VuIvT,(@)s, #, v) and VBIxR({(a)s}(), @(x), (%)) for some i.
By the hypothesis of induction this implies Q,({(@);}(), @), whence follows
Q«e, «). Similary for the dual form.

Case 4. % is of the forh A%;. This case can be treated in the same

way as Case 3. Thus the proof is completed for m =0.

Now we assume that Qua, «), Ria, u, uy, -+, u,) and Sga, u, #,, --+ , ;) have
been defined to satisfy the conditions stated at the beginning of this proof.
We are to consider the case m=%k+1. Let D(a, a, ) be

Yu(NoYu(T\(a, v, w)— u + Ulw)) — aw) = f(n)) .

Then D(a, «, B)=Vr3xD(a, &(x), (%), 7(x) = IrVxD.(a, @(x), f(x), 7(x)) for some
primitive recursive D, and D,. The inductive definition of @;..,(@, &) is given
as follows:

Qurila, ¥)2(a =273 .114 A E(a, a))

V(a=2*7% N\ 7 Qi (@), @)
V (@=2°-7 A\ VuFoT\((a)s, , )
N 32Yu(7 T(@)s, 2, ) V Quai( Ulw), )
V (@ =217 A Yu,JoT,(@)s, 5, v)
A VuNu,(7 T(@)s; 2oy %) V Qs Ulney), )
V (@ =273 . 11“4 A Yu,30T(a)s, u,, v)
A Fr (D@, @, 70) N Qil(@, 70))
V (@ =21.7®s3 . 114 A Yu,JoT,((@),, s, 1)
N7 D{(@)s, @, 1)V Qi(@)s 7)) -

By substituting in (4) for “ @;..,(@, «)” the predicate expressions

@
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“HBMB, -+ ARV Fre13¥ Ry i@, (%), Bo(x), Bi(%), -+, Bi(x), Ek+1(x)) ”
and
“ t‘ﬂo#ﬂ1 e Vﬂkaﬁk-!-lvxsk-i-l(ar d,(x): I-B-O(x)’ El(x): °tty Ek(x): §k+1(x)) ?

where Ryi(a,u, 4, -+, #ps) and Sgui(@, #, u,, - , #y;) remain to be selected,
we obtain the following equivalences (5) and (6). (We shall abbreviate
R.(a, &(x), Bo(x), -+ , Bu(x)) and Su(a, @(x), fo(x), =+ , Bn(x)) as Rula, &, By, By %)
and S,(a, &, Bo, -+ , Bm» %) Tespectively.)

$Bo - VBrsTxRy (@, a, Bo, -+, Bis1, X)
2(a=22.7@3 .11 A AxE\(a, @(x)))
V(@=2"-T9 A %8y -+ VB 3% 7 Spas((@r &, Boy -+ , Brss, X))
V(@ =2°-7% A\ YuFvT\(@)s, , v)
N 3Nu(7 T (@, 2, 6) / #By +++ YV Bis FAR 4 (TUW), €, Boy ++ 5 Bras X))
G)  V(a=2"T A Yu,30T5(@)s, %1, v)
AN uNu (7 T(@)s, tho, 1) NV £Bo ++ ¥ Bis1 xR s i (Uwty), &, Boy ++* , Birr1s %))
V(@ =273 . 114 A Yu, o T(@)s, s, V)
A Fr (YB39 Do((@)s, (D), Fo 3Dy Bnsa())
AUBy - BN B IXR (@)1 Tos B+ 5 Brsss X))
V(@ =279 . 114 A Yo, o Ty(@)s, 4y, ¥)
ANV (Vr3x7 Di((@)s, A(x), 7.(2), 7(x))
VU8, -+ 3BV B F¥ R, 71, Br s Biorr, X)) -
HBo -+ ABx4:1Y8Skai(a, t, Bo, -+, Bras, %)
Z(a=22.793 .11 A Y, E (@, @(x,))
V(@=2"-T AYBy -+ APrsV2, 7 Rsi(@)sy &, Boy 5 Brrsss %1))
V(@ =2°-7 A YuzpT (@), %, v)
A FNU(7 T(@s, 2, )V UBo -+ ABraa¥5:Sias(U), at, By, +++ , Brss, 1))
(6) V(@ =217 A Yu,F0T (@), u,, v)
A NN w,(7 To((@s, h, )V HBy -+ B V5 Sias(UCy), @, Boy -+, Biowss %))
V(@ =273 . 114 A Yu, 30T ((@)s, %,, v)
Ay (FrVx,D,(@)s, &%), Folx,), 7(x,)
A1+ Y BBV 5 S (@ Tor By » Bisss %))
V (@ =275 . 1194 A Vo, 30T ((@)s, 45, 0)
AYT1(3Br:1Vy7 Dy(@)s, (D), 7o(3), Brsr(5))
V 81+ VBBV %S 71, Bry o+ s Biorss A5))) .
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In the right members of (5) and (6) the quantifiers can be advanced to give

equivalents of the following and respectively or and

respectively, according as £ is V¥ or 3:

(7.0 FeVuVu,Yu,Vr ¥B,37,3B; -+ A8V u Y uYrV By I yIx b,

where P, is exactly the right member of (5) with its quantifiers omitted ;

(8.0 F2VuNu Yo, 3y 3B N7 VB -+ VBV u,Yu, 303y 3B VIV, - V2, Py

where P, is exactly the right member of (6) with its quantifiers omitted.

(7.1) F2VuVu,Yu,3r,ABVr VB, -+ 3BV uYuVrV Bry, JoIy3x P, ;
(R deVuVu NNy VB,3r .38 -+ VB Ve,V J03r 3B VIV Xy - V2:,.P; .

Then in the same way as in the case m =0, we can define Ry.,(a, #, t,, -+, thy11)
and S;..(a, #, t,, -+ , uz+,) satisfying the required condition. By mathematical
induction on m we can complete the proof of the first part of

Now let % be a formula with constructive infinitely long expressions such
that the outermost logical symbol of % is I (or V), a=TAT and n’'M)=m < .
A is representable by

a=21%7% .11 A\ Jr(D{(@)s, &, 1) N\ Qu—i((@)0s 7))
(or @=21-7% 114 AYr(7D{(@)s, &, 7))V Qui(@)y, 7)) -

Since Q.-.((@), ) is expressible in 2%, N %, this is expressible in 3%, (or IIL).
Thus we complete the proof.

THEOREM 3. Any predicate expressible in the n-function quantifier form is
vepresentable by a formula W with constructive infinitely long expressions such
that n’'(M)=mn.

Proor. We shall consider that the theory of recursive functions is con-
structed from the following primitives which are correlated Godel numbers
as follows:

Primitives: 0,1, ay, +, X, @u, =,7,V, N, 3, V¥

Correlated Godel numbers: 3,5,7%,9, 11,13™+, 15,17,19, 21, 23, 25.

Then the Goédel numbers of formulas and terms of the theory of recursive
functions are defined in the same way as in [3]. Since no confusion is to be
feared, we shall denote the Godel number of a formula or a term A of the
theory of recursive functions as "A7. We shall fix two primitive recursive
functions Ai{c}() and 2ij{g}(i,j) and correlate the »n-th variable a, to the vari-
able vm and the m-th function variable a,, supplied by i (i. e. @) t0 Vigm,0.
‘We shall denote {c}(@) and {g}(i,7) by c¢(@) and g(i,j), respectively.

Let A be a formula in the theory of recursive functions. We shall denote
the number of logical symbols in A by 1(A). In the end we shall obtain
partial recursive functions ¢, such that ¢, ("A") is defined and is the Godel
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number of a formula with infinitely long expressions, which represents A in
the language with infinitely long expressions. We shall first explain the
outline to obtain ¢,. The formula of the form 7T,=7, contained in A is
regarded as V(E=T,Ai=1T,). (Thdugh the expression of the form ‘i=7"is
not a formula1 with infinitely long expressions, we shall make use of this and
similar rough wording for the convenience of explanation.) In the following
let J and K stand for sequences jj, -, jm and &y, -, kn (0 <m), respectively.
We shall obtain partial recursive functions ¢™(G, ¢ 7, K) for m=0 satisfying
the following condition:

1) If ¢ is the Godel number of a term 7T, ¢™(, ¢, ], K) is defined and is the
Go6del number of a formula with infinitely long expressions which is denoted
as [{=77] sometimes and which means = T,, where 7, is obtained from T
by replacing every occurrence of the variable @, by the individual constant
k, for each / (1 =/<m). Roughly speaking, [i= T is obtained as follows:
HTis0, [i=T7]is 1=0.

12 U Tisl, [i=T]isi=1.
(131) If Tis a; where j#7, A=<I<m), [i=T1] is i =0e,.
132) If Tisa; A=si=m), [i=T]is i=k.
A4y If Tis afTy), [i=1T]is \k/(i:vg(j,k,/\[k:le).
15 U TisT\+T,or T,-T, [i=T]is

V V@ =tk AL =T IN[h,=T,])

hy hy

VNV @E=h by AR =T 1A Lh,=T;1)

hy hy
where #,+h, or A, -k, means an individual constant which is the value of
hy+h, or Ay -k, for individual constants %, and #,.

Then we shall obtain partial recursive functions ¢™(a, J, K) satisfying the
following condition:

(2) If @ is the Godel number of a formula A with 1(A)< n, ¢™a,], K) is
defined and is the Godel number of a formula A with infinitely long expres-
sions obtained as follows:

(20.1) Every variable a; where j#j, (1=</=m) in A is correlated to v..
(2.0.2) a; 1=l=m) in A is correlated to the individual constant £,

(21) If Ais of the form T\=T,, A is VIN({(i=T1,[=T,],LG=T.], ),
2.2) If A is of the form /A, %A is 7?{1 where U, corresponds to A, by the
relation T, 1= (TA, ], K).

23) If Ais of the form A,V A, (or A, NA,), A is VA, Wy, Ay, ) (or A,
Ay, Ay, --+)) where A; correspond to A; by the relation ™N;7=¢» (TA;, ], K) for
i=1,2.

(24) If A is of the form 3Ja;A4, (or Ya;A4,), A is \k/QI1 (or {C\?Il) where 2, cor-

or
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responds to A, by the relation "%,V = ™ (TAY 1,7, K, k).
(25) If A is of the form Fa;A, (or Va ;A4,), A is

va(j,O)vg(j,l) SO,
(or V0,00, A)

where A, corresponds to A, by the relation ™N,7=9¢m ("TA,7, ], K). ¢,(a) is
defined to be ¢%a). It is easy to see that, if A is in X} or in I}, n'(M==n
for the formula A which corresponds to A by the relation TH1= ¢, AM).
Next we shall obtain the functions ¢™ and ¢? in practice. Let
22. 7L 11sE NI E =0
0w, i, 1, x,J, K, j, v) =
{w}(4, x,J, K) otherwise

and p, ., define pp recursively. Let
o™w, i1, x, ], K,7)= 211, 787 S (pg, s, 4,1, 2,0, K, )
and p,,,, define pP recursively. Let
22‘73i+1_113i1+i2+1 if 1):0,
o5, i, %, 3, ], K, iy, i, 0) = {w}Gy, %/, K)  if v=1,
U A{wl(y, 3, 7, K) otherwise
and p,,, define pP recursively. Let
o™w, i, %, 9, J, K, i, i,) = 211 78 g,y w, 2,9, 0, K, 81489

and p;,, define o recursively. Let

- . 2M-+5 ; ;
pzn(w, 5, X, yy]; K; Zl) = 29 '7S1 (P3,ma W08 8, Y, T, K1)

and p, ., define ppP recursively. Let pP* be obtained from of by replacing the
part i,+i, by i,-1,, pP be obtained from pP by replacing p, ., bY Ds,m» bes,m define
o recursively, o® be obtained from pP by replacing ps,n DY Pe,m and prm
define o7 recursively. Then it suffices for ¢™ to take ¢™(, ¢, ], K)= {7,}G, ¢, ], K),
where 7, is a solution for w of the following equation given by the recursion
theorem:

{w}C, 1, ], K)
=~ pu((t =3 ANu=22-T3"".11%)
V({E=5Au=22.75"""1.11")
V(@E=T3A@); #0
A0 <v=m— (D) = 1 #7,) A w = 22. 7801115508 D71y

D)

o T1

VIO <o m Ay = L= g, Au=22T50118
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15005 o0,
\/(tzz '3 /\(t)()'5:/J:0
Aw=29 7S%m+4(p1,m,w,i, (89,5 ~1, (D17, K0
V(=2 3“’1 ,5“’2 Ao =2° _7.5'%”‘*4 Pty O1, 02,7, K0)

V (£=21 .3Y1,5%: ANwu=2°. 787" 7, maw, 4, ®1,®2,7,0))
Let
9", x,J, K) if v=0,

¢™@i,v,J, K) otherwise

05 (x, 3, ], K, i,v) =

and ¢, , define 67 recursively. Let

0m(x, y, J, K, i) = 211 787" @0, ms 0,0, K, 0
and ¢, define 67 recursively. Then let

oa, J, K) = 29075 a1, m, @1,@3,7,K>

and e, define ¢ recursively. We are to obtain ¢m, under the hypothesis
of induction that ¢? have been obtained for all p=0 and ¢ (0 =<¢=n) and

possess the required property. Let ¢, , define ¢? recursively for all p=0 and
g 0=g=mn). Let

¢Zn<x: ]y I{) 1f V= O y
o™y, ], K) otherwise

{mx,y, ], K o) =

and 7,,, define {7 recursively. Let
Prnila, J, K)
= pu((a=2"-3"1.5“2 A w=gm(a, ], K))

V(e =231 A =27 7R @10, K0y

V (a=2" 3@ 1. 5W2 A 4 — 99 .7s§m+2wn,m,<a>1,<a>2,.7,K))

V(@ =221.3%1.5@2 A gy = 211. 75" Frn, m, @1, @02,7, 0

V(¢ =22.3"1.5"

A@, =T A (@),,5# 0 A0 <v =m—(@)y,s = 1 # )
A = 20 751" M en, myy (@200 @01,541, K0

V (@), =13 A(@),,; % 0
A 0 =213.75] (@@ 5D, 11¢7 @27, 0Y))

WV, (Cl — 225.3(11)1 _S(a)z
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A U@ =T A(@)ys 70 AV < 0 S = (@), = 1 # )

A o= 21178 2 en, a1, (@32, s @13+1,K)

V (@), =135 A (@), %0
A o = 215781 (& @y,5+D, 1193 @27, 6)))

and en4,n define ¢, recursively. Take ¢.(@)=¢¥@). By induction on » we

can see that ¢7 (and ¢,) satisfy the required conditions.
THEOREM 4. Any hyperarithmetical formula is representable by a quantifier-

free formula with constructive infinitely long expressions.

ProOOF. To prove the theorem we shall first obtain a partial recursive
function y™(a, 1y, **+ , %, 15, , in) satisfying the following condition: If ¢ is
the Godel number of a quantifier-free formula 2 with infinitely long expres-
sions, then y™a, n,, -+, %, 1y, -+, In) 1S defined and is the Godel number of the
formula obtained from WU by substituting individual constants iy, -+, i, for vari-
ables v,,, -+, vs, respectively in 2. Let N and /stand for sequences #, -+, iy,
and i;, -+, 1, respectively. Let

ww, d, N, I, x) = {w}({d}(x), N, I)

and ¢ define ¢ recursively. It suffices to take y™(e, N, I)= {k,}(a, N, I) where
kn is a solution for w of the following equation given by the recursion

theorem:
{wl(a, N, T)

= pu(a =22-7%3.11“
A (@) =351 A (@), #0)
V(@) =552 A (@), # 0
AV <v=m ""‘(djg,z =1+ n,)))
A (@), =341 A (@), 7 0)
V(@) =5 A (@), %0
AYV(0 <o =m— (@), + 1+ n,)))
ANu=a)
V (@) =351 A @)y, #0)
V (@) =532 A (@)s,, # 0
AY0 <o =m—(a);,, =1+ n,)))
A (@) =542 A (a@),,, # 0
AT <0 <m A @)~ 1=1m Atw=22-72.115"

v+l

)
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V(@) =52 A (@), # 0
A (@), =34 A(a),,, #0)
V(@) =542 A (@), # 0
AYV0 <v=m—(a),,~ 1+ n,)))

tp+1

ANBO<v=mA @)y, ~1=n, Au=T" -11"%)
V(@) =52 A (@)s,, # 0 A (@), =542 A (@),,, # 0
ANFFIw@<v=m AO<w=m N (@), = 1=n, N\ (@), 1=

ty+1 Tw+1

11570
V(e= 27_7‘“’3 N 27_7(wl((a)3,N,I) )
V(@=207% A\ o= 29. 75,0, @4, ¥, 1)

V(@ =24 7@ A o = 211. 787", w, 0, W, DY)

ANu—=22.73

By transfinite induction on n(2) we see that y™ satisfies the required condition.
Let y= O and 3-5°<=0. Then
Hla)=2a,=ay;

[{21/ (do)T—" aaladz(az - l;I Pz(Lag'2)"'3 A\ T%(dm Ay, Ay, al)

AVagas < ay—(Hfas) A (@3)a; =0)
V (7 Hfay) A (@)ay=1)));
Hy.e (a0) @ Haappol(@oo)

2 3Ja,Jaya; = (a0) A\ @ = (@), N [{(z)(a,ﬁo)(aﬂ) .

We shall obtain a partial recursive function 7(y) satisfying the following
condition: If y =0, then 7(y) is defined and is the Godel number of a quanti-
fier-free formula with infinitely long expressions which means Hy(a,).

We shall take 7(y)= {£}(y) where % is a solution for w of an equation
given below by the recursion theorem. To give the equation we shall treat
several cases separately.

Case 1. y=1. Let

{w}(y) =22 7SO 1500

Case 2. y=20 A(y),#0. We shall translate H,(a,) changing a,, ,, @; to
i,j, k, respectively. Let

ay, = H p&agz)% =A(ay, a,),
ag<ay

J(a; < a)eAfa, a),

(az)ag =02 A44(a, ay),
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(az)ag =1=2A(a, as),
Tia,, ay, @y, ;)2 Aa,, ay, a;)

where A,, -+, A5 are arithmetical and expressible by a quantifier-free formula
with constructive infinitely long expressions by [Theorem 3. Let

0,0, 7) = x¥ (@ Axay, @), c(1), ¢(2),4,7),

0,(1, k) = 2T Alay, @5) "), c(1), c(3), 3, k),

05(J, B) = 2% @n(T As(@y, @5)), ¢(2), c(3), 7, F),

8,(J, k) = x¥(@u(TAfay, as) ™M), c(2), ¢(3), 5, k),

05, 1) = xX (" Axay, @y, @2)7), c(), ¢(2), 4, )
where n=1(4,) 1 <m=<5). Let

r{wi(2),c(0), k) if »=0,
’co(w, Z) jy k: ?)) =
0:(4, &) otherwise
and 7, define &, recursively. Let
k(w, 2,7, B) =21 ,7s‘i 70y W) 29§, )

(which corresponds to H(a;) A(@y).,=0). Proceeding with this way succes-
sively we can obtain 64w, z,1,j) corresponding to
Vay(as < ay—(H @) A\ (@3)ay =0V (7 Has) A(az)ay; =1)). Let

0,2, 1) if =0,
0.(w, z,1,7,v)=4{ 05, 7) if v=1,
0w, z,1,7) otherwise
and s; define 8, recursively. Let
0., 2,4, ) = 211781 w26
and s, define @, recursively. Let
o(w, 2, i) = 2075 Gpwad
and s define ¢ recursively. Then take
{w} 20y = 20. 751 ww. o
As is easily seen this corresponds to Hy(@o).
Case 3. y=3-5%2, Let
a,=(ay)y N\ @, ="(a,), 2 Bla,, a,, a,)

where B is arithmetical and expressible by a quantifier-free formula with
constructive infinitely long expressions by Let
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Xz(son(rB(aOI als az)—l)r C(l): 0(2): i: ]) 1f V= 0 ’
2{w}({2}(Go)), (0), 1) otherwise

”o(ws z, i: jr Zf) =

(where n=1(B(a,, a,, a,))) and d, define =, recursively. Let

m(w, 2, i, j) = 211 . 751 @owaip

and d, define =, recursively. Let

" 3 .
71-'2(1/0, Z, l) pmed 29 .781 d1,w,2,0

and d define 7, recursively. Then let

{w}(3-5W2) = 29.75] dw, W2

Conclusion by the definition by cases: Let

22 . 750(0)+1 . 1150(0)+1 lf y= 1 ,
{w)(p) =y 22755 6w w0 if y=2""A()#0,
29.78% @,w, @) if y=3.5%2,

We can prove that 7(y) satisfies the required condition by induction on y € O.
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