J. Math. Soc. Japan Vol. 15, No. 2, 1963

Pseudo-uniform reducibility

By Raymond M. SMULLYAN¹⁾

(Received June 16, 1962)

1. Introduction

In [1] we showed:

THEOREM A. If every recursive set is representable in a theory (T) then (T) is undecidable.

THEOREM B. If every recursive set is definable in (T) and if (T) is consistent, then the set T_0 of Gödel numbers of the provable sentences of (T) is recursively inseparable from the set R_0 of Gödel numbers of the refutable sentences of (T).

The above propositions combine notions of recursive function theory with those of mathematical logic—i.e. with the concept of a "first order theory". In this note we obtain generalizations of these propositions which are purely recursive function theoretic in nature. We also show that the conclusions of Theorems A and B hold under still weaker hypotheses.

2. Pseudo-uniform reducibility

The word "number" shall mean natural number. We use "A", "B", " α ", " β " for sets of natural numbers. A set A is (many-one) reducible to α if there is a recursive function $g(\psi)$ (called a (many-one) reduction of A to α) such that $A = g^{-1}(\alpha)$ —i. e. for each number $i, i \in A \leftrightarrow g(i) \in \alpha$. Consider now a collection Σ of recursively enumerable sets. The collection Σ is *uniformly* reducible to α (as defined in [2]) if there is a recursive function g(x, y) (called a uniform reduction of Σ to α) such that for every i for which $\omega_i \in \Sigma$, the function g(i, y) (as a function of the one variable y) is a reduction of ω_i to Σ .²⁾ Thus, if Σ is uniformly reducible to α , then not only is every element of Σ reducible to α , but given any such element ω_i (in the sense of given its index i) we can *effectively* find a reduction of it to α .

It is trivial to verify that if some non-recursive set is reducible to α ,

¹⁾ This research was supported in part by a grant from the Air Force Office of Scientific Research.

²⁾ By ω_i , we mean the set of all numbers x satisfying the condition $(\exists y) T_1(i, x, y)$ where $T_1(z, x, y)$ is the predicate of Kleene's enumeration theorem [3].

then α is non-recursive. Hence, it follows that if every recursively enumerable set is reducible to α , then α is non-recursive (since there exists a recursively enumerable set which is not recursive). This fact is well known. Suppose that every *recursive* set is reducible to α ; does it follow that α is non-recursive? Clearly not, for if α is any non-empty set whose complement is also non-empty, then every recursive set A is reducible to α (just take an element a_1 of α and an element a_2 of $\tilde{\alpha}$ and define $g(x) = a_1$ if $x \in A$; $g(x) = a_2$ if $x \notin A$). Since A is recursive, g(x) is a recursive function, and clearly a reduction of A to α . Suppose that the collection of all recursive sets is *uniformly* reducible to α ; does it follow that α is non-recursive? In [2] we showed that this hypothesis implies not only that α is non-recursive, but that the complement of α is productive. Thus, to establish the non-recursivity of a set α , the hypothesis that all recursive sets be reducible to α is too weak, and the hypothesis of uniform reducibility is stronger than necessary. We now consider a notion which is of intermediate strength.

We shall say that Σ is *pseudo-uniformly reducible* to α if there is a recursive function g(x, y) (called a pseudo-uniform reduction of Σ to α) such that for every set $A \in \Sigma$, there is a number α such that $g(\alpha, y)$ (as a function of the one variable y) is a reduction of A to α . We note that this definition (unlike that of uniform reducibility) does *not* require that such a number α be an index of the set A, nor that there be a recursive function $\varphi(x)$ which assigns to any index of A such a number α . If there were such a recursive function $g(\varphi(x), y)$. We shall soon see that a sufficient condition for α to be non-recursive is that the collection of all recursive sets be pseudo-uniformly reducible to α . And in light of our next proposition, we feel that this fact constitutes the mathematical essence of Theorem A.

The notion of pseudo-uniform reducibility arises naturally in connection with metamathematics in the following way. Suppose we have a theory (T)with standard formalizations (cf. [4]). Let $F_1, F_2, \dots, F_n, \dots$ be an effective enumeration of all the formulas with exactly one free variable; let Δ_i be the numeral designating the natural number i; let g be an effective Gödel numbering of all closed sentences; let T be the set of all provable (closed) sentences and R the set of all (closed) sentences whose negation is provable; let T_0, R_0 respectively be the set of Gödel numbers of the provable, refutable sentences of (T); let $\varphi(i,j)$ be the Gödel number of $F_i(\Delta_j)$. Under the usual requirements of "effectiveness" of the Gödel numbering and of the sequence $\Delta_0, \Delta_1, \Delta_2, \dots, \Delta_i$, the function $\varphi(x, y)$ is (general) recursive.

A formula F(x) is said to *represent* the set of all numbers *n* for which $F(\Delta_n) \in T$. We pointed out in [2] that if a set A is representable in (T), then

A is (many-one) reducible to T_0 . We now note the following stronger fact: PROPOSITION 1. If each element of a collection Σ is representable in (T),

then the collection Σ is pseudo-uniformly reducible to T_0 .

PROOF. For each element A of Σ there is, by hypothesis, a formula $F_i(x)$ which represents A in (T). Then for every number $j, j \in A \leftrightarrow F_i(\Delta_j) \in T \leftrightarrow \varphi(i, j)$ $\in T_0$. Thus $\varphi(x, y)$ is a pseudo-uniform reduction of Σ to T_0 .

We now show

THEOREM 1. If the collection of all recursive sets is pseudo-uniformly reducible to α , then α is not recursive.

We actually show Theorem 1 in the following stronger form.

THEOREM 1'. Each of the following conditions implies the next.

- (a) The collection of recursive sets is pseudo-uniformly reducible to α .
- (b) There is a recursive function g(x) such that for every recursive set A, there is a number i such that $i \in A \leftrightarrow g(i) \in \alpha$.
- (c) α is not recursive.

PROOF. Suppose (a); let f(x, y) be such a uniform reduction. Define g(x) = f(x, x). Then g(x) is recursive. Let A be any recursive set. By hypothesis there is a number i such that for every number $y, i \in A \leftrightarrow f(i, y) \in \alpha$. Setting $y = i, i \in A \leftrightarrow f(i, i) \in \alpha \cdots$ i. e. $i \in A \leftrightarrow g(i) \in \alpha$. Thus (a) \Rightarrow (b).

Suppose (b). We must show that α is not recursive. Suppose it were. Then $\tilde{\alpha}$ would be recursive. Then $g^{-1}(\alpha)$ is recursive $[g^{-1}(\tilde{\alpha}) = df$ the set of all *i* such that $g(i) \in \tilde{\alpha}$. Then there is a number *i* such that $i \in g^{-1}(\tilde{\alpha}) \leftrightarrow g(i) \in \alpha$. But $i \in g^{-1}(\tilde{\alpha}) \leftrightarrow g(i) \in \tilde{\alpha}$. Hence $g(i) \in \tilde{\alpha} \leftrightarrow g(i) \in \alpha$, which is impossible.

In view of Proposition 1, Theorem 1 is indeed a generalization of Theorem A.

We also note that the statement (b) \Rightarrow (c) of Theorem 1' is a stronger statement than Theorem 1, and implies the following stronger form of Theorem A (by setting $g(i) = \varphi(i, i)$).

THEOREM A'. If for every recursive set A, there is a number i such that $i \in A \leftrightarrow F_i(\Delta_i) \in T$, then T_0 is non-recursive.

The hypothesis of Theorem A' is obviously weaker than that of Theorem A, for the latter says that for any recursive set A there is a number isuch that for *every* j (whether equal to i or not), $j \in A \leftrightarrow F_i(\Delta_j) \in T$.

3. Pseudo-uniform reducibility of ordered pairs

Let A, B, α, β be number sets. A recursive function f(x) is a (many-one) reduction of the ordered pair (A, B) to the ordered pair (α, β) (as defined in [2]) if f(x) is simultaneously a reduction of A to α and of B to β .—i. e. for every number i: (1) $i \in A \leftrightarrow f(i) \in \alpha$; (2) $i \in B \leftrightarrow f(i) \in \beta$.

Consider now a collection Σ of ordered pairs of number sets. We shall

say that Σ is *pseudo-uniformly reducible* to a pair (α, β) if there is a recursive function f(x, y) (which we will call a pseudo-uniform reduction of Σ to (α, β)) such that for every pair (A, B) in Σ , there is a number *i* such that f(i, y) (as a function of the one variable *y*) is a reduction of (A, B) to (α, β) .³⁾

The obvious analogue of Proposition 1 is

PROPOSITION 2. Let S be a collection of sets and let Σ be the collection of all ordered pairs (A, \tilde{A}) such that $A \in S$. Then if every element of S is definable in (T), and if (T) is consistent, then Σ is pseudo-uniformly reducible to the pair (T_0, R_0) .

PROOF. As in the proof of Proposition 1, let $\varphi(i, j)$ be the Gödel number of $F_i(\Delta_j)$. Let $A \in S$. Then for some number $i, F_i(x)$ defines A in (T). Thus for all $j, j \in A \Rightarrow F_i(\Delta_j) \in T$ and $j \in \widetilde{A} \Rightarrow F_i(\Delta_j) \in R$. Since (T) is consistent, then $j \in A \leftrightarrow F_i(\Delta_j) \in T$, and $j \in \widetilde{A} \leftrightarrow F_i(\Delta_j) \in R$. [For $F_i(\Delta_j) \in T \Rightarrow F_i(\Delta_j) \notin R \Rightarrow j \notin \widetilde{A}$ $\Rightarrow j \in A$. Similarly $F_i(\Delta_j) \in R \Rightarrow j \in \widetilde{A}$.] Thus $j \in A \leftrightarrow \varphi(i, j) \in T_0$ and $j \in \widetilde{A}$ $\leftrightarrow \varphi(i, j) \in R_0$. Hence $\varphi(i, y)$ is a reduction of (A, \widetilde{A}) to (T_0, R_0)

We now show

THEOREM 2. Let Σ_R be the collection of all complementary pairs of recursive sets and let α, β be disjoint. Then if Σ_R is pseudo-uniformly reducible to (α, β) , then (α, β) is recursively inseparable.⁴⁾

We in fact shall show the stronger fact:

THEOREM 2'. Each of the following conditions implies the next:

- (a) Σ_R is pseudo-uniformly reducible to $(\alpha, \beta) [\alpha, \beta \text{ are disjoint}]$.
- (b) There is a recursive function g(x) such that for each pair $(A, \tilde{A}) \in \Sigma$, there is a number i such that $i \in A \leftrightarrow g(i) \in \alpha$ and $i \in \tilde{A} \leftrightarrow g(i) \in \beta$.
- (c) The pair $(g^{-1}(\alpha), g^{-1}(\beta))$ is recursively inseparable.
- (d) The pair (α, β) is recursively inseparable—in fact, the subset $gg^{-1}\alpha$ of α is recursively inseparable from the subset $gg^{-1}\beta$ of β .

PROOF. (1) (a) \Rightarrow (b). Let f(x, y) be a pseudo-uniform reduction of Σ_R to (α, β) . As in the proof of Theorem 1', let g(x) be the recursive function f(x, x). Let $(A, \tilde{A}) \in \Sigma$ and let *i* be such that f(i, y) is a reduction of (A, \tilde{A}) to (α, β) . Since f(i, y) is a reduction of A to α , then (by the argument in the proof of Theorem 1') $i \in A \leftrightarrow g(i) \in \alpha$. Similarly, since f(i, y) is a reduction of \tilde{A} to β , then $i \in \tilde{A} \leftrightarrow g(i) \in \beta$.

(2) (b) \Rightarrow (c). Suppose g(x) is as in (b). Suppose $(g^{-1}(\alpha), g^{-1}(\beta))$ were

³⁾ Again, this notion is midway in strength between the notions: (1) every element of Σ is reducible to (α, β) ; (2) Σ is uniformly reducible to (α, β) , as defined in [2]. The latter says that given indices i, j of A, B where $(A, B) \in \Sigma$, we can *effectively* find a number i such that f(i, y) is a reduction of (A, B) to (α, β) .

⁴⁾ A pair is called recursively inseparable if there is no recursive superset of one disjoint from the other.

recursively separable. Then there is a recursive superset A of $g^{-1}(\beta)$ disjoint from $g^{-1}(\alpha)$. Hence, $g^{-1}(\beta) \subseteq A$; $g^{-1}(\alpha) \subseteq \widetilde{A}$. By the hypothesis of (b), there is an i such that $i \in A \leftrightarrow g(i) \in \alpha$ and $i \in \widetilde{A} \leftrightarrow g(i) \in \beta$. Hence, $i \in A \Rightarrow g(i) \in \alpha$ $\Rightarrow i \in g^{-1}(\alpha) \Rightarrow i \in \widetilde{A}$, and $i \in \widetilde{A} \Rightarrow g(i) \in \beta \Rightarrow i \in g^{-1}(\beta) \Rightarrow i \in A$.

Thus $i \in A \leftrightarrow i \in \tilde{A}$, which is impossible. Hence $g^{-1}(\alpha), g^{-1}(\beta)$ are recursively inseparable.

(3) (c) \Rightarrow (d). We have shown in [2] (p. 62, Proposition 4, Ch. II) that if (A_1, A_2) is recursively inseparable and if (A_1, A_2) is reducible to (B_1, B_2) (or even if there is a recursive function which maps A_1 into B_1 and A_2 into B_2) then (B_1, B_2) is in turn recursively inseparable. But clearly g maps $g^{-1}(\alpha)$ into $gg^{-1}\alpha$ and $g^{-1}(\beta)$ into $gg^{-1}\beta$.

Theorem 2 and Proposition 2 clearly imply Theorem B. But again, the statement (b) \Rightarrow (d) of Theorem 2' is stronger than Theorem 2, and implies the following stronger form of Theorem B.

THEOREM B'. A sufficient condition for the nucleii (T_0, R_0) of a consistent theory (T) to be recursively inseparable is that for every recursive set A there exists a number i such that $i \in A \leftrightarrow F_i(\Delta_i) \in T$ and $i \in \widetilde{A} \leftrightarrow F_i(\Delta_i) \in R$.

> Princeton University Yeshiva University

References

- [1] R. M. Smullyan, Undecidability and Recursive Inseparability, Z. Math. Logik Grundlagen Math., 4 (1958), 143-147.
- [2] R. M. Smullyan, Theory of Formal Systems, Ann. of Math. Studies 47, Princeton University Press, 1961.
- [3] S. C. Kleene, Introduction to Metamathematics, D. Von Nostrand Company, Inc., Princeton, New Jersey, 1952.
- [4] Tarski, Alfred, Mostowski, Andrzej and Robinson, M. Raphael, Undecidable Theories, Studies in Logic and the Foundations of Math., North-Holland Publishing Company, Amsterdam, 1953.