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1. Introduction

In [1] we showed:
THEOREM A. If every recursive set is representable $m$ a theory $(T)$ then

$(T)$ is undecidable.
THEOREM B. If every recursive set is definable in $(T)$ and if $(T)$ is con-

sistent, then the set $T_{0}$ of Godel numbers of the provable sentences of $(T)$ is
recursively inseparable from the set $R_{0}$ of Godel numbers of the refutable sen-
tences of $(T)$ .

The above propositions combine notions of recursive function theory with
those of mathematical logic–i. $e$ . with the concept of a $t$ ‘ first order theory”.
In this note we obtain generalizations of these propositions which are purely
recursive function theoretic in nature. We also show that the conclusions of
Theorems A and $B$ hold under still weaker hypotheses.

2. Pseudo-uniform reducibility

The word ” number ” shall mean natural number. We use “ $A$ ”, “ $B’$ ,
“

$\alpha$ “, “
$\beta$

“ for sets of natural numbers. A set $A$ is (many-one) reducible to
$\alpha$ if there is a recursive function $g(\psi)$ (called a (many-one) reduction of $A$ to
$\alpha)$ such that $A=g^{-1}(\alpha)-i$ . $e$ . for each number $i,$ $ i\in A\leftrightarrow g(i)\in\alpha$ . Consider now
a collection $\Sigma$ of recursively enumerable sets. The collection $\Sigma$ is uniformly
reducible to a (as defined in [2]) if there is a recursive function $g(x,y)$ (called

a uniform reduction of $\Sigma$ to $\alpha$) such that for every $i$ for which $\omega_{i}\in\Sigma$ , the
function $g(i,y)$ (as a function of the one variable y) is a reduction of $\omega_{i}$ to
$\Sigma^{2)}$ Thus, if $\Sigma$ is uniformly reducible to $\alpha$ , then not only is every element
of $\Sigma$ reducible to $\alpha$ , but given any such element $\omega_{i}$ (in the sense of given
its index i) we can effectively find a reduction of it to $\alpha$ .

It is trivial to verify that if some non-recursive set is reducible to $\alpha$ ,

1) This research was supported in part by a grant from the Air Force Office of
Scientific Research.

2) By $\omega_{i}$ , we mean the set of all numbers $x$ satisfying the condition $(\exists y)T_{1}(i, x, y)$

where $T_{1}(z, x, y)$ is the predicate of Kleene’s enumeration theorem [3].
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then $\alpha$ is non-recursive. Hence, it follows that if every recursively enumer-
able set is reducible to $\alpha$ , then $\alpha$ is non-recursive (since there exists a recur-
sively enumerable set which is not recursive). This fact is well known.
Suppose that every recursive set is reducible to $\alpha$ ; does it follow that $\alpha$ is
non-recursive $P$ Clearly not, for if $\alpha$ is any non-empty set whose complement
is also non-empty, then every recursive set $A$ is reducible to $\alpha$ (just take an
element $a_{1}$ of $\alpha$ and an element $a_{2}$ of $\tilde{\alpha}$ and define $g(x)=a_{1}$ if $x\in A;g(x)=a_{2}$

if $x\not\in A$). Since $A$ is recursive, $g(x)$ is a recursive function, and clearly a
reduction of $A$ to $\alpha$ . Suppose that the collection of all recursive sets is
uniformly reducible to $\alpha$ ; does it follow that $\alpha$ is non-recursive ? In [2] we
showed that this hypothesis implies not only that $\alpha$ is non-recursive, but that
the complement of $\alpha$ is productive. Thus, to establish the non-recursivity of
a set $\alpha$ , the hypothesis that all recursive sets be reducible to $\alpha$ is too weak,
and the hypothesis of uniform reducibility is stronger than necessary. We
now consider a notion which is of intermediate strength.

We shall say that $\Sigma$ is pseudo-uniformly reducible to $\alpha$ if there is a recur-
sive function $g(x, y)$ (called a pseudo-uniform reduction of $\Sigma$ to $\alpha$) such that
for every set $ A\in\Sigma$ , there is a number $a$ such that $g(a,y)$ (as a function of
the one variable y) is a reduction of $A$ to $\alpha$ . We note that this definition
(unlike that of uniform reducibility) does not require that such a number $a$

be an index of the set $A$ , nor that there be a recursive function $\varphi(x)$ which
assigns to any index of $A$ such a number $a$ . If there were such a recursive
function $\varphi(x)$ , then $\Sigma$ would indeed be uniformly reducible to $\alpha$ under the
function $g(\varphi(x), y)$ . We shall soon see that a sufficient condition for $\alpha$ to be
non-recursive is that the collection of all recursive sets be pseudo-uniformly
reducible to $\alpha$ . And in light of our next proposition, we feel that this fact
constitutes the mathematical essence of Theorem A.

The notion of pseudo-uniform reducibility arises naturally in connection
with metamathematics in the following way. Suppose we have a theory $(T)$

with standard formalizations (cf. [4]). Let $F_{1},$ $F_{2},$ $\cdots$ , $F_{n},$ $\cdots$ be an effective
enumeration of all the formulas with exactly one free variable; let $\Delta_{i}$ be the
numeral designating the natural number $i$ ; let $g$ be an effective G\"odel num-
bering of all closed sentences; let $T$ be the set of all provable (closed) sentences
and $R$ the set of all (closed) sentences whose negation is provable; let $T_{0},$ $R_{0}$

respectively be the set of Godel numbers of the provable, refutable sentences
of $(T)$ ; let $\varphi(i,j)$ be the G\"odel number of $F_{i}(\Delta_{j})$ . Under the usual requirements
of “ effectiveness “ of the G\"odel numbering and of the sequence $\Delta_{0},$ $\Delta_{1},$ $\Delta_{2},$ $\cdots$ , $\Delta_{i}$ ,
the function $\varphi(x, y)$ is (general) recursive.

A formula $F(x)$ is said to represent the set of all numbers $n$ for which
$F(\Delta_{n})\in T$. We pointed out in [2] that if a set $A$ is representable in $(T)$, then
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$A$ is (many-one) reducible to $T_{0}$ . We now note the following stronger fact:
PROPOSITION 1. If each element of a collection $\Sigma$ is representable in $(T)$ ,

then the collection $\Sigma$ is pseudo-uniformly reducible to $T_{0}$ .
PROOF. For each element $A$ of $\Sigma$ there is, by hypothesis, a formula $F_{i}(x)$

which represents $A$ in $(T)$ . Then for every number $j,j\in A\leftrightarrow F_{i}(\Delta_{j})\in T\leftrightarrow\varphi(i,j)$

$\in T_{0}$ . Thus $\varphi(x,y)$ is a pseudo-uniform reduction of $\Sigma$ to $T_{0}$ .
We now show
THEOREM 1. If the collection of all recursive sets is pseudo-uniformly reduci-

ble to $\alpha$ , then $\alpha$ is not recursive.
We actually show Theorem 1 in the following stronger form.
THEOREM 1’. Each of the following conditions implies the next.
(a) The collection of recursive sets is pseudo-uniformly reducible to $\alpha$ .
(b) There is a recursive function $g(x)$ such that for every recursive set $A$ ,

there is a number $i$ such that $ i\in A\leftrightarrow g(i)\in\alpha$ .
(c) $\alpha$ is not recursive.
PROOF. Suppose (a); let $f(x, y)$ be such a uniform reduction. Define

$g(x)=f(x, x)$ . Then $g(x)$ is recursive. Let $A$ be any recursive set. By hypoth-
esis there is a number $i$ such that for every number $y,$ $ i\in A\leftrightarrow f(i,y)\in\alpha$ .
Setting $y=i,$ $i\in A\leftrightarrow f(i, i)\in\alpha\cdots i$ . $e$ . $ i\in A\leftrightarrow g(i)\in\alpha$ . Thus $(a)\subset>(b)$ .

Suppose (b). We must show that $\alpha$ is not recursive. Suppose it were.
Then $\tilde{\alpha}$ would be recursive. Then $g^{-1}(\alpha)$ is recursive [ $g^{-1}(\tilde{\alpha})=df$ the set of
all $i$ such that $g(i)\in\tilde{\alpha}$]. Then there is a number $i$ such that $ i\in g^{-1}(\tilde{\alpha})\leftrightarrow g(i)\in\alpha$ .
But $i\in g^{-1}(\tilde{\alpha})\leftrightarrow g(i)\in\tilde{\alpha}$ . Hence $ g(i)\in\tilde{\alpha}\leftrightarrow g(i)\in\alpha$ , which is impossible.

In view of Proposition 1, Theorem 1 is indeed a generalization of Theorem
A.

We also note that the statement $(b)\subset>(c)$ of Theorem 1i is a stronger
statement than Theorem 1, and implies the following stronger form of Theo-
rem A (by setting $g(i)=\varphi(i,$ $i)$).

THEOREM $A^{\prime}$ . If for every recursive set $A$ , there is a number $i$ such that
$i\in A\leftrightarrow F_{i}(\Delta_{i})\in T$, then $T_{0}$ is non-recursive.

The hypothesis of Theorem $A^{\prime}$ is obviously weaker than that of Theo-
rem $A$ , for the latter says that for any recursive set $A$ there is a number $i$

such that for every $j$ (whether equal to $i$ or not), $j\in A\leftrightarrow F_{t}(\Delta_{j})\in T$.

3. Pseudo-uniform reducibility of ordered pairs

Let $A,$ $B,$ $\alpha,$ $\beta$ be number sets. A recursive function $f(x)$ is a (many-one)

reduction of the ordered pair $(A, B)$ to the ordered pair $(\alpha, \beta)$ (as defined in
[2]) if $f(x)$ is simultaneously a reduction of $A$ to $\alpha$ and of $B$ to $\beta-i$ . $e$ . for
every number $ i:(1)i\in A\leftrightarrow f(i)\in\alpha;(2)i\in B\leftrightarrow f(i)\in\beta$ .

Consider now a collection $\Sigma$ of ordered pairs of number sets. We shall
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say that $\Sigma$ is pseudo-uniformly reducible to a pair $(\alpha, \beta)$ if there is a recursive
function $f(x,y)$ (which we will call a pseudo-uniform reduction of $\Sigma$ to $(\alpha,$ $\beta)$)

such that for every pair $(A, B)$ in $\Sigma$ , there is a number $i$ such that $f(i,y)$ (as
a function of the one variable y) is a reduction of $(A, B)$ to $(\alpha, \beta)^{8)}$

The obvious analogue of Proposition 1 is
PROPOSITION 2. Let $S$ be a collection of sets and let $\Sigma$ be the collection of

all ordered pairs $(A,\tilde{A})$ such that $A\in S$. Then if every element of $S$ is definable
in $(T)$, and if $(T)$ is consistent, then $\Sigma$ is pseudo-uniformly reducible to the pair
$(T_{0}, R_{0})$ .

PROOF. As in the proof of Proposition 1, let $\varphi(i,j)$ be the Godel number
of $F_{i}(\Delta_{j})$ . Let $A\in S$. Then for some number $i,$ $F_{i}(x)$ defines $A$ in $(T)$ . Thus
for all $j,j\in A\subset>F_{i}(\Delta_{j})\in T$ and $j\in\tilde{A}\subset>F_{\iota}(\Delta_{j})\in R$ . Since $(T)$ is consistent, then
$j\in A\leftrightarrow F_{i}(\Delta_{j})\in T$, and $j\in\tilde{A}\leftrightarrow F_{i}(\Delta_{j})\in R$ . [For $F_{i}(\Delta_{j})\in T\subset>F_{i}(\Delta_{j})\not\in R\subset>j\not\in\tilde{A}$

$\subset>j\in A$ . Similarly $F_{i}(\Delta_{j})\in R\subset>j\in\tilde{A}.$] Thus $j\in A\leftrightarrow\varphi(i,j)\in T_{0}$ and $j\in\tilde{A}$

$\leftrightarrow\varphi(i,j)\in R_{0}$ . Hence $\varphi(i,y)$ is a reduction of $(A,\tilde{A})$ to $(T_{0}, R_{0})$

We now show
THEOREM 2. Let $\Sigma_{R}$ be the collection of all complementary pairs of recur-

sive sets and let $\alpha,$ $\beta$ be disjoint. Then if $\Sigma_{R}$ is pseudo-uniformly reducible to
$(\alpha, \beta)$, then $(\alpha, \beta)$ is recursively inseparable.4)

We in fact shall show the stronger fact:
THEOREM 2’. Each of the following conditions implies the next:
(a) $\Sigma_{R}$ is pseudo-uniformly reducible to $(\alpha, \beta)$ [ $\alpha,$

$\beta$ are disjoint].

(b) There is a recursive function $g(x)$ such that for each pair $(A,\tilde{A})\in\Sigma$ ,

there is a number $i$ such that $ i\in A\leftrightarrow g(i)\in\alpha$ and $ i\in\tilde{A}\leftrightarrow g(i)\in\beta$ .
(c) The pair $(g^{-1}(\alpha),g^{-1}(\beta))$ is recursively inseparable.
(d) The pair $(\alpha, \beta)$ is recursively inseparable–in fact, the subset $ gg^{-1}\alpha$ of

$\alpha$ is recursively inseparable from the subset $ gg^{-1}\beta$ of $\beta$.
PROOF. (1) $(a)\subset>(b)$ . Let $f(x,y)$ be a pseudo-uniform reduction of $\Sigma_{R}$ to

$(\alpha, \beta)$ . As in the proof of Theorem 1’, let $g(x)$ be the recursive function
$f(x, x)$ . Let $(A,\tilde{A})\in\Sigma$ and let $i$ be such that $f(i, y)$ is a reduction of $(A,\tilde{A})$

to $(\alpha, \beta)$ . Since $f(i, y)$ is a reduction of $A$ to $\alpha$ , then (by the argument in the
proof of Theorem 1’) $ i\in A\leftrightarrow g(i)\in\alpha$ . Similarly, since $f(i,y)$ is a reduction of
$\tilde{A}$ to $\beta$ , then $ i\in\tilde{A}\leftrightarrow g(i)\in\beta$ .

(2) $(b)\subset>(c)$ . Suppose $g(x)$ is as in (b). Suppose $(g^{-1}(\alpha), g^{-1}(\beta))$ were

3) Again, this notion is midway in strength between the notions: (1) every
element of $\Sigma$ is reducible to $(\alpha, \beta)$ ; (2) $\Sigma$ is uniformly reducible to $(\alpha, \beta)$ , as defined
in [2]. The latter says that given indices $i,j$ of $A,$ $B$ where $(A, B)\in\Sigma$ , we can effec-
tively find a number $i$ such that $f(i, y)$ is a reduction of $(A, B)$ to $(\alpha, \beta)$ .

4) A pair is called recursively inseparable if there is no recursive superset of
one disjoint from the other.
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recursively separable. Then there is a recursive superset $A$ of $g^{\rightarrow 1}(\beta)$ disjoint
from $g^{-1}(\alpha)$ . Hence, $g^{-1}(\beta)\subseteqq A;g^{-1}(\alpha)\subseteqq\tilde{A}$ . By the hypothesis of (b), there
is an $i$ such that $ i\in A\leftrightarrow g(i)\in\alpha$ and $ i\in\tilde{A}\leftrightarrow g(i)\in\beta$. Hence, $ i\in A\subset>g(i)\in\alpha$

$\subset>i\in g^{-1}(\alpha)\subset>i\in\tilde{A}$ , and $i\in\tilde{A}\subset\succ g(i)\in\beta oi\in g^{-1}(\beta)\subset\Rightarrow i\in A$ .
Thus $i\in A\leftrightarrow i\in\tilde{A}$ , which is impossible. Hence $g^{-1}(\alpha),g^{\rightarrow 1}(\beta)$ are recursively

inseparable.
(3) $(c)\subset\succ(d)$ . We have shown in [2] (p. 62, Proposition 4, Ch. II) that if

$(A_{1}, A_{2})$ is recursively inseparable and if $(A_{1}, A_{2})$ is reducible to $(B_{1}, B_{2})$ (or

even if there is a recursive function which maps $A_{1}$ into $B_{1}$ and $A_{2}$ into $B_{2}$)

then $(B_{1}, B_{2})$ is in turn recursively inseparable. But clearly $g$ maps $g^{\rightarrow 1}(\alpha)$

into $gg^{-1}a$ and $g^{-1}(\beta)$ into $ gg^{-1}\beta$.
Theorem 2 and Proposition 2 clearly imply Theorem B. But again, the

statement $(b)\subset>(d)$ of Theorem 2’ is stronger than Theorem 2, and implies
the following stronger form of Theorem B.

THEOREM $B^{\prime}$ . A sufficient condition for the nucleii $(T_{0}, R_{0})$ of a consistent
theory $(T)$ to be recursively inseparable is that for every recursive set $A$ there
exists a number $i$ such that $i\in A\leftrightarrow F_{i}(\Delta_{i})\in T$ and $i\in\tilde{A}\leftrightarrow F_{i}(\Delta_{i})\in R$ .

Princeton University
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