Pseudo-uniform reducibility

By Raymond M. Smullyan ${ }^{1)}$

(Received June 16, 1962)

1. Introduction

In [1] we showed:
THEOREM A. If every recursive set is representable in a theory (T) then (T) is undecidable.

Theorem B. If every recursive set is definable in (T) and if (T) is consistent, then the set T_{0} of Gödel numbers of the provable sentences of (T) is recursively inseparable from the set R_{0} of Gödel numbers of the refutable sentences of (T).

The above propositions combine notions of recursive function theory with those of mathematical logic-i.e. with the concept of a "first order theory". In this note we obtain generalizations of these propositions which are purely recursive function theoretic in nature. We also show that the conclusions of Theorems A and B hold under still weaker hypotheses.

2. Pseudo-uniform reducibility

The word "number" shall mean natural number. We use " A ", " B ", " α ", " β " for sets of natural numbers. A set A is (many-one) reducible to α if there is a recursive function $g(\psi)$ (called a (many-one) reduction of A to α) such that $A=g^{-1}(\alpha)-$ i. e. for each number $i, i \in A \leftrightarrow g(i) \in \alpha$. Consider now a collection Σ of recursively enumerable sets. The collection Σ is uniformly reducible to α (as defined in [2]) if there is a recursive function $g(x, y)$ (called a uniform reduction of Σ to α) such that for every i for which $\omega_{i} \in \Sigma$, the function $g(i, y)$ (as a function of the one variable y) is a reduction of ω_{i} to $\Sigma .{ }^{2)}$ Thus, if Σ is uniformly reducible to α, then not only is every element of Σ reducible to α, but given any such element ω_{i} (in the sense of given its index i) we can effectively find a reduction of it to α.

It is trivial to verify that if some non-recursive set is reducible to α,

[^0]then α is non-recursive. Hence, it follows that if every recursively enumerable set is reducible to α, then α is non-recursive (since there exists a recursively enumerable set which is not recursive). This fact is well known. Suppose that every recursive set is reducible to α; does it follow that α is non-recursive ? Clearly not, for if α is any non-empty set whose complement is also non-empty, then every recursive set A is reducible to α (just take an element a_{1} of α and an element a_{2} of $\tilde{\alpha}$ and define $g(x)=a_{1}$ if $x \in A ; g(x)=a_{2}$ if $x \notin A$). Since A is recursive, $g(x)$ is a recursive function, and clearly a reduction of A to α. Suppose that the collection of all recursive sets is uniformly reducible to α; does it follow that α is non-recursive? In [2] we showed that this hypothesis implies not only that α is non-recursive, but that the complement of α is productive. Thus, to establish the non-recursivity of a set α, the hypothesis that all recursive sets be reducible to α is too weak, and the hypothesis of uniform reducibility is stronger than necessary. We now consider a notion which is of intermediate strength.

We shall say that Σ is pseudo-uniformly reducible to α if there is a recursive function $g(x, y)$ (called a pseudo-uniform reduction of Σ to α) such that for every set $A \in \Sigma$, there is a number a such that $g(a, y)$ (as a function of the one variable y) is a reduction of A to α. We note that this definition (unlike that of uniform reducibility) does not require that such a number a be an index of the set A, nor that there be a recursive function $\varphi(x)$ which assigns to any index of A such a number a. If there were such a recursive function $\varphi(x)$, then Σ would indeed be uniformly reducible to α under the function $g(\varphi(x), y)$. We shall soon see that a sufficient condition for α to be non-recursive is that the collection of all recursive sets be pseudo-uniformly reducible to α. And in light of our next proposition, we feel that this fact constitutes the mathematical essence of Theorem A.

The notion of pseudo-uniform reducibility arises naturally in connection with metamathematics in the following way. Suppose we have a theory (T) with standard formalizations (cf. [4]). Let $F_{1}, F_{2}, \cdots, F_{n}, \cdots$ be an effective enumeration of all the formulas with exactly one free variable; let Δ_{i} be the numeral designating the natural number i; let g be an effective Gödel numbering of all closed sentences; let T be the set of all provable (closed) sentences and R the set of all (closed) sentences whose negation is provable; let T_{0}, R_{0} respectively be the set of Gödel numbers of the provable, refutable sentences of (T); let $\varphi(i, j)$ be the Gödel number of $F_{i}\left(\Delta_{j}\right)$. Under the usual requirements of "effectiveness" of the Gödel numbering and of the sequence $\Delta_{0}, \Delta_{1}, \Delta_{2}, \cdots, \Delta_{i}$, the function $\varphi(x, y)$ is (general) recursive.

A formula $F(x)$ is said to represent the set of all numbers n for which $F\left(\Delta_{n}\right) \in T$. We pointed out in [2] that if a set A is representable in (T), then
A is (many-one) reducible to T_{0}. We now note the following stronger fact:
Proposition 1. If each element of a collection Σ is representable in (T), then the collection Σ is pseudo-uniformly reducible to T_{0}.

Proof. For each element A of Σ there is, by hypothesis, a formula $F_{i}(x)$ which represents A in (T). Then for every number $j, j \in A \leftrightarrow F_{i}\left(\Delta_{j}\right) \in T \leftrightarrow \varphi(i, j)$ $\in T_{0}$. Thus $\varphi(x, y)$ is a pseudo-uniform reduction of Σ to T_{0}.

We now show
Theorem 1. If the collection of all recursive sets is pseudo-uniformly reducible to α, then α is not recursive.

We actually show Theorem 1 in the following stronger form.
Theorem 1'. Each of the following conditions implies the next.
(a) The collection of recursive sets is pseudo-uniformly reducible to α.
(b) There is a recursive function $g(x)$ such that for every recursive set A, there is a number i such that $i \in A \leftrightarrow g(i) \in \alpha$.
(c) α is not recursive.

Proof. Suppose (a); let $f(x, y)$ be such a uniform reduction. Define $g(x)=f(x, x)$. Then $g(x)$ is recursive. Let A be any recursive set. By hypothesis there is a number i such that for every number $y, i \in A \leftrightarrow f(i, y) \in \alpha$. Setting $y=i, i \in A \leftrightarrow f(i, i) \in \alpha \cdots$ i. e. $i \in A \leftrightarrow g(i) \in \alpha$. Thus (a) \Rightarrow (b).

Suppose (b). We must show that α is not recursive. Suppose it were. Then $\tilde{\alpha}$ would be recursive. Then $g^{-1}(\alpha)$ is recursive $\left[g^{-1}(\tilde{\alpha})=d f\right.$ the set of all i such that $g(i) \in \tilde{\alpha}]$. Then there is a number i such that $i \in g^{-1}(\tilde{\alpha}) \leftrightarrow g(i) \in \alpha$. But $i \in g^{-1}(\tilde{\alpha}) \leftrightarrow g(i) \in \tilde{\alpha}$. Hence $g(i) \in \tilde{\alpha} \leftrightarrow g(i) \in \alpha$, which is impossible.

In view of Proposition 1, Theorem 1 is indeed a generalization of Theorem A.

We also note that the statement (b) \Rightarrow (c) of Theorem 1^{\prime} is a stronger statement than Theorem 1, and implies the following stronger form of Theorem A (by setting $g(i)=\varphi(i, i)$).

Theorem A^{\prime}. If for every recursive set A, there is a number i such that $i \in A \leftrightarrow F_{i}\left(\Delta_{i}\right) \in T$, then T_{0} is non-recursive.

The hypothesis of Theorem A^{\prime} is obviously weaker than that of Theorem A , for the latter says that for any recursive set A there is a number i such that for every j (whether equal to i or not), $j \in A \leftrightarrow F_{i}\left(\Delta_{j}\right) \in T$.

3. Pseudo-uniform reducibility of ordered pairs

Let A, B, α, β be number sets. A recursive function $f(x)$ is a (many-one) reduction of the ordered pair (A, B) to the ordered pair (α, β) (as defined in [2]) if $f(x)$ is simultaneously a reduction of A to α and of B to β.-i. e. for every number i : (1) $i \in A \leftrightarrow f(i) \in \alpha$; (2) $i \in B \leftrightarrow f(i) \in \beta$.

Consider now a collection Σ of ordered pairs of number sets. We shall
say that Σ is pseudo-uniformly reducible to a pair (α, β) if there is a recursive function $f(x, y)$ (which we will call a pseudo-uniform reduction of Σ to (α, β)) such that for every pair (A, B) in Σ, there is a number i such that $f(i, y)$ (as a function of the one variable y) is a reduction of (A, B) to $(\alpha, \beta) .{ }^{3)}$

The obvious analogue of Proposition 1 is
Proposition 2. Let S be a collection of sets and let Σ be the collection of all ordered pairs (A, \tilde{A}) such that $A \in S$. Then if every element of S is definable in (T), and if (T) is consistent, then Σ is pseudo-uniformly reducible to the pair (T_{0}, R_{0}).

Proof. As in the proof of Proposition 1, let $\varphi(i, j)$ be the Gödel number of $F_{i}\left(\Delta_{j}\right)$. Let $A \in S$. Then for some number $i, F_{i}(x)$ defines A in (T). Thus for all $j, j \in A \Rightarrow F_{i}\left(\Delta_{j}\right) \in T$ and $j \in \tilde{A} \Rightarrow F_{i}\left(\Delta_{j}\right) \in R$. Since (T) is consistent, then $j \in A \leftrightarrow F_{i}\left(\Delta_{j}\right) \in T$, and $j \in \tilde{A} \leftrightarrow F_{i}\left(\Delta_{j}\right) \in R$. [For $F_{i}\left(\Delta_{j}\right) \in T \Rightarrow F_{i}\left(\Delta_{j}\right) \notin R \Rightarrow j \notin \tilde{A}$ $\Rightarrow j \in A$. Similarly $\quad F_{i}\left(\Delta_{j}\right) \in R \mapsto j \in \tilde{A}$.] Thus $j \in A \leftrightarrow \varphi(i, j) \in T_{0}$ and $j \in \tilde{A}$ $\leftrightarrow \varphi(i, j) \in R_{0}$. Hence $\varphi(i, y)$ is a reduction of (A, \tilde{A}) to $\left(T_{0}, R_{0}\right)$

We now show
Theorem 2. Let Σ_{R} be the collection of all complementary pairs of recursive sets and let α, β be disjoint. Then if Σ_{R} is pseudo-uniformly reducible to (α, β), then (α, β) is recursively inseparable. ${ }^{4)}$

We in fact shall show the stronger fact:
Theorem 2'. Each of the following conditions implies the next:
(a) Σ_{R} is pseudo-uniformly reducible to $(\alpha, \beta)[\alpha, \beta$ are disjoint $]$.
(b) There is a recursive function $g(x)$ such that for each pair $(A, \tilde{A}) \in \Sigma$, there is a number i such that $i \in A \leftrightarrow g(i) \in \alpha$ and $i \in \tilde{A} \leftrightarrow g(i) \in \beta$.
(c) The pair $\left(g^{-1}(\alpha), g^{-1}(\beta)\right)$ is recursively inseparable.
(d) The pair (α, β) is recursively inseparable-in fact, the subset $g^{-1} \alpha$ of α is recursively inseparable from the subset $g^{-1} \beta$ of β.
Proof. (1) (a) \Rightarrow (b). Let $f(x, y)$ be a pseudo-uniform reduction of Σ_{R} to (α, β). As in the proof of Theorem 1^{\prime}, let $g(x)$ be the recursive function $f(x, x)$. Let $(A, \tilde{A}) \in \Sigma$ and let i be such that $f(i, y)$ is a reduction of (A, \tilde{A}) to (α, β). Since $f(i, y)$ is a reduction of A to α, then (by the argument in the proof of Theorem $\left.1^{\prime}\right) i \in A \leftrightarrow g(i) \in \alpha$. Similarly, since $f(i, y)$ is a reduction of \tilde{A} to β, then $i \in \tilde{A} \leftrightarrow g(i) \in \beta$.
(2) (b) \Rightarrow (c). Suppose $g(x)$ is as in (b). Suppose $\left(g^{-1}(\alpha), g^{-1}(\beta)\right)$ were

[^1]recursively separable. Then there is a recursive superset A of $g^{-1}(\beta)$ disjoint from $g^{-1}(\alpha)$. Hence, $g^{-1}(\beta) \subseteq A ; g^{-1}(\alpha) \subseteq \tilde{A}$. By the hypothesis of (b), there is an i such that $i \in A \leftrightarrow g(i) \in \alpha$ and $i \in \tilde{A} \leftrightarrow g(i) \in \beta$. Hence, $i \in A \Rightarrow g(i) \in \alpha$ $\Rightarrow i \in g^{-1}(\alpha) \Rightarrow i \in \tilde{A}$, and $i \in \tilde{A} \Rightarrow g(i) \in \beta \Rightarrow i \in g^{-1}(\beta) \Rightarrow i \in A$.

Thus $i \in A \leftrightarrow i \in \tilde{A}$, which is impossible. Hence $g^{-1}(\alpha), g^{-1}(\beta)$ are recursively inseparable.
(3) (c) \Rightarrow (d). We have shown in [2] (p. 62, Proposition 4, Ch. II) that if (A_{1}, A_{2}) is recursively inseparable and if $\left(A_{1}, A_{2}\right)$ is reducible to (B_{1}, B_{2}) (or even if there is a recursive function which maps A_{1} into B_{1} and A_{2} into B_{2}) then (B_{1}, B_{2}) is in turn recursively inseparable. But clearly g maps $g^{-1}(\alpha)$ into $g g^{-1} \alpha$ and $g^{-1}(\beta)$ into $g g^{-1} \beta$.

Theorem 2 and Proposition 2 clearly imply Theorem B. But again, the statement (b) \Rightarrow (d) of Theorem 2 , is stronger than Theorem 2, and implies the following stronger form of Theorem B.

Theorem B'. A sufficient condition for the nucleii $\left(T_{0}, R_{0}\right)$ of a consistent theory (T) to be recursively inseparable is that for every recursive set A there exists a number i such that $i \in A \leftrightarrow F_{i}\left(\Delta_{i}\right) \in T$ and $i \in \tilde{A} \leftrightarrow F_{i}\left(\Delta_{i}\right) \in R$.

Princeton University
 Yeshiva University

References

[1] R. M. Smullyan, Undecidability and Recursive Inseparability, Z. Math. Logik Grundlagen Math., 4 (1958), 143-147.
[2] R. M. Smullyan, Theory of Formal Systems, Ann. of Math. Studies 47, Princeton University Press, 1961.
[3] S. C. Kleene, Introduction to Metamathematics, D. Von Nostrand Company, Inc., Princeton, New Jersey, 1952.
[4] Tarski, Alfred, Mostowski, Andrzej and Robinson, M. Raphael, Undecidable Theories, Studies in Logic and the Foundations of Math., North-Holland Publishing Company, Amsterdam, 1953.

[^0]: 1) This research was supported in part by a grant from the Air Force Office of Scientific Research.
 2) By ω_{i}, we mean the set of all numbers x satisfying the condition $(\exists y) T_{1}(i, x, y)$ where $T_{1}(z, x, y)$ is the predicate of Kleene's enumeration theorem [3].
[^1]: 3) Again, this notion is midway in strength between the notions: (1) every element of Σ is reducible to (α, β); (2) Σ is uniformly reducible to (α, β), as defined in [2]. The latter says that given indices i, j of A, B where $(A, B) \in \Sigma$, we can effectively find a number i such that $f(i, y)$ is a reduction of (A, B) to (α, β).
 4) A pair is called recursively inseparable if there is no recursive superset of one disjoint from the other.
