Concave modulars.

By Hidegoro NAKANO.

(Received Nov. 12, 1952)

We have defined and discussed modulars on semi-ordered linear space in a book¹⁾. Let R be a semi-ordered linear space and universally continuous, that is, for every system of positive elements $a_{\lambda} \in R$ $(\lambda \in \Lambda)$ there exists $\bigcap_{\lambda \in \Lambda} a_{\lambda}$. A functional m(x) $(x \in R)$ is called a modular on R, if 1) $0 \le m(x) \le +\infty$ for every $x \in R$, 2) $m(\xi a) = 0$ for every $\xi \ge 0$ implies a = 0, 3) for any $a \in R$ we can find $\alpha > 0$ such that $m(\alpha a) < +\infty$, 4) for each $x \in R$, $m(\xi x)$ is a convex function of ξ : $m\left(\frac{\alpha + \beta}{2}x\right) \le \frac{1}{2} \{m(\alpha x) + m(\beta x)\}$, 5) $|x| \le |y|$ implies $m(x) \le m(y)$, 6) $x \cap y = 0$ implies m(x + y) = m(x) + m(y), 7) $0 \le x_{\lambda} \uparrow_{\lambda \in \Lambda} x_{0}$ implies $m(x_{0}) = \sup_{\lambda \in \Lambda} m(x_{\lambda})$.

In this paper we shall consider a functional m(x) $(x \in R)$ which satisfies instead of 4) the condition: $m(\xi x)$ is a concave function of $\xi \ge 0$, i.e., we define a concave modular m(x) $(x \in R)$ by the postulates: 1) $0 \le m(x) < +\infty$, 2) m(x) = 0 implies x = 0, 3) $|x| \le |y|$ implies $m(x) \le m(y)$, 4) $x \cap y = 0$ implies m(x+y) = m(x) + m(y), 5) $m(\xi x)$ is a concave function of $\xi \ge 0$:

$$m\left(\frac{\lambda+\mu}{2}x\right) \geq \frac{1}{2}\left\{m(\lambda x)+m(\mu x)\right\}$$
 for $\lambda, \mu \geq 0$,

6) $\lim_{\xi \to 0} m(\xi x) = 0$, 7) $0 \le x_{\nu} \uparrow_{\nu=1}^{\infty}$, $\sup_{\nu \ge 1} m(x_{\nu}) < +\infty$ implies the existence of an element x_0 for which $x_{\nu} \uparrow_{\nu=1}^{\infty} x_0$ and $m(x_0) = \lim_{\nu \to \infty} m(x_{\nu})$.

Concerning the concave modulars m(x) on R, we can prove

$$m(x+y) \le m(x) + m(y)$$
 for every $x, y \in R$.

Thus, every concave modular m(x) on R is a quasi-norm by which R is a Fréchet space.

For a concave modular m(x) on R, we can prove easily

$$\frac{m(\xi x)}{\xi} \leq \frac{m(\eta x)}{\eta} \qquad \text{for } \xi > \eta > 0,$$

and hence there exists the limit

$$m_1(x) = \lim_{\xi \to \infty} \frac{m(\xi x)}{\xi}$$
 for every $x \in R$.

A concave modular m(x) is said to be of the *first kind*, if $m_1(x)=0$ implies x=0, and of the *second kind*, if $m_1(x)=0$ for every $x \in R$. With this definition, R may be devided in two normal manifolds F and S such that m(x) is of the first kind in F and of the second kind in S.

If m(x) is of the first kind in R, then $m_1(x)$ is a norm on R and

$$m_1(x+y) = m_1(x) + m_1(y)$$
 for $x, y \ge 0$.

By this norm $m_1(x)$, R is complete, and hence a so-called generalized L_1 -space, if and only if $\sup_{m_1(x)\leq 1} m(x) < +\infty$.

If m(x) is of the second kind on R, and R has no discrete element, then there is no bounded linear functional on R except for the identical zero 0.

Finally we shall consider the case where R is a discrete space with a basis $a_{\lambda} \geq 0$ ($\lambda \in \Lambda$), that is, every positive element $x \in R$ may be represented uniquely in the form $x = \bigcup_{\lambda \in \Lambda} \alpha_{\lambda} a_{\lambda}$. In this case, the conjugate space of R is a generalized (m)-space, if and only if we can find $\alpha_{\lambda} > 0$ ($\lambda \in \Lambda$) such that

$$\inf_{\lambda \in \Lambda} m(\alpha_{\lambda} a_{\lambda}) > 0, \quad \lim_{\xi \to 0} \sup_{\lambda \in \Lambda} m(\xi \alpha_{\lambda} a_{\lambda}) = 0.$$

As applications, we consider the following modulars in the space of measurable functions:

$$m(\varphi) = \int_0^1 |\varphi(t)|^{p(t)} dt, \qquad 0 < p(t) < 1 \text{ for } 0 < t < 1,$$

$$m(\varphi) = \int_0^1 \frac{|\varphi(t)|}{1 + \varphi(t)} dt,$$

and in the space of number sequences (ξ_1, ξ_2, \cdots)

$$m(\xi_{1}, \xi_{2}, \cdots) = \sum_{\nu=1}^{\infty} |\xi_{\nu}|^{p_{\nu}}, \qquad 0 < p_{\nu} < 1 \ (\nu = 1, 2, \cdots),$$

$$m(\xi_{1}, \xi_{2}, \cdots) = \sum_{\nu=1}^{\infty} \frac{1}{2^{\nu}} \frac{|\xi_{\nu}|}{1 + |\xi_{\nu}|}.$$

§ 1. Concave modulars.

Let R be a continuous semi-ordered linear space. A functional m(x) $(x \in R)$ on R is said to be a concave modular on R, if

- 1) $0 \le m(x) < + \infty$ for every $x \in R$,
- 2) m(x)=0 implies x=0,
- 3) $|x| \leq |y|$ implies $m(x) \leq m(y)$,
- 4) $x \cap y = 0$ implies m(x+y) = m(x) + m(y),
- 5) $m(\xi x)$ is a concave function of $\xi \ge 0$:

$$m\left(\frac{\lambda+\mu}{2}x\right) \ge \frac{m(\lambda x)+m(\mu x)}{2}$$
 for λ , $\mu \ge 0$,

- 6) $\lim_{\xi \to 0} m(\xi x) = 0$, 7) $0 \le x_{\nu} \uparrow_{\nu=1}^{\infty}$, $\sup_{\nu \ge 1} m(x_{\nu}) < + \infty$ implies the existence of x_0 such

$$x_{\nu} \uparrow_{\nu=1} x_0$$
, $m(x_0) = \lim_{\nu \to \infty} m(x_{\nu})$.

On account of the postulate 3), $m(\xi x)$ is a non-decreasing function of $\xi \ge 0$, and m(0) = 0 by 4). Thus we can conclude easily from 5), 6) that $m(\xi x)$ is a continuous concave function of $\xi \ge 0$ and

(1) $m((\lambda \xi + \mu \eta)x) \ge \lambda m(\xi x) + \mu m(\eta x)$ for $\lambda + \mu = 1$; $\lambda, \mu, \xi, \eta \ge 0$. Putting $\eta = 0$ in (1), we obtain

(2)
$$\frac{m(\lambda x)}{\lambda} \ge \frac{m(\mu x)}{\mu} \quad \text{for } 0 < \lambda < \mu.$$

As $m(\xi x)$ is a continuous concave function of $\xi \ge 0$, we have

$$\frac{m((\lambda+\xi)x)-m(\xi x)}{\lambda} \leq \frac{m((\mu+\eta)x)-m(\eta x)}{\mu}$$

for $\xi > \eta \ge 0$, $\lambda, \mu > 0$. Especially, putting $\eta = 0$, $\lambda = \mu > 0$, we obtain

$$\frac{m((\lambda+\xi)x)-m(\xi x)}{\lambda} \leq \frac{m(\lambda x)}{\lambda}.$$

Thus we have

(3)
$$m((\lambda + \mu)x) \le m(\lambda x) + m(\mu x)$$
 for $\lambda, \mu \ge 0$.

THEOREM 1.1 $[p_{\nu}]\downarrow_{\nu=1}^{\infty} 0$ implies $\lim_{\nu\to\infty} m([p_{\nu}]x)=0$ for every $x\in R$.

PROOF. If $[p_{\nu}]\downarrow_{\nu=1}^{\infty} 0$, then we have $1-[p_{\nu}]\uparrow_{\nu=1}^{\infty} 1$, and hence by 7)

$$\lim_{\nu \to \infty} m((1-[p_{\nu}])a) = m(a) \qquad \text{for every } a \ge 0.$$

As m(x)=m(|x|) by 3) and $m((1-[p_{\nu}])a)+m([p_{\nu}]a)=m(a)$ by 4), we conclude hence $\lim_{n\to\infty} m([p_{\nu}]x)=0$ for every $x\in R$.

In the sequel, we assume that a concave modular m(x) is defined on R.

THEOREM 1.2. R is superuniversally continuous and totally continuous.

PROOF. For an orthogonal system a_{λ} ($\lambda \in \Lambda$) and a positive element a, we have by 3) and 4)

$$\sum_{\nu=1}^{\kappa} m([a_{\lambda\nu}]a) = m(\sum_{\nu=1}^{\kappa} [a_{\lambda\nu}]a) \leq m(a)$$

for every finite number of elements $\lambda_{\nu} \in \Lambda$ ($\nu = 1, 2, \dots, \kappa$), and hence we have $m([a_{\lambda}]a) = 0$ for every $\lambda \in \Lambda$ up to at most countable $\lambda \in \Lambda$. Thus we have $[a_{\lambda}]a = 0$ except for at most countable $\lambda \in \Lambda$. Therefore R is superuniversally continuous by MSLS¹⁾ Theorem 13.2.

If $[p] \ge [p_{\nu,\mu}] \downarrow_{\mu=1}^{\infty} 0 \ (\nu=1,2,\cdots)$, then we have by Theorem 1.1

$$\lim_{\mu \to \infty} m([p_{\nu,\mu}]p) = 0 \qquad (\nu = 1, 2, \cdots).$$

Thus we can find $\mu_{\nu,\rho} \uparrow_{\rho=1}^{\infty} + \infty \ (\nu=1,2,\cdots)$ such that

$$\sum_{\nu=1}^{\infty} m([p_{\nu,\mu_{\nu,\rho}}]p) \leq \frac{1}{\rho} \qquad (\rho=1,2,\cdots).$$

For such $\mu_{\nu,\rho}$, putting $[p_{\rho}] = \bigcup_{\nu=1}^{\infty} [p_{\nu,\mu_{\nu,\rho}}]$, we see easily by 3), 4)

$$m([p_{\rho}]p) \leq \sum_{\nu=1}^{\infty} m([p_{\nu,\mu_{\nu,\rho}}]p) \leq \frac{1}{\rho}$$

and $[p_{\rho}]\downarrow_{\rho=1}^{\infty}$. Putting $[p_{0}]=\bigcap_{\rho=1}^{\infty}[p_{\rho}]$, we have obviously by 3)

$$m([p_0]p) \leq m([p_\rho]p) \leq \frac{1}{\rho}$$
 for every $\rho = 1, 2, \dots$,

and hence $m([p_0]p)=0$. This relation yields by 2) $[p_0]p=0$, and consequently $[p_0]=0$, because $[p_0] \leq [p]$. Therefore R is totally continuous by MSLS Theorem 14.1.

THEOREM 1.3. R is totally unbounded.

PROOF. If $a = \sum_{\nu=1}^{\infty} a_{\nu}$, $a_{\nu} \cap a_{\mu} = 0$ for $\nu \neq \mu$, then we have by 4), 7)

$$\sum_{\nu=1}^{\infty} m(a_{\nu}) = m(a) < + \infty.$$

Thus there exists a sequence $1 \le \alpha_{\nu} \uparrow_{\nu=1}^{\infty} + \infty$ such that $\sum_{\nu=1}^{\infty} \alpha_{\nu} m(a_{\nu}) < +\infty$. As $m(\alpha_{\nu}a_{\nu}) \le \alpha_{\nu} m(a_{\nu})$ by (2), we obtain by 4)

$$m(\sum_{\nu=1}^{\kappa} \alpha_{\nu} a_{\nu}) = \sum_{\nu=1}^{\kappa} m(\alpha_{\nu} a_{\nu}) \leq \sum_{\nu=1}^{\infty} \alpha_{\nu} m(a_{\nu})$$

for every $\kappa = 1, 2, \cdots$. Therefore $\sum_{\nu=1}^{\infty} \alpha_{\nu} a_{\nu}$ is convergent by 7).

Recalling MSLS Theorem 19.7, we obtain by Theorems 1.2 and 1.3 THEOREM 1.4. Every bounded linear functional on R is universally continuous.

§ 2. Spectral theory.

As m([p]a)=0 implies by 2) [p]a=0, and $[p_{\nu}] \uparrow_{\nu=1}^{\infty} [p]$ implies by (7) $\lim_{n \to \infty} m([p_{\nu}]a) = m([p]a)$, we see by MSLS Theorem 36.1 that, putting

$$\omega(\xi, a, \mathfrak{p}) = \lim_{[p] \to \mathfrak{p}} \frac{m(\xi[p]a)}{m([p]a)} \qquad (\xi \geq 0, \mathfrak{p} \in U_{[a]}),$$

we obtain a continuos function $\omega(\xi, a, p)$ on $U_{[a]}$, and

$$m(\xi[p]a) = \int_{[p]} \omega(\xi, a, y) m(dya)$$

 $\omega(\xi, a, \mathfrak{p})$ is called the *spectrum* by m. $\omega(\xi, a, \mathfrak{p})$ is obviously a non-decreasing concave function of $\xi \geq 0$. Recalling (2), (3) in §1, we see easily by definition

(1) $\omega(1, a, \mathfrak{p}) = 1$,

(2)
$$\frac{1}{\xi} \omega(\xi, a, \mathfrak{p}) \leq \frac{1}{\eta} \omega(\eta, a, \mathfrak{p}) \qquad \text{for } \xi \geq \eta > 0,$$

(3)
$$\omega \xi + \eta, a, \mathfrak{p} \leq \omega(\xi, a, \mathfrak{p}) + \omega(\eta, a, \mathfrak{p}).$$

As $\omega(\xi, a, \mathfrak{p})$ is a non-decreasing concave function of $\xi \geq 0$ and $[\mathfrak{p}_{\mathfrak{p}}]\downarrow_{\mathfrak{p}=1}^{\infty} 0$ implies by Theorem 1.1 $\lim_{\mathfrak{p}\to\infty} m([\mathfrak{p}_{\mathfrak{p}}]a)=0$, we see easily that we can find an open set $A\subset U_{\{a\}}$ such that A is dense in $U_{\{a\}}$, and $\omega(\xi, a, \mathfrak{p})$ is a finite continuous function of $\xi \geq 0$ for every $\mathfrak{p}\in A$. For two positive elements $a,b\in R$, we can find an open set B being dense in $U_{\{a\}}$ such that the relative spectrum $(b \atop a)$, \mathfrak{p} is finite and continuous in B. For an arbitrary $\mathfrak{p}_0\in AB$, if $(b \atop a)$, \mathfrak{p}_0 < λ , then we can find a projector $[\mathfrak{p}]$ such that $\mathfrak{p}_0\in U_{\{\mathfrak{p}\}}\subset AB$ and $(b \atop a)$, \mathfrak{p}_0 < λ for every $\mathfrak{p}\in U_{\{\mathfrak{p}\}}$. This relation yields $[\mathfrak{p}]$ $b\leq \lambda[\mathfrak{p}]$ a, and hence we obtain by the postulate 3) $m([\mathfrak{p}]b)\leq m(\lambda[\mathfrak{p}]a)$. From this relation we can conclude

$$\lim_{[p]\to\mathfrak{p}_0}\frac{m([p]b)}{m([p]a)}\leq\omega(\lambda,a,\mathfrak{p}_0).$$

As $\omega(\xi, a, \mathfrak{p}_0)$ is a continuous function of $\xi \geq 0$, and $\lambda > \left(\frac{b}{a}, \mathfrak{p}\right)$ may be arbitrary, we obtain hence

$$\lim_{p \ni \to \mathfrak{p}_0} \frac{m([p]b)}{m([p]a)} \leq \omega\left(\left(\frac{b}{a},\mathfrak{p}\right), a,\mathfrak{p}_0\right).$$

We can prove likewise

considering an arbitrary positive number $\lambda < \left(\frac{b}{a}, \mathfrak{p}_0\right)$. Therefore we have

As AB also is dense in $U_{[a]}$, we conclude hence by MSLS Theorem 36.1

(4)
$$m([a]b) = \int_{[a]} \omega\left(\left(\frac{b}{a}, \mathfrak{p}\right), a, \mathfrak{p}\right) m(d\mathfrak{p} a)$$

for every two positive elements $a, b \in R$.

For two arbitrary elements $a, b \in R$, putting c=|a|+|b|, we have by the formulas (3) and (4)

$$m(a+b) \leq m(|a|+|b|)$$

$$= \int_{[c]} \omega \left(\left(\frac{|a|+|b|}{c}, \mathfrak{p} \right), c, \mathfrak{p} \right) m(d \mathfrak{p} c)$$

$$\leq \int_{[c]} \omega \left(\left(\frac{a}{c}, \mathfrak{p} \right), c, \mathfrak{p} \right) m(d \mathfrak{p} c) + \int_{[c]} \omega \left(\left(\frac{b}{a} \mathfrak{p} \right), c, \mathfrak{p} \right) m(d \mathfrak{p} c)$$

$$= m(a) + m(b),$$

that is,

$$(5) m(a+b) \leq m(a) + m(b).$$

Thus we see that m(x) $(x \in R)$ is a quasi-norm on R.

As $\omega(\xi, a, \mathfrak{p})$ is a non-decreasing concave function of $\xi \geq 0$, we have

$$\omega(\lambda \xi + \mu \eta, a, \mathfrak{p}) \geq \lambda \omega(\xi, a, \mathfrak{p}) + \mu \omega(\eta, a, \mathfrak{p})$$

for $\lambda + \mu = 1$; $\lambda, \mu, \xi, \eta \ge 0$. Thus for two positive elements $a, b \in R$, putting c = a + b, we have by (4) for $\lambda + \mu = 1$; $\lambda, \mu \ge 0$

$$m(\lambda a + \mu b) = \int_{[c]} \omega \left(\left(\frac{\lambda a + \mu b}{c}, \mathfrak{p} \right), c, \mathfrak{p} \right) m(d \mathfrak{p} c)$$

$$\geq \lambda m(a) + \mu m(b),$$

that is, for a, $b \ge 0$, $\lambda + \mu = 1$, λ , $\mu \ge 0$

(6)
$$m(\lambda a + \mu b) \geq \lambda \ m(a) + \mu \ m(b) .$$

THEOREM 2.1. $\lim_{\mu, \nu \to \infty} m(a_{\mu} - a_{\nu}) = 0$ implies $\lim_{\nu \to \infty} m(a_{\nu} - a) = 0$ for some $a \in R$, that is, m(x) $(x \in R)$ is complete as a quasi-norm.

PROOF. If $\lim_{\mu,\nu\to\infty} m(a_\mu-a_\nu)=0$, then we can find a subsequence μ_ν ($\nu=1,2,\cdots$) such that

$$m(a_{\mu_{\nu}}-a_{\mu_{\nu+1}}) \leq \frac{1}{2^{\nu}}$$
 $(\nu=1,2,\cdots)$.

Then we see easily by (5) and the postulate 7) that $\sum_{\nu=1}^{\infty} |a_{\mu_{\nu}} - a_{\mu_{\nu+1}}|$ is convergent, and for every $\rho = 1, 2, \cdots$

,
$$m(\sum_{\nu=\rho}^{\infty} |a_{\mu_{\nu}} - a_{\mu_{\nu+1}}|) \leq \sum_{\nu=\rho}^{\infty} \frac{1}{2^{\nu}} = \frac{1}{2^{\rho-1}}$$
.

Thus, putting $a=a_{\mu_1}+\sum_{\nu=1}^{\infty}(a_{\mu_{\nu+1}}-a_{\mu_{\nu}})$, we have

$$\overline{\lim_{\nu\to\infty}} m(a-a_{\mu_{\nu}}) \leq \overline{\lim_{\rho\to\infty}} m(\sum_{\nu=\rho}^{\infty} |a_{\mu_{\nu}}-a_{\mu_{\nu+1}}|) = 0,$$

and hence we conclude further by (4) and the assumption

$$\lim_{\nu\to\infty} m(a-a_{\nu})=0.$$

A linear functional φ on R is said to be modular bounded by m, if we can find a positive number ε such that

$$\sup_{m(x) \leq \varepsilon} |\varphi(x)| < + \infty.$$

With this definition we have

Theorem 2.2. A linear functional φ on R is modular bounded, if and only if φ is bounded.

Proof. If φ is modular bounded, then we have by definition

$$\sup_{m(x) \le \varepsilon} |\varphi(x)| < +\infty \qquad \text{for some } \varepsilon > 0.$$

For any $a \ge 0$, we can find by 6) $\lambda > 0$ such that $m(\lambda a) < \varepsilon$, and we have obviously

$$\sup_{0 \le x \le a} |\varphi(x)| = \frac{1}{\lambda} \sup_{0 \le x \le \lambda a} |\varphi(x)| \le \frac{1}{\lambda} \sup_{m(x) \le \varepsilon} |\varphi(x)| < + \infty.$$

Thus φ is bounded.

If φ is positive but not modular bounded, then we can find $a_{\nu} \ge 0$ $(\nu=1,2,\cdots)$ such that $m(a_{\nu}) \le \frac{1}{2^{\nu}}$, $\varphi(a_{\nu}) \ge 2^{\nu}$ for every $\nu=1,2,\cdots$. Then we see easily by (4) and 7) that $\sum_{\nu=1}^{\infty} a_{\nu}$ is convergent, but we have

$$\varphi(\sum_{\nu=1}^{\infty} a_{\nu}) \geq \varphi(a_{\nu}) \geq 2^{\nu} \qquad (\nu=1,2,\cdots),$$

contradicting $\varphi(\sum_{\nu=1}^{\infty} a_{\nu}) < +\infty$. Thus, if φ is bounded, then φ is modular bounded.

THEOREM 2.3. If $\lim_{\lambda \to +\infty} \frac{1}{\lambda} \omega(\lambda, a, \nu_0) = 0$ and ν_0 is not an isolated point, then for every bounded linear functional φ on R we have

$$\lim_{[\mathcal{P}] \to \mathfrak{P}_0} \frac{\varphi([\mathcal{P}]a)}{m([\mathcal{P}]a)} = 0.$$

PROOF. If $\lim_{\lambda \to +\infty} \frac{1}{\lambda} \omega(\lambda, a, \nu_0) = 0$, then we can find a sequence of positive numbers λ_{ν} ($\nu = 1, 2, \cdots$) such that

$$\frac{1}{\lambda_{\nu}}\,\omega(\lambda_{\nu},a,\mathfrak{p}_{0})<\frac{1}{2^{\nu}}\qquad (\nu=1,2,\cdots).$$

If \mathfrak{p}_0 is not an isolated point, then we can find a sequence of projectors $[p_{\nu}]\downarrow_{\nu=1}^{\infty}0$ such that $\mathfrak{p}_0\in U_{\ell,p_{\nu}}$ for every $\nu=1,2,\cdots$, and

$$\frac{1}{\lambda_{\nu}}\omega(\lambda_{\nu},a,\mathfrak{p})<\frac{1}{2^{\nu}}$$
 for every $\mathfrak{p}\in U_{[\mathfrak{p}\nu]}$,

because R is superuniversally continuous by Theorem 1.2. For a positive linear functional φ on R, if

$$\overline{\lim_{[p] \to \mathfrak{p}_0}} \frac{\varphi([p]a)}{m([p]a)} > \varepsilon > 0$$
,

then we can find $[q_{\nu}]\downarrow_{\nu=1}^{\infty}0$ such that $[q_{\nu}]\leq [p_{\nu}]$, $m([q_{\nu}]a)\leq \frac{1}{\lambda}$, and

$$\frac{\varphi([q_{\nu}]a)}{m([q_{\nu}]a)} > \varepsilon \qquad (\nu = 1, 2, \dots).$$

Then, putting

$$\alpha_{\nu} = \frac{1}{m([q_{\nu}]a)} \qquad (\nu = 1, 2, \cdots),$$

we have $\alpha_{\nu} \geq \lambda_{\nu}$, and hence

$$\frac{1}{\alpha_{\nu}}\omega(\alpha_{\nu},a,\mathfrak{p}) \leq \frac{1}{2^{\nu}}$$
 for every $\mathfrak{p} \in U_{[q\nu]}$,

because $\frac{1}{\alpha_{\nu}}\omega(\alpha_{\nu}, a, \mathfrak{p}) \leq \frac{1}{\lambda_{\nu}}\omega(\lambda_{\nu}, a, \mathfrak{p})$ by (2). Thus we have by (4)

$$m(\alpha_{\nu}[q_{\nu}] a) = \int_{[q\nu]} \omega(\varphi_{\nu}, a, \mathfrak{p}) m(d \mathfrak{p} a)$$

$$\leq \frac{\alpha_{\nu}}{2^{\nu}} \int_{[q\nu]} m(d \mathfrak{p} a) = \frac{\alpha_{\nu}}{2^{\nu}} m([q_{\nu}] a) = \frac{1}{2^{\nu}},$$

and hence we see by (5) and 7) that $\sum_{\nu=1}^{\infty} \alpha_{\nu} [q_{\nu}] a$ is convergent. But we have

$$\varphi(\sum_{\nu=1}^{\infty} \alpha_{\nu}[q_{\nu}] a) \geq \sum_{\nu=1}^{\infty} \alpha_{\nu} \in m([q_{\nu}] a) = +\infty$$
,

contradicting $\varphi(\sum_{\nu=1}^{\infty} \alpha_{\nu}[q_{\nu}]a) < +\infty$. Therefore we obtain

$$\lim_{[p]\to \mathfrak{p}_{\bullet}} \frac{\varphi([p]a)}{m([p]a)} = 0.$$

§ 3. The first kind concave modulars.

By virtue of the formula §1 (2), we can put

$$m_1(x) = \lim_{\xi \to +\infty} \frac{m(\xi x)}{\xi},$$

and we obtain a functional $m_1(x)$ on R. This functional $m_1(x)$ will be called the *limit modular* of a concave modular m(x).

THEOREM 3.1. For the limit modular $m_1(x)$, $\{x: m_1(x)=0\}$ is a normal manifold of R.

PROOF. Putting $S = \{x : m_1(x) = 0\}$, we see easily by definition that S is a semi-normal manifold of R. If

$$[p_{\nu}] \uparrow_{\nu=1}^{\infty} [a], [p_{\nu}] a \in S \quad (\nu=1,2,\cdots),$$

then we have $a \in S$. Because, for any $\varepsilon > 0$, recalling Theorem 1.1, we can find by assumption ν such that

$$m(([a]-[p_{\nu}])a) < \varepsilon$$
,

and for such ν we can find further by assumption $\xi > 1$ such that

$$\frac{m(\xi[p_{\nu}]a)}{\xi} < \varepsilon.$$

Then we have by the postulate 4) and the formula (2) in §1

$$\frac{m(\xi a)}{\xi} = \frac{m(\xi ([a]-[p_{\nu}]) a)}{\xi} + \frac{m(\xi [p_{\nu}] a)}{\xi} < 2 \varepsilon.$$

Therefore we obtain $a \in S$. If $0 \le a_{\nu} \uparrow_{\nu-1}^{\infty} a$, $a_{\nu} \in S$ $(\nu = 1, 2, \dots)$, then we have by MSLS Theorems 6.2 and 6.19

$$[a_{\nu}] \uparrow_{\nu-1}^{\infty} [a], [(\mu a_{\nu} - a)^{+}] \uparrow_{\mu-1}^{\infty} [a_{\nu}],$$

$$0 \leq [(\mu a_{\nu} - a)^{+}] a \leq \mu a_{\nu} \in S.$$

Thus we have $[a_{\nu}] a \in S$ for every $\nu = 1, 2, \dots$, and hence $a \in S$, as proved just above. As R is superuniversally continuous by Theorem 1.2, we see easily hence that $0 \le a_{\lambda} \uparrow_{\lambda \in A} a$, $a_{\lambda} \in S$ $(\lambda \in A)$ implies $a \in S$. Therefore S is by MSLS Theorem 4.9 a normal manifold of R.

A concave modular m(x) on R is said to be of the *first kind*, if, $m_1(x) \neq 0$ for every $x \neq 0$, and m(x) is said to be of the *second kind*, if $m_1(x)=0$ for every $x \in R$. With this definition, we have obviously by Theorem 3.1.

THEOREM 3.2. For a concave modular m(x) on R, we can devide R uniquely in two orthogonal normal manifolds F and S, such that

m(x) is of the first kind in F and of the second kind in S.

Now we suppose that m(x) is the first kind concave modular on R. The limit modular $m_1(x)$ satisfies obviously by definition

$$m_1(\lambda x) = \lim_{\xi \to +\infty} \frac{m(\xi \lambda x)}{\xi} = |\lambda| m_1(x)$$

and $x \cap y = 0$ implies $m_1(x+y) = m_1(x) + m_1(y)$. Therefore the limit modular $m_1(x)$ is a *linear modular* on R. (c.f., MSLS § 41).

THEOREM 3.3. If a concave modular m(x) on R is of the first kind, then the limit modular $m_1(x)$ of m(x) is a linear modular on R. This linear modular $m_1(x)$ is monotone complete, if and only if

$$\sup_{m_1(x)\geq 1} m(x) < +\infty.$$

PROOF. We suppose firstly $\alpha = \sup_{m_1(x) \le 1} m(x) < +\infty$. If

$$0 \leq a_{\nu} \uparrow_{\nu=1}^{\infty}$$
 , $\sup_{\nu=1} m_{\nu}(a_{\nu}) = \beta < + \infty$,

then we have obviously

$$m_1\left(\frac{1}{\beta}a_{\nu}\right) = \frac{1}{\beta}m_1(a_{\nu}) \leq 1$$
 for every $\nu = 1, 2, \dots$,

and hence by assumption $\sup_{\nu \ge 1} m \left(\frac{1}{\beta} a_{\nu}\right) \le \alpha$. Thus we can find by the postulate 7) in § 1 $a \in R$ such that $a_{\nu} \uparrow_{\nu=1}^{\infty} a$. Therefore $m_{1}(x)$ is monotone complete by definition.

If $\sup_{m_1(x)\leq 1} m(x) = +\infty$, then we can find $a_{\nu} \geq 0 \ (\nu = 1, 2, \cdots)$ such that

$$m_1(a_{\nu}) \leq 1, \ m(a_{\nu}) \geq 2^{\nu} \qquad (\nu = 1, 2, \cdots).$$

For such $a_{\nu} \in R$ ($\nu = 1, 2, \dots$), as $m_1(x)$ is a linear modular, we have by MSLS Theorem 36.9 for every $\kappa = 1, 2, \dots$

$$m_1\Bigl(\sum\limits_{
u=1}^{\kappa}rac{1}{2^{
u}}a_{
u}\Bigr)=\sum\limits_{
u=1}^{\kappa}rac{1}{2^{
u}}m_1(a_{
u})\leqq 1$$
 ,

but $\sum_{\nu=1}^{\infty} \frac{1}{2^{\nu}} a_{\nu}$ is not convergent, because we have by § 2 (6)

$$m\left(\sum_{\nu=1}^{\kappa}\frac{1}{2^{\nu}}a_{\nu}\right)\geq\sum_{\nu=1}^{\kappa}\frac{1}{2^{\nu}}m(a_{\nu})\geq\kappa$$
 for every $\kappa=1,2,\cdots$.

Therefore $m_1(x)$ is not monotone complete.

§ 4. The second kind concave modulars.

In this §, we shall consider the second kind concave modulars.

THEOREM 4.1. If a concave modular m(x) is of the second kind, then for any $a \in R$ we can find an open set A of the proper space of R such that A is dense in $U_{[a]}$ and

$$\lim_{\xi \to +\infty} \frac{1}{\xi} \omega(\xi, a, \mathfrak{p}) = 0 \qquad \text{for every } \mathfrak{p} \in A.$$

PROOF. For any $\epsilon > 0$,

$$\left\{ \mathfrak{p} : \lim_{\xi \to +\infty} \frac{1}{\xi} \omega(\xi, a, \mathfrak{p}) \geq \epsilon \right\} = \prod_{\nu=1}^{\infty} \left\{ \mathfrak{p} : \frac{1}{\nu} \omega(\xi, a, \mathfrak{p}) \geq \epsilon \right\}$$

is obviously a closed set. Furthermore this closed set is nowhere dense. Because, if there is a projector [p] such that $0 \neq [p] \leq [a]$ and

$$\lim_{\xi \to +\infty} \frac{1}{\xi} \omega(\xi, a, \mathfrak{p}) \geq \varepsilon \qquad \text{for every } \mathfrak{p} \in U_{[p]},$$

then we have for every $\xi > 0$

$$\frac{m(\xi[p]a)}{\xi} = \int_{[p]} \frac{1}{\xi} \omega(\xi, a, \mathfrak{p}) m(d\mathfrak{p}a) \geq \varepsilon m([p]a),$$

contradicting $m_1([p]a)=0$. As

$$\left\{ \mathfrak{p} : \lim_{\xi \to +\infty} \frac{1}{\xi} \omega(\xi, a, \mathfrak{p}) \neq 0 \right\} = \sum_{\nu=1}^{\infty} \left\{ \mathfrak{p} : \lim_{\xi \to +\infty} \frac{1}{\xi} \omega(\xi, a, \mathfrak{p}) \geq \frac{1}{\nu} \right\},$$

we see by MSLS Theorem 14.5 that

$$\left\{ v : \lim_{\xi \to +\infty} \frac{1}{\xi} \omega(\xi, a, v) \neq 0 \right\}$$

is nowhere dense, because R is totally continuous and superuniversally continuous by Theorem 1.2.

THEOREM 4.2. If a concave modular m(x) is of the second kind,

and R has no discrete element, then there is no bounded linear functional on R up to 0.

PROOF. Let φ be a positive linear functional on R. As φ is by Theorem 1.4 universally continuous, the characteristic set of φ is open by MSLS Theorem 22.5. Thus, if $\varphi \neq 0$, then we can find a positive element $a \neq 0$, such that $\varphi(x) = 0$, $x \geq 0$, implies [a]x = 0. For such a, we can find by Theorem 4.1 a positive element $p \neq 0$, such that $[p] \leq [a]$ and

$$\lim_{\xi \to +\infty} \frac{1}{\xi} \omega(\xi, a, \mathfrak{p}) = 0 \qquad \text{for every } \mathfrak{p} \in U_{[\mathfrak{p}]}.$$

Then, for every $\mathfrak{p} \in U_{[p]}$ we have by Theorem 2.3

$$\lim_{[p]\to y} \frac{\varphi([p]a)}{m([p]a)} = 0,$$

because R has no discrete element, and hence the proper space of R has no isolated point. Thus, for any $\varepsilon > 0$, corresponding to every $\mathfrak{p} \in U_{[\mathfrak{p}]}$, we can find a normal manifold $P_{\mathfrak{p}}$ such that $U_{[P_{\mathfrak{p}}]} \ni \mathfrak{p}$ and

$$\varphi([p]a) \leq \varepsilon m([p]a)$$
 for $\mathfrak{p} \in U_{[P_n]} \subset U_{p]}$.

As $U_{[p]}$ is compact, we can find a finite number of points $\mathfrak{p}_{\nu} \in U_{[p]}$ $(\nu=1,2,\cdots,\kappa)$ such that

$$U_{[p]} = \sum_{\nu=1}^{\kappa} U_{[P_{\mathfrak{p}\nu}]}$$
.

For such $[P_{\nu}]$ $(\nu=1, 2, \dots, \kappa)$ we can find obviously projection operators $[P_{\nu}]$ $(\nu=1, 2, \dots, \kappa)$ such that

$$[p] = \sum_{\nu=1}^{\kappa} [P_{\nu}], [P_{\nu}] \leq [P_{\nu_{\nu}}], [P_{\nu}][P_{\mu}] = 0 \text{ for } \nu \neq \mu.$$

Then we have

$$\varphi([p]a) = \sum_{\nu=1}^{\kappa} \varphi([P_{\nu}]a) \leq \sum_{\nu=1}^{\kappa} \varepsilon m([P_{\nu}]a) = \varepsilon m([p]a).$$

As $\varepsilon > 0$ may be arbitrary, we obtain hence $\varphi([p]a] = 0$, contradicting $[a][p]a = [p]a \neq 0$. Therefore we have $\varphi = 0$.

§ 5. Discrete spaces.

Let R be now a discrete space, and $a_{\lambda} \geq 0$ $(\lambda \in \Lambda)$ a discrete basis of R, that is, every positive element $a \in R$ may be represented uniquely as $a = \bigcup_{\lambda \in \Lambda} \alpha_{\lambda}$. For a concave modular m(x) on R, we make use of the notation

$$\omega_{\lambda} = \lim_{\xi \to +\infty} m(\xi a_{\lambda})$$
 $(\lambda \in \Lambda)$.

THEOREM 5.1. For any bounded linear functional φ on R we can find $\varepsilon > 0$ such that $\omega_{\lambda} \leq \varepsilon$ implies $\varphi(a_{\lambda}) = 0$.

PROOF. For a positive linear functional φ on R, if there is a sequence of elements $\lambda_{\nu} \in \Lambda$ ($\nu = 1, 2, \cdots$) such that

$$\alpha_{\lambda_{\nu}} = \varphi(a_{\lambda_{\nu}}) \neq 0, \qquad \omega_{\lambda_{\nu}} \leq \frac{1}{2^{\nu}} \qquad (\nu = 1, 2, \cdots),$$

then we have

$$m\left(\frac{1}{\alpha_{\lambda_{\nu}}}a_{\lambda_{\nu}}\right) \leq \omega_{\lambda_{\nu}} \leq \frac{1}{2^{\nu}}$$
 $(\nu=1,2,\cdots)$,

and hence by the formula § 2 (4)

$$m\left(\sum_{\nu=1}^{\kappa}\frac{1}{\alpha_{\lambda_{\nu}}}a_{\lambda_{\nu}}\right) \leq \sum_{\nu=1}^{\kappa}\frac{1}{2^{\nu}} \leq 1.$$

Thus $\sum_{\nu=1}^{\infty} \frac{1}{\alpha_{\lambda_{\nu}}} a_{\lambda_{\nu}}$ is convergent by the postulate 7) in § 1, but we have

$$\varphi\left(\sum_{\nu=1}^{\infty}\frac{1}{\alpha_{\lambda_{\nu}}}a_{\lambda_{\nu}}\right)\geq\sum_{\nu=1}^{\infty}\frac{1}{\alpha_{\lambda_{\nu}}}\varphi(a_{\lambda_{\nu}})=+\infty.$$

Therefore we obtain our assertion.

Next we shall consider the case where $\inf_{\lambda \in \Lambda} \omega_{\lambda} > 0$. In this case, we can find $\epsilon > 0$ such that

$$\omega_{\lambda} > \varepsilon$$
 for every $\lambda \in \Lambda$.

Then we can find $\alpha_{\lambda} > 0$ ($\lambda \in A$) such that

$$m(\alpha_{\lambda} a_{\lambda}) \geq \varepsilon$$
 for every $\lambda \in \Lambda$.

For an arbitrary positive element $x \in R$, we can find uniquely $\xi_{\lambda} \ge 0$ $(\lambda \in \Lambda)$ such that

$$x = \bigcup_{\lambda \in \Lambda} \xi_{\lambda} a_{\lambda}$$
, $m(x) = \sum_{\lambda \in \Lambda} m(\xi_{\lambda} a_{\lambda}) < + \infty$.

Here we have naturally $\xi_{\lambda} = 0$ except for at most countable $\lambda \in \Lambda$. Furthermore we have $m(\xi_{\lambda} a_{\lambda}) \leq \varepsilon$ except for a finite number of $\lambda \in \Lambda$. For every $\lambda \in \Lambda$ subject to $m(\xi_{\lambda} a_{\lambda}) \leq \varepsilon$, we have obviously $\xi_{\lambda} \leq \alpha_{\lambda}$, and hence by the formula $\S 1 (2)$

$$\frac{\xi_{\lambda}}{\alpha_{\lambda}} \in \leq m(\xi_{\lambda} a_{\lambda}).$$

Therefore we conclude $\sum\limits_{\lambda \in A} \frac{\xi_{\lambda}}{\alpha_{\lambda}} < +\infty$. Thus putting

$$\varphi(x) = \sum_{\lambda \in A} \frac{\xi_{\lambda}}{\alpha_{\lambda}}$$
 for every positive $x = \bigcup_{\lambda \in A} \xi_{\lambda} a_{\lambda}$,

we obtain a positive linear functional φ on R. This linear functional φ is complete in R, that is, $\varphi(x)=0$, $x\geq 0$, implies obviously x=0. Thus we can state

THEOREM 5.2. If $\inf_{\lambda \in \Lambda} \omega_{\lambda} > 0$, then R is regular. (c.f. MSLS § 19) For a system of positive numbers α_{λ} ($\lambda \in \Lambda$) and $\varepsilon > 0$, if

$$m(\alpha_{\lambda}a_{\lambda}) \geq \varepsilon$$
 for every $\lambda \in \Lambda$,

then, putting

$$\varphi(x) = \sum_{\lambda \in A} \frac{\xi_{\lambda}}{\alpha_{\lambda}}$$
 for every positive $x = \bigcup_{\lambda \in A} \xi_{\lambda} \alpha_{\lambda}$,

we obtain a complete positive linear functional φ on R, as proved just above. Furthermore, if

$$\lim_{\xi \to 0} \sup_{\lambda \in A} m(\xi \alpha_{\lambda} a_{\lambda}) = 0,$$

then for every positive linear functional ψ on R we have $\sup_{\lambda \in \Lambda} \psi(\alpha_{\lambda} a_{\lambda})$ $<+\infty$. Because, if there is a sequence $\lambda_{\nu} \in \Lambda$ ($\nu=1,2,\cdots$) such that

 $\psi(\alpha_{\lambda_{\nu}}a_{\lambda_{\nu}}) \geq \nu$, then we have by assumption

$$\lim_{\nu\to\infty} m\left(\frac{1}{\nu}\alpha_{\lambda_{\nu}}a_{\lambda_{\nu}}\right) \leq \lim_{\nu\to\infty} \sup_{\lambda\in\Lambda} m\left(\frac{1}{\nu}\alpha_{\lambda}a_{\lambda}\right) = 0,$$

and hence we can find a subsequence $\lambda_{\nu_{\mu}}$ (μ =1, 2, ...) such that

$$\sum_{\mu=1}^{\infty} m \left(\frac{1}{\nu_{\mu}} \alpha_{\lambda_{\nu_{\mu}}} a_{\lambda_{\nu_{\mu}}} \right) < + \infty.$$

For such $\lambda_{\nu_{\mu}}$, we see easily by § 2 (5) and the postulate 7) in § 1 that $\sum_{\mu=1}^{\infty} \frac{1}{\nu_{\mu}} \alpha_{\lambda_{\nu_{\mu}}} a_{\lambda_{\nu_{\mu}}}$ is convergent, but we have

$$\psi\left(\sum_{\mu=1}^{\infty}\frac{1}{\nu_{\mu}}\alpha_{\lambda_{\nu_{\mu}}}a_{\lambda_{\nu_{\mu}}}\right) \geq \sum_{\mu=1}^{\infty}\frac{1}{\nu_{\mu}}\psi(\alpha_{\lambda_{\nu_{\mu}}}a_{\lambda_{\nu_{\mu}}}) = +\infty,$$

contradicting $\psi\left(\sum_{\mu=1}^{\infty}\frac{1}{\nu_{\mu}}\alpha_{\lambda_{\nu_{\mu}}}a_{\lambda_{\nu_{\mu}}}\right) <+\infty$. Thus we have $\sup_{\lambda \in A}\psi(\alpha_{\lambda}a_{\lambda}) <+\infty$, and hence, putting

$$\gamma = \sup_{\lambda \in A} \psi(\alpha_{\lambda} a_{\lambda})$$
,

we have $\psi \leq \gamma \varphi$. Therefore the conjugate space \bar{R} of R is bounded, because $\bar{R} \ni \varphi$ by Theorem 1.4.

Conversely, if there is a positive linear functional φ on R, such that for any positive linear functional ψ on R we can find $\gamma > 0$ for which $\psi \leq \gamma \varphi$, then we have naturally $\varphi(a_{\lambda}) > 0$ for every $\lambda \in \Lambda$, and hence, putting

$$\alpha_{\lambda} = \frac{1}{\varphi(a_{\lambda})} \qquad (\lambda \in \Lambda),$$

we have

$$\inf_{\lambda \in A} m(\alpha_{\lambda} a_{\lambda}) > 0.$$

Because, if $\inf_{\lambda \in A} m(\alpha_{\lambda} a_{\lambda}) = 0$, then we can find a sequence $\lambda_{\nu} \in A$ ($\nu = 1$, 2, ...) such that $\sum_{\nu=1}^{\infty} m(\alpha_{\lambda_{\nu}} a_{\lambda_{\nu}}) < +\infty$, and hence $\sum_{\nu=1}^{\infty} \alpha_{\lambda_{\nu}} a_{\lambda_{\nu}}$ is convergent, but

$$\varphi\left(\sum_{\nu=1}^{\infty}\alpha_{\lambda_{\nu}}a_{\lambda_{\nu}}\right) \geq \sum_{\nu=1}^{\infty}\alpha_{\lambda_{\nu}}\varphi(a_{\lambda_{\nu}}) = +\infty$$
,

contradicting $\varphi\left(\sum_{\nu=1}^{\infty}\alpha_{\lambda_{\nu}}a_{\lambda_{\nu}}\right) < +\infty$. Furthermore we have

$$\lim_{\xi \to 0} \sup_{\lambda \in \Lambda} m(\xi \alpha_{\lambda} a_{\lambda}) = 0.$$

Because, if there is $\delta > 0$ such that

$$\lim_{\xi \to 0} \sup_{\lambda \in A} m(\xi \alpha_{\lambda} a_{\lambda}) > \delta$$
,

then we can find a sequence $\lambda_{\nu} \in \Lambda \ (\nu=1, 2, \cdots)$ such that

$$m\left(\frac{1}{\nu^3}\alpha_{\lambda_{\nu}}a_{\lambda_{\nu}}\right) > \delta$$
 for every $\nu = 1, 2, \cdots$.

For such $\lambda_{\nu} \in \Lambda (\nu=1, 2, \cdots)$, if

$$\sum_{\nu=1}^{\infty} m(\xi_{\nu} \, \alpha_{\lambda_{\nu}} \alpha_{\lambda_{\nu}}) < + \, \infty \, , \, \xi_{\nu} \geq 0 \qquad (\nu = 1, 2 \cdots) \, ,$$

then we have $\xi_{\nu} \leq \frac{1}{\nu^3}$ except for a finite number of $\nu = 1, 2, \dots$, and

hence $\sum_{\nu=1}^{\infty} \nu \xi_{\nu} < + \infty$. Thus, putting

$$\psi(x) = \sum_{\nu=1}^{\infty} \frac{\nu}{\alpha_{\lambda_{\nu}}} \xi_{\lambda_{\nu}}$$
 for every positive $x = \bigcup_{\lambda \in A} \xi_{\lambda} a_{\lambda}$,

we obtain a positive linear functional ψ on R for which $\psi(\alpha_{\lambda_{\nu}} a_{\lambda_{\nu}}) = \nu$ ($\nu = 1, 2, \cdots$), contradicting $\psi \leq \gamma \varphi$ for some positive number γ . Therefore we can state

THEOREM 5.3. The conjugate space \bar{R} of R is bounded as a semi-ordered linear space, if and only if we can find $\alpha_{\lambda} > 0 \ (\lambda \in \Lambda)$ such that

$$\inf_{\lambda \in A} m(\alpha_{\lambda} a_{\lambda}) > 0, \quad \lim_{\xi \to 0} \sup_{\lambda \in A} m(\xi \alpha_{\lambda} a_{\lambda}) = 0,$$

and then, putting

$$\varphi(x) = \sum_{\lambda \in \Lambda} \frac{1}{\alpha_{\lambda}} \xi_{\lambda}$$
 for every positive $x = \bigcup_{\lambda \in \Lambda} \xi_{\lambda} a_{\lambda}$,

we obtain a positive linear functional $\varphi \in \overline{R}$ by which \overline{R} is bounded.

§ 6. Examples.

Let p(t) be a measurable function on the interval (0, 1) such that 0 < p(t) < 1. Denoting by $L_{p(t)}$ the totality of measurable functions $\varphi(t)$ for which

$$\int_0^1 |\varphi(t)|^{p(t)} dt < +\infty,$$

we see easily that $L_{p(t)}$ is a continuous semi-ordered linear space, defining $\varphi \ge \psi$ to mean $\varphi(t) \ge \psi(t)$ in (0, 1) up to a zero measure set. Putting

$$m(\varphi) = \int_0^1 |\varphi(t)|^{p(t)} dt$$
 for $\varphi \in L_{p(t)}$,

we see easily that $m(\varphi)$ is a concave modular of the second kind on $L_{p(t)}$. Therefore we conclude by Theorem 4.2 that there is no bounded functional on $L_{p(t)}$ except for 0. This result was proved first by M. M. Day and G. Sirvint independently in the special case where p(t) is a constant.²⁾

The totality of measurable functions on the interval (0, 1) is denoted by (S). (S) is obviously a continuous semi-ordered linear space in the usual sense. Putting

$$m(\varphi) = \int_0^1 \frac{|\varphi(t)|}{1 + |\varphi(t)|} dt \qquad \text{for every } \varphi \in (S),$$

we obtain a concave modular of the second kind. Thus we see by Theorem 4.2 that there is no bounded linear functional on (S) except for 0.3

For a sequence of positive numbers $p_{\nu} < 1$ ($\nu = 1, 2, \dots$), denoting by $l(p_{\nu}, p_{2}, \dots)$ the totality of $x = (\xi_{1}, \xi_{2}, \dots)$ for which

$$\sum_{\nu=1}^{\infty} |\xi_{\nu}|^{p_{\nu}} < + \infty ,$$

we obtain a continuous semi-ordered linear space $l(p_1, p_2, \cdots)$ which is obviously a discrete space. Putting

$$m(x) = \sum_{\nu=1}^{\infty} |\xi_{\nu}|^{f_{\nu}}$$
 for $x = (\xi_1, \xi_2, \dots) \in l(p_1, p_2, \dots)$,

we obtain a concave modular m(x) on $l(p_1, p_2, \cdots)$. Every bounded linear functional φ on $l(p_1, p_2, \cdots)$ is continuous by Theorem 1.4, and hence represented uniquely in the form

$$\varphi(x) = \sum_{\nu=1}^{\infty} \alpha_{\nu} \xi_{\nu} \qquad \text{for } x = (\xi_1, \xi_2, \cdots) \in l(p_1, p_2, \cdots).$$

As $\sum_{\nu=1}^{\infty} |\xi_{\nu}|^{p_{\nu}} < +\infty$ implies $\sum_{\nu=1}^{\infty} |\xi_{\nu}| < +\infty$, putting

$$\varphi_0(x) = \sum_{\nu=1}^{\infty} \xi_{\nu}$$
 for $x = (\xi_1, \xi_2, \cdots) \in l(p_1, p_2, \cdots)$,

we obtain a positive linear functional φ_0 on $l(p_1, p_2, \cdots)$.

If $\lim_{\nu \to \infty} p_{\nu} > 0$, then we can find $\varepsilon > 0$ such that $p_{\nu} > \varepsilon$ for every $\nu = 1, 2, \cdots$, and hence

$$\lim_{\xi \to 0} \sup_{\nu \geq 1} |\xi|^{p_{\nu}} \leq \lim_{\xi \to 0} |\xi|^{\varepsilon} = 0.$$

Thus we conclude by Theorem 5.3 that every bounded linear functional φ on $l(p_1, p_2, \cdots)$ is represented in the form

$$\varphi(x) = \sum_{\nu=1}^{\infty} \alpha_{\nu} \xi_{\nu}, \sup_{\nu \geq 1} |\alpha_{\nu}| < +\infty$$

for $x=(\xi_1, \xi_2, \cdots) \in l(p_1, p_2, \cdots)$.

The totality of sequences (ξ_1, ξ_1, \cdots) is denoted by (s). (s) is obviously a continuous semi-ordered linear space. Putting

$$m(x) = \sum_{\nu=1}^{\infty} \frac{|\xi_{\nu}|}{2^{\nu}(1+|\xi_{\nu}|)}$$
 for $x = (\xi_1, \xi_2, \dots)$,

we obtain a concave modular m(x) on (s). For this concave modular m(x) we have obviously

$$\omega_{\nu} = \lim_{\xi \to +\infty} \frac{|\xi|}{2^{\nu}(1+|\xi|)} = \frac{1}{2^{\nu}}$$
 $(\nu=1,2,\cdots).$

Thus we see by Theorem 5.1 that every bounded linear functional φ on (s) may be represented in the form

$$\varphi(x) = \sum_{\nu=1}^{\kappa} \alpha_{\nu} \, \xi_{\nu} \qquad \text{for } x = (\xi_1, \, \xi_2, \, \cdots)$$

for a finite number of real numbers $\alpha_1, \alpha_2, \cdots, \alpha_{\kappa}$.

Hokkaido University.

References.

- 1) H. Nakano: Modulared semi-ordered linear spaces, Tokyo Math. Book Series I (1950). This book will be denoted by MSLS in this paper.
- 2) M. M. Day: The space L^p with 0 , Bull. Amer. Math. Soc., 46 (1940), 816-823. G. Sirvint: Espace des fonctionells linéaires, Com. Rend. URSS., 26 (1940), 123-126.
- 3) C.f. 2).