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Concave modulars.

By Hidegoro NaKANO.

(Received Nov. 12, 1952)

We have defined and discussed modulars on semi-ordered linear
space in a book?. Let R be a semi-ordered linear space and univer-
sally continuous, that is, for every system of positive elements a, € R
(A e A) there exists)\ nAaA. A functional m(x) (x e R) is called a modular

€

on R, if 1) 0<m(x) <+ for every xe R, 2) m(éa)=0 for every
£ =0 implies ¢=0, 3) for any a< R we can find «a >0 such that
m(aa) <+, 4) for each xe R, m(éx) is a convex function of

E: m(a;6x>g ; {m(ax)+m(Bx)}, 5) |x|<<|y| implies m(x) <

m(y), 6) x =0 implies m(x+y)=m(x)+m(y), 7) 0 < x\ trcs %, im-
plies m(xo)zsu/[: m(xy).
Ae

In this paper we shall consider a functional m(x) (xe R) which
satisfies instead of 4) the condition: m(£x) is a concave function
of £ >0, i.e.,, we define a concave modular m(x) (xe R) by the postu-
lates: 1) 0 <<m(x) <+, 2) m(x)=0 implies x=0, SREARSET

implies #m(x) < m(y), 4) x~y=0 implies m(x+y)=m(x)+m(y), 5)
m(éx) is a concave function of & >>0:

m(x;“x)> ;{m(xx)-km(#x)} forx, p =0,

6) 1£i£](.’)1 m(¢x)=0, 7) 0<x, 15, sg? m(x,) < + o implies the existence
of an element x, for which «, 17, x, and m(xo)zlim m(x,).
Concerning the concave modulars m(x) on R: we can prove
m(x+y) < m(x) + m( y) for every x,ye R.

Thus, every concave modular m(x) on R is a quasi-norm by which R
is a Fréchet space.
For a concave modular m(x) on R, we can prove easily
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m(éx) - m(nx) for £ >7>0
£ T o ’

and hence there exists the limit

m(&x)
¢

ml(x)=l£im~ for every xe R.
A concave modular m(x) is said to be of the first kind, if my(x)=0
implies x=0, and of the second kind, if m(x)=0 for every xe R.
With this definition, R may be devided in two normal manifolds F
and S such that m(x) is of the first kind in F and of the second kind
in S.

If m(x) is of the first kind in R, then #y(x) is a norm on R and

my(x +y)=my(x) +my(y) for x,y =>0.

By this norm m,(x), R is complete, and hence a so-called generalized
L,-space, if and only if sup m(x) <+ co.

ml(x)SI
If m(x) is of the second kind on R, and R has no discrete element,
then there is no bounded linear functional on R except for the identi-
cal zero 0.
Finally we shall consider the case where R is a discrete space
with a basis @, =0 (n e A), that is, every positive element x ¢ R may
be represented uniquely in the form x= chAa)\ah. In this case, the

conjugate space of R is a generalized (m)-space, if and only if we can
find a, >0 e A) such that

inf m(a @) >0, lim sup m(éx,a,)=0.
AeAd E20 reA

As applications, we consider the following modulars in the space
of measurable functions : :

mip)={ 190170 at, 0<p(t) <1 for 0t <1,

_(t 1@ ]
m(q’)"go 1+o0 ©

and in the space of number sequences (&, &, )



Concave modulars 31

m(f‘x,fz,"')=§l§u lpv, O<pv<1(v=1a2;"'): '

§1. Concave modulars.

Let R be a continuous semi-ordered linear space. A functional
m(x) (xe R) on R is said to be a concave modular on R, if

1) 0= m(x) <+ o for every xe R,

2) m(x)=0 implies x=0,

3) IxI1<1y| implies m(x) < m(y),

4) x"y=0 implies m(x+y)=ne(x)+m(y),

5) m(éx) is a concave function of £ >0:

| Adp m(nx)+m(px) ~
m( 5 x)@ 5 for A, ©u =0,

6) 1£1r£1 m(&x)=0,
7) 0 x, 152, sup m(x,) < + o implies the existence of X, such
vl .
that
Xy Tv=1 X0 m(xo)zlim m(xv) .
On account of the postulate 3), m(f—x) is a non-decreasing function

of £=0, and m(0)=0 by 4). Thus we can conclude easily from 5),
6) that m(&x) is a continuous concave function of £>>0 and

(1) m((N&+pn)x) = A m(éx)+pm(nx) for A+pu=1; A, pu, & 9=>0.
Putting »=0 in (1), we obtain

2) m(nx) — m(px) for 0<<A<p.

A iz
As m(éx) is a continuous concave function of &> 0, we have

A+ Ex)—m(Ex) - m((p+n)x)—mlnx)
A ) M

for ¢ > >0, A, »n>0. Especially, putting =0, A=z > 0, we obtain
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m((n+E)x)—m(éx) - mizx)

A A

Thus we have
(3) m((n+ p)x) < m(x)+m(px) for A, u>0.

THEOREM 1.1 [p,]15,0 implies li_m m([p.] x)=0 for every xe R.

Proor. If [p,]12:0, then we have 1—[p,] 1521, and hence by 7)

lim #e((1—[p,)a)=m(a) for every a=>0.

As m(x)=m( 2 |) by 3) and m((1—[p,]) a)+m((p,] a)=m(a) by 4), we
conclude hence lim m([ p,]x)=0 for every x ¢ R.

v-»oo

In the sequel, we assume that a concave modular m(x) is defined
on R.

THEOREM 1.2. R is superuniversally continuous and totally con-
tinuous.

ProoF. For an orthogonal system @, (A e A) and a positive ele-
ment @, we have by 3) and 4)

Z‘i m([ar.]a) =’”<§31 [ar]a) < m(a)

for every finite number of elements A, e A (»=1,2,--,«), and hence
we have m([a\]a)=0 for every ane A up to at most countable A e A.
Thus we have [@\] a=0 except for at most countable A e A. Therefore
R is superuniversally continuous by MSLS?Y Theorem 13.2.

If [p1=10,.11210(=1,2, ), then we have by [Theorem 1.1
lim m([pv,y-]p):o (v:1) 2, ) .

Thus we can find g, , T2+ © (»=1,2, ---) such that

S mpnn, IS (p=1,2,).

v=1

For such p, ,, putting [p,]= l:jl[ Do, p], we see easily by 3), 4)
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m( 5,1 0) < S Do, 10) < ;
and [p,]l521. Putting [p]= al[pp], we have obviously by 3)

m([ po] p) < m([ p,] p) < I{ for every p=1,2, -,

and hence m([p,]p)=0. This relation yields by 2) [p,] =0, and con-
sequently [ p,]=0, because [p,] <[p]. Therefore R is totally continuous
by MSLS Theorem 14.1.

THEOREM 1.3. R is totally unbounded.
Proor. If a:ilay, a,a,=0 for » == u, then we have by 4), 7)

S m(a,)=m(a) < + oo.
vl

Thus there exists a sequence 1 < «, 1%+ o such that 21“” m(a,)

< +oo. As m(a,a,) < «, m(a,) by (2), we obtain by 4)

K K f’°
m(S «, a,)=> m(a, a,) < >Jlav m(a,)
v=1 v=1 V=

for every «=1,2, ---. Therefore i‘a\, a, is convergent by 7).
v=1

Recalling MSLS Theorem 19.7, we obtain by Theorems 1.2 and 1.3

THEOREM 1.4. Ewvery bounded linear functional on R is universally
continuous.

§2. Spectral theory.

As m([p]a)=0 implies by 2) [p]la=0, and [p,]11:-:[p] implies by
(7 liEn m([ p,] @)=m( p] @), we see by MSLS Theorem 36.1 that, putting

— 1im ™(élpla)
w(&: a, P)”‘ [}bljrf;lp m([p]a) (é 2 O, pe Ufa)) »

we obtain a continuos function (¢, @, p) on U, and
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mEpl)=|  w(¢, a, ymdpa)

w(é, a,b) is called the spectrum by m. w(& a,p) is obviously a non-
decreasing concave function of & > 0. Recalling (2), (3) in §1, we s=ze
easily by definition :

(1) w(ly a, D):]_,

2) ; o€, a,b) < }7 o(n, a,b) for £2>7>0,

3 o E+n,a,9) < wlé a D)t oly, ab).

As w(§, a,b) is a non-decreasing concave function of & >0 and
[p.] 1.1 0 implies by [Theorem 1.1 11m m([ p,] a)=0, we see easily that

we can find an open set Ac U, such that A is dense in U, and
w(&, a,b) is a finite continuous function of £ == 0 for every pe A. For
two positive elements a, b R, we can find an open set B being dense

in U, such that the relative spectrum ( b ,
a

v) is finite and continuous
in B. For an arbitrary b, e AB, if(br , DU> <A, then we can find a
a

projector [ p] such that bye U, ©AB and ( D) < for every pe Ugp.

This relation yields [p]d < A [p]a, and hence we obtain by the postu-
late 3) m([(p]b) < m(A[p]la). From this relation we can conclude

m([(plb) -
o o] a) = &)

As (&, a,9) is a continuous function of £ =0, and A >( p) may

be arbitrary, we obtain hence
([ p]b) b
lim S pla) = ((a b)), a,vo).

We can prove likewise

m 20D = o (5 ,y), 4

100 m([ pla)
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considering an arbitrary positive number A <C (%, b(,) . Therefore we

have

m([p]d) _ b |
[T be W]_—a—y - o ((;, p) » @, p) for every Ve AB.

As AB also is dense in U;,;, we conclude hence by MSLS Theorem
36.1

(4) m((a] )= w((z, b) , a,p) m(dpa)

[al

for every two positive elements @, e R.
For two arbitrary elements @, b e R, putting c=|a|+]| b |, we have

by the formulas (3) and (4)
m(a+d) < m(lal+|b])

S m((’—al-'—l'—l—ﬂ , D), c, D) m(dbc)
el

Il

w((%, P), c, P)m(dp c)+S w((?bz b), c, D)m(dn c)

Ccl
=m(a)+m(b),
that is,
(5) m(a+ b) < m(a)+m(b).

Thus we see that m(x) (xe R) is a quasi-norm on R.
As (&, a,p) is a non-decreasing concave function of £ = 0, we have

for A+pu=1; A, u,&,7=>0. Thus for two positive elements a,bec R,
putting c=a+b, we have by (4) for A +u=1; A, u =0

m(ra-+ ,u.b)=§ m(( l‘i}"—b—, p), c, P)m(d pe)

Cel

= m(a)+pm(b),
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that is, for @, =0, A+ux=1, A, x>0
(6) m(na+ ph) = A m(a)+ p m(b) .

THEOREM 2.1. lim m(a.—a,)=0 implies lim m(a,—a)=0 for some

M, Voo v

ac R, that is, m(x)(x e R) is complete as a quasi-norm.
PROOF. If lim m(a,—a,)=0, then we can find a subsequence g,

K,V > e

(r=1,2, ---) such that

ma, —a, )<L =1,2,).

Then we see easily by (5) and the postulate 7) that §m} |@, —a, |is
y=1 v V+i1
convergent, and for every p=1,2, --
1 1

< - S -
. m(f:_‘,)la,,v a#vﬂl)ﬂ%: o T oo

3

Thus, putting a=a“,+§(a“m——n,‘v), we have

lim m(a—a“v) < lpim m(y\;, | @y, —a,,, N=0,

Voo + oo =p

and hence we conclude further by (4) and the assumption

lim m(a—a,)=0.

Voo

A linear functional @ on R is said to be modular bounded by m,
if we can find a positive number e such that

sup | @(x) | << + oo .
mix) <. €

With this definition we have

THEOREM 2.2. A lnear functional ¢ on R is modular bounded,
if and only if ¢ is bounded.

PrOOF. If ¢ is modular bounded, then we have by definition

sup | @(x)] << + for some ¢ > 0.

mx)< e
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For any a =0, we can find by 6) A >0 such that m(aa) e, and we
have obviously

,Sup 1) 1= sup 1) | < 1 sup | () | <+ o0

X Il Aa m(x) = €

Thus ¢ is bounded.
If ¢ is positive but not modular bounded, then we can find @, >> 0

(v=1, 2,--) such that m(a,) < 21v”’ w(a,) = 2° for every v=1,2,---. Then

we see easily by (4) and 7) thati‘,av is convergent, but we have
v=1

(/)(i;_a\'):g:(/)(av);%zv (V:]:ZJ”')’

contradicting w(i a,) <+ co. Thus, if @ is bounded, then ¢ is modular
v=1
bounded.

THEOREM 2.3. If lim i on, a, 2%)=0 and Y, is not an isolated

A= +oo

point, then for every bounded lincar functional ¢ on R we have

w(lpla) _
[;_g]l‘o m([ pla) 0

Proor. If lim 1-w(h,a, h)=0, then we can find a sequence of

A3 +o0 N\

positive numbers A, (r=1, 2, ---) such that

otn, ek < L (v=1,2,-).

v

If » is not an isolated point, then we can find a sequence of projectors
[$.]15.,0 such that pye Uy, for every »=1,2,---, and

Lotuan<l for every pe Uina,

because R is superuniversally continuous by Theorem 1.2. For a
positive linear functional @ on R, if
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T 2lpla) ‘
[ﬁlJI-H’o m([ p] a) >e>0,
then we can find [¢]}5; 0 such that [¢,]<[p.], m((q,] a)g%—, and

v

_?’_([g_vjﬂ>e (V=1 2.)

m((q.] @) T
Then, putting

1
y—— — (V=1’2,”')’
m([g,]a)
we have «, = A,, and hence
J—w(a,,, a,b) < 1 for every Pe Uiy,

A a, Al
because lm(aw a,b) < %w()\.,, a,b) by (2). Thus we have by (4)
a v

v

mela]a)=| olp. armdba)

Lavl

<%f

< %) mldy a)=% m([g,] a)=%;,

Cqv]

and hence we see by (5) and 7) that \i;a,, [¢.] @ is convergent. But we
have

P(3 alg]a) 2 3 e mgla)=+<o,

contradicting ¢(§: a,[g,]a) <+ . Therefore we obtain
P pla) _
[pljl-}}a. m([pla) 0.
§ 3. The first kind concave modulars.

By virtue of the formula §1(2), we can put

my(x)= lim ﬁ%‘l

+ 400
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and we obtain a functional m,(x) on R. This functional #e(x) will be
called the limit modular of a concave modular m(x).

THEOREM 3.1. For the lmit modular m(x), {x: m(x)=0} is a
normal manifold of R.

PrROOF. Putting S={x: m,(x)=0}, we see easily by definition that
S is a semi-normal manifold of R. If

(p]15alal, []aeS (v=1,2,-),

then we have eae S. Because, for any ¢>>0, recalling Theorem 1.1,
we can find by assumption » such that

m(([a]—[p])a) e,
and for such » we can find further by assumption & > 1 such that

¢

Then we have by the postulate 4) and the formula (2) in §1

m(ta) _ m¢(al-[p))a) | mE[p]a) <2e.
& & ¢

Therefore we obtain ¢eS. If 0<a 1.4, a,eS (v=1,2,-), then
we have by MSLS Theorems 6.2 and 6.19

[av] T;:l [a], [(/"'av—a)+] T:—l [av] ’
0 é [(l"'av'—a)+] a é ra, € S.

Thus we have [a.]ae S for every »=1,2,---, and hence ae S, as proved
just above. As R is superuniversally continuous by Theorem 1.2, we
see easily hence that 0<a,Trcua a eS (AeA) implies aeS.
Therefore S is by MSLS Theorem 4.9 a normal manifold of R.

A concave modular m(x) on R is said to be of the first kind, if,
my(¥) == 0 for every x =0, and m(x) is said to be of the second kind,
if my(x)=0 for every xe R. With this definition, we have obviously
by Theorem 3.1.

THEOREM 3.2. For a concave modular m(x) on R, we can devide
R uniquely in two orthogonal normal manifolds F and S, such that
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m(x) is of the first kind in F and of the second kind in S.
Now we suppose that m(x) is the first kind concave modular on
R. The limit modular m,(x) satisfies obviously by definition

m(ax)= Hm -5 = | my(x)

E>too

and x"y=0 implies m,(x+ y)=m2(x)+m(y). Therefore the limit modu-
lar my(x) is a linear modular on R. (c.f., MSLS §41).

THEOREM 3.3. If a concave modular m(x) on R is of the first
kind, then the lLimit modular m\(x) of m(x) is a linear modular on R.
This linear modular m\(x) is monotone complete, if and only if

sup m(x) <+ co.

m (x):01

Proor. We suppose firstly a= sup #ni(x) <+ . If

m(x)z 1
0—{. a, T:‘;l ’ Surl) 1nl(av)=B < + ’
Vo

then we have obviously

7”1(; ay>=; 7nl(av) =<__—- 1 fOI‘ Cvery y___]_’ 2’ .o ,

and hence by assumption sup m(;} av\) < «. Thus we can find by the
vzl

postulate 7) in §1 ae R such that @, 1;>;a. Therefore m(x) is mono-
tone complete by definition.
If s(uplm(x)=+oo, then we can find @, > 0(»=1, 2, ---) such that
m, XIS

ml(av)gl: m(av);>=2v (”:1) 2: )-

For such a,e R(v=1,2,---), as my(x) is a linear modular, we have by
MSLS Theorem 36.9 for every «=1,2, -

51 )__ 1
m (31 a)=3 m@) <1,
but il—%; a, is not convergent, because we have by §2 (6)

m(5 L a)=3 ) mayze  for every e=1,2, -
v=1 2V v=1 2V
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Therefore m2,(x) is not monotone complete.

§4. The second kind concave modulars.

In this §, we shall consider the second kind concave modulars.

THEOREM 4.1. If a concave modular m(x) is of the second kind,
then for any ac R we can find an open set A of the proper space of
R such that A is dense in Uy and

lim g_ w(&, a,P)=0 for every pe A.

£ + oo

Proor. For any € >0,

{n : limw ~»;-m({-, a,b) = e} = Z {p: j w(&, a, V) = e}

|
£+ v=1

is obviously a closed set. Furthermore this closed set is nowhere
dense. Because, if there is a projector [ p]such that 0 =[p] <[] and

lim -}w(g:, a,0)>e¢  for every ve Uy,

£+ + oo

then we have for every & >0

PELIO_( 1oz, a,mm(dva) = e m(pla),
& rp1 €

contradicting m,([p]a)=0. As

- 1 ) —-03"1 - 1 ¥1 > Al_
{v. lim --é-m(g,a,x)zho}__%l i lim (@, b) = }

£ +eoo £-» o0 vV

we see by MSLS Theorem 14.5 that
{v : limm 1 w(§, a,b) 3= O}
£+ +oo {-

is nowhere dense, because R is totally continuous and superuniversally
continuous by Theorem 1.2.

THEOREM 4.2. If a concave modular m(x) is of the second kind,
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and R has no discrete eleinent, then there is no bounded linear func-
tional on R up to 0.

PrOOF. Let @ be a positive linear functional on R. As ¢ is by
Theorem 1.4 universally continuous, the characteristic set of ¢ is open
by MSLS Theorem 22.5. Thus, if @ =0, then we can find a positive
element a=F0, such that ¢(x)=0, x = 0, implies [a¢]x=0. For such a,
we can find by Theorem 4.1 a positive element p==0, such that
[p]1<[a] and

slim —g—w(f—, a,»)=0 for every b€ Up,,.

Then, for every b€ U;p; we have by [Theorem 2.3

im P Pla) =0

Iim

-y m([pla)

»

because R has no discrete element, and hence the proper space of R
has no isolated point. Thus, for any e>>0, corresponding to every.
pe Urp;, we can find a normal manifold P, such that Uip2p and

@[ pla) < e m([ pla) for Ve Upn < U 4.

As Uy is compact, we can find a finite number of points b, e Uy
(»r=1,2, .-, ) such that

K
Upni=2] Ul‘.Pm,Il .
v=1

For such [P,,] (#»=1,2, ---, ) we can find obviously projection operators
[P,](v=1,2, -+, ) such that

[p]=3][P) [PIS[P), [PIIPI=0 for » = p.
Then we have
[ pla)=3] 9([P.la) < 3 emi([PJa)=em([ pla).

As ¢ >0 may be arbitrary, we obtain hence ®{[pla]=0, contradicting
[al[pla=[pla==0. Therefore we have @=0.
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§5. Discrete spaces.

Let R be now a discrete space, and @, >0 (n e A) a discrete basis
of R, that is, every positive element ¢ e R may be represented uniquely
as a= UAa,\ a\. For a concave modular m(x) on R, we make use of the

A€

notation

W) =£L1£I_1° m(¢a,) (Aed).

THEOREM 5.1. For any bounded linear functional @ on R we can
Jfind € >0 such that o, < e implies @p(a,)=0.

ProOF. For a positive linear functional @ on R, if there is a
sequence of elements A, e A (»=1,2, ---) such that

a,‘v=¢(a,‘\‘) :‘: 0, W, =<:= ';21.”' (V:‘]-: 2, '") ’
then we have
m( 1 ahv)_gw)\ g‘%; (V:])zs )9

and hence by the formula §2 (4)

m(3 e )<L <1

v=1 aAy v=]1 2”

Thus i 1

v=1 a)‘v

a,, is convergent by the postulate 7) in § 1, but we have
= 1 = | —

P @) =2 ——p(a, )=+ .
v=1 a)\v v=1 CK;‘V

Therefore we obtain our assertion.
Next we shall consider the case where A1n3.‘1 wr>0. In this case,
€

we can find ¢ > 0 such that

w\ > ¢ for every ne A.

Then we can find ay, >0 (A e A) such that
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m(a, a,) = e for every ne A.

For an arbitrary positive element x € R, we can find uniquely & >0
(An e A) such that

x =AEJA£-A a, , m(x)=)§}Am(§x a,) <+ oo,

Here we have naturally &,=0 except for at most countable A e A.
Furthermore we have m(&, a\) << ¢ except for a finite number of A e A.
For every ne A subject to m(&, @) < e, we have obviously & < a,,
and hence by the formula §1 (2)

& e <mits ay).
(4 4N

Therefore we conclude 37 & < + oo Thus putting

Aed )

@(x)=3>] & for every positive x=UE&, a,,
Aed Xy AeA

we obtain a positive linear functional ¢ on R. This linear functional

@ is complete in R, that is, @(x)=0, x =0, implies obviously x=0.

Thus we can state

THEOREM 5.2. If infw, >0, then R is regular. (c.f. MSLS §19)

Aed
For a system of positive numbers a, (A e A) and ¢ > 0, if

m(a\a,) = ¢ for every re A,
then, putting
@(x)= >3 éx for every positive x= U¢&, a,,
AeAd QU AeA

we obtain a complete positive linear functional ¢ on R, as proved just
above. Furthermore, if

lim sup m(éx,a,)=0,
E20 AeA

then for every positive linear functional ¥ on R we have §u91 Y(aaaa)
€

<+ e, Because, if there is a sequence A, e A (»=1,2,---) such that
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¥(ax @) = v, then we have by assumption

lim m(—1~ ay, a, > < lim sup m(i s ak)=0,

v-»oo v v3oo AeA

and hence we can find a subseqdence Ay, (r=1,2, ---) such that
Em\——m a, >< + oo,
"

For such A, We see easily by §2 (5) and the postulate 7) in §1 that

ST 1 a, a, is convergent, but we have
n=1 v, YooV

\]f(i‘_'l_a)\ﬂa)\v#>;—>—~§j—];"p(a a)\ )-_+OO’

A1 vy

contradicting xlr(z‘ ——at, a5, ><+ o, Thus we have sup Yty ay)<+ oo,

=1 l’p, P'
and hence, putting

y=sup ¥(a,a,),
AeA

we have ¥ < yo. Therefore the conjugate space R of R is bounded,
because R s ¢ by [Theorem 1.4

Conversely, if there is a positive linear functional ¢ on R, such
that for any positive linear functional ¥ on R we can find y >0 for
which ¥ < y¢, then we have naturally ¢(a,) >0 for every A e A, and
hence, putting

_ 1
T @) (e ),

we have

inf m(a,a) >0.
AeAd

Because, if inf m(a,‘ak)zo, then we can find a sequence A, e A (v=1,
AeA

---) such that m(m @) <+ o, and hence > @, @, is convergent,

v=]

but
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¢(Z A, ax,,) =2 oy, play)=+ o,
v=1 v=1

cohtraaicting go(i}l as, “M) <+ oo, Furthermore we have
vz

lim sup m(éx,a,)=0.
£20 AeA

Because, if there is § > 0 such that

lim sup m(¢ax,a)) > 8,
£E+0 AeA

then we can find a sequence A, e A (»=1, 2, ---) such that

m(%“’w ahv> >3 for every »=1,2, -

1 4
For such e A (»=1,2, --), if
St ann) <+ @, 520 v=1,2-),

1

then we have &, < =, except for a finite number of »=1,2, .-, and
Y 24

hence i}lw_fv< + o, Thus, putting

\;r(x)=i LAY for every positive x=U &, a,,
v=1 a)\v v Aed
we obtain a positive linear functional ¥ on R for which Y(aa, ax)=v

(»=1, 2, --+), contradicting ¥ < v @ for some positive number . There-
fore we can state

THEOREM 5.3. The conjugate space R of R is bounded as a semi-
ordeved linear space, if and only if we can find an>0(neA) such
that

inf m(a,a,) >0, lim sup m(éa,a,)=0,
AeAd £40 reAa

and then, putting
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2(x) = _1_5_'\ for every positive x= U &, a,,
Ae A a}\ AeA

we obtain a positive linear functional ¢ e R by which R is bounded.

§6. Examples.

Let p(#) be a measurable function on the interval (0, 1) such that
0 <<p(#) <<1. Denoting by L,,, the totality of measurable functions
@(t) for which

‘1o 17oa < +w,

0

we see easily that L,, is a continuous semi-ordered linear space,
defining @ = ¥ to mean @(f) = vy¢) in (0, 1) up to a zero measure set.
Putting

mig)=("| p(t) 1P0at for 9 e Lus,
0

we see easily that m(@) is a concave modular of the second kind on
L,y . Therefore we conclude by [Theorem 4.2 that there is no bound-
ed functional on L,,, except for O. This result was proved first by
M. M. Day and G. Sirvint independently in the special case where p(¢)
is a constant.?

The totality of measurable functions on the interval (0, 1) is
denoted by (S). (S) is obviously a continuous semi-ordered linear
space in the usual sense. Putting

_(* le®1
m(cp)—g0 Th (o] dt for every @ e(S),

we obtain a concave modular of the second kind. Thus we see by
(I'heorem 4.2 that there is no bounded linear functional on (S) except
for 0.2

For a sequence of positive numbers p, <1 (»=1, 2, ---), denoting
by U pu P2, ---) the totality of x=(&, &, ---) for which
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Sl 1 < 4o,

we obtain a continuous semi-ordered linear space #(p,, ., ---) which is
obviously a discrete space. Putting

m(x)=331 & | for x=(41, &, ) & A 2y ),

we obtain a concave modular m(x) on X py, P, ---). Every bounded

linear functional @ on /(py, p», ---) is continuous by [Theorem 1.4, and
hence represented uniquely in the form

q)(x):‘g ay gv for x:(gl) &2: )e l(ph p.?s ) .
As s;'llgyim<+oo implies %|gv|< + oo, putting

plx)=318  for x=(bu b ) e bt

we obtain a positive linear functional ¢, on 4 p,, p., --).
If lim p, > 0, then we can find ¢ >0 such that p,>e for every

Voo

v=1,2, ---, and hence

lim sup | &}|#» <1lim | & *=0.
£-0 vl £-0

Thus we conclude by [Theorem 5.3 that every bounded linear functional
@ on I p,, P --) is represented in the form

px)=>a, &, supla, | <+,
v=]1 v=1

for x=(&, &, ---) e U Py, Po,--).
The totality of sequences (&,&, ) is denoted by (s). (s) is

obviously a continuous semi-ordered linear space. Putting

=& _
m(x)=2, (141 & 1) for x=(&, &, ),

we obtain a concave modular #(x) on (s). For this concave modular
m(x) we have obviously
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y=lm- 18l 1 - (w=1,2, ).
CTe2e) 2 v !

Thus we see by [Theorem 5.1 that every bounded linear functional ¢
on (s) may be represented in the form

q)(x)=v};m £, for x=(&, &, --")

for a finite number of real numbers «y, @y, -+ , Qy .

Hokkaido University.
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