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Supplementary remarks on the Schur relations
for a Frobenius algebra.

By Masaru OsiMA
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The present paper is a continuation of an earlier investigation
We shall derive some results from the Schur relations obtained in

Let A be a Frobenius algebra over an algebraically closed field K,
and let

A=A+N

be a splitting of A into a direct sum of a semisimple subalgebra A
and the radical N of A. We shall denote by

A:K1+A.2+"'+Z”

the unique splitting of A into a direct sum of simple invariant sub-
algebras A,. Let ¢ a6, 8=1,2,--,f(7)) denote a set of matrix units
for the simple algebra A, we set ex=cy,; and E\=3)¢, .. Let Fj,
F,, ---, F, be the distinct irreducible representations of A. Let U, U,
.--, U, be the indecomposable constituents of the left regular repre-
sentation of A. Then U, 22 V., where the V, are the indecomposable
constituents of the right regular representation and (#(1), =(2), --- , = (n))
is a permutation of (1,2,---,#). As is well known, A has a
Nakayama’s automorphism ¢ : @ — a® which is completely determined
by A, apart from an inner automorphism. In the following we shall
consider a special Nakayama’s automorphism ¢ which satisfies

(1) €xn, aB == e‘{,dﬂ (mOd N) .

We obtain the irreducible representation e — F, (a“’_l) which will be
denoted by F,x(a). Then, by (1) we have F,x(a@)=Fn(a). Let

(2) (epu, wlbuevu, 15)

be the Cartan basis of A, and let U, be the indecomposable constituents
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of the left regular representation defined by the basis (2). We may
set

HD
[1(2. D H{z, 2)
(3) UA:" ’

..................

H(I. 1)H(I,2) ,,,,,, H(t.t)

where the H “ ¥ are the irreducible representations and in particular,
HYVY=F,, H%“?=F,,. We write

(4) H 7 (@)= (hiis"(@))

If (p,) and (g,) are corresponding bases belonging to ¢, then we
have

(5) ST (q)hiE? (0s)=0, if i< 1.

L 0, if 1<J, or if j=1,m <t
(6) 235 (g5 hay” (Ps):{ . <
s C\OuOpu , If =1, m=¢,

where the element ¢,#=0 of K is independent of «, B, », » and i. The
Schur relations (5), (6) are the main results obtained in

If # and v are any two linear f{unctions of A, then, by or by
Lemma 6 [4], we have

(7) u(qs) v(Ds) = u(p?) v(gs) .
Hence it follows from (5), (6) that
(8) ST (PR (¢5)=0, if 1<1/.
. . 0, if 1<y, orif j=1, m <t
R P (PR (g5)= e
9) Zs (PE)hzs" (2:) {CABMSB,“ if j=1,m=t.
We may write (8), (9) as follows:
(8" ST RIP (g ks (p9)=0, if m<j.
. - 0, if 1<, or if I=1, i<t
' i (gl (09)= . . |
99 Zs: 0 (g:hds” (0) {c,\SMS,;,‘, if /=1, i=t.
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THEOREM 1. If U, is wrilten in the form (3), then for any
element a in A

(10) 3 P(gsa) ks (p)=0, if i <1.
> YR F1<j, or if j=1, m ¢
(11) s >1 ki (gsa) hdx?(ps)= {c,‘h(' a)ss, , if j=1, m=t.

ProoF. Since U,(g.a)=U\(gs)U.(a), we have from (3)
H(g,a)=3 H™P(g)H*a),
so that
h(ga)= Z (33 1 Pgo)hi (@) -

Hence we see readily by (5), (6) that (10), (11) are valid.
Corresponding to (8), (9), we have

(12) SR pta) (g =0, i i<
0, if 1<y, or if j=1, m <t
@ X 2 ),
(13) S kg (pa) K g = { ey

We denote by UN)[~(N)] the set of all left [right] annihilators of
N in A. Since A is a Frobenius algebra, we have {/N)=7»(/N) and

(14) (N)=Ad=dA,

where a’d=da for every a in A (see Theorem 12).° We may
assume without restriction that

(15) U,\<d>=((} 0) (A=1,2,,7),

where I, is the unit matrix of degree f(A). It follows from
and (12), that

(16) Z qsap= 2 ¢ ags= ;1 e tr(Ux(a))dE, .
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THEOREM 2. Let (a,) and (bs) be corvesponding bases of A belong-
ing to an arbitrary Nakayamd's automorphism. If the underlying
field K has characteristic 0, then S ba,=F0. If K has characteristic
D, then S ba.=0, if and only if the degree u(\) of U, is divisible by
D for every A.

Proor. We have > ba,=t > g, ps, where ¢ is a regular element
of A (see [4] p. 4). It follows from (16) that>] g, p= Zc,\ u(\) dE,
and hence our theorem is proved immediately.

THEOREM 3. If U, is written in the form (3), then for any ele-
ment a in A

(17) ST W Pag)hs () =0, if i<\1.
if 1<j,or if =1, m ¢
hfs(@) 8a, , tf 7=1, m=t.

ProoF. From U,(aq,)=U,(a)U\(gs), we have

(18) ST hiz-Paq,) Wi (ps) =

H ™V(agq)=3 H™ ¥ (a)H *"(g,),
so that
B-Pag) =3 (53 A M@k (a2) -
By (5), (6) we have easily (17), (18).
Since Fraa)= <fa<“<a» (fis (@), we bave
(19) a(33gs )= (}_J e u(N) f 3V (@)dey, up) -

We may generalize the Schur relations (5), (6) to quasi-Frobenius
algebras as in [1], but we shall not enter into this problem.

From now on we assume that A is a symmetric algebra. Then
@ becomes the identical automorphism. The corresponding bases (p;)
and (g,) belonging to the identical automorphism are called quasi-
complementary bases. We have in U,, (3)

HAD=H&O=F,

The Schur relations for a symmetric algebra A are given by
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(20)

(21)

(22)

(23)

M. OsiMma
STt (gs) R (p)=0, if 2<1.

o, if 1<y, or if j=1, m <t

Zh(z”“ s h: ) )= o
s " (a5) hais”(b:) {cA Sav Opy, If =1, m=t¢.
0 i Pgs) s (ps)=0, if m<j.

0, if 1<71 or if I=1, i<t

i (g i ()= L
23 Rt (gs) hab” (De) {cAsmsf,,L, if 1=1, i=t.

We obtain (22), by putting =1 in (8') and (9).
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