Supplementary remarks on the Schur relations for a Frobenius algebra.

By Masaru Osima

(Received Dec. 8, 1952)

The present paper is a continuation of an earlier investigation [4]. We shall derive some results from the Schur relations obtained in [4]. Let A be a Frobenius algebra over an algebraically closed field K, and let

$$A = \overline{A} + N$$

be a splitting of A into a direct sum of a semisimple subalgebra \overline{A} and the radical N of A. We shall denote by

$$\overline{A} = \overline{A}_1 + \overline{A}_2 + \dots + \overline{A}_n$$

the unique splitting of \overline{A} into a direct sum of simple invariant subalgebras \overline{A}_{λ} . Let $e_{\lambda,\alpha\beta}(\alpha,\beta=1,2,\cdots,f(\lambda))$ denote a set of matrix units for the simple algebra \overline{A}_{λ} , we set $e_{\lambda}=e_{\lambda,11}$ and $E_{\lambda}=\sum_{\alpha}e_{\lambda,\alpha\alpha}$. Let F_1 , F_2 , ..., F_n be the distinct irreducible representations of A. Let U_1,U_2,\ldots,U_n be the indecomposable constituents of the left regular representation of A. Then $U_{\lambda}\cong V_{\pi(\lambda)}$, where the V_{λ} are the indecomposable constituents of the right regular representation and $(\pi(1),\pi(2),\cdots,\pi(n))$ is a permutation of $(1,2,\cdots,n)$. As is well known, A has a Nakayama's automorphism $\varphi: a \to a^{\varphi}$ which is completely determined by A, apart from an inner automorphism. In the following we shall consider a special Nakayama's automorphism φ which satisfies

(1)
$$e_{\pi(\lambda), \alpha\beta} \equiv e_{\lambda, \alpha\beta}^{\varphi} \pmod{N}.$$

We obtain the irreducible representation $a \to F_{\lambda}(a^{\varphi^{-1}})$ which will be denoted by $F_{\lambda*}(a)$. Then, by (1) we have $F_{\lambda*}(a) = F_{\pi(\lambda)}(a)$. Let

$$(2) (e_{\rho_{\mu}, \alpha 1}b_{\mu}e_{\sigma_{\mu}, 1\beta})$$

be the Cartan basis of A, and let U_{λ} be the indecomposable constituents

of the left regular representation defined by the basis (2). We may set

(3)
$$U_{\lambda} = \begin{pmatrix} H^{(1,1)} \\ H^{(2,1)} H^{(2,2)} \\ \dots \\ H^{(t,1)} H^{(t,2)} \dots H^{(t,t)} \end{pmatrix},$$

where the $H^{(i,i)}$ are the irreducible representations and in particular, $H^{(i,1)}=F_{\lambda}$, $H^{(i,t)}=F_{\lambda*}$. We write

(4)
$$H^{(i, j)}(a) = (h^{(i, j)}(a)).$$

If (p_s) and (q_s) are corresponding bases belonging to φ , then we have

(5)
$$\sum_{s} h_{\mu\nu}^{(m,l)}(q_s) h_{\alpha\beta}^{(i;j)}(p_s) = 0, \quad \text{if } i < l.$$

where the element $c_{\lambda} \neq 0$ of K is independent of α , β , μ , ν and i. The Schur relations (5), (6) are the main results obtained in [4].

If u and v are any two linear functions of A, then, by [2] or by Lemma 6 [4], we have

(7)
$$u(q_s) v(p_s) = u(p_s^{\varphi}) v(q_s).$$

Hence it follows from (5), (6) that

(8)
$$\sum_{s} h_{\mu\nu}^{(m,l)}(p_s^{\varphi}) h_{\alpha\beta}^{(i,j)}(q_s) = 0, \quad \text{if } i < l.$$

(9)
$$\sum_{s} h_{\mu\nu}^{(m,i)}(p_{s}^{\varphi}) h_{\alpha\beta}^{(i,j)}(q_{s}) = \begin{cases} 0, & \text{if } 1 < j, \text{ or if } j=1, \ m < t \\ c_{\lambda} \delta_{\alpha\nu} \delta_{\beta\mu}, & \text{if } j=1, \ m=t. \end{cases}$$

We may write (8), (9) as follows:

(8')
$$\sum_{s} h_{\mu\nu}^{(m,l)}(q_s) h_{\alpha\beta}^{(i,j)}(p_s^{\alpha}) = 0, \quad \text{if } m < j.$$

(9')
$$\sum_{s} h_{\mu\nu}^{(j,l)}(q_s) h_{\alpha\beta}^{(i,j)}(p_s^{\varphi}) = \begin{cases} 0, & \text{if } 1 < l, \text{ or if } l = 1, i < t \\ c_{\lambda} \delta_{\alpha\nu} \delta_{\beta\mu}, & \text{if } l = 1, i = t. \end{cases}$$

26 M. Osima

Theorem 1. If U_{λ} is written in the form (3), then for any element a in A

(10)
$$\sum_{s} h_{\mu\nu}^{(m,l)}(q_s a) h_{\alpha\beta}^{(i,j)}(p_s) = 0, \text{ if } i < l.$$

PROOF. Since $U_{\lambda}(q_s a) = U_{\lambda}(q_s)U_{\lambda}(a)$, we have from (3)

$$H^{(m,l)}(q_s a) = \sum_{k=l}^m H^{(m,k)}(q_s) H^{(k,l)}(a)$$
,

so that

$$h_{\mu\nu}^{(m,l)}(q_s a) = \sum_{k=l}^{m} \left(\sum_{\rho} h_{\mu\rho}^{(m,k)}(q_s) h_{\rho\nu}^{(k,l)}(a) \right).$$

Hence we see readily by (5), (6) that (10), (11) are valid. Corresponding to (8), (9), we have

(12)
$$\sum_{s} h_{\mu\nu}^{(m,l)}(p_s^{\varphi}a) h_{\alpha\beta}^{(i,j)}(q_s) = 0, \quad \text{if } i < l.$$

We denote by l(N)[r(N)] the set of all left [right] annihilators of N in A. Since A is a Frobenius algebra, we have l(N)=r(N) and

$$l(N) = Ad = dA,$$

where $a^{\varphi}d=da$ for every a in A (see [3] Theorem 12). We may assume without restriction that

(15)
$$U_{\lambda}(d) = \begin{pmatrix} 0 \\ I_{\lambda} & 0 \end{pmatrix} \qquad (\lambda = 1, 2, \dots, n),$$

where I_{λ} is the unit matrix of degree $f(\lambda)$. It follows from Theorem 1 and (12), (13) that

(16)
$$\sum_{s} q_{s} a p_{s} = \sum_{s} p_{s}^{\varphi} a q_{s} = \sum_{\lambda} c_{\lambda} \operatorname{tr}(U_{\lambda}(a)) dE_{\lambda}.$$

THEOREM 2. Let (a_s) and (b_s) be corresponding bases of A belonging to an arbitrary Nakayama's automorphism. If the underlying field K has characteristic 0, then $\sum b_s a_s \neq 0$. If K has characteristic p, then $\sum b_s a_s = 0$, if and only if the degree $u(\lambda)$ of U_{λ} is divisible by p for every λ .

PROOF. We have $\sum b_s a_s = t \sum q_s p_s$, where t is a regular element of A (see [4] p. 4). It follows from (16) that $\sum q_s p_s = \sum_{\lambda} c_{\lambda} u(\lambda) dE_{\lambda}$ and hence our theorem is proved immediately.

THEOREM 3. If U_{λ} is written in the form (3), then for any element a in A

(17)
$$\sum_{s} h_{\mu\nu}^{(m,l)}(aq_s)h_{\alpha\beta}^{(i,j)}(p_s) = 0, \quad if \quad i < l.$$

PROOF. From $U_{\lambda}(aq_s) = U_{\lambda}(a)U_{\lambda}(q_s)$, we have

$$H^{(m,l)}(aq_s) = \sum_{k=l}^m H^{(m,k)}(a)H^{(k,l)}(q_s)$$
,

so that

$$h_{\mu\nu}^{(m,l)}(aq_s) = \sum_{k=l}^{m} (\sum_{\rho} h_{\mu\rho}^{(m,k)}(a) h_{\rho\nu}^{(k,l)}(q_s))$$
.

By (5), (6) we have easily (17), (18).

Since $F_{\pi(\lambda)}(a) = (f_{\alpha\beta}^{\pi(\lambda)}(a)) = (f_{\alpha\beta}^{\lambda}(a^{\varphi^{-1}}))$, we have

(19)
$$a\left(\sum_{s} q_{s} p_{s}\right) = \sum_{\lambda} \left(\sum_{\alpha,\beta} c_{\lambda} u(\lambda) f_{\alpha\beta}^{\pi(\lambda)}(a) de_{\lambda,\alpha\beta}\right).$$

We may generalize the Schur relations (5), (6) to quasi-Frobenius algebras as in [1], but we shall not enter into this problem.

From now on we assume that A is a symmetric algebra. Then φ becomes the identical automorphism. The corresponding bases (p_s) and (q_s) belonging to the identical automorphism are called quasi-complementary bases. We have in U_{λ} , (3)

$$H^{(1,1)} = H^{(t,t)} = F_{\lambda}$$
.

The Schur relations for a symmetric algebra A are given by

28 M. Osima

(20)
$$\sum_{s} h_{\mu\nu}^{(m,l)}(q_s) h_{\alpha\beta}^{(i,j)}(p_s) = 0, \quad \text{if } i < l.$$

(22)
$$\sum_{s} h_{\mu\nu}^{(m,i)}(q_s) h_{\alpha\beta}^{(i,j)}(p_s) = 0, \quad \text{if } m < j.$$

We obtain (22), (23) by putting $\varphi=1$ in (8') and (9').

Department of Mathematics,
Okayama University.

References

- [1] T. Nakayama, Orthogonality relations for Frobenius and quasi-Frobenius algebras, Proc. Amer. Math. Soc., 3 (1952). pp. 183-195.
- [2] C. Nesbitt and R. Thrall, Some ring theorems with applications to modular representations, Ann. of Math., 47 (1946), pp. 551-567.
- [3] M. Osima, Some studies on Frobenius algebras, Japanese J. Math., 21 (1951), pp. 179-190.
- [4] M. Osima, On the Schur relations for the representations of a Frobenius algebra, J. Math. Soc. Japan, 4 (1952), pp. 1-13.

Added in proof

[5] G. Shimura, On a certain ideal of the center of a Frobeniusean algebra, Sci. Papers Coll. Gen. Ed. Univ. Tokyo, 2 (1952), pp. 117-124.