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Introduction.
In an n-dimensional space $X_{n}$ referred to a coordinate system $x^{i}$

$(i=1,2, \cdots, n)$ , we consider a system of ordinary differential equations
of the m-th order
(0.1) $x^{\prime_{m)i}}+H^{i}(t, x, x^{t1)}, \cdots, x^{(m-1)})=0$

where $x^{(r)i}=d^{r}x^{i}/dt^{r}(r=1,2, \cdots, m)$ . Its solutions $x^{i}=x^{i}(t)$ which
exist under suitable conditions for the functions $H^{i}$ determine a system
of curves called paths of the m-th order. We assume in the following
that the functions $H^{i}$ admit continuous derivatives with respect to the
$mn+1$ arguments $t,$ $x^{i},$ $x^{(1)i},$

$\cdots,$
$x^{(m- 1)j}$ up to the order needed.

Hitherto many has been contributed to the theory of invariants of
the paths under various transformation groups, by which various
geometries of paths were established. First of all, we notice the result
of A. Kawaguchi and H. Hombu [8]1). This is concerned with the
theory under the transformation group of coordinates
(i) $\xi^{\alpha}=\xi^{\alpha}(x^{i})$ , $\tau=t$ ,

and also with the theory under the transformation group of coordinates
and parameter

(ii) $\xi^{\alpha}=\xi^{\alpha}(x^{i})$ , $\tau=\tau(t)$ .
The first case was also treated by D. D. Kosambi [7]. We call this
the ordinary geometry of paths. Later the second case was treated by
T. Ohkubo [9] and S. Hokari [4] in the case of the third and m-th
order respectively. These studies arrived at remarkable results. We
call this type of geometry intrinsic.

1) Numbers in brackets refer to the bibliography at the end of the paper.
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On the other hand, the geometry of paths of the second order
under the so-called rheonomic transformation group
(iii) $\xi^{\alpha}=\xi^{\alpha}(t, x^{i})$ , $\tau=t$

was studied by W. Slebodzinski [10], K. Zorawski [18], A. Wundheiler
[16], [17] and also E. Cartan [2]. Especially we must notice the study
of E. Cartan. The case for the higher order has been treated by H.
Hombu [5] and the present author [11]. We call this the rheonomic
geometry.

In chapter I, we shall attempt to develop the theory of invariants
of the paths (0.1) under the so.called generalized rheonomic transfor-
mation group
(0.2) $\xi^{\alpha}=\xi^{\alpha}(t, x^{i})$ , $\tau=\tau(t)$ .
We call it the generalized rheonomic geometry. We assume that the
functions $\xi^{\alpha}(t, x^{i}),$ $\tau(t)$ are continuously differentiable up to the order
needed, and also that the functional determinat $|\partial\xi^{\alpha}/\partial x^{i}|$ and the de-
rivative $d\tau/dt$ are both not equal to zero. The present author has
already studied the case of the third order [12]. The geometry of K-
spreads of the second order under an analogous group has been studied by
E. Bortolotti [1]. In \S 1, we consider generalized rheonomic transforma-
tions from two different standpoints. Thus, introducing two kinds of
fundamental quantities, i.e, the vector of the first kind and the
weighted vector of the second kind, we discuss geometrical relations
between them. These relations are fundamental for later purpose of
our theory. In $S2$ , we make clear the transformation laws of the
line.element. It is noteworthy that the ordinary differentials $d_{X^{r)i}}^{\prime}(r=0$,
1,

$\ldots\ldots,$
$m-1$ ) must be replaced by the following pfaffians to sustain

analogous transformation laws:

$\left\{\begin{array}{llll} & & & \mathfrak{d}x^{(r)i}=dx^{(r)i}-x^{(\gamma+1)i}dl\\ & & & \mathfrak{d}x^{(m- 1)i}=dx^{(m- 1)i}+H^{i}dt.\end{array}\right.$

$(r=0,1, \cdots, m-2)$ ,

In \S 3, we define in the manifold $X_{n+I}^{(m-I)}$–the manifold of the elements
$(t, x^{i}, x^{(1)i}, \cdots, x^{(m-1)i})$–the covariant derivative along a path of a
weighted vector field of the second kind by use of the parameters of
connection $I_{j}^{i}$ and $\Gamma$ which are determined by the functions $H^{i}$ and
their derivatives. The transformation laws of these parameters are
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necessary for the equivalence problems which we discuss in chapter
IV. In \S 4, we construct a set of pfaffians with vector property of the
second kind of weight $p+1$ each of which may be seen as a covariant
differential of pfaffian with vector character of the second kind of
weight $p$ . Using these results, we define the covariant differential $\delta x^{(r)i}$

$(r=0,1, \cdots, m-1)$ of our line-element. This result is useful to define
covariant derivatives of a vector field (\S 5, \S 7). The transformation
laws of the coefficients $\Lambda_{(s)j}^{(r)i},$ $\Omega_{(s)j}^{(r)i}$ appeared in them are also necessary
for the equivalence problem. In \S 5, we define the covariant differen.
tial, in the manifold $X_{n+1}^{(m-1)}$ , of a weighted vector field of the second
kind, using the parameters of connection $I_{jk}^{vi}$ and $I_{j}^{7}i$ $I^{\prime}$ already
determined in \S 3, The transformation law of $I_{jk}^{i}$ plays an important
role in the equivalence problem. The covariant derivatives are given
there. In \S 6, we obtain curvature and torsion tensors by construction
of all the commutators of the operators $\nabla,$ $\nabla_{(r)j}(r=0,1, \ldots\ldots, m-1)$

which define the covariant derivatives. Hitherto we observe the
weighted vector field of the second kind. In \S 7, we discuss the
covariant differential of a vector field of the first kind. The pa-
rameters of connection $*I_{JK}^{I}$ are expressible in terms of $I_{jk}^{7i},$ $I_{j}^{\gamma}i$ and
$\Gamma$ already determined in \S 3 and \S 5. The covariant derivatives are
obtainable in the same manner as in \S 5. In \S 8, we define the
curvature and torsion tensors of our space by the aid of the results
in \S 7. These are mixed tensors of the first and second kind.

In chapter II, we clarify the relations between two methods of
discussing the generalized rheonomic geometry of paths mentioned in
chapter I. In \S 9, we give some geometrical meanings to the relations
between the two sets of parameters $\Gamma_{jk}^{i},$ $I_{j}^{vi},$ $1^{\prime}$ and $*\Gamma_{1K}^{I}$ , and thus
explain the relations between two kinds of covariant differentials. In
\S 10, we obtain the relations between two kinds of covariant deriva-
tives, and in \S 11, we show that the components of the mixed curva-
tures and torsions are expressible in terms of the curvatures and
torsions of the second kind.

In chapter III, we discuss the relations between the generalized
rheonomic geometry and ordinary, intrinsic and rheonomic geometries,
and show that our methods are, after some suitable modifications, also
available to the other geometries.

Chapter IV is devoted to the equivalence problem. We show that
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it is reducible to the problem for a necessary and sufficient condition
that the simultaneous partial differential equations of the first order
composed of

(i) the ordinary case: the transformation laws of the parameters of
connection $\Lambda_{ts)j^{i}}^{(r)},$ $I_{jk}^{7}i$ ;

(ii) the intrinsic case: those of $\Lambda_{(s)j}^{(r)i},$ $I_{jk}^{vi},$ $1^{\gamma}$ ;
(iii) the rheonomic case: those of $\Lambda_{(s)^{)}j^{i}}^{(r},$ $I_{jk}^{i},$ $I_{j}^{i}$ ;
(iv) the generalized rheonomic case: those of $\Lambda_{(s)j^{i}}^{tr)},$ $ I_{jk}^{i}\urcorner$ $\Gamma_{j}^{i},$ $\Gamma$

and some other partial differential equations of the first order may
have a solution (in (i) or (ii) under some accessory conditions). A
necessary and sufficient condition for the equivalence is expressed
algebraically in terms of

(i), (ii) the ordinary and intrinsic cases: curvature and torsion
tensors and a set of invariants $K_{(r}^{i}$) $(r=1,2, \cdots, m)$ ,

(iii), (iv) the rheonomic and generalized rheonomic cases: the cur-
vature and torsion tensors,

and their successive covariant derivatives.

Chapter I. The generalized rheonomic geometry.

1. Two kinds of geometric quantities. Let us take $n+1$

independent variables $y^{0}\equiv t,$ $y^{i}\equiv x^{i}$ as the coordinates in the $(n+1)$ .
dimensional manifold $X_{n+1}$ and denote them by $y^{I}(I=0,1, \cdots, n)$ for
convenience’s sake. This $X_{n+1}$ is the product of the given $X_{n}$ and the
manifold of parameter $t$ . Then, the transformation group (0.2) may
be seen to be a coordinate transformation group

(1.1) $\eta^{A}=\eta^{A}(y^{I})$

in $X_{\alpha+1}$ . This is not most general in $X_{n+1}$ , but satisfies the following
special relations:

$\frac{\partial\eta^{A}}{\partial y^{I}}=\frac{\partial\xi^{a}}{\partial x^{i}}(A=\alpha, I=i)$ , $=\frac{\partial\xi^{\alpha}}{\partial t}(A=\alpha, I=0)$ ,

(1.2)

$=0(A=0, I=i)$ , $=\frac{d_{T}}{dt}(A=0, I=0)$ .

The functional determinant $|\partial\eta^{A}/\partial y^{I}|$ is not equal to zero on account
of our assumptions for (0.2).
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Let $v$ and $w$ be two kinds of those geometric objects which have
uniquely determined components $v^{I}$ and $w_{J}$ in every coordinate system
$y^{I}$ and are subject to the transformation law

(1.3) $\overline{v}^{A}=\frac{\partial\eta^{A}}{\partial y^{I}}v^{I}$ , $\overline{w}_{B}=\frac{\partial y^{J}}{\partial\eta^{B}}w_{J}$

under (1.1). We call such a geometric object $v$ or $w$ a contravariant
or covariant veclor of the first kind. On the other hand, a geometric
object $v^{i}$ or $w_{j}$ is called a contravariant or covariant vector of $thg$

second kind of weight $p$ if its components obey the transformation law

(1.4) $\overline{v}^{\alpha}=\sigma^{p}\frac{\partial\xi^{\alpha}}{\partial x^{i}}v^{i},\overline{w}_{\beta^{=}}\sigma^{p}\frac{\partial x^{j}}{\partial\xi^{\beta}}w_{j}$ .

A geometric quantity $f$ which is subject to the transformation law
(1.4) $\overline{f}=\sigma^{p}f$

is called a scalar of weight $p$ .
Let the components of a vector $v^{I}$ or $w_{J}$ of the first kind be $(v^{\circ}$ ,

$v^{i})$ or $(w_{O}, w_{j})$ . Then we have from (1.2) and (1.3):

(1.5) $\{$ $\overline{v}^{o}=\frac{\partial\xi^{\alpha}}{\partial t}v^{\circ}+\frac{\partial\xi^{\alpha}}{\partial x^{i}}v^{i}\overline{v}_{\alpha}=\frac{1}{\sigma}v^{\circ}$

,

$\left\{\begin{array}{l}\overline{w}_{o^{=}}\sigma w_{o}+\frac{\partial x^{j}}{\partial\tau}w_{j},\\\overline{w}_{\beta}=\frac{\partial x^{f}}{\partial\xi^{\beta}}w_{j}.\end{array}\right.$

Hence we can see the following properties: (i) $v^{0}$ is a scalar of
weight $-1$ : (ii) $v^{i}$ is a contravariant vector of the second kind of weight
$0$ if and only $lfv^{0}\equiv 0;(i)^{\prime}w_{0}$ is a scalar of weight $+1$ when and only
when $w_{j}\equiv 0$ ; (ii)’ $w_{j}$ is a covariant vector of the second kind of weight
0.

Under the transformation (0.2), $x^{(1)i}=dx^{i}/dt$ is subject to

(1.6) $\xi^{[1]a}=\sigma(\frac{\partial\xi^{\alpha}}{\partial x^{i}}x^{(1)i}+\frac{\partial\xi^{\alpha}}{\partial t})$ ;

hence if we put for the sake of convenience $y_{0}^{(1X)}\equiv 1,$ $y_{0^{1)i}}^{(}\equiv x^{(1)j}$ , the
quantity $y_{0}^{(1)I}$ with the components $(y_{0}^{(1)0}, y_{0^{1)i}}^{(})$ is a contravariant vec-
tor of the first kind with respect to the index $I$. Furthermore, if we
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put $y_{j^{1)I}}^{(}\equiv 0$, then $y_{J}^{(t)I}$ with components $(y_{0}^{(1)I}, y_{j}^{(1)I})$ is also an affinor of
the first kind with respect to the indices $I$ and $J$ .

If $v^{I}$ is a contravariant vector with components $(\theta, v^{i})$ , then the
vector

$V^{I}\equiv v^{I}-y_{0^{1)I}}^{(}v^{0}$

has components $(0, v^{i}-x^{(1)i}v^{0})$ . Hence we have (iii) $V^{i}=v^{i}-x^{(1)i}v^{0}$ is
a contravariant vedor of the second kind of weight $0$ . Similarly, for a
covariant vector $w_{J}=(w_{0}, w_{j})$ , we have (iii)’ $W_{J}=w_{J}-y_{J^{1)I}}^{(}w_{I}$ is a
covariant vector of the first kind with components $(-x^{(1)j}w_{j}, w_{j})$ .

2. Transformations of the line-element. Let $x^{i}=x^{i}(t)$ be a
curve in $X_{n}$ . We call a set of quantities $x^{i}(t),$ $x^{(r)i}$ $(r=1,2, \cdots, m)$

the line-element of the m-th order. Under the transformation (0.2),
they are subject to the transformation

where we put $\sigma^{\ulcorner 1\supset}=d\sigma/d\tau$ , and define the operator $D_{t}$ for a differen.
tiable function $f=f(t, x.x^{(1)}, \cdots, x^{(m-1)})$ as follows:

$D_{t}f=\frac{\partial f}{\partial t}+\sum_{r=0}^{m-2}\frac{\partial f}{\partial x^{(r)j}}x^{(r+1)j}-\frac{\partial f}{\partial x^{(m-1)j}}H^{j}$

(2.2)
$\equiv f_{t}+\sum_{r\approx 0}^{m-2}f_{(r)j}x^{(r+1)j}-f,{}_{(m-1)j}H^{j}$ .

This is nothing but the derivative of $f$ with respect to $t$ along the
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path considered. In general, when a set of quantities $(x^{i_{!}}x^{(1)i},$ $\cdots$ ,
$x^{(m)i})$ , defined in every coordinate system and parameter $t$ and inde-
pendent of any curve, is transformed in the same manner as in (2.1),
we call it also a $line\cdot element$ of the m.th order. It is convenient for
us to consider that (0.1) gives the correspondence between a set of
values of parameter $t$ and the line.element of the $(m-1)\cdot th$ order $(x^{i}$ ,
$x^{(t)j},$

$\cdots,$
$x^{(m-1)j}$) and a set of values of the line.element of the m-th order

$(x^{i}, x^{(1)i}, \cdots, x^{(m-1)i}, x^{(m)i}\equiv-H^{i})$ . We denote by $X_{n+1}^{(m-1)}$ the manifold of
geometric objects $(t, x^{i}, x^{(1)i}, \cdots, x^{(m-1)i})$ .

It is evident from (2.1) that $H^{i}(t, x, x^{(1)}, \cdot.. , x^{(m-1)})$ are subject
to the transformation

(2.3) $\overline{H}^{\alpha}=\sigma^{m}\frac{\partial\xi^{\alpha}}{\partial x^{i}}H^{i}-\{m_{\sigma^{m}}D_{t}\frac{\partial\xi^{\alpha}}{\partial x^{i}}+\frac{m(m-1)}{2}\sigma^{m-2}\sigma^{\Gamma 1J}\frac{\partial\xi^{\alpha}}{\partial x^{i}}\}x^{(m-1)i}+\cdots$ .

On the other hand a set of differentials $\{dx^{(r)i}\}$ of the line-element of
the $(m-1)\cdot th$ order is transformed according to

$d\xi^{[r]a}=\sum_{s=0}^{r}\frac{\partial\xi^{\subset r^{\urcorner}a}\lrcorner}{\partial x^{(s)i}}dx^{(s)i}+\frac{\partial\xi^{[r]\alpha}}{\partial t}dt$ $(r=0,1, \cdots, m-1)$ .

From these we have again the transformation laws of the line.element
of the $(m-1)$-th order and of $H^{i}$ as follows:

(2.1)‘ $\left\{\begin{array}{l}\xi^{[r+1^{\urcorner}a}\lrcorner=\sigma\sum_{s=0}^{r}\frac{\partial\xi^{[r]a}}{\partial X^{(s)i}}X^{(s+1)i}+\sigma\frac{\partial\xi^{[r]a}}{\partial t} (r=0,1,\cdots,m-2),\\-\overline{H}^{\alpha}=-\sigma\frac{\partial\xi^{[m- 1^{\urcorner}a}\lrcorner}{\partial x^{(m- 1)i}}H^{i}+\sigma\sum_{s\Leftarrow 0}^{m- 2}\frac{\partial\xi^{[m- 1_{\lrcorner}^{\urcorner}a}}{\partial x^{(s)i}}x^{(s+1)i}+\sigma\frac{\partial\xi^{[m- 1^{\urcorner}\alpha}}{\partial t}.\end{array}\right.$

Hence if we put

(2.4) $\left\{\begin{array}{l}\mathfrak{d}x^{(r)i}=dx^{()i}r-x^{(r+1)i}dt\\\mathfrak{d}_{X^{(m- 1)i}}=dx^{(m- 1)i}+H^{i}dl,\end{array}\right.$

$(r=0,1, \cdots, m-2)$ ,

then these pfaffians are subject to the transformation

(2.5) $\overline{\mathfrak{d}}\xi^{\ulcorner_{-r^{\urcorner\ovalbox{\tt\small REJECT}}a}}=\sum_{s\approx 0}^{r}\frac{\partial\xi^{r}-r^{\underline{\urcorner}}\alpha}{\partial x^{(s)i}}\mathfrak{d}x^{(s\ell}\rangle$ $(r=0,1, \cdots, m-1)$ .
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This shows that $\mathfrak{d}x^{(r)j}(r=0,1, \cdots, m-1)$ obey the law analogous to
the differentials $dx^{(r)i}$ in the ordinary geometry of paths.

From (2.1) and (2.1) we have immediately

(2.6) $(_{s=1,2,,r}^{r=1,2,\cdot.’ m-2})(r=0,1..’..\cdots, m-2)$

,

(2.7)

These make clear the transformation of the line-element.
3. Covariant derivative along a path of a vector field of

the second kind. Let $f$ be a differentiable scalar field on $X_{n+1}^{(m-1)}$

Then the derivative of $f$ along a path is given by $D_{t}f$. For the
transformation of $t$, we can easily prove that $\overline{D}.f=\sigma D_{t}f$ which shows
that $D_{t}$ is a scalar operator of weight $+1$ . (See $e$ . $g$ . T. Suguri [12]).

Even if $v^{j}$ is a vector field of weight $p$, the derivative $D_{t}v^{i}$ is no
more a vector. We will determine the functions $I_{j}^{\prime i}$ and $I^{7}$ using $H^{i}$

and their derivatives such that

(3.1) $\delta_{t}v^{i}=D_{t}v^{i}+l_{j}^{\prime i}v^{j}+pI^{7}v^{i}$

is a vector of weight $p+1^{2)}$. This is nothing but a covariant deriva-
tive of $v^{i}$ along a path. Thus $I_{j}^{\tau i}$ and $I^{7}$ must be transformed as

(3.2) $\frac{\partial\xi^{\beta}}{\partial x^{j}}\overline{I^{7\alpha}}_{\beta}=\sigma\frac{\partial\xi^{\alpha}}{\partial x^{i}}\Gamma_{j}^{i}-\sigma D_{t}\frac{\partial\xi^{\alpha}}{\partial X^{j}}$,

(3.3) $\sigma\overline{I^{7}}=o^{2}I^{7}-\sigma^{\ulcorner 1\supset}$

Differentiating (2.3) successively in $x^{(m-1)j}$ and using (2.7), we have

2) This is due to the fact that $D_{t}$ is a scalar operator of weight $+1$ .
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(3.4) $\sigma\frac{\partial\xi^{\beta}}{\partial x^{j}}$ Ei $\alpha[m-1]\beta=0^{2}\frac{\partial\xi^{\alpha}}{\partial x^{i}}H_{(m-1)j}^{i}-m_{0}^{2}D_{t}\frac{\partial\xi^{\alpha}}{\partial x^{j}}$

$-\frac{m(m-1)}{2}\sigma^{[1]}\frac{\partial\xi^{\alpha}}{\partial x^{j}}$ ,

(3.5) $\sigma^{m-2}\frac{\partial\xi^{\epsilon}}{\partial x^{j}}\frac{\partial\xi^{\gamma}}{\partial x^{k}}\overline{H}^{\alpha},$ $[m-1]\beta[m-1]\gamma=\frac{\partial\xi^{\alpha}}{\partial X^{i}}H_{(m-1)j(m-1)k^{3)}}^{i}$ ,

(3.6) $\sigma^{m-2}\frac{\partial\xi^{\alpha}}{\partial x^{i}}\overline{H}_{[m-1]e[m-1]\alpha}^{e}=H_{(m- 1)l(m- 1)i}^{l}$ ,

(3.7) $\sigma^{2m-3}\frac{\partial\xi^{\alpha}}{\partial x^{i}}\frac{\partial\xi^{\beta}}{\partial X^{j}}\overline{G}_{\alpha\beta}=G_{ij}$ ,

where $G_{ij}$ is a tensor of the second kind of weight $-(2m-3)$ and is
defined by

(3.8) $\overline{G}_{ij(m-1)l(m-1)i(m-1)j}=H^{l},$ .
If we assume that the determinant $|G_{ij}|$ is not equal to zero, then we
can define by $G^{ij}G_{jk}=\delta_{k}^{i}$ the tensor $G^{ij}$ of weight $2m-3$ which
transforms as

(3.9) $\overline{G}^{\alpha\beta}=\sigma^{2m-3}\frac{\partial\xi^{\alpha}}{\partial x^{i}}\frac{\partial\xi^{\beta}}{\partial x^{j}}G^{ij}$ .

Differentiating (3.6) in $x^{(m-2)j}$ and using (2.7) and (3.9), we have

$\sigma\frac{\partial\xi^{\beta}}{\partial X^{j}}\overline{G}^{\alpha\gamma}\overline{H}^{e},\overline{\llcorner}m-11e[m-1]\gamma[m-2]\beta$

(3.10)

$=\sigma^{2}\{\frac{\partial\xi^{\alpha}}{\partial x^{i}}G^{ik}H_{(m-1)l(m-1)k(m-2)j}^{l}-(m-1)D_{t}\frac{\partial\xi^{\alpha}}{\partial x^{j}}\}$

$-\frac{(m-1)(m-2)}{2}\sigma^{\ulcorner 1l}\frac{\partial\xi^{\alpha}}{\partial x^{j}}$ .

3) When $H^{i}$ are polynomials of the first degree with respect to the highest derivatives
$\ovalbox{\tt\small REJECT} m- 1)ji$ . $e$ .

$H^{i}=A_{j}^{i}(t, x, x^{(1)}, \ldots, x^{(\gamma)})x^{(m-1)}i+Bi(t, x, x^{(1)}, \ldots, x^{(s)})(r, s\leqq m-2)$ ,

we must use $A_{j’(r)k}^{i}$ in place of $H^{i},$
$(m-1)j(m-1)k$ .
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Hence, eliminating $\sigma^{\ulcorner 13}$ or $D_{t}(\partial\xi^{a}/\partial x^{i})$ from (3.4) and (3.10) we find
that the functions defined by

(3.11) $I_{j}^{\prime i}=G^{ik}H_{(m-1)l(m-1)k(m-2)j}^{l}-\frac{m-2}{m}H_{(m-1)j}^{i}$ ,

(3.12) $I^{7}=n1\{- H_{(m-1)i}^{i}-m^{-}2m-12G^{ij}H_{(m-1)l(m-1)j(m- 2)i\}}^{l}$

behave as required. Thus we can determine the covariant derivative
along a path of a vector field of the second kind.

4. Covariant differential of the line-element. To derive a
covariant differential of the line-element, we begin with the

THEOREM. If the pfaffian forms
(4.1) $P=\sum_{r-0}^{M}P_{(r)k}\mathfrak{d}x^{(r)k}$

are transformed as a vector of weight $p$, then the pfaffians

(4.2) $\delta_{t}P^{i}=\sum_{r\leftarrow 0}^{M}P_{(r)k}\mathfrak{d}x^{(r+1)k}+\sum_{r\Leftrightarrow 0}^{M}\{D_{t}P_{(r)k}+l^{\tau i}{}_{j}P_{(\cdot)k}^{j,}+p_{I^{7}P_{tr)k}\}\mathfrak{d}x^{(r)k}}$

are also transformed as a vector of weight $p+1$ .
According to our assumption, we have

$\sum_{r-0}^{M}\overline{P}_{[r]\gamma}^{\alpha}\overline{\mathfrak{d}}\xi^{[r]\gamma}=\sigma^{p}\frac{\partial\xi^{\alpha}}{\partial x^{i}}\sum_{r\approx 0}^{M}P_{(r)k}^{i}\overline{\mathfrak{d}}x^{(r)k}$ .

By substitution of $\overline{\mathfrak{d}}\xi^{[r]\gamma}$ from (2.5) in the left-hand side, we get the
following transformation law of $P_{(r)j}$ :

(4.3) $\sum_{r\Leftarrow s}^{M}\frac{\partial\xi^{[r]\beta}}{\partial x^{(s)j}}\overline{P}_{[\gamma]\beta}^{a}=\sigma^{p}\frac{\partial\xi^{a}}{\partial x^{i}}P_{(s)j}^{i}$ $(s=0,1, \cdots, M)$ .

After these preparations, substituting $\overline{\mathfrak{d}}\xi^{[r]\gamma}$ from (2.5) into

$\overline{\delta}_{\tau}\overline{P}^{\alpha}=\sum_{r=0}^{M}\overline{P}_{[r]\gamma}^{\alpha}\overline{\mathfrak{d}}\xi^{\zeta r+1^{\urcorner}\gamma}\lrcorner+\sum_{r=0}^{M}\{\overline{D}_{\tau}\overline{P}_{r_{r}\supset\gamma}^{\alpha}+\overline{I^{7\alpha}}{}_{\beta}\overline{P}_{[r]\gamma}^{\beta}+p_{\overline{I’}\overline{P}_{\subset\gamma}^{a}\}\overline{\mathfrak{d}}\xi^{L}0\gamma}r_{\lrcorner}^{\urcorner}\ulcorner r$

and making use of (2.7), (2.6), (4.3), (3.2) and (3.3), we can establish
our theorem by long but rather easy calculations.

It is evident from (2.5) that $\delta x^{i}\equiv \mathfrak{d}x^{i}$ are pfaffians with vector
character of weight $0$ ; hence by virtue of the theorem we see that
$\delta x^{(r+1)i}\equiv\delta_{t}(\delta x^{(r)i})(r=0,1, \cdots, m-2)$ are pfaffians with vector character of
weight $r+1$ . Therefore we may use these $\delta x^{(r)i}(r=0,1, \cdots, m-1)$ as
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desired covariant differential of the line-element. They will be writ-
ten in terms of $\mathfrak{d}x^{(r)i}$ explicitly as

(4.4)
$\left\{\begin{array}{lll} & & \delta x^{i}=\mathfrak{d}_{X_{\prime}^{i}}\\ & & \delta x^{(r)i}=\mathfrak{d}x^{(r)i}+\sum_{s=0}^{r- 1}\Lambda_{(s)j}^{(r)i}\mathfrak{d}x^{(s)j} (r=1,2,\cdots,m--- 1),\end{array}\right.$

where $\Lambda_{(s)j}^{(r)i}$ are defined by recurrence:

We can solve (4.4) in $\mathfrak{d}x^{(r)i}$ as

(4.6) $\left\{\begin{array}{lll} & & \mathfrak{d}x^{i}=\delta x^{i},\\ & & \mathfrak{d}x^{(r)i}=\delta x^{(r)i}-\sum_{s=0}^{r- 1}\Omega_{(s)j}^{(r)i}\delta x^{(s)j}\end{array}\right.$

$(r=1,2, \cdots, m-1)$ ,
where

(4.7) $\left\{\begin{array}{lll} & & \Omega_{(r-1)j}^{(r)i}=\Lambda_{(\gamma- 1)j}^{(r)i}\\ & & \Omega_{(s)j}^{(r)i}=\Lambda_{(s)j}^{(r)i}-\sum_{t=s+1}^{r- 1}\Lambda_{(l)h}^{(r)i}\Omega_{(s)j}^{(t)h}\end{array}\right.$ $(_{s=0,1,,r-2}^{r=2,3,,m-1})(r=1,2,.\cdot\cdot.\cdot\cdot.\cdot\cdot,m-1).$

’

We derive the transformation laws of $\Omega_{(s)j}^{(r)i}$ and $\Lambda_{(s)j}^{(r)i}$ , using (4.6),
(4.4), (2.5) and the vector character of $\delta x^{(r)i}$ , as follows:

(4.8) $\frac{\partial\xi^{[r]\alpha}}{\partial x^{(s)j}}=\sum_{t=s+1}^{r}\frac{\partial\xi^{\ulcorner}r^{\urcorner}\lrcorner\alpha}{\partial x^{(t)i}}\Omega_{(s)j}^{(t)i}-\sigma^{s}\frac{\partial\xi^{\beta}}{\partial x^{j}}\overline{\Omega}_{[s]\beta}^{\zeta r1\alpha}$ $\left(\begin{array}{lllll} & & r=1,2, & \ldots, & -m1\\ & & s-0,1, & \ldots, & r-1\end{array}\right)$ ,

(4.9) $\frac{\partial\xi^{\overline{\llcorner}r_{\lrcorner}^{\urcorner}\alpha}}{\partial x^{(s)j}}=\sigma^{r}\frac{\partial\xi^{\alpha}}{\partial x^{i}}\Lambda_{(s)j}^{(r)i}-\sum_{t=s}^{r-1}\frac{\partial\xi^{[l]\beta}}{\partial x^{(s)j}}\overline{\Lambda}_{[t]^{\lrcorner}\beta}^{\subset r^{\urcorner}a}$ $(_{s=0,1,\cdot,r-1}^{r=1,2,\cdot.\cdot.\cdot,m-1})$ .

It is evident that (4.8) and (4.9) are equivalent to each other.
5. Connections of a vector field of the second kind. Let

us determine a covariant differential $Dv^{i}$ of a vector field $v^{i}$ of weight
$p$ by

(5.1) $Dv^{i}=dv^{i}+(\Gamma_{j}^{i}v^{j}+pl^{7}v^{i})dt+\Gamma_{jk}^{i}v^{j}\mathfrak{d}x^{k}$ .
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In this case $Dv^{l}$ is a vector of weight $p$. Making use of (3.2) and (3.3),
we see that $\Gamma_{jk}^{i}$ are subject to

(5.2) $\frac{\partial\xi^{\alpha}}{\partial x^{i}}\Gamma_{jk}^{i}=\frac{\partial\xi^{\beta}}{\partial x^{j}}\frac{\partial\xi^{\gamma}}{\partial x^{k}}\overline{1}_{\beta\gamma}^{-}7\phi+\frac{\mathfrak{X}\xi^{\alpha}}{\partial x^{j}\partial x^{k}}$

If $f$ is a scalar field of weight $p$, then we can easily verify that

$Df=df+prfdt$

is also a scalar pfaffian of weight $p$. By decomposition of this in
terms of $dt,$ $\delta x^{(r)i}(r=0,1, \cdots, m-1)$ as

(5.3) $Df=(\tilde{\nabla}f)dt+\sum_{r=0}^{m-r}(\tilde{\nabla}_{(r)i}f)\delta x^{(\gamma)i}$ ,

we have the covariant derivatives $\nabla f\sim$ and $\nabla_{(\gamma)j}f:\sim$

(5.4) $\left\{\begin{array}{l}\tilde{\nabla}f=D_{t}f+p\Gamma f,\\\nabla f=f\sim_{(m- 1)i,(m- 1)i},\\\nabla_{(r)i}f=f,(r)i+\sum_{s=r+1}^{m- 1}\Omega_{(r)}^{()}sj_{i}f_{(s)j}\sim,\end{array}\right.$

$(r=0,1, \cdots, m-2)$ .

Then we can find that $\Gamma_{jk}^{i}$ is defined by

(5.5) $\tau_{jk}^{i}=\tilde{\nabla}_{(1)k}I_{j}^{7i}\equiv l_{j.(1)k}^{vi}-\sum_{s\simeq 2}^{m-1}\Omega_{(1)k}^{()h}S\Gamma_{j.(s)h}^{i}$

or

(5.6) $I_{jk}^{7i}=\frac{1}{m}\tilde{\nabla}_{(1}{}_{)k}H_{(m-1)_{J}}^{i}-=\frac{1}{m}\{H_{(m-1)j(1)k}^{t}-\sum_{s=2}^{m-1}\Omega_{(1)k}^{(s)h}H_{(m-1)j(s)h\}}^{j}$ .

We can obtain the covariant derivatives of a vector field decompos-
ing (5.1) in terms of $dt,$ $\delta x^{(r)i}(r=0,1, \cdots, m-1)$ as

(5.7) $Dv^{i}=(\nabla v^{i})di+\sum_{r-0}^{m-1}(\nabla_{(r)j}v^{i})\delta x^{(r)j}$ .
They are given as follows:
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(5.8) $\left\{\begin{array}{l}\nabla v^{i}=D_{t}v^{i}+I_{j}^{7i}v^{j}+pI^{7}v^{i},\\\nabla_{(m- 1)j}v^{i}=v_{(m-1)j}^{i},\\\nabla_{(r)j}=v_{(r)j}^{i}-\sum_{s=r+1}^{m- 1}\Omega_{(r)j}^{(s)h}v_{(s)h}^{i}\\\nabla_{(0)j}v^{i}=v_{(0)\tilde{j}}^{i}+\Gamma_{kj}^{i}v^{k}-\sum_{s=1}^{m- 1}\Omega_{(0)j}^{(s)h}v_{(s)h}^{i}.\end{array}\right.$

$(r=1,2, \cdots, m-2)$ ,

The covariant derivatives $\nabla v^{i}$ and $\nabla_{(r)j}v^{i}$ constitute the components of
a vector of weight $p+1$ and those of an affinor of weight $p-r$ .

6. Curvature and torsion tensors. As is $well\cdot known$ , the
curvature and torsion tensors of the connection can be obtained, on
the one hand, by parallel displacement of a vector along a closed
infinitesimal circuit and, on the other hand, by construction of all the
commutators of the operators $\nabla,$ $\nabla_{(r)j}(r=0,1, \cdots, m-1)$ . We shall use
the latter method.

Let $v^{i}$ be a vector field of the second kind of weight $p$ in $X_{n+1}^{(m-\cdot 1)}$ .
If we put

then we can get the curvature tensors $R_{h(r)j}^{i},$ $R_{(r)j},$ $R_{h(r)j(0)k}^{i}$ and the
torsion tensors $S_{(r)j}^{(m-I)h},$ $S_{(r)}^{(t)h_{j(s)k}}$ which are however omitted here.

7. Connections of a vector field of the first kind. We
have determined the covariant derivatives of a vector field $v^{i}$ of the
second kind. In this paragraph, let us determine the covariant deriva-
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tives of a vector field $v^{I}$ of the first kind. Suppose that the covariant
differential $D^{*}v^{I}$ be given in the form
(7.1) $D^{*}v^{I}=dv^{I}+*I_{JK}^{7I}\uparrow\nearrow dy^{K}$ .
The unknown parameters of connection $*I_{fK}^{7}I$ must be defined by the
functions $H^{i}$ and their derivatives. Under the transformation (1.1)
$*\tau_{JK}^{I}$ are subject to

(7.2) $\frac{\partial\eta^{A}}{\partial y^{I}}*\Gamma_{JK}^{I}=\frac{\partial\eta^{B}}{\partial y^{1}}\frac{\partial\eta^{C}}{\partial y^{k}}*^{-}I_{BC}^{\tau A}+\frac{\partial^{2}\eta^{A}}{\partial y^{J}\partial y^{K}}$ .

Now it is convenient to write this separately into the following eight
cases:

(i) $A=0,$ $J=j,$ $K=k$ . Rewriting (7.2) we have

$\frac{1}{\sigma}*\Gamma_{jk}^{0}=\frac{\partial\xi^{\beta}}{\partial x^{j}}\frac{\partial\xi^{\gamma}}{\partial x^{k}}*\overline{\Gamma}_{\beta Y}^{0}$ ,

from which we see that $*\Gamma_{jk}^{0}$ is an affinor of weight $-1$ . Hence we
can put

(7.3) $*I_{jk}^{70}=0$ .
(ii) $A=0,$ $J=0,$ $K=k$ . Noticing (7.3) we have from (7.2)

$*\Gamma_{0k}^{0}=\frac{\partial\xi^{\gamma}}{\partial x^{k}}*\overline{\Gamma}_{\alpha\nu}^{0}$

which shows that $*I_{0k}^{7}0$ is a vector. Hence we may put

(7.4) $*\Gamma_{0k}^{0}=0$ .
(iii) $A=0,$ $J=j,$ $K=0$ . Similarly by virtue of (7.3) and (7.2) we

find that $*I_{j0}^{0}$ is also a vector: hence we can put

(7.5) $*I_{j0}^{v0}=0$ .
(iv) $A=0,$ $J=0,$ $K=0$. On account of (7.3), (7.4) and (7.5), (7.2)

reduces to
$\sigma(-*\overline{I^{70}}_{\alpha)})=\sigma^{2}(-*I_{\alpha)}^{\prime 0})-\sigma^{[1]}$ .

Comparing this with (3.3), it is evident that we can put

(7.6) $*\Gamma_{\alpha)}^{0}=-\Gamma$ .
(v) $A=\alpha,$ $J=j,$ $K=0$ . By virtue of (7.5), we have from (7.2)
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$\frac{\partial\xi^{\alpha}}{\partial^{X^{i}}}*I_{j0}^{i}=\frac{\partial\xi^{\beta}}{\partial x^{j}}\frac{\partial\xi^{\gamma}}{\partial t}*\overline{I^{7a}}_{\beta\gamma}+\div\frac{\partial\xi^{\beta}}{\partial x^{j}}*\overline{\Gamma}_{\beta 0}^{\alpha}+\frac{\partial^{2}\xi^{\alpha}}{\partial i\partial x^{j}}$ .

(vi) $A=\alpha,$ $J=0,$ $K=k$ . By virtue of (7.4), we have from (7.2)

$\frac{\partial\xi^{\alpha}}{\partial X^{i}}*I_{0k}^{\tau j}=\frac{\partial\xi^{\beta}}{\partial t}\frac{\partial\xi^{\gamma}}{\partial x^{k}}*\overline{I^{\urcorner\alpha}}_{\beta\gamma}+\frac{1}{\sigma}\frac{\partial\xi^{\gamma}}{\partial x^{k}}*^{-}I_{0\gamma}^{7a}+\frac{\partial^{2}\xi^{\alpha}}{\partial t\partial x^{k}}$ .

(vii) $A=\alpha,$ $J=j,$ $K=k$ . By virtue of (7.3), we have from (7.2)

$\frac{\partial\xi^{\alpha}}{\partial x^{i}}*\Gamma_{jk}^{i}=\frac{\hat{o}\xi^{\beta}}{\partial x^{j}}\frac{\partial\xi^{\gamma}}{\partial x^{k}}*\Gamma_{\beta Y}^{\alpha}+\frac{\partial^{2}\xi^{\alpha}}{\partial x^{j}\partial x^{k}}$

Comparing this with (5.2), it follows that we may put

(5.5) $*I_{jk}^{7i}=\Gamma_{jk}^{i}=\nabla_{(1)k}\Gamma_{j}^{i}$ ,

or

(5.6) $*\tau_{jk}^{i}=\Gamma_{jk}^{i}=\frac{1}{m}\nabla_{(1)k}H^{i},$ ) .
(viii) $A=\alpha,$ $J=0,$ $K=0$. In this case (7.2) reduces to

$\frac{\partial\xi^{\alpha}}{\partial x^{i}}*\Gamma_{\alpha\}}^{i}+\frac{\partial\xi^{\alpha}}{\partial t}*\Gamma_{(K)}^{0}=\frac{1}{\sigma^{2}}*\overline{\Gamma}_{\alpha\}}^{\alpha}+\frac{\partial\xi^{\beta}}{\partial t}\overline{\Gamma}_{\beta\gamma}^{\alpha}\underline{\partial}_{\partial}\xi_{\overline{l}^{*}}^{\gamma}$

$+\div\frac{\partial\xi^{\gamma}}{\partial t}*\overline{I^{7\alpha}}_{0\gamma}+\div\frac{\partial\xi^{\beta}}{\partial t}*\overline{I^{\tau\alpha}}_{\beta 0}+\frac{\partial^{2}\xi^{\alpha}}{\partial l^{2}}$ .

Making use of these transformation laws, let us determine the remain-
ing unknown parameters. In the first place, eliminating $D_{t}(\partial\xi^{\alpha}/\partial X^{j})$

from (3.2), (vi) and (vii) and noticing (2.1 ii), we see that
$P_{k}^{i}=I_{k}^{vi}-\Gamma_{jk}^{i(1)j*}x-l_{0k}^{vi}$

is an affinor. Hence putting this equal to zero: $P_{k}^{i}=0$ , we get

(7.7) $*\Gamma_{0k}^{i}=I_{k}^{\tau i}-\Gamma_{jk}^{i}x^{(1)j}$ .
In the next, from (3.2), (v), (vii) and (2.1 ii), we see similarly that

$Q_{j}^{i}=I_{j}^{7}i-\Gamma_{jk}^{i}x^{(1)k*}-\Gamma_{j0}^{i}$

is also an affinor. Hence we can take
(7.8) $*I_{j0}^{7i}=l_{j}^{7i}-l_{jk}^{7}x$ .
Finally, eliminating $\partial^{2}\xi^{\alpha}/\partial x^{j}\partial x^{k},$ $\partial^{2}\xi^{\alpha}/\partial t\partial t^{j}$ and $\partial^{2}\xi^{\alpha}/\partial t^{2}$ from (2.1 iii). (v),
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(vi), (vii) and (viii), and noticing (3.3), (2.1 ii), it is found that

$R^{i}=x^{(2)i}-l_{jk}^{i}7x^{(1)j}x^{(1)k}+2I_{j}^{7i}x^{(1)j}+p_{X+I_{0}^{\urcorner i}}^{7(1)j*}$

is a vector. Hence putting at last $R^{i}=0$, we get

(7.9) $*I_{\alpha)}^{7i}=-\{x^{(2)j}-\Gamma_{jk}^{i}x^{(1)j}x^{(1)k}+2I_{j}^{7i}x^{(1)j}+I^{7}x^{(1)j}\}$ .
Thus we have determined all the parameters of connection.

The covariant derivatives are obtainable by decomposition of cova.
riant differential (7.1) in terms of $dt$ and $\delta x^{(r)i}$ ;

(7.10) $D^{\bigvee_{\backslash }}v^{I}=(\nabla^{*}v^{I})dl+\sum_{r=0}^{m-1}(\nabla_{(r)j}^{*}v^{I})\delta x^{(r)j}$ .

The covariant derivatives $\nabla^{\{}v^{I}$ and $\nabla_{(r)j}^{*}v^{I}(r=0,1, \cdots, m-1)$ thus defined
are given as follows:

(7.11) $\left\{\begin{array}{l}\nabla^{*}v^{I}=D_{t}v^{I*}+\Gamma_{J}^{I}v^{f},\\\nabla_{(m- 1)j}^{*}v^{I}=v_{(m- 1)j}^{I},\\\nabla_{(r}^{*})jv^{I}=v_{(r)j}^{I}-\sum_{l-r+1}^{m- l}\Omega_{(r)}^{(t)k_{j}}v_{(\ell)k}^{I} (r=1,2,\cdots,m-2),\\\nabla_{(0)j}^{*}v^{I}=v_{(0)j}^{I*}+I_{Kj}^{7J}v^{K}-\sum_{l- 1}^{m- 1}\Omega_{(0)j}^{(t)k}v_{(t)k}^{I},\end{array}\right.$

where we have put

$*I_{J}=I_{f0}^{7I}+*I_{fk}^{7I}x^{(1)k}$ .
Furthermore, let us denote by $\nabla_{(0)j}^{*}v^{I}\sim$ the expressions obtained from
$\nabla_{t0)j}^{*}v^{I}$ by omitting the term $*\tau_{Kj}^{I}v^{K}$ , i.e.

(7.12) $\nabla^{*}v^{I}=v_{(0)j}^{I}-\sum_{t=1}^{m-1}\Omega_{(0)j}^{(t)k}v_{(t)k}^{I}\sim_{(0)j},,$ .

$\nabla_{(r)j}^{*}v^{I}$ is a vector of the second kind of weight $-r$ with respect to $i$.
8. Mixed curvature and torsion tensors. The invariants

of the connection defined by (7.1) are obtainable in the same manner
as in \S 6, i.e., we get the curvature and torsion tensors by construct.
ing all the commutators of the operators $\nabla^{*}$ and $\nabla_{tr)j}^{*}$ .

If we put
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then the curvature tensors $R_{H(r)j}^{*I},$ $R_{H()j()k}^{\star I_{r}}S$ and the torsion tensors
$S_{(r)j}^{*(}m-1)hS_{(r)j(}^{*(t)h_{s)k}}$ are calculated as follows:

(8.2) $\left\{\begin{array}{l}R_{H(0)j}^{*I}=D_{t}^{*}\Gamma_{Hj}^{I}-\nabla_{(0)j}^{**}\Gamma_{H}^{I}-\Gamma_{j}^{k*}I_{Hk}^{7}I\\R_{H(1)j}^{\epsilon_{I*}}=\Gamma_{Hj}^{I}-\nabla_{(1)j}^{**}I_{H}^{7I},\\R_{H(r)j}^{*I}=-\nabla_{(rj}^{**})\Gamma_{H}^{I}\end{array}\right.$

$(r=2,3, \cdots, m-1)$ ,

(8.3) $\left\{\begin{array}{l}R_{H(0)j(0)k}^{*I}=\tilde{\nabla}_{(0)k}^{**}\Gamma_{Hj}^{I}-\nabla_{(0)j}^{**}I_{Hk^{+}}^{7I*}\Gamma_{Lk}^{1*}\Gamma_{Hj^{-I_{Lj}^{vI*}\Gamma_{Hk}^{L}}}^{L*}\sim,\\R_{H(r)j(0)k}^{*I}=-\nabla_{(r)j}^{**}\Gamma_{Hk}^{I} (r=1,2,\cdots,m-1),\end{array}\right.$

(8.4) $S_{(r)j}^{*(m-1)h}=S_{(r)j}^{(m-1)h}$ $(r=0,1, \cdots, m-1)$ ,

(8.5) $S_{(r)j(s)k}^{\star(t)h}=S_{(r)j(s}^{(t)h}$) $k$

$(s=0,1,r,s.\neq m-1)t=s+ir=0,1,\cdot.\cdot.\cdot.’ m-1s+2,\cdot\cdot,m-1$

in (8.5) we admit $t=0$ when and only when $r=0$ and $s=0$.

Chapter II. Relations between two kinds
of connections.

9. Two kinds of covariant differentials. Suppose that the
covariant differentials of a vector field $v^{i}$ , a scalar field $f$ of weight



248 T. SUGURI

$p$, and a vector field $v^{I}\equiv(v^{0}, v^{i})$ are defined respectively by

(9.1) $Dv^{i}=dv^{i}+\Gamma_{jk}^{i}v^{j}\mathfrak{d}x^{k}+(I_{j}^{i}v^{j}+pI’ v^{i})dt$ ,

(9.2) $Df=df+pI^{7}fdt$ ,

(9.3) $D^{*}v^{I}=dv^{I}+*\Gamma_{fK}^{I}v^{J}dy^{K}$ .
In this paragraph I intend to show that the parameters of connection
$*I_{fK}^{7I}$ determined by suitable geometrical conditions coincide precisely
with those in \S 7.

(i) $v^{0}$ is a scalar field of weight $-1$ . We have from (9.3)

$(D^{*0*}v^{I})_{I-0v^{0*}}**$ .
On the other hand, we have from (9.2) putting $p=-1$

$Dv^{0}=dv^{0}-I^{7}v^{0}dt$ .
If we suppose that
(9.4) $(D^{*}v^{I})_{I-0}\equiv Dv^{0}$

holds, we get

(9.5) $*\tau_{0k}^{0}=0$ , $*\Gamma_{j0}^{0}=0$ , $*\tau$
$*I_{0}^{0},=-I^{7}$ .

(ii) As we know that $V^{i}=v^{i}-x^{(1)i}v^{0}$ is a vector field of weight $0$,
we have from (9.1) putting $p=0$

$D(v^{i}-x^{(1)i}v^{0})=dv^{i}-x^{(1)i}dv^{0}-v^{0}dx^{(1)i}$

$+\Gamma_{jk}^{i}(v^{j}-x^{(1)j}v^{0})(dx^{k}-x^{(1)k}dt)+I^{7}\}(v^{j}-x^{(1)j}v^{0})dt$ .
On the other hand, noticing the covariant differential of the line-
element we have

$\delta x^{(1)i}=dx^{(1)i}-x^{(2)i}dt+I_{j}^{vi}(dx^{j}-x^{(1)j}dt)$ ,

or
(9.6) $dx^{(1)i}=\delta x^{(I)i}+x^{(2)i}dt-I_{j}^{\prime i}(dx^{j}-x^{(1)j}dt)$ .
Hence we have

$D(v^{i}-x^{(1)i}v^{0})=-v^{0}\delta x^{(1)j}+dv^{i}-x^{(1)i}dv^{9}-v^{0}\{x^{(2)i}dl-I_{j}^{vi}(dx^{j}-x^{(1)j}dt)\}$

$+I_{jk}^{7i}(v^{j^{\prime}}-x^{1)j}v^{0})(dx^{k}-x^{(1)k}dt)+\Gamma_{j}^{i}(v^{j}-x^{(1)j}v^{0})dt$ .
By virtue of (9.3) we also have
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$(D^{*}v^{I})_{1=i}-x^{(1)i}(D^{\{<}v^{I})_{I=0}=dv^{i}-x^{(1)i}dv^{0}+(^{*}I_{0J}-I_{00}^{70}x^{(1)i})v^{0}dt$

$+(I_{0k}-I_{0k}^{70}x^{(1)i})v^{0}dx^{k}+(*\Gamma_{j0}-\Gamma_{j0}^{0}x^{(1)i})v^{j}dt$

$+(*\Gamma_{jk}^{i}-*\tau_{jk}^{0}x^{(1)i})v^{j}dx^{k}$ .
Therefore if we suppose that
(9.7) $(D^{*}v^{I})_{I=i}-x^{(1)i}(D^{*}v^{I})_{1=0}\equiv D(v^{i}-x^{(I)i}v^{0})+v^{0}\delta x^{(t)i}$ ,

then we have, noticing (9.5),

(9.8) $\left\{\begin{array}{l}*l_{jk}^{7i}=l_{jk}^{vi}\\*\Gamma_{j0}^{i}=I_{j}^{\tau i}-I_{jk}^{1}x,\\*\tau_{0k}^{i}=I_{k}^{vi}-I_{jk}^{7i}x^{(1)j},\\*\Gamma_{m}^{i}=-\{x^{(2)i}-I_{jk}^{\tau i}x^{(1)j}x^{(1)k}+2\Gamma_{j}^{i}x^{(1)j}+\Gamma x^{(1)i}\}.\end{array}\right.$

Thus we know that the parameters of connection $*\Gamma_{JK}^{I}(9.5)$ and (9.8)
determined by the geometrical conditions (9.4) and (9.7) are nothing
but those already defined in \S 7.

(iii) The following fact is noteworthy. The components $v^{i}$ con-
stitute a contravariant vector field of weight $0$ when and only when
$v^{0}\equiv 0$. Therefore we have from (9.3)

$(D^{*}v^{I})_{t=i}=dv^{i}+^{*}\Gamma_{jk}^{i}v^{j}dx^{k}+*\Gamma_{j0}^{i}v^{j}dt$ ,

$(D^{*}v^{I})_{I=0}=*\Gamma_{jk}^{0}v^{j}dx^{k}+*\Gamma_{j0}^{0}v^{j}dt$ .
On the other hand, we have from (9.1) putting $p=0$

$Dv^{i}=dv^{i}+\Gamma_{jk}^{i}v^{j}(dx^{k}-x^{(1)k}dt)+\Gamma_{j}^{i}v^{j}dt$ .
Hence by virtue of (9.5) and (9.8), it is evident that

(9.9) $(D^{*}v^{I})_{I=0}\equiv 0,$ $(D^{*}v^{I})_{I=i}=Dv^{i}$ for $v^{0}\equiv 0$ .
The preceding results are also obtained using a covariant vector

field instead of contravariant.
10. Covariant derivatives. We can easily obtain the relations

between two kinds of covariant derivatives using the results in \S 9.
(i) In the first place from (9.4) we have

(10.1) $\left\{\begin{array}{l}(\nabla^{*}v^{I})_{I\Leftarrow 0}\equiv\nabla v^{0},\\(\nabla_{(r)j}^{*}v^{I})_{I=0}\equiv\nabla_{(r)j}v^{0}\end{array}\right.$

$(r=0,1, \cdots, m-1)$ .
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Since $v^{0}$ is a scalar field of weight $-1,$ $\nabla v^{0}$ is a scalar field of weight $0$,
and $\nabla_{(r)j}v^{0}$ is a vector field of the second kind of weight $-(1+r)$ .

(ii) From (9.7) we have

(10.2) $\left\{\begin{array}{llllll} & & & & & (\nabla^{*}v^{I})_{I-i}-x^{(1)i}(\nabla^{*}v^{I})_{I\Leftrightarrow 0}\equiv\nabla(v^{i}-x^{(1)i}v^{0}),\\ & & & & & (\nabla_{(r)j}^{*}v^{I})_{I- i}-x^{(1)i}(\nabla_{(r)j}^{*}v^{I})_{I\Leftrightarrow 0}\equiv\nabla_{(r)j}(v^{i}-x^{(1)i}v^{0})+\delta_{r}^{l}\delta_{j}^{i}v^{0}\end{array}\right.$

$(r=0,1, \cdots, m-1)$ .
Since $v^{i}-x^{(1)i}v^{0}$ is a vector field of weight $0$ and $v^{0}$ is a scalar field of
weight $-1$ , the first of (10.2) is a vector field of weight $+1$ and the se-
cond is a tensor field of weight $-r$ .

(iii) From (9.9) we have, for $v^{0}\equiv 0$ ,

(10.3) $\left\{\begin{array}{llllll} & & & & & (\nabla^{*}v^{I})_{I=0}\equiv 0, (\nabla^{*}v^{I})_{I=i}\equiv\nabla v^{i},\\ & & & & & (\nabla_{tr)j}^{*}v^{I})_{I=0}\equiv 0, (\nabla_{(r)j}^{*}v^{I})_{I=i}\equiv\nabla_{(r)j}v^{i} (r=0,1,\ldots,m-l).\end{array}\right.$

Since $\theta\equiv 0,$ $v^{i}$ is a vector field of the second kind of weight $0$. There-
fore, $\nabla v^{i}$ is a vector field of weight $+1$ , and $\nabla_{(r)j}v^{i}$ is a tensor field of
weight $-r$.

11. Curvatures and torsions. We can get, making use of the
results in the preceding paragraph, all the relations which hold between
curvatures and torsions obtained in \S \S 6, 8.

(i) From (10.1) it is clear that
$(2[\nabla_{(r)j}^{*}\nabla^{*}]v^{I})_{I=0}\equiv 2[\nabla_{(r)j}\nabla]v^{0}$ $(r=0,1, \cdots, m-1)$ ,

$(2[\nabla_{()j}^{*}r\nabla_{(s)k}^{*}]v^{I})_{I\subset 0}\equiv 2[\nabla_{(\prime)j}\nabla_{(s)k}]v^{0}$ $\left(\begin{array}{lllllllll} & & & & & r=0, & 1, & \ldots, & m-1\\ & & & & & s=0, & 1, & \ldots, & r\end{array}\right)$ .

Noticing that $v^{0}$ is a scalar field of weight-l, and comparing the left-
hand side with the right by use of (8.1) and (6.1), we get, besides
(8.4) and (8.5),

(11.1) $R_{h(r)_{J^{-=}}}^{*0}0,$ $R_{H}^{*0_{(r)j(0)k}}\equiv 0,$ $R_{0(r)_{J^{-=}}}^{*0}R_{(r)j}$ $(r=0,1, \cdot.., m-1)$ .
(ii) From (10.3) we have for $v^{0}=0$

$(2[\nabla_{(r)j}^{*}\nabla^{*}]v^{I})_{I=0}\equiv 0$ $(r=0,1, \cdots, m-1)$ ,

$(2[\nabla_{(r)j}^{*}\nabla^{*}]v^{I})_{I=i}\equiv 2[\nabla_{(r)j}\nabla]v^{i}$ $(r=0,1, \cdots, m-1)$ ,

$(2[)jS$ $\left(\begin{array}{llllllllll} & & & & & r=0, & 1, & \ldots, & m & -1\\ & & & & & s=0, & 1, & \ldots, & r & \end{array}\right)$ ,
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$(2[\nabla_{(r)j}^{*}\nabla_{(s)k}^{*}]v^{I})_{I=}l-=2[\nabla_{(\gamma)j}\nabla_{()k}S]v^{i}$ $\left(\begin{array}{lllll}r=0, & 1, & \ldots, & m & -1\\s=0, & 1, & \cdots & r & \end{array}\right)$ .

$\ln$ this case, noticing that $v^{i}$ is a vector of weight $0$ and comparing
the left $\cdot$ hand side with the right, we get the following relations in
addition to (8.4), (8.5) and (11.1):

(11.2) $R_{h()j}^{*i_{r}}\equiv R_{h(r)j}^{i},$ $R_{h(r)j(0)k}^{*i}\equiv R_{h(r)j(0)k}^{i}$ $(r=0,1, \cdots, m-1)$ .
(iii) From (10.2) we can prove that there exist the following rela-

tions between two kinds of Poisson operators:

$(2[\nabla_{(r)j}^{\star}\nabla^{*}]v^{I})_{I=i}-x^{(1)i}(2[\nabla_{(r)j}^{*}\nabla^{*}]v^{I})_{I\subset 0}\equiv 2[\nabla_{(r)j}\nabla](v^{i}-x^{(1)i}v^{0})$

$(r=0,1, \cdots, m-1)$ ,

$(2[\nabla_{(r)j}^{\$f}\nabla_{(s)k}^{*}]_{l1^{I}})_{I=i}-x^{(1)i}(2[\nabla_{(,)j}^{*}\nabla_{(s)k}^{*}]v^{I})_{I=0}\equiv 2[\nabla_{(r)j}\nabla_{(s)k}](v^{i}-x^{\prime 1)i}v^{0})$

$\left(\begin{array}{lllll}r=0, & 1, & \ldots, & m & -1\\s=0, & 1, & \ldots, & r & \end{array}\right)$ .

Noticing that $v^{i}-x^{(1)i}v^{0}$ is a vector field of weight $0$ and using these
relations, we obtain the following relations in addition to the already
obtained:

(11.3) $\left\{\begin{array}{l}R_{0(\gamma)_{J}}^{*}---x^{(1)i}R_{(r)j}-x^{(1)h}R_{h(r)j}^{i}+\delta^{2},\delta_{j}^{i}\\R_{Q(r)j(0)k}^{*}i\equiv S_{(r)}^{(1)i_{j(\langle))k}}-x^{(1)h}R_{h(r}^{i})j(o)k\end{array}\right.$ $(r=0,1, \cdots, m-1)$ .

Hence all the relations desired are given by (8.4), (8.5), (11.1),
(11.2) and (11.3). Thus, we arrive at the following

THEOREM. The torsion tensors of the first kind coincide identically
with those of the second kind. The curvature tensors of the first kind
are expressible by those of the second kind and the torsion tensors
$S_{(r)j(0)k}^{(1)i}$ $(r=0,1, \cdots, m-1)$ .

Chapter III. The other geometries of paths.

The method hitherto employed in the case of the generalized rheo.
nomic geometry of paths, after some suitable modifications, is available
to geometries of paths s.uch as ordinary, intrinsic and rheonomic. We
give in each case the concrete modifications and show the relations
between the results obtained by our method and those known for each
geometry.
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12. Ordinary geometry.
(i) Under the transformation group of coordinates

(12.1) $\xi^{\alpha}=\xi^{\alpha}(x^{i})$ , $\tau=t$

we are familiar with the notions of scalar, vector, tensor and others.
(ii) It is easily verified that, under the group (12.1), the line-

element of the $(m-1)\cdot th$ order, its differential and the functions $H^{i}$

are subject to the transformation laws which are obtained from those
in \S 2 by putting specially $\sigma=1$ and $\partial\xi^{[r]\alpha}/\partial t=0(r=0, 1, m-1)$ and
writting $\xi^{(r)\alpha}$ in place of $\xi^{[r]\alpha}$ . As a consequence it suffices to use the
ordinary differential of the line.element $dx^{(}r$ ) $i$ instead of $\mathfrak{d}x^{(r)i}$.

(iii) The covariant derivative along a path of a vector field $v^{i}$ in
$X_{n+1}^{(m-1)}$ can be defined $by^{4)}$

(12.2) $\delta_{l}v^{i}=D_{t}v^{i}+I_{j}^{\tau i}v^{j}$ .
The parameters of connection $1_{j}^{\prime i}$ are transformed as

(12.3) $\frac{\partial\xi^{\beta}}{\partial x^{j}}I_{\beta}^{\tau\alpha}=-\partial\xi\alpha_{I_{j}^{\tau i}-\frac{\partial^{2}}{\partial x^{i}}x^{(1)j}}\xi^{\alpha}\partial x^{i}\partial\overline{X^{j}}$

hence in the same manner as in \S 3, we can see that $I_{j}^{7}i$ are given by
(3.11). However in the present case it is already known5) that it may
be defined by

(12.4) $I_{j}^{\tau i}=\frac{1}{m}H_{(m-1)j}^{i}$

which is simpler than (3.11).
(iv) The analogue of the theorem in \S 4 can be proved without

much difficulty:
THEOREM. If the pfaffian forms

$P=\sum_{r=0}^{M}P_{(}^{l_{r)k}}dx^{(r)k}$

are transfomed as a vector, then the pfaffians

$\delta_{t}P^{i}=\sum_{r\approx 0}^{M}P_{(r)k}^{l}dx(+\sum_{r=0}^{M}\{D_{t}P_{(r)k}+I^{i}{}_{j}P_{t^{j}r)k}\}dx^{(r)k}$

4) The term $pTv^{i}$ in (3.1) is a vector in an ordinary geometry.
5) A. Kawaguchi and H. Hombu [81.
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are also tmnsformed as a vector.
By virtue of this theorem we derive, as in the same way as in

\S 4, the covariant differential of the line.element

(12.5) $\left\{\begin{array}{l}\delta x^{i}=dx^{i},\\\delta x^{(r)i}=dx^{(r)i}+\sum_{s=0}^{r- 1}\Lambda_{(sj}^{(r_{)})i}dx^{(s)j}\end{array}\right.$

$(r=1,2, \cdots, m-1)$ ,

where $\Lambda_{(s)j}^{()}ri$ are defined by recurrent formulae analogous6) to (4.5).

However it is known7) that they may be defined simply by

(12.6) $\Lambda_{(s)j}^{(r)i}=\frac{r!(m+s-r)!}{m!s!}H_{(m+s-r)j}^{i}$ $(_{s=0’}^{r=1},21,$

$\cdots,$

$r-1m-1)$ .

They are subject to the law analogous to (4.9):

(12.7) $\frac{\partial\xi^{(r)\alpha}}{\partial X^{(s)i}}=\frac{\partial\xi^{\alpha}}{\partial x^{j}}\Lambda_{(s)i}^{(r)j}-\sum_{t=s}^{r-1}\frac{\partial\xi^{(t)\beta}}{\partial X^{(s)i}}\overline{\Lambda}_{(t)\beta}^{(r)\alpha}$ $\left(\begin{array}{llll}r=1, & 2, & \ldots, & -m1\\s=0, & 1, & \cdots & r-1\end{array}\right)$ .

(v) The covariant differential of a vector field $v^{i}$ can be defined
$by^{8)}$

(12.8) $Dv^{t}=dv^{i}+I_{jk}^{i}v^{j}dx^{k}$ .
The parameters of connection $I_{jk}^{\tau i}$ are subject to (5.2) and can be de-
fined by (5.5) or (5.6). In the present case it is rather simple to use
(5.6)9). The covariant derivatives of $v^{i}$ and the fundamental invariants
of the connection can be easily written.

13. Intrinsic geometry.
(i) For the transformation group of coordinates and parameter

(13.1) $\xi^{\alpha}=\xi^{\alpha}(x^{i})$ , $\tau=\tau(t)$

we can also define contravariant and covariant vectors and scalar of
weight $p$ by (1.4) and $(1.4)^{\prime}$ .

(ii) The transformation laws, under the group (13.1), of the line-
element, the functions $H^{i}$ and the differential of the line element are
almost the same to those in \S 2. It is necessary to put $\partial\xi^{\alpha}/\partial t=0$ ,

6) Omit the term containing $T$.
7) A. Kawaguchi and H. Hombu [8].

8) The terms $p\Gamma v^{i}dt$ and $(T_{j}^{i}-\Gamma_{jk}^{i}x^{(1)k})vJdt$ in (5.1) are both vectors in our case.
9) The foundation of the theory was given by A. Kawaguchi and H. Hombu [8],

Satz 7 on pp. 35, 42 and 44.
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which is the only modification. In spite of this, we must take care
that $\partial\xi^{\ulcorner j\alpha}r/\partial t(r=1,2, \cdots, m-1)$ do not vanish. Hence we must use,
also in this case, the pfaffians $\mathfrak{d}x^{(r)i}$ .

(iii) The covariant derivative along a path of a vector field $v^{j}$ of
weight $p$ can also be defined by (3.1). The transformation laws of $I_{j}^{i}$

and 1‘ are given by (3.2) and (3.3) too. Hence in the same manner
as in \S 3, we can see that these are given by (3.11) and (3.12). These
results are already known by A. Kawaguchi and H. Hombu [8]. On
the other hand S. Hokari [4] gave another result by use of the method
of variations founded by D. D. Kosambi [6], [7]. T. Ohkubo [9] also
studied the case of the third order using the so.called method of elimi-
nations, but he did not discuss the covariant derivative along the path.

(iv) As to the covariant differential of the line-element, we have the
same results as those of A. Kawaguchi and H. Hombu. As already men $\cdot$

tioned in (ii), we must use the pfaffians (
$\mathfrak{o}x^{(r)i}$, instead of $dx^{(r)i}$ in the

fundamental $theorem^{1\ovalbox{\tt\small REJECT})}$ concerning the covariant differential of the line-
element. Therefore the covariant differential11) given there must be
modified to ours given by $\backslash (4.4)$ . Concerning the results of S. Hokari,
the circumstance is the same. The results of T. Ohkubo are somewhat
different from ours.

(v) The covariant differential of a vector field $v^{i}$ of weight $p$ can
be defined by (5.1) or $by^{12)}$

(13.2) $Dv^{i}=dv^{i}+pI^{7}v^{i}dt+I_{jk}^{7}iv^{i}dx^{k}$ .
The parameters of connection $l_{jk}^{7}i$ are subject to the transformation
laws (5.2) and may be defined by (5.5) or (5.6). For general $m$ , A.
Kawaguchi and H. Hombu used (5.5) and S. Hokari used both (5.5) and
(5.6). For $m=3$ , various formulae for $l_{jk}^{i}$ are given in [8], [4] and
[9]. Some modifications for the covariant derivatives given by A. Kawa $\cdot$

guchi and H. Hombu and by S. Hokari are necessary.
14. Rheonomic geometry.
(i) Under the rheonomic transformation group

10) A. Kawaguchi and H. Hombu [ $ 8\rfloor$ , Satz 16 on p. 58.
11) A. Kawaguchi and H. Hombu [8], Formula (3.18) on p. 59.
12) In the present case the term ( $\tau_{j}^{j}-\tau_{jk^{X^{(1)k)v}}}^{ij}dt$ is a vector of weight $p$, by

omitting it we have (13.2). A. Kawaguchi and H. Hombu [8] and S. Hokari [4] used
also (13.2).
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(14.1) $\xi^{\alpha}=\xi^{\alpha}(t, x^{i})$ , $\tau=t$

we can define, as in the same manner as in \S 1, two kinds of vectors,
and discuss the relations between them.

(ii) Under the group (14.1), the transformation laws of the line-
element, and the functions $H^{i}$ are obtainable from $(2.1)^{\prime}$ by putting
$\sigma=1$ .

(iii) The covariant derivative along a path of a vector field $v^{i}$

can be defined by $(12.2)^{13)}$. The parameters of connection $I_{j}^{\prime i}$ are trans-
formed as

(14.2) $\frac{\partial\xi^{\beta}}{\partial x^{j}}\overline{\Gamma}_{\beta}^{\alpha}=\frac{\partial\xi^{\alpha}}{\partial x^{i}}\Gamma_{j}^{i}-D_{t}\frac{\partial\xi^{\alpha}}{\partial x^{j}}$ ,

hence we see that $\Gamma_{j}^{i}$ can be given by (3.11). However in the rheo-
nomic geometry it is already known14) that they may be defined by the
simpler expression (12.4).

(iv) The analogue of the theorem in \S 4 may be easily proved:
THEOREM. If the pfaffian forms (4.1) are transformed as a vector,

then the new pfaffians

$\delta_{t}P^{j}=\sum_{r=0}^{M}P_{(r)k}^{i}\mathfrak{d}x^{(r+1)k}+\sum_{r\approx 0}^{M}\{D_{t}P_{(r)k}^{i}+I^{vi}{}_{j}P_{(r)k}^{j}\}\mathfrak{d}x^{()k}r$

are also transformed as a vector.
By virtue of this theorem we can define the covariant differential

of the line-element in the form (4.4), where $\Lambda_{(s)j^{i}}^{(r)}$ are defined by the
analogous recurrent formulae as $(4.5)^{15)}$. In the rheonomic case, it is
already known16) that they can be defined simply by (12.6).

(v) The covariant differential of a vector field can be defined $by^{17)}$

$Dv^{i}=dv^{i}+I_{j}^{vi}v^{j}dt+\Gamma_{jk}^{i}v^{j}\mathfrak{d}x^{k}$.
The parameters of connection $\Gamma_{jk}^{i}$ are subject to (5.2); thus they can
be defined by (5.5) or (5.6). However the latter is better than the
former. These results were obtained by H. Hombu [5] and T. Suguri
[11].

13) The term $pTvi$ in (3.1) is a vector for the rheonomic geometry.
14) See H. Hombu [5] and T. Suguri $[11\rfloor$ .
15) Omit the term containing $T$.
16) See H. Hombu [5] and T. Suguri [11].

17) The term $pTv^{j}dt$ in (5.1) is a vector for the rheonomic geometry.



256 T. SUGURI

Chapter IV. The equivalence problems.

In the pressent chapter we discuss the equivalence problem in each
geometry of paths. This problem is one of the most fundamental but
unsolved problems. We use the well-known theorem concerning the
mixed system of partial differential equations of the first order18).

15. Ordinary geometry. Under the transformation group of
coordinates

(15.1) $\xi^{a}=\xi^{\alpha}(x^{i})$ , $\tau=t$

the line-elements of the $(m-1)\cdot th$ order are subject to

(15.2)

$(r=1,2, \cdots, m-1)$ .

If we consider a system of paths of the m.th order defined by

(15.3) $x^{(m);}+H^{i}(t, x, x^{(1)}, \cdots x^{(m- 1)})=0$ ,

then the functions $H^{i}$ are subject to

(15.4) $\overline{H}^{\alpha}=\frac{\partial\xi^{\alpha}}{\partial x^{i}}H^{i}-\sum_{s=0}^{m-2}x^{(s+1)i}\partial\xi_{\partial X^{(s)i^{)\alpha}}}^{(m- 1}$ .

In other words, if the system of equations (15.3) is transformed,
under a transformation of the group (15.1), into
(15.5) $\xi^{(m)\alpha}+\overline{H}^{\alpha}(t, \xi, \xi^{(1)}, \cdots, \xi^{(m-1)})=0$ ,

then there exist relations (15.2) and (15.4) between two sets of
quantities

(15.6)

Conversely, for any given systems (15.3) and (15.5), if there ex-
ists a transformation of the group such that (15.2) and (15.4) hold, we

18) See $e$ . $g$ . T. Y. Thomas [14] or O. Veblen [151.
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say that the two systems of paths are equivalent under the group. Our
problem is to obtain a necessary and sufficient condition for the equiv-
alence of the two systems.

According to the method in \S 12, we construct the parameters of
connection $\Lambda_{(s)j}^{(r)i},$ $\Gamma_{jk}^{i}$ defined by (12.6), (5.6) using the functions $H^{i}$

and those for $\overline{H}^{\alpha}$ . When (15.4) hold, there exist the relations (12.7)
and (5.2). From (15.2), it is evident that we can put

$\frac{\partial\xi^{\alpha}}{\partial x^{i}}=\frac{\partial\xi^{(1)\alpha}}{\partial x^{(1)i}}=\cdots\cdots=\frac{\partial\xi^{(m-1)\alpha}}{\partial x^{(m-1)i}}=u_{i}^{\alpha}$ ,

hence we can express each

$\frac{\partial x^{(r)\alpha}}{\partial x^{(s)i}}$

$\left(\begin{array}{llllll} & & r=1, & 2, & \ldots, & -m1\\ & & s=0..1, & & \ldots, & r-1\end{array}\right)$

successively as polynomial of

$u_{i}^{\alpha},$
$\Lambda_{(s)i}^{(t)j},\overline{\Lambda}_{(s)\alpha}^{(t)\beta}$ $\left(\begin{array}{lllll} & & t=1,2, & \ldots & r\\ & & s=0,1, & \ldots, & t-1\end{array}\right)$ .

Thus we find that $n(n+m)$ functions

(15.7) $\xi^{\alpha},$ $\xi^{(1)\alpha},$
$\cdots,$

$\xi^{(m-1)\alpha},$ $u_{i}^{\alpha}=\partial\xi^{\alpha}/\partial x^{i}$

of $mn+1$ independent variables

(15.8) $t,$ $x^{i},$ $x^{(1)i},$
$\cdots,$

$x^{(m-1)i}$

satisfy the following differential equations:
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For the later convenience we rewrite (15.4) as follows:

(15.10) $\overline{H}^{\alpha}=u_{i}^{\alpha}H^{i}-\sum_{s=0}^{m-1}\underline{\partial}\xi_{\partial\overline{x^{(s})i}}^{(m-1)a_{X^{(s+1)j}}}$

where we consider that the right-hand side is a polynomial expressed
in terms of

$u_{i}^{\alpha},$ $H^{i},$ $x^{(t)j},$ $\Lambda_{(u)}^{(t)h_{j}},\overline{\Lambda}_{(u)\gamma}^{(t)\beta}$ .
Thus we know that if (15.2) and (15.4) hold, then (15.9) and (15.10)

are satisfied. Conversely, we prove the following: A set of solutions
of (15.9) satisfying equations (15.10), conforms to (15.2) and (15.4),
under a suitable initial condition.

For this purpose we use the relations

(15.11) $\partial\xi^{(r)\alpha}\partial x^{(s)i}=i$

which are easily verified by virtue of (15.9 ii) and (12.6).
It is evident that a set of solutions now considering is of the

form:
$\xi^{\alpha}=\xi^{\alpha}(x^{i})$ , $u_{i}^{a}=u_{i}^{a}(x^{j})$ ,

$\xi^{(r)\alpha}=\xi^{(r)\alpha}(x, x^{(1)}, \cdots, x^{(r)})$ $(r=1,2, \cdots, m-1)$ .
In the first place, for $\xi^{(1)}(x, x^{(1)})$ we have from (15.9 ii),

(15.12) $\xi^{(1)\alpha}=\frac{\partial\xi^{\alpha}}{\partial x^{i}}x^{(1)i}+c^{(1)\alpha}(x)$,

hence

(15.13) $\partial_{\partial x^{(1_{j^{)\alpha}}}}\xi=\frac{\partial^{2}\xi}{\partial x^{i}\partial}-x^{(1)j}+\alpha x^{j}\partial c^{(1)}\partial x^{j^{\alpha}}$

On the other hand by differentiating (15.10) in $x^{(m-1)j}$ , we have

$\frac{\partial\xi^{\beta}}{\partial x^{j}}\overline{H}^{\alpha},$ $(m- 1)\beta=\frac{\partial\xi^{\alpha}}{\partial x^{i}}H^{i},$ $(m-1)j-\frac{\partial\xi^{(m-1)\alpha}}{\partial x^{(m-2)_{\dot{f}}}}---X^{(1)\oint}\partial X\partial X^{j}\partial_{i}^{2}\xi^{\alpha}$

which is equivalent to
$\partial\xi_{--=}^{(1).\mathcal{O}}--\partial^{2}\xi_{-.x^{(1)i}}^{\alpha}$

$\partial X^{J}$ $\partial x^{t}\partial X^{J}$



Theory of invariants in the geometry of paths 259

by virtue of (12.6), (15.11) and (15.9). Comparing this with (15.12),
we have

$\partial c^{(1)\alpha}/\partial x^{j}=0,$ $i$ . $e$ . $c^{(1)\alpha}=const$ .
Hence under the initial condition

$(\xi^{(1)\alpha})_{0}=0$ when $(x^{(1)i})_{0}=0$ ,

we have, from (15.12), the relations (15.2 ii).
In the second place, noticing (15.9 ii), (15.11) and (15.13), we have

(15.14) $\xi^{(2)\alpha}=\frac{\partial\xi^{\alpha}}{\partial X^{i}}x^{(2)i}+\frac{\partial^{2}\xi^{\alpha}}{\partial x^{i}\partial x^{j}}x^{(1);}x^{(1)j}+c^{(2)a}(x)$ ,

hence,

(15.15) $\sim\frac{\partial\xi^{(2)\alpha}}{\partial x^{j}}=\frac{\partial^{2}\xi^{\alpha}}{\partial x^{i}\partial x^{j}}x^{(2)i}+\frac{\partial^{3}\xi^{\alpha}}{\partial x^{i}\partial x^{j}\partial x^{k}}x^{(1)i}x^{(1)k}+^{\underline{\partial}_{\partial^{\frac{c^{(2)}}{x^{j}}}}^{\alpha}}$

On the other hand, differentiating (15.10) in $x^{(m-2)j}$ we have

(15.16) $\frac{\partial\xi^{(m-1)\beta}}{\partial x^{(m-2)j}}\overline{H}^{\alpha},$ $(m-1)\beta+\frac{\partial\xi^{\beta}}{\partial x^{j}}\overline{H}^{\alpha},$

$(m-2)\beta$

$=u^{\alpha}H^{i},-\frac{\partial\xi^{(m-1)\alpha}}{\partial x^{(m-3)j}}-\sum_{s=1}^{m-2}\frac{\partial^{2}\xi^{(m-1)a}}{\partial x^{(m-2)j}\partial x^{(s)i}}x^{(s+1);}$ .

On account of (15.11), (15.15), (15.16), (15.9 ii) and (12.6), we can
conclude that

$\partial c^{(2)\alpha}/\partial x^{j}=0,$ $i.e$ . $c^{(2)\alpha}=const$ .
Hence under the initial condition

$(\xi^{(2)\alpha})_{0}=0$ , when $(x^{(1)j})_{0}=(x^{(2)i})_{0}=0$ ,

we see that (15.2 iii) holds for $r=1$ . We can accomplish the general
proof of (15.2 iii) by induction.

Let (15.2 iii) hold for $r=1,2,$ $\cdots,$ $p-1$ , and consider the solution
$\xi^{(p+1)\alpha}=\xi^{(p+1)\alpha}(x, x^{(1)}, \cdots, x^{(p+1)})$

and the function $F^{(p+1)\alpha}(x, x^{(1)}, \cdots, x^{(p+1)})$ defined by

$F^{(p+1)\alpha}=\frac{\partial\xi^{\alpha}}{\partial x^{i}}x^{(p+1)i}+\sum_{u\approx 0}^{p-1}\frac{\partial\xi^{(p)\alpha}}{\partial x^{(u)i}}x^{(u+1)i}$ .
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Then we can easily verify that
$-\partial$

$(\xi^{(p+1)\alpha}-F^{(p+1)\alpha})=0$ $(s=1,2, \cdots,p+1)$
$\partial x^{(s)j}$

by virtue of (15.11), (15.9 ii) and the assupmtions of the induction.
Hence we have

(15.17) $\xi^{(p+1)}\alpha=\frac{\partial\xi^{\alpha}}{\partial x^{i}}x^{(p+1)i}+\sum^{p-1}---x^{(+1)i}u+c^{(p+1)\alpha}(x)u=0\partial x\partial\xi_{(u)i}^{(p)\alpha}$ .

Accordingly

(15.18) $\partial\xi_{\partial x^{j}}^{(p+1)\alpha}=^{\partial^{2}\xi^{\alpha}}x^{(p+1)i}+\sum_{u\partial x^{i}\partial x^{j}=0}^{p-1}\frac{\partial^{2}\xi^{(p)\alpha}}{\partial x^{j}\partial x^{()i}u}x^{(u+1)j}+\partial\frac{c^{(p+1)\alpha}}{\partial X^{j}}$ .

On the other hand, differentiating (15.10) with respect to $x^{(m-p-1)j}$ we
have

$\sum_{\ell\Leftrightarrow m-p-1}^{m-1}\frac{\partial\xi^{(t)\beta}}{\partial x^{(m-p-1)j}}\overline{H}^{\alpha},$
$(t)\beta$

(15.19)
$=u^{a}H^{i},-\frac{\partial}{x}\xi^{(-1\alpha}--\sum_{s\partial^{(m-\overline{p-}2)j}=0}^{m-2}\frac{\partial^{2}\xi^{(m-1)\alpha}}{\partial x^{(m-p-1)j}\partial x^{(s)i}}x^{(s+1)i}m)$

Using these relations (15.18) and (15.19), we can conclude that
$\partial C^{(p+1)\alpha}/\partial x^{j}=0,$ $i$ . $e$ . $c^{(p+1)\alpha}=const.$ ,

from which we see that under the initial condition
$(\xi^{(p+1)\alpha})_{0}=0$ when $(x^{(1)i})=(x^{(2)i})_{0}=\cdots=(x^{(p+1)i})_{0}=0$ ,

(15.2 iii) holds for $r=p$ . Hence in general we have (15.2 iii). As for
the relation (15.4), it is evident from (15.10).

Now (15.2 iii) and (15.4) are rewritten in the form

$\xi^{(r+1)\alpha}+\sum_{s=0}^{r-1}\overline{\Lambda}_{ts)\beta}^{(r)\alpha}\xi^{(s+1)\beta}=u_{i}^{\alpha}(x^{(r+1)j}+\sum_{s=0}^{r-1}\Lambda_{(s)j}^{(\gamma)i}x^{(s+1)j})$ $(r=1,2, \cdots, m-2)$ ,

$\overline{H}^{\alpha}-\sum_{s=0}^{m- 2}\overline{\Lambda}_{(S)\beta}^{(m-1)a}\xi^{(s+1)\beta}=u_{i}^{\alpha}(H^{i}-\sum_{s=0}^{m- 2}t\iota\Lambda_{(s)j}^{(m-1)i}x^{(s+1)j})$

on account of (15.9). Therefore, to solve (15.9) under the conditions
(15.10) is equivalent to solve it under the conditions
(15.20) $\overline{K}_{(r)}^{\alpha}=u_{i}^{\alpha}K_{(r)}^{i}$ $(r=1,2, \cdots, m)$ ,
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where we put

(15.21)

Hence we have the following conclusion:
The equivalence problem of the systems of paths (15.3) and (15.5)

under the group (15.1) is reduced to the problem for a necessary and
sufficient condition that (15.9) may have a set of solutions satisfying
the conditions (15.20).

Now according to T. Y. Thomas [14] or O. Veblen [15], we con-
struct for (15.9) and (15.20) the sequence of sets of equations concern-
ing the variables (15.7) and (15.8):

(15.22) $F^{(1)}=0,$ $F^{(2)}=0,$
$\ldots,$

$F^{(N)}=0,$
$\ldots$ ,

where $F^{(1)}=0$ is the set of equations consisting of (15.20), the equa-
tions of integrability of (15.9) and the equations obtained by differen-
tiating (15.20) with respect to the arguments (15.8) and eliminating the
derivatives of the functions (15.7) by means of (15.9); and $F^{(p+1)}=0$

for $p\geqq 1$ is the set of equations obtained by differentiating the set
$F^{(p)}=0$ with respect to the arguments (15.8) and eliminating the
derivatives of the functions (15.7) by means of (15.9). Then by the
well-known theorem for the existence of a solution of the mixed
system, we see that a necessary and sufficient condition that the two
systems of paths be equivalent is that there exists a positive integer $N$

such that the first $N$ sets of equations of (15.22) are algebraically con-
sistent considered as equations for the determination of the variables
(15.7) as functions of the independent variables (15.8), and that all
their solutions satisfy the $(N+1)$-th set of equations of the sequence.

The first set of the sequence (15.22) gives the transformation laws
of the set of invariants $K_{(r)}^{i}$ , curvature and torsion tensors and the
p-th set for $p>1$ gives the transformation laws of the covariant de-
rivatives of the $(p-1)$ -th order of them. Therefore we have the

THEOREM. The curvature and torsion tensors and the set of
invariants $K_{(r)}^{i}$ ($r=1,$ 2, m) and their successive covariant derivatives
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constitute the complete system of differential invariants for the ordinary
geometry of paths.

16. Intrinsic geometry. Consider the two sets of equations

(16.1) $\{\left\{\begin{array}{lllll} & & & & i) x^{(m)i}+H^{i}(t,x,x^{(1)},\ldots,x^{(m- 1)})=0,\\ & & & & ii) \xi^{r\neg}-m_{\rightarrow}\alpha+\overline{AI}^{\alpha}(\tau,\xi,\xi^{[1_{-}^{\urcorner}},\ldots,\xi^{m-1]}r)=0\end{array}\right.$

and the transformation group of coordinates and parameter

(16.2) $\xi^{\alpha}=\xi^{\alpha}(x^{i})$ , $\tau=\tau(t)$ .
The transformation laws of $(x^{i}, x^{(1)i}, \cdots, x^{(m-1)i})$ and $H^{i}$ are given by

(16.3) $\left\{\begin{array}{lllll} & & & & (i) \xi^{\ulcorner}-=\sigma\partial\xi_{i}\partial x^{\alpha}x^{(1)i},\\ & & & & (ii) \xi^{[r]\alpha}=\sigma^{r}\frac{\partial\xi^{\alpha}}{\partial x^{i}}X^{(r)i}+\sigma\sum_{s\Leftrightarrow 0}^{r- 2}\frac{\partial\xi^{\ulcorner}r- 1]a}{\partial x^{(s)i}}X^{(s+1)i}+\sigma\frac{\partial\xi^{\ulcorner}-r- 1_{s}^{\urcorner}\alpha}{\partial l}\\ & & & & (r=2,3,\cdots,m-1),\\ & & & & (iii) -\overline{H}^{\alpha}=-\sigma^{m}\frac{\partial\xi^{\alpha}}{\partial x^{i}}H^{i}+\sigma\sum_{s=0}^{m- 2}\frac{\partial\xi^{[m- L^{\urcorner}\alpha}}{\partial x^{(s)i}}x^{(s+1)i}+\sigma\frac{\partial\xi^{[m- 1]\alpha}}{\partial t}.\end{array}\right.$

If there exists a transformation belonging to (16.2) such that (16.3)
hold between two sets of quantities

$\{t, X^{i}x^{(1)i}, \cdots, x^{(m-1)i}, H^{i}(t, x, x^{(1)}, \cdots, x^{(m- 1)})\}$ ,

$\{\tau, \xi^{\alpha}, \xi^{[1]\alpha}, \cdots, \xi^{m-L^{\urcorner}\alpha}-, \overline{H}^{\alpha}(\tau, \xi, \xi^{rl1}, \xi^{[n\iota-1]})\}$ ,

we say that the two systems of paths are equivalent under the group
(16.2). According to the method in \S 13, we construct $\Gamma,$ $l_{j}^{\urcorner i},$ $\Lambda_{(s)j}^{(r)i}$

and $I_{jk}^{7i}$ and the corresponding functions using $H^{i}$ and $\overline{\overline{H}}^{\alpha}$ . If the
two systems (16.1) are equivalent, then the relations (3.2), (3.3) (4.9)
and (5.2) hold.

As is already known that
$K_{(1)}^{i}\equiv x^{(1)j}$

is a vector of weight $+1$ , we define successively19)

(16.4) $K_{(r+1)}^{i}=\delta_{t}K^{i}(r)=D_{t}K_{(r)}^{i}+\Gamma_{j}^{i}K_{(}^{j_{r)}}+rI^{7}K_{(r)}^{i}$

$(r=1,2, \cdots, m-1)$ ,

19) The $\Re i$ defined by A. Kawaguchi and H. Hombu [8], Formula (3.22) on p. 60 is
not a vector.
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then $K_{tr)}^{i}$ is a vector of weight $r$. If we put

(16.5)

then $U_{(sj}^{(r_{)})i}$ are defined by

We can see that (16.3 ii) and (16.3 iii) are rewritten as follows:

(16.7) $\overline{K}_{(}^{a_{r)}}=\sigma^{r}\frac{\partial\xi^{\alpha}}{\partial x^{i}}K_{(r)}^{i}$ $(r=2,3, \cdots, m)$ .

After these considerations we find that $n^{2}+nm+2$ functions

(16.8) $\tau,$
$\xi^{\alpha},$ $\xi^{\subset\square \alpha}$ ,–, $\xi^{[m-1]\alpha},$ $d\tau/dt=1/\sigma,$ $\partial\xi^{\alpha}/\partial x^{i}=u_{i}^{\alpha}$

of $nm+1$ independent variables

(16.9) $t,$ $x^{i},$ $x^{(1)\oint},$
$\cdots,$

$x^{(m-1)j}$

satisfy the following differential equations:

(16.10)

4

(i) $d_{T}/dt=1/\sigma,$ $\partial\tau/\partial x^{(s)j}=0$ $(s=0,1, \cdots , m-1)$ ,
(ii) $d_{\sigma}/dt=\sigma I^{7}-\overline{\Gamma}$ , $\partial\sigma/\partial x^{(s)j}=0$ $(s=0,1, \cdots, m-1)$ ,

(iii) $(\sigma_{fr}s=_{\alpha}r+_{S}1_{=0,1^{m-.\cdot.2}’}^{=0,1,\cdots.m-1)}\backslash ^{\frac{(}{\Lambda}}\subset r$
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and the identity

(16.11) $\overline{K}_{(r)}^{\alpha}=\sigma^{r}u_{i}^{a}K_{(r)}^{i}$ $(r=1,2, \cdots, m)$ .

Conversely if (16.10) admits a solution satisfying the conditions (16.11),
we can conclude that (16.1) are equivalent. Hence we have:

The equivalence problem is reduced to the problem for a necessary
and sufficient condition that (16.10) may have a solution satisfying the
conditions (16.11).

Noticing that a solution of (16.10) satisfies the relations

we can construct a sequence of sets of equations analogous to (15.22)
concerning the variables (16.8) and (16.9). Hence we get the following
conclusion :

A necessary and sufficient condition for the equivalence of the two
systems of paths (16.1) under the group (16.2) is expressible algebraically
by use of curvature and torsion tensors, a set of invariants $K_{(r)}^{i}(r=$

$1,2,$ $\cdots$ , $m$) and their successive covariant derivatives.
17. Rheonomic geometry. Let us consider the two systems

of paths defined by
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(17.1)

and the rheonomic transformation group

(17.2) $\xi^{\alpha}=\xi^{\alpha}(t, x^{\grave{t}})$ , $\tau=;$ .
The trnasformation laws of $(x^{i}, x^{(1)i}, \cdots x^{(m-1)i})$ and $H^{i}$ are given by

(17.3)

We can define the equivalence of the two systems of paths analogously
to those in \S \S 15, 16. We construct $\Gamma_{j}^{i},$ $\Lambda_{(s)j^{i}}^{(\gamma)}$ and $\Gamma_{jk}^{i}$ and the corre-
sponding functions using $H^{i}$ and $\overline{H}^{\alpha}$ . Then if the two systems (17.1)
are equivalent, there exist relations (14.2), (4.9) (put $\sigma^{=}1$ ) and (5.2).

Hence we know that $n(n+m)$ functions

$\{$

(17.4) $\xi^{\alpha},$ $\xi^{(1)\alpha},$
$\cdots,$

$\xi^{(m-1)\alpha},$ $u_{i}^{\alpha}=\partial\xi^{\alpha}/\partial x^{i}$

of $mn+1$ independent variables

(17.5) $t,$ $x^{i},$ $X^{(1)i},$
$\cdots,$

$X^{(m-I)i}$

satisfy the following:

$\ovalbox{\tt\small REJECT}(i)$
$\frac{\partial\xi^{(r)\alpha}}{\frac{\partial^{\partial}\xi^{X_{(r)a^{j}}^{(r)}}}{},\frac{\partial\xi\partial x_{(r)\alpha}^{(s)j}}{\partial x^{(s)j}}}=u_{\alpha}=0(s_{)}=r+1,$

$r+2,.\cdot m_{r-1}^{-1)})=u_{i^{j}}^{\alpha}\Lambda_{(s)j}^{(r)i}-\sum_{t=s}^{r-1}\frac{\partial\xi^{(t)\beta}}{\partial X^{(s)j}}\Lambda_{(t}^{\overline{(}r_{)\beta}}(r=1,2,,m^{-1})r_{\alpha}=0,1_{s=0,1}m-.2(r=0,1,\cdot..\cdot\cdot.\cdot\cdot.,’ m_{-1}$

,
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Conversely, if (17.6) admits a solution, (17.1) are equivalent under
(17.2).

Using the relations

(17.7) $\left\{\begin{array}{l}(i) \frac{\partial\xi^{(r+1)a}}{\partial X^{i}}=D_{t}\frac{\partial\xi^{(r)a}}{\partial X^{i}}\\(ii) \frac{\partial\xi^{(r+1)\alpha}}{\partial x^{(s)i}}=D_{t}\frac{\partial\xi^{(r)a}}{\partial X^{(s)i}}+\frac{\partial\xi^{(r)\alpha}}{\partial X^{(s+1)i}}\\(iii) \frac{\partial\xi^{(r+1)\alpha}}{\partial X^{(r)i}}=(r+1)\frac{\partial\xi^{(1)\alpha}}{\partial x^{i}}\end{array}\right.$ $\left(\begin{array}{llll}r=1,2, & \cdots & m & -2\\s=1,2, & \cdots & r & \end{array}\right)(r^{=0,1}(r_{=0.1},$$.\cdot.\cdot.\cdot,$

.

satisfied by a solution of (17.6), we can get the following conclusion
in the same manner as in \S 15.

A necessary and sufficient condition for the equivalence of the two
systems of paths (17.1) under the group (17.2) is expressible algebraic-
ally in terms of curvature and torsion tensors and their successive
covariant derivatives.

18. Generalized rheonomic geometry. We can also define
the equivalence of two systems of paths defined by

(18.1) $\left\{\begin{array}{l}(i) x^{(m)i}+H^{i}(t,x,x^{(1)},\cdots,x^{(m-1)})=0,\\(ii) \xi^{[m_{\lrcorner}^{\urcorner}\alpha}+\overline{H}^{\alpha}(\tau,\xi,\xi^{r_{l]}},\cdots,\xi^{[m- 1]})=0\end{array}\right.$

under the generalized rheonomic transformation group

(18.2) $\xi^{\alpha}=\xi^{\alpha}(t, x^{j})$ , $\tau=\tau(t)$ .
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According to our method, we construct $\Gamma,$ $\Gamma_{j}^{i},$ $\Lambda_{(s)j}^{(r)i}$ and $\Gamma_{jk}^{i}$ and the
corresponding functions from $H^{i}$ and $\overline{H}^{\alpha}$ . Then if two systems of
paths are equivalent, there exist (3.2), (3.3), (4.9) and (5.2). Therefore
we know that $n^{2}.+mn+2$ functions

(18.3) $\tau,$
$\xi^{\alpha},$ $\xi^{\ulcorner}1_{\rightarrow\alpha}^{\urcorner}$ –, $\xi^{\Gamma}m-1^{\urcorner_{j}}\alpha d\tau/dt=1/\sigma,$ $\partial\xi^{\alpha}/\partial x^{i}=u_{i}^{\alpha}$

of $mn+1$ independent variables
(18.4) $t,$ $x^{i},$ $x^{(1)i},$ $\cdots$ $x^{(m-)i}$

satisfy the following differential equations:

Conversely, if (18.5) admits a solution, we can conclude that (18.1)
are equivalent.

By using the relations

(18.6)
$|_{(ii)}^{(i)}$

$\frac{\frac{\partial\xi^{[r+1]a}}{\partial\xi^{r\alpha}\partial x^{j}}\ulcorner+1J}{\partial x^{(s)j}}=\{D^{\frac{\partial\xi^{[r]\alpha}}{t^{\frac{\partial_{\partial}x_{\xi^{j_{[r]\alpha}}}}{\partial X^{(s)j}}}}}+\frac{\partial\xi^{\subset r_{-l}^{\urcorner}}}{\partial x^{ts-1)j}}\}=_{\sigma}\sigma D_{t}$

$(r=0,1, \cdots, m-2)\left(\begin{array}{ll}m & -2\\r & \end{array}\right)$

’
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$((iii)$ $\frac{\partial\xi^{cr+1^{\urcorner}a}}{\partial x^{(r)j}}=(r+1)_{\sigma^{r+1}}D_{t}\frac{\partial\xi^{\alpha}}{\partial x^{j}}+\frac{r(r+1)}{2}\sigma^{r}(\sigma I^{v}-\overline{\Gamma})u_{j}^{\alpha}$

$(r=0,1, \cdots, m-2)$ ,

which hold for a solution of (18.5), we get a conclusion analogous to
that of $S17$ .

Mathematical Institute, Ky sy University, Hukuoka.
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