On the change of variables in the multiple integrals.

By Setsuya Seki

(Received July 25, 1952)

The well-known formula on the change of variables in the multiple integrals

$$
\text { (*) } \int_{f(D)}(y) d y=\int_{D} g(f(x)) \mathrm{abs}\left|\frac{\partial f}{\partial x}\right| d x
$$

has been proved by H. Rademacher and M. Tsuji under very general assumptions. They have shown that the functions f satisfying certain conditions are totally differentiable almost everywhere and consequently the Jacobian $\left|\begin{array}{l}\partial f \\ \partial x\end{array}\right|$ can be defined almost everywhere. They have proved further that the above formula ($*$) holds for integrable functions g, and f satisfying these conditions. We shall give in the following lines another proof of the last fact. Namely we suppose f as a.e. totally differentiable, g as integrable and show the validity of (*). (For the exact formulation see below.) We treat further the case where f is not necessarily univalent.

Throughout this paper, we shall concern ourselves with subsets and mappings of the euclidean n-space E^{n}. f represents always a mapping defined on a certain subset of E^{n}. Letters like x, y, a, b represent points of E^{n}. $\|x-y\|$ denotes the distance between x and y.

§ 1. Preliminaries.

Definition 1. A mapping $f(x)$ defined on a bounded domain $D\left(\subset E^{n}\right)$ is called an $\mathfrak{n - f u n c t i o n ~ o n ~} D$, if it satisfies the following three conditions.
$\left(\mathfrak{M}_{1}\right) \quad f$ maps D homeomorphically onto $f(D)$.
$\left(\mathfrak{H}_{2}\right) \quad$ If $\mu(E)=0(E \subset D)$, then $\mu(f(E))=0$.
$\left(\mathfrak{N}_{3}\right) \quad f(x)$ is totally differentiable almost everywhere.

We can easily see that the set of all $\mathfrak{\Re}$-functions on D-we shall write this set by $\mathfrak{x}_{4}[D]$ - has the following properties.
(1) If $D \supset D^{\prime}$, then $\mathfrak{x}[D] \supset \mathfrak{X}\left[D^{\prime}\right]$.
(2) $\mathfrak{x}[D]$ contains all non-singular linear transformations.
(3) If $\mathfrak{A}[D]_{\ni} f(x)$, $\mathfrak{A}[f(D)]_{\ni g}(x)$ and $\mathfrak{A}[f(D)]_{\ni} f^{-1}(x)$, then we have $g f(x) \in \mathfrak{A}[D]$.
Definition 2. For $f(x) \in \mathfrak{A}[D]$, we define a measure $\mu[f]$ by the formula:

$$
\mu[f](E)=\mu(f(E))
$$

When E is measurable, then $f(E)$ is also measurable by $\left(\mathfrak{H}_{1}\right)$ and $\left(\mathfrak{N}_{2}\right)$. So $\mu(f(E)$) has a sense for every \mathfrak{Y}-functions $f(x)$ and every measurable sets E. Furthermore, we can easily see that
(i) $\mu=\mu[x]$ (x is the identity mapping),
(ii) $\mu[f]$ is absolutely continuous with respect to $\mu=\mu[x]$.

By (ii) $\mu[f]$ has the density with respect to $\mu=\mu[x]$. Let us denote it by

$$
D(f / x)=\frac{d \mu[f]}{d \mu[x]} .
$$

Then we have clearly the following
THEOREM 1. If $\mathfrak{X}[D] \ni f(x), \mathfrak{A}[f(D)] \ni g(x)$ and the one of the next two conditions is satisfied:
(i) $g(x)$ is totally differentiable,
(ii) $\mathfrak{A}[f(D)] \ni f^{-1}(x)$,
then we have

$$
D(g f / x)=D(g f / f) D(f / x)
$$

§ 2. Linear functions.

As we have remarked above, every non-singular linear transformation is an श-function for every domain D. We shall prove

THEOREM 2. For a non-singular linear 彐-function:

$$
f(x)=A x+b \quad(|A| \neq 0)
$$

$D(f / x)$ is equal to abs $|A|$. (abs $|A|$ means the absolute value of the determinant $|A|$ of the $n \times n$ matrix A).

Let us first prove the
Lemma. An absolutely continuous measure $\nu(E)$ on Borel family \mathfrak{B} of E^{n} is invariant under any translation in E^{n}, if and only if $\nu(E)=c \mu(E)$ for some constant c.

Proof of Lemma. "If"-part is clear. We have only to show the "only if"-part. The unit cube E_{0} is measurable by ν, as $E_{0} \in \mathfrak{B}$. Put $\nu\left(E_{0}\right)=c$. Any rational interval, for example,

$$
I=\left\{\left(x_{1}, x_{2}, \ldots \ldots, x_{n}\right) ;-\frac{n_{i}}{m}<x_{i}<\frac{n_{i}^{\prime}}{m}, i=1,2, \ldots \ldots, n\right\}
$$

where m, n_{i}, n_{i}^{\prime} are integers, is built up by cutting E_{0} in m^{n} equal parts, and then arranging $\prod_{i=1}^{n}\left(n_{i}^{\prime}-n_{i}\right)$ small pieces together in a good form by translations. Thus we see easily $\nu(I)=c \mu(I)$ and so $\nu(E)=c \mu(E)$ by the absolute continuity of ν.

Proof of Theorem 2. For $f(x)=A x+b$, we shall take $f_{1}=x+b$ and $f_{2}=A x$, so that

$$
\begin{gathered}
f=f_{1} f_{2} \\
D(f / x)=D\left(f_{1} f_{2} / f_{2}\right) D\left(f_{2} / x\right)=D\left(f_{2} / x\right)
\end{gathered}
$$

So we can assume $b=0$ without loss of generality. Let T_{a} denote the translation : $x \rightarrow x+a$. Then we have

$$
\mu\left(f\left(T_{a}(E)\right)\right)=\mu\left(T_{A a}(f(E))\right)=\mu(f(E))
$$

So $\mu[f]$ is invariant under any translation in E^{n}. From our lemma follows then that there exists a constant $c(A)$ depending solely on the matrix A, such that

$$
\mu[f]=c(A) \mu
$$

Obviously we have

$$
c(A B)=c(A) \cdot c(B)
$$

and we have $c(U)=1$ for any orthogonal matrix U, since any sphere is invariant under rotation around the centre. (The invariance of Lebesgue measure under motions of rigid bodies!)

Now any matrix A can be brought into the form: $U A_{0} A_{1} \cdots A_{n}$, where U is an orthogonal matrix and $A_{i}(i=0,1,2, \cdots \cdots, n)$ have the following forms:

$$
\begin{aligned}
& A_{0}=\left(\begin{array}{llll}
1 & & 0 & \\
& 1 & 1 & \\
0 & & & a_{n n}
\end{array}\right), \\
& A_{1}=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
a_{1 n} \\
& \ddots & 0 & 0 \\
0 & \ddots & \vdots \\
0 & & 0 \\
& & & 1
\end{array}\right), \cdots \cdots, \quad A_{n-1}=\left(\begin{array}{cccc}
1, ~ & 0 \cdots \cdots & 0 \\
\ddots & 0 & \vdots \\
\ddots & \ddots & 0 \\
0 & \ddots & a_{n-1 n} \\
& & \ddots & 1
\end{array}\right) \text {, } \\
& A_{n}=\left(\begin{array}{llll}
a_{11} & \cdots \cdots & a_{1 n-1} & 0 \\
\cdots & \cdots & \cdots & \vdots \\
a_{n-1} & \cdots \cdots & a_{n-1} n-1 & 0 \\
0 & \cdots & 0 & 1
\end{array}\right)
\end{aligned}
$$

In fact, we can find a U such that

$$
U^{-1} A=\left(\begin{array}{llll}
a_{11} & \cdots & a_{1 n-1} & a_{1 n} \\
\cdots & \cdots & \cdots & \\
a_{n-1} & \cdots & a_{n-1} & a_{n-1} \\
0 & \cdots & 0 & a_{n n}
\end{array}\right) \quad\left(a_{n n} \neq 0\right) .
$$

A_{i} are then defined by these $a_{j k}$. Let us denote the rotation with the matrix U by ρ, and the linear transformation with the matrix A_{i} by f_{i}. Then we have $f=\rho f_{0} f_{1} \cdots f_{n}$ and

$$
D(f / x)=D(\rho / x) D\left(f_{0} / x\right) \cdots D\left(f_{n} / x\right) .
$$

Now we have $D(\rho / x)=1, D\left(f_{0} / x\right)=\left|a_{n n}\right|$ and $D\left(f_{i} / x\right)=1$ for $i=1,2, \cdots$, $n-1$, as these f_{i} are essentially 1 or 2 dimensional transformations and in these cases the theorem is almost evident. We may proceed by induction with respect to n and assume

$$
\mathrm{D}\left(f_{n} / x\right)=\operatorname{asb}\left|A_{n}\right|
$$

Then we have

$$
\begin{aligned}
D(f / x) & =\left|a_{n n}\right| \operatorname{abs}\left|A_{n}\right| \\
& =\operatorname{abs}|A| .
\end{aligned}
$$

This completes the proof.

§ 3. श-functions.

In this section we shall prove that for any \mathfrak{N}-function f

$$
D(f / x)=\operatorname{abs}\left|\frac{\partial f}{\partial x}\right|
$$

holds. First we shall prove some lemmas.
Lemma 1. The functions

$$
\begin{gathered}
\varepsilon_{n}(x)=\sup _{\left\|x^{\prime}-x\right\|<1 / n}\left\|f\left(x^{\prime}\right)-f(x)-\left(\operatorname{grad} f(x), x^{\prime}-x\right)\right\| /\left\|x^{\prime}-x\right\| \\
(n=1,2,3, \cdots)
\end{gathered}
$$

are all measurable, and have finite values almost everywhere.
Proof. Since the function under sup-symbol is continuous with respect to x^{\prime}, we obtain the same sup-value, when we make x^{\prime} vary only the points such that $x^{\prime}-x$ have rational coordinates. So we have

$$
\varepsilon_{n}(x)=\sup _{a} f_{a}^{(n)}(x)
$$

where

$$
f_{a}^{(n)}(x)=\|f(x+a)-f(x)-(\operatorname{grad} f(x), a)\| /\|a\|
$$

and a is a rational point whose norm is less than $1 / n$. But $f_{a}^{(n)}(x)$ is a measurable function and $\left\{f_{a}^{(n)}(x)\right\}$ is a countable set for any fixed n. So $\varepsilon_{n}(x)$ is a measurable function for any n. The latter assertion on $\varepsilon_{n}(x)$ follows from the total-differentiability of $f(x)$.

Lemma 2. If $f(x)$ is an श-function on D, i.e. $\mathfrak{A}[D] \ni f(x)$, and there exist two numbers K, k such that

$$
K \geqq \operatorname{abs}\left|\begin{array}{c}
\partial f(x) \\
\partial x
\end{array}\right| \geqq k
$$

for $x \in E$, where E is a measurable set $\subset D$, then $K \geqq D(f / x) \geqq k$ almost everywhere on E.

Proof. If $\mu(E)=0$, the lemma is trivial. So we can assume that $\mu(E)>0$. We shall consider separately the cases: (i) $k>0$ and (ii) $k>0$.
(i) $k>0$. By the absolute continuity of $\mu[f]$, there exists for any given positive number ε a positive number δ such that,

$$
\mu[f](E)<\varepsilon
$$

for any measurable set E whose Lebesgue measure is less than δ. As $\left\{\varepsilon_{n}(x)\right\}$ is a sequence of measurable functions converging to zero almost everywhere, we can find by Egoroff's theorem an open set A whose measure is less than δ such that $\left\{\varepsilon_{n}(x)\right\}$ converges uniformly to zero on $D-A$. On the other hand, we can also find, since the partial
derivatives of f are all measurable on D, an open set B whose measure is less than δ such that these partial derivatives are all continuous on $D-B$. Furthermore, we can find a closed set F such that
(i) $E-A \cup B \supset F$,
(ii) $\mu((E-A \cup B)-F)<\varepsilon$.

For a sufficiently large natural number n_{0}, we obtain

$$
\varepsilon_{n}(x)<\varepsilon \quad\left(n>n_{0}\right)
$$

on $D-A$. Now we cover F by a countable number of closed cubic intervals I_{i} with the side length s_{i} such that $\mu\left(I_{i} \cap I_{j}\right)=0(i \neq j)$ and

$$
\mu\left(\cup_{i=1}^{\infty} I_{i}-F\right)<\delta .
$$

In each I_{i} we select a point x_{0} of F and define

$$
\bar{f}(x)=f\left(x_{0}\right)+\left(\operatorname{grad} f\left(x_{0}\right), x-x_{0}\right)
$$

Construct now two intervals K_{i}^{1} and K_{i}^{2} for each I_{i}, such that

$$
K_{i}^{1} \supset I_{i} \supset K_{i}^{2}
$$

Since $\bar{f}(x)$ is a linear function, the image of these intervals are all parallelograms with parallel faces, and we have

$$
\bar{f}\left(K_{i}^{1}\right) \supset \bar{f}\left(I_{i}\right) \supset \bar{f}\left(K_{i}^{2}\right) .
$$

We adjust the size of the intervals so that the distances between the corresponding faces of $\bar{f}\left(K_{i}^{1}\right)$ and $\bar{f}\left(I_{i}\right)$, resp. of $\bar{f}\left(I_{i}\right)$ and $\bar{f}\left(K_{i}^{2}\right)$ are all equal to $2 \varepsilon s_{i}$ (supposing ε not too large).

Then there exists a constant M such that

$$
\mu\left(\bar{f}\left(K_{i}^{1}\right)-\bar{f}\left(K_{i}^{1}\right)\right) \leqq \varepsilon s_{i}^{n} M .
$$

Honceforth we obtain

$$
\begin{aligned}
\mu\left(f\left(I_{i}\right)\right) & \geqq \mu\left(\bar{f}\left(K_{i}^{1}\right)\right)=\mu\left(\bar{f}\left(I_{i}-\left(I_{i}-K_{i}^{2}\right)\right)\right) \\
& =\mu\left(\bar{f}\left(I_{i}\right)\right)-\mu\left(\bar{f}\left(I_{i}-K_{i}^{1}\right)\right) \\
& \geq \mu\left(\bar{f}\left(I_{i}\right)\right)-\varepsilon s^{n} M \\
& \geqq k \mu\left(I_{i}\right)-\varepsilon S^{n} M \\
\mu\left(f\left(I_{i}\right)\right) & \leqq K \mu\left(I_{i}\right)+\varepsilon s^{n} M .
\end{aligned}
$$

So we obtain the inequalities

$$
\begin{gathered}
k \mu\left(\cup_{i=1}^{\infty} I_{i}\right)-\varepsilon M \mu\left(\cup_{i-1}^{\infty} I_{i}\right) \leqq \mu\left(f\left(\cup_{i=1}^{\infty} I_{i}\right)\right) \\
\leqq K \mu\left(\cup_{i=1}^{\infty} I_{i}\right)+\varepsilon M \mu\left(\cup_{i=1}^{\infty} I_{i}\right)
\end{gathered}
$$

On the other hand, from our assumption follows

$$
\begin{aligned}
& \left|\mu\left(f\left(\cup_{i=1}^{\infty} I_{i}\right)\right)-\mu(f(E))\right| \leqq|\mu(f(E))-\mu(f(E-A \cup B))| \\
& \quad+|\mu(f(E-A \cup B))-\mu(f(F))|+\left|\mu(f(F))-\mu\left(f\left(\cup_{i=1}^{\infty} I_{i}\right)\right)\right|<4 \varepsilon
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\mu\left(\cup_{i=1}^{\infty} I_{i}\right)-\mu(E)\right| & \leqq|\mu(E)-\mu(E-A \cup B)| \\
& +|\mu(E-A \cup B)-\mu(F)|+\left|\mu(F)-\mu\left(\cup_{i=1}^{\infty} I_{i}\right)\right|<4 \delta
\end{aligned}
$$

Therefore we have

$$
\begin{gathered}
k \mu(E)-4 \cdot(\varepsilon M+\varepsilon+\delta) \leqq \mu(f(E)) \\
\leqq k \mu(E)+4 \cdot(\varepsilon M+\varepsilon+\delta)
\end{gathered}
$$

So we obtain

$$
k \mu(E) \leqq \mu(f(E)) \leqq K \mu(E)
$$

since ε and δ are arbitrary. Similarly we have

$$
k \mu(F) \leqq \mu(f(F)) \leqq K \mu(F)
$$

for any measurable subset F in E. This is the required result.
(ii) $k=0$. First we shall assume that $K=0$. We form I_{i} by the same construction as above. Then $\bar{f}\left(I_{i}\right)$ is mapped into a hyperplane in this case, and there exists a constant M such that

$$
\mu\left(\bar{f}\left(K_{i}^{1}\right)\right)<\varepsilon s_{i}^{n} M
$$

So we obtain

$$
\mu\left(f\left(I_{i}\right)\right) \leqq \mu\left(f\left(K_{i}^{1}\right)\right)<\varepsilon s_{i}^{n} M
$$

whence follows

$$
\mu\left(f\left(\cup_{i=1}^{\infty} I_{i}\right)\right)<\varepsilon \mu\left(\cup_{i=1}^{\infty} I_{i}\right) M
$$

and finally

$$
\mu[f](E)=0
$$

by the same argument as above. Similarly we have $\mu[f](F)=0$ for any subset F in E, so $D(f / x)=0 \quad(x \in E)$ almost everywhere. When
$K>0$, we subdivide the interval $[K, 0]$ into a countable number of intervals as follows:

$$
[K, 0]=\cup_{i=1}^{i}\left[K / 2^{i-1}, K / 2^{i}\right] \cup\{0\} .
$$

As we have already proved the lemma for any of the subintervals $\left[K / 2^{i-1}, K / 2^{i}\right]$ or $\{0\}$, we see that the lemma is true also in this case. Theorem 3. If $f(x)$ is an 2-function on D, then we have

$$
D(f / x)=\operatorname{abs}\left|\frac{\partial f}{\partial x}\right|
$$

almost everywhere.
Proof. If the proposition is false, then either

$$
\mu\left\{x ; D(f / x)>\text { abs }\left|\frac{\partial f}{\partial x}\right|\right\}>0
$$

or

$$
\mu\left\{x ; D(f / x)<\text { abs }\left|\frac{\partial f}{\partial x}\right|\right\}>0
$$

should hold. Since we may proceed in a similar way in either case, we shall assume that

$$
\mu\left\{x ; D(f / x)>\text { abs }\left|\frac{\partial f}{\partial x}\right|\right\}>0
$$

We can further assume that

$$
\mu\left\{x ; \text { abs }\left|\frac{\partial f}{\partial x}\right|>0\right\}>0,
$$

as the theorem is trivial when $\left|\frac{\partial f}{\partial x}\right|=0$. In fact, we have then $D(f / x)$ $=0$ almost everywhere from the above lemma. Under these assumptions, there exists some natural number m such that the measure of the set

$$
E_{1}=\left\{x ; D(f / x)-\mathrm{abs}\left|\frac{\partial f}{\partial x}\right|>\frac{1}{m}\right\}
$$

is positive. Then we can take an interval $\left[a_{1}, a_{2}\right]$ such that
(1) a_{1} and a_{2} are rational numbers,
(2) $a_{2}-a_{1}<\frac{1}{m}$,
(3) $\mu\left\{x\right.$; abs $\left.\left|\frac{\partial f}{\partial x}\right| \in\left[a_{1}, a_{2}\right], x \in E_{1}\right\}>0$.

From the above lemma follows

$$
D(f / x) \in\left[a_{1}, a_{2}\right]
$$

almost everywhere in

$$
E_{2}=\left\{x ; \text { abs }\left|\frac{\partial f}{\partial x}\right| \in\left[a_{1}, a_{2}\right], x \in E_{1}\right\}
$$

in contradiction to our assumption. So the theorem is proved.
Corollary. If $f(x)$ is an $\mathfrak{2}$-function on D and $g(x)$ is integrable on $f(D)$, then we have

$$
\int_{f(E)} g(x) d x=\int_{E} g(f(x)) \cdot \mathrm{abs}\left|\frac{\partial f}{\partial x}\right| d x,
$$

where E is any measurable set.

§ 4. Generalized \mathfrak{A}-functions.

Now we shall examine the case, where transformation is not necessarily a homeomorphism.

Definition 3. A transformation $f(x)$ from a compact domain D into E^{n} is called a generalized $\mathfrak{2}$-function on D, if the following con: ditions are satisfied:
$\left(\mathfrak{H}_{1}{ }^{\prime}\right) f(x)$ is a continuous mapping, locally homeomorphic in D except on a null-set E.
$\left(\mathfrak{A}_{2}\right) \quad$ If $\mu(F)=0(F \subset D)$, then $\mu(f(F))=0$.
$\left(\mathfrak{H}_{3}\right) \quad f(x)$ is totally differentiable in D almost everywhere.
We shall consider in the following a fixed generalized \mathfrak{A}-function $f(x)$ on a compact set D, with a possible exceptional null-set E. We shall now proceed to evaluate the integral

$$
\int_{D}\left|\frac{\partial f}{\partial x}\right| d x
$$

First, we shall prove some lemmas.

Lemma 1. Denote with D^{r} the boundary of D. The inverse image of x_{0} contains at most a finite number of points, if
(1) $f(E) \bar{Э} x_{0} \quad\left(\right.$ see $\left.\left(\mathfrak{R}_{1}{ }^{\prime}\right)\right)$,
(2) $f\left(D^{r}\right)_{\ni} x_{0}$.

We shall denote with $m\left(x_{0}\right)$ the number of points contained in the inverse image of such x_{0}.

Proof. Since D is compact, so $f^{-1}\left(x_{0}\right)$ must have a cluster point x_{1}, if it contains an infinite number of points. But as x_{1} does not belong to $E \cup D^{r}$, so $f(x)$ is homeomorphic on some neighbourhood of x_{1}, -which is clearly a contradiction.

Lemma 2. For a point x_{0} such that
(i) $f(E) \ni x_{0}$,
(ii) $f\left(D^{r}\right) \ni x_{0}$,
(iii) $f(D)_{\ni} x_{0}$,
there exists a neighbourhood U of x_{0} which satisfies:
(1) $f^{-1}(U)$ is a direct sum of neighbourhoods $V_{i}(i=1,2, \cdots, m)$ of points x_{1}, \cdots, x_{m}, where $f^{-1}\left(x_{0}\right)=\left\{x_{1}, \cdots, x_{m}\right\}$ and $m=m\left(x_{0}\right)$,
(2) $\quad V_{i}(i=1,2, \cdots, m)$ is mapped onto U by $f(x)$ homeomorphically.

Proof. If we take a sufficiently small neighbourhood U of x_{0}, there exist clearly the open sets V_{1}, \cdots, V_{m} in D, each of which is mapped onto U by $f(x)$ homeomorphically.

If $f^{-1}(U) \neq \sum_{i=1}^{m} V_{i}$, then we can find points x^{\prime} in U, such that $f^{-1}\left(x^{\prime}\right) \nsubseteq \sum_{i=1}^{m} V_{i}$. We shall call such points " exceptional". If there are only a finite number of exceptional points, then we may substitute U by a small neighbourhood U^{\prime}, not containing these exceptional points, and obtain a neighbourhood of required nature. Even if there are an infinite number of exceptional points, we can attain our purpose in the same way, if they do not accumulate around x_{0}. Assume now there exists a sequence of exceptional points $x_{1}{ }^{\prime}, x_{2}{ }^{\prime}, \cdots, x_{n}{ }^{\prime}, \cdots$ converging to x_{0}. Let a_{i} be a point in D, such that $a_{i} \in \sum_{i=1}^{m} V_{i}$ and $f\left(a_{i}\right)=x_{i}{ }^{\prime} . \quad\left\{a_{i}\right\}$ has a cluster point a in the compact set $\left(D-\sum_{i=1}^{m} V_{i}\right)$. Then we must have $f(a)=x_{0}$ and $a \in f^{-1}\left(x_{0}\right)$, which is a contradiction.

Lemma 3. If we put $f^{-1} f(E)=\bar{E}$, then

$$
\int_{\bar{E}}\left|\frac{\partial f}{\partial x}\right| d x=0 .
$$

Proof. We shall prove that

$$
\int_{\bar{E}} \operatorname{abs}\left|\frac{\partial f}{\partial x}\right| d x=0
$$

Since $\mu(E)=0$, this equation is equivalent to

$$
\int_{\bar{E}-E} \operatorname{abs}\left|\frac{\partial f}{\partial x}\right| d x=0
$$

If $\mu(\bar{E}-E)=0$, then our proposition is trivial. So we assume $\mu(\bar{E}-E)>0$. Under this assumption, we have only to prove that for any closed subset F of $\bar{E}-E$

$$
\int_{F} \operatorname{abs}\left|\frac{\partial f}{\partial x}\right| d x=0
$$

Now, every point of F has a neighbourhood, on which $f(x)$ is a homeomorphism, and as F is compact, F is covered by a finite number of such neighbourhoods as follows:

$$
\bigcup_{i=1}^{k} U_{i} \supset F
$$

In each U_{i}, we have from the result of the last section,

$$
0=\mu\left(f\left(F \cap U_{i}\right)\right)=\int_{F \cap U_{i}} \operatorname{abs}\left|\frac{\partial f}{\partial x}\right| d x .
$$

Thus we obtain

$$
0 \leqq \int_{F} \operatorname{abs}\left|\frac{\partial f}{\partial x}\right| d x \leqq \sum_{i=1}^{k} \int_{F \cap U_{i}} \text { abs }\left|\frac{\partial f}{\partial x}\right| d x=0
$$

This completes the proof.
Now denote with $\mathrm{A}(x, f, D)$ the degree of mapping on D at x, and put

$$
f(D)_{m}=\{x ; \mathrm{A}(x, f, D)=m\} \quad(m=0, \pm 1, \pm 2, \cdots)
$$

Then we have

$$
U_{m=-\infty}^{+\infty} f(D)_{m}=f(D)-f\left(D^{r}\right) .
$$

THEOREM 4. If $\mu\left(D^{r}\right)=0$, and abs $\left|\frac{\partial f}{\partial x}\right|$ is integrable on D, then we have

$$
\int_{D}\left|\frac{\partial f}{\partial x}\right| d x=\sum_{m=-\infty}^{+\infty} m \int_{f(D)_{m}} d x
$$

Proof. Let us represent $f(D)_{m}-f(E)$ as the union of closed cubes $I_{i}(i=1,2, \cdots)$ such that
(i) $\mu\left(I_{i} \cap I_{j}\right)=0$ if $i \neq j$,
(ii) $f^{-1}\left(I_{i}\right)$ is the union of a finite number of disjoint closed domains $J_{j}^{i}\left(j=1,2, \cdots, \alpha_{i}\right)$,
(iii) J_{j}^{i} 's are mapped homeomorphically onto I_{i} by $f(x)$.

The existence of such J_{j}^{i} 's is assured by lemma 2. For $x \in I_{i}$ we have obviously

$$
\mathrm{A}\left(x, f, J_{j}^{i}\right)=\operatorname{sgn}\left|\frac{\partial f}{\partial x}\right|
$$

and

$$
\mathrm{A}\left(x, f,\left(D-\sum_{j=1}^{\alpha_{i}} J_{j}^{i}\right)\right)=0
$$

Furthermore, since we have

$$
m=\mathrm{A}(x, f, D)=\sum_{j=1}^{\alpha_{i}} \mathrm{~A}\left(x, f, J_{j}^{i}\right)+\mathrm{A}\left(x, f,\left(D-\sum_{j=1}^{\alpha_{i}} J_{j}^{i}\right)\right)
$$

we can easily see that

$$
m \int_{I_{i}} d x=\sum_{j=1}^{\alpha_{i}} \int_{J_{j}^{i}}\left|\frac{\partial f}{\partial x}\right| d x
$$

by theorem 3 of the last section. Thus

$$
\begin{aligned}
& m \int_{f(D)_{m}} d x=m \int_{f(D)_{m}-f(E)} d x=m \int_{\Sigma_{i=1}^{\infty} I_{i}} d x \\
& =\sum_{i=1}^{\infty} m \int_{I_{i}} d x=\sum_{i=1}^{\infty} \sum_{j=1}^{\alpha \alpha_{i}} \int_{J_{j}^{i}}\left|\frac{\partial f}{\partial x}\right| d x \\
& =\int_{f^{-1}\left(f(D)_{m}\right)-f^{-1} f(E)}\left|\frac{\partial f}{\partial x}\right| d x .
\end{aligned}
$$

Now, as abs $\left|\frac{\partial f}{\partial x}\right|$ is integrable,

$$
S=\sum_{m=-\infty}^{+\infty} \int_{f^{-1}\left(f(D)_{m}\right)-f^{-1} f(E)}\left|\frac{\partial f}{\partial x}\right| d x
$$

is finite. From the equation just proved follows then that

$$
\sum_{m=-\infty}^{+\infty} m \int_{f(D)_{m}} d x
$$

is also finite and equal to S. The last sum is equal to

$$
\int_{D-f^{-1} f(E)-f^{-1} f(D r)}\left|\frac{\partial f}{\partial x}\right| d x=\int_{D}\left|\begin{array}{c}
\partial f \\
\partial x
\end{array}\right| d x .
$$

Thus our proposition is proved.
The following theorem can be proved in the same way.
Theorem 5. If one of the integrals:

$$
\int_{D} g(f(x))\left|\frac{\partial f}{\partial x}\right| d x \quad \text { and } \quad \sum_{m=-\infty}^{+\infty} m \int_{f(D)_{m}} g(y) d x
$$

is finite, then the other is also finite and they are equal to each other.
Corollary. Let $f(x)$ be a generalized \mathfrak{N}-function on D and S a hypersphere in D. If $f(x)$ maps S homeomorphically onto $f(S)$ and abs $\left|\frac{\partial f}{\partial x}\right|$ is integrable on D, then we have

$$
\int_{[f(S)]} g(y) d y=\operatorname{sgn} \mathrm{A}[x, f, D] \int_{[S]} g(f(x))\left|\frac{\partial f}{\partial x}\right| d x
$$

where [*] represents the interior of *.
This corollary may be regarded as a direct generalization of the well-known formula in the integral calculus:

$$
\int_{f(a)}^{f(b)} g(y) d y=\int_{a}^{b} f(f(x)) f^{\prime}(x) d x .
$$

St. Paul's University, Tokyo.

