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Abstract. Bilinear Fourier multiplier operators corresponding to multipliers that are
singular at the origin are considered. New criterions on such multipliers to assure the bound-
edness of the corresponding operators from Lp × Lq to Lr , 1/p + 1/q = 1/r , are given in
the range 1 < p, q ≤ ∞, 2/3 < r < ∞.

1. Introduction. For m ∈ L∞(R2n), the bilinear Fourier multiplier operator Tm is
defined by

Tm(f, g)(x) = 1

(2π)2n

∫
R2n

eix·(ξ+η)m(ξ, η)f̂ (ξ )̂g(η) dξdη

for f, g ∈ S(Rn), where x, ξ, η ∈ Rn. Nowadays, it is well known that if m satisfies the
condition

(1.1) |∂αξ ∂βη m(ξ, η)| ≤ Cα,β(|ξ | + |η|)−(|α|+|β|)

for sufficiently many multi-indices α, β ∈ Nn
0 = {0, 1, 2, . . . }n then Tm is bounded from

Hp × Hq to Lr , 0 < p, q, r ≤ ∞, 1/p + 1/q = 1/r , where Hp and Hq are Hardy
spaces. (Throughout this paper, Hp(Rn), Lr(Rn), etc. are often abbreviated to Hp, Lr , etc.
if the base space Rn is obviously recognized from the context.) These facts were proved by
Coifman-Meyer [3, 12], Kenig-Stein [11], Grafakos-Kalton [5], and Grafakos-Torres [9]. It is
an interesting problem to find the conditions of type (1.1) with differentiability order as small
as possible that assure the boundedness of Tm. The condition given in the papers [3, 12, 11,
5, 9] is at least (1.1) for |α| + |β| ≤ 2n+ 1 (although this order is only implicitly given in the
papers). Recently, much more weak conditions were found by Tomita [19], Grafakos-Si [7],
Grafakos-Miyachi-Tomita [6], and Miyachi-Tomita [13]. The purpose of the present paper is
to give conditions different from those treated in [19, 7, 6, 13] and partly improve the results
of these papers.

Before we give our results in detail, we shall recall the result of [13]. We shall write

‖Tm‖Hp(Rn)×Hq(Rn)→Lr(Rn)

to denote the smallest constant C satisfying

‖Tm(f, g)‖Lr (Rn) ≤ C‖f ‖Hp(Rn)‖g‖Hq (Rn)
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for all f ∈ S(Rn) ∩Hp(Rn) and g ∈ S(Rn) ∩Hq(Rn). We define

‖Tm‖L∞(Rn)×L∞(Rn)→BMO(Rn)

in the same way by replacing the norms ‖ · ‖Hp , ‖ · ‖Hq , ‖ · ‖Lr by ‖ · ‖L∞ , ‖ · ‖L∞ , ‖ · ‖BMO ,
respectively. We use the convention that Hp = Lp for 1 < p ≤ ∞. In [13], we used the
product type Sobolev norm, which is defined as follows. For s1, s2 ∈ R and for F ∈ S ′(R2n),
we define

(1.2) ‖F‖W(s1 ,s2)(R2n) =
∥∥∥(I −�ξ)

s1/2(I −�η)
s2/2F(ξ, η)

∥∥∥
L2
ξ,η

,

where ξ, η ∈ Rn and

(I −�ξ)
s1/2(I −�η)

s2/2F(ξ, η)

= 1

(2π)2n

∫
R2n

ei(x·ξ+y·η)(1 + |x|2)s1/2(1 + |y|2)s2/2F̂ (x, y) dxdy .

For m ∈ L∞(R2n) and j ∈ Z, we set

(1.3) mj(ξ, η) = m(2j ξ, 2j η)Ψ (ξ, η) , (ξ, η) ∈ Rn × Rn ,

where Ψ is a function in S(R2n) satisfying

(1.4) suppΨ ⊂ {ζ ∈ R2n ; 1/2 ≤ |ζ | ≤ 2} ,
∑
k∈Z

Ψ (ζ/2k) = 1 , ζ ∈ R2n \ {0} .

The result of [13] reads as follows.

THEOREM A ([13]). Let 0 < p, q, r ≤ ∞ and 1/p + 1/q = 1/r . If s1 >

max{n/2, n/p − n/2}, s2 > max{n/2, n/q − n/2}, and s1 + s2 > n/r − n/2, then

(1.5) ‖Tm‖Hp(Rn)×Hq(Rn)→Lr(Rn) � sup
j∈Z

‖mj‖W(s1,s2)(R2n) ,

where H∞ × H∞ → L∞ is replaced by L∞ × L∞ → BMO if p = q = r = ∞.
Conversely, if (1.5) with the same replacement in the case p = q = r = ∞ holds, then
s1 ≥ max{n/2, n/p − n/2}, s2 ≥ max{n/2, n/q − n/2}, and s1 + s2 ≥ n/r − n/2.

In particular, if (1/p, 1/q) is in the domain

I0 : 0 ≤ 1/p ≤ 1 , 0 ≤ 1/q ≤ 1 , 1/p + 1/q ≤ 3/2 ,

then (1.5) holds for s1 > n/2 and s2 > n/2. As far as the boundedness in Hp × Hq → Lr

for (1/p, 1/q) ∈ I0 is concerned, this result is the sharpest among the estimates given in
[19, 7, 6, 13] (see Remark 1.3 given at the end of this section). The following figure shows
the domain I0.
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By the claim in the latter part of Theorem A, we cannot essentially relax the conditions of
the theorem so far as we use the scale in the right-hand side of (1.5) to measure the smoothness
of m. In the present paper, we shall introduce other scales to measure the smoothness of m
and give different criterions to assure the boundedness of Tm for (1/p, 1/q) ∈ I0.

The following is the first main result of this paper.

THEOREM 1.1. If s > n/2, then

‖Tm‖L2(Rn)×L2(Rn)→L1(Rn)

� sup
j∈Z

(∥∥∥∥∥(I −�ξ)
s/2mj(ξ, η)

∥∥
L2
ξ

∥∥∥
L∞
η

+
∥∥∥∥∥(I −�η)

s/2mj(ξ, η)
∥∥
L2
η

∥∥∥
L∞
ξ

)
.

(1.6)

Since, for s > n/2, the right-hand side of (1.6) is smaller than supj∈Z ‖mj‖W(s,s)(R2n) by
virtue of the Sobolev embedding, Theorem 1.1 is an improvement of the corresponding claim
of Theorem A.

The second main result of this paper reads as follows.

THEOREM 1.2. Let 1 ≤ p, q ≤ ∞, 2/3 ≤ r ≤ ∞, and 1/p + 1/q = 1/r . If

s > s(p, q) = max {n/2, n/p, n/q, n− n/r, n/r − n/2}
and

1/t = t (p, q)−1 = s(p, q)/n− 1/2

= max {0, 1/p − 1/2, 1/q − 1/2, 1/2 − 1/r, 1/r − 1} ,
then

(1.7) ‖Tm‖Hp(Rn)×Hq(Rn)→Lr(Rn) � sup
j∈Z

‖mj‖Bst,∞(R2n) ,

whereH∞×H∞ → L∞ is replaced byL∞×L∞ → BMO if p = q = r = ∞. Conversely,
if s > 0 and (1.7) with the same replacement in the case p = q = r = ∞ holds for some
t ∈ [1,∞], then s ≥ s(p, q).
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See Section 2 for the definition of Besov spaces Bst,∞(R2n). To clarify the values of
s(p, q) and t (p, q) of this theorem, we divide the region I0 into 5 regions J0, . . . , J4 as
follows:
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Then

s(p, q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n/2 if (1/p, 1/q) ∈ J0 ;
n− n/r if (1/p, 1/q) ∈ J1 ;
n/q if (1/p, 1/q) ∈ J2 ;
n/p if (1/p, 1/q) ∈ J3 ;
n/r − n/2 if (1/p, 1/q) ∈ J4 ,

t (p, q)−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if (1/p, 1/q) ∈ J0 ;
1/2 − 1/r if (1/p, 1/q) ∈ J1 ;
1/q − 1/2 if (1/p, 1/q) ∈ J2 ;
1/p − 1/2 if (1/p, 1/q) ∈ J3 ;
1/r − 1 if (1/p, 1/q) ∈ J4 ,

where 1/p + 1/q = 1/r .
Let us compare Theorem 1.2 with Theorem A. If (1/p, 1/q) ∈ I0 and if 1/p = 1 or

1/q = 1 or 1/r = 0 or 1/r = 3/2, then s(p, q) = n and t (p, q) = 2. In these cases, we have

B
s(p,q)+ε
t (p,q),∞(R

2n) = Bn+ε2,∞(R
2n) ↪→ B

n+ε/2
2,2 (R2n) = Wn+ε/2(R2n)

↪→ W(n/2+ε/4,n/2+ε/4)(R2n) ,

and hence the claim of Theorem 1.2 is covered by Theorem A. For other (1/p, 1/q) ∈ I0,
i.e., for 0 ≤ 1/p, 1/q < 1 and 0 < 1/p + 1/q < 3/2, we have n/2 ≤ s(p, q) < n and
2 < t(p, q) ≤ ∞. In this case, Theorem 1.2 covers multipliers that cannot be dealt with by
Theorem A. In particular, for (1/p, 1/q) ∈ J0, Theorem 1.2 implies that Tm is bounded in
Lp ×Lq → Lr , 1/p + 1/q = 1/r , if m satisfies (1.1) for |α| + |β| ≤ [n/2] + 1, which does
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not follow from Theorem A. The precise statement will be given in Proposition 5.1 in Section
5.

Here we give a remark on the argument to prove Theorems 1.1 and 1.2. We shall prove
the estimate (1.6) or (1.7) for m ∈ S(R2n) or even for m ∈ C∞

0 (R
2d). Once this is proved,

then a limiting argument will show that the estimate holds for more generalm with the right-
hand side finite. In the argument of the succeeding sections, we shall not mention explicitly
that we are treating only multipliers m in these good classes.

The contents of this paper are as follows. In Section 2, we recall some preliminary facts.
In Sections 3 and 4, we prove Theorems 1.1 and 1.2 respectively. In Section 5, we give the
proposition mentioned above. In Appendix, we shall observe that Theorem 1.2 can be directly
applied to the first commutator of Calderón.

REMARK 1.3. Here we briefly review the results of [19, 7, 6]. Although these papers
deal with multilinear operators, here we consider only the bilinear case. For 1 < t < ∞ and
s > 0 and for functions F(ξ, η) on R2n, we define the Sobolev norm ‖F‖Ws

t (R
2n) by

‖F‖Ws
t (R

2n) = ‖(I −�ξ −�η)
s/2F(ξ, η)‖Lt (R2n) ,

where

(I −�ξ −�η)
s/2F(ξ, η) = 1

(2π)2n

∫
R2n

ei(x·ξ+y·η)(1 + |x|2 + |y|2)s/2F̂ (x, y) dxdy .

In the case t = 2, we simply write Ws(R2n) instead of Ws
t (R

2n). We consider the estimate

(1.8) ‖Tm‖Lp×Lq→Lr � sup
j∈Z

‖mj‖X, 1/p + 1/q = 1/r ,

for a function space X on R2n, where mj is defined by (1.3). Now, firstly, [19, Theorem
1.1] asserts that (1.8) holds with X = Ws(R2n) if s > n and 1 < p, q, r < ∞. This result
is covered by Theorem A since Ws(R2n) ↪→ W(s/2,s/2)(R2n). Secondly, [7, Theorem 1.1]
asserts that (1.8) holds with X = Ws

t (R
2n) if 1 < t ≤ 2, 2n ≥ s > 2n/t , and

1 < p, q ≤ ∞ , r < ∞, (2n− s)/p + s/q < s , s/p + (2n− s)/q < s .

(In fact, this is not explicitly stated in [7, Theorem 1.1], but it follows from the proof given
in [7, Section 3], combined with some additional arguments of duality and interpolation as
given in [7, Proof of Corollary 1.1].) This result restricted to (1/p, 1/q) ∈ I0 is covered by
Theorem A since the Sobolev embedding gives

Ws
t (R

2n) ↪→ Ws ′(R2n) ↪→ W(s ′/2,s ′/2)(R2n)

with s′ = s − 2n/t + n > n. Finally, [6, Theorem 1.1] is the same as Theorem A for
(p, q) = (2,∞) or (∞, 2).

2. Preliminaries. For two nonnegative quantities A and B, the notation A � B

means that A ≤ CB for some unspecified constant C > 0, and A ≈ B means that A � B

and B � A. We denote by χS the characteristic function of a set S. For 1 ≤ p ≤ ∞, p′ is the
conjugate exponent of p, that is, 1/p + 1/p′ = 1.
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Let S(Rn) and S ′(Rn) be the Schwartz spaces of all rapidly decreasing smooth functions
and tempered distributions, respectively. We define the Fourier transform Ff and the inverse
Fourier transform F−1f of f ∈ S(Rn) by

Ff (ξ) = f̂ (ξ) =
∫

Rn

e−ix·ξf (x) dx and F−1f (x) = 1

(2π)n

∫
Rn

eix·ξf (ξ) dξ .

For a function σ(x, ξ) ∈ L∞(Rn × Rn), we define the linear pseudo-differential operator
σ(X,D) by

σ(X,D)f (x) = 1

(2π)n

∫
Rn

eix·ξσ (x, ξ)f̂ (ξ) dξ , f ∈ S(Rn) .

In particular, if σ is an x-independent symbol, then we denote by σ(D) the corresponding
linear Fourier multiplier operator.

The Hardy-Littlewood maximal operatorM is defined by

Mf(x) = sup
r>0

1

rn

∫
|x−y|<r

|f (y)| dy ,

where f is a locally integrable function on Rn. We also use the notation Mqf (x) =
M(|f |q)(x)1/q .

Let F(ξ, η) be a function on Rn×Rn. We denote by ‖‖F(ξ, η)‖Lpξ ‖Lqη theLqη(L
p
ξ )-norm

of F(ξ, η),

∥∥‖F(ξ, η)‖Lpξ
∥∥
L
q
η

=
{ ∫

Rn

(∫
Rn

|F(ξ, η)|p dξ
)q/p

dη

}1/q

,

with usual modifications if p = ∞ or q = ∞. In the case p = q , we simply write ‖ · ‖Lpξ,η
instead of ‖‖ · ‖Lpξ ‖Lqη .

Let Ψ ∈ S(Rn) be as in (1.4) with 2n replaced by n, and set Ψ0(ξ) = 1−∑∞
k=1 Ψ (ξ/2

k)

and Ψk(ξ) = Ψ (ξ/2k) if k ≥ 1. Note that suppΨ0 ⊂ {|ξ | ≤ 2}, suppΨk ⊂ {2k−1 ≤ |ξ | ≤
2k+1} if k ≥ 1, and

∑∞
k=0 Ψk(ξ) = 1. For 1 ≤ p, q ≤ ∞ and s ∈ R, the Besov space

Bsp,q (R
n) consists of all f ∈ S ′(Rn) such that

‖f ‖Bsp,q =
( ∞∑
k=0

2ksq‖Ψk(D)f ‖qLp
)1/q

=
( ∞∑
k=0

2ksq‖(F−1Ψk) ∗ f ‖qLp
)1/q

< ∞ .

It is well known that Bs2,2(R
n) = Ws(Rn). See Triebel [20] for more details on Besov spaces.

Let 0 < p ≤ ∞, and let φ ∈ S(Rn) be such that
∫
Rn φ(x) dx = 0. Then the Hardy

space Hp(Rn) consists of all f ∈ S ′(Rn) such that

‖f ‖Hp = ‖ sup
0<t<∞

|φt ∗ f |‖Lp < ∞ ,

where φt (x) = t−nφ(x/t). It is well known that Hp(Rn) = Lp(Rn) if 1 < p ≤ ∞. See
Stein [17, Chapter 3] for more details on Hardy spaces.

Let φ0 be a C∞-function on [0,∞) satisfying

φ0(t) = 1 on [0, 1/8] , suppφ0 ⊂ [0, 1/4] .
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We set φ1(t) = 1 − φ0(t), and define the functionsΦ(i,j) on R2n \ {0}, (i, j) ∈ {0, 1}2, by

Φ(i,j)(ξ, η) = φi
(|ξ |/√|ξ |2 + |η|2)φj (|η|/√|ξ |2 + |η|2) ,

where (ξ, η) ∈ Rn × Rn \ {(0, 0)}. We note that Φ(0,0) = 0, and have

LEMMA 2.1 ([4, Lemma 3.1], [19, Section 5]). (1) For (ξ, η) = (0, 0),

Φ(1,1)(ξ, η)+ Φ(0,1)(ξ, η)+Φ(1,0)(ξ, η) = 1 .

(2) Each Φ(i,j) satisfies

|∂αξ ∂βη Φ(i,j)(ξ, η)| ≤ C
α,β

(i,j)
(|ξ | + |η|)−(|α|+|β|)

for all multi-indices α, β.
(3) suppΦ(1,1) ⊂ {(ξ, η) ; |ξ |/8 ≤ |η| ≤ 8|ξ |}, suppΦ(0,1) ⊂ {(ξ, η) ; |ξ | ≤ |η|/2} and

suppΦ(1,0) ⊂ {(ξ, η) ; |η| ≤ |ξ |/2}.
The following fact with s = 0 appears as [20, Proposition 1.3.2].

LEMMA 2.2 ([19, Lemma 3.3]). Let 2 ≤ q ≤ ∞, r > 0 and s ≥ 0. If supp f ⊂ {x ∈
Rn ; |x| ≤ r}, then(∫

Rn

|(1 + |ξ |)sf̂ (ξ)|q dξ
)1/q

�
(∫

Rn

|(I −�)s/2f (x)|2 dx
)1/2

,

where the implicit constant depends only on n, q, r, s.

LEMMA 2.3 ([20, Remark 2.8.2/1]). Let 1 ≤ p, q ≤ ∞ and s > 0. Then

‖f g‖Bsp,q � ‖f ‖Bsp,q ‖g‖Bs∞,q

for all f ∈ Bsp,q (Rn) and all g ∈ Bs∞,q (R
n).

The fact in the next lemma is well known in the Littlewood-Paley theory for Hardy
spaces. In fact, using the characterization of the Hardy space H 1 by Littlewood-Paley square
functions ([20, 5.2.4]), we can give its proof.

LEMMA 2.4. Let A > 1. Then∥∥∥∥ ∑
j∈Z

fj

∥∥∥∥
H 1

�
∥∥∥∥
( ∑
j∈Z

|fj |2
)1/2∥∥∥∥

L1

for all sequences {fj }j∈Z satisfying supp f̂j ⊂ {ξ ∈ Rn ; A−12j ≤ |ξ | ≤ A2j }.
3. Proof of Theorem 1.1. In this section, we shall prove Theorem 1.1. The proof

basically depends on the paraproduct argument. We first prepare several lemmas.

LEMMA 3.1. Let s ∈ R, and let Ψ̃ ∈ S(R2n) be such that supp Ψ̃ is a compact subset
of R2n away from the origin. Assume that Φ ∈ C∞(R2n \ {0}) satisfies

|∂αξ ∂βη Φ(ξ, η)| ≤ Cα,β(|ξ | + |η|)−|α|−|β|
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for all α, β ∈ Nn
0 . Set

m̃j (ξ, η) = m(2j ξ, 2j η)Φ(2j ξ, 2j η)Ψ̃ (ξ, η) .

Then

sup
j∈Z

∥∥∥∥∥(I −�ξ)
s/2m̃j (ξ, η)

∥∥
L2
ξ

∥∥∥
L∞
η

� sup
j∈Z

∥∥∥∥∥(I −�ξ)
s/2mj(ξ, η)

∥∥
L2
ξ

∥∥∥
L∞
η

,

sup
j∈Z

∥∥∥∥∥(I −�η)
s/2m̃j (ξ, η)

∥∥
L2
η

∥∥∥
L∞
ξ

� sup
j∈Z

∥∥∥∥∥(I −�η)
s/2mj(ξ, η)

∥∥
L2
η

∥∥∥
L∞
ξ

,

where mj is defined by (1.3).

PROOF. We only consider the first inequality, because the second one can be proved in
the same way. We may assume that supp Ψ̃ ⊂ {2−k0 ≤ (|ξ |2 + |η|2)1/2 ≤ 2k0} with k0 ∈ N0.

We first prove the following inequality:∥∥∥∥∥(I −�ξ)
s/2(FG)(ξ, η)

∥∥
L2
ξ

∥∥∥
L∞
η

(3.1)

�
∥∥∥∥∥(I −�ξ)

s/2F(ξ, η)
∥∥
L2
ξ

∥∥∥
L∞
η

∥∥∥∥∥(1 + |x|2)|s|/2F1G(x, η)
∥∥
L1
x

∥∥∥
L∞
η

,

where F1G(x, η) is the partial Fourier transform of G(ξ, η) with respect to the ξ -variable.
Since

(1 + |x|2)s/2|F1(FG)(x, η)|
�

∫
Rn

(1 + |x − y|2)s/2|F1F(x − y, η)|(1 + |y|2)|s|/2|F1G(y, η)| dy ,

it follows from Plancherel’s theorem and Young’s inequality that∥∥(I −�ξ)
s/2(FG)(ξ, η)

∥∥
L2
ξ

= (2π)−n/2
∥∥(1 + |x|2)s/2F1(FG)(x, η)

∥∥
L2
x

�
∥∥(1 + |x|2)s/2F1F(x, η)

∥∥
L2
x

∥∥(1 + |x|2)|s|/2F1G(x, η)
∥∥
L1
x

= (2π)n/2
∥∥(I −�ξ)

s/2F(ξ, η)
∥∥
L2
ξ

∥∥(1 + |x|2)|s|/2F1G(x, η)
∥∥
L1
x
,

which implies (3.1).
Since suppΨ (ξ/2k, η/2k) ⊂ {2k−1 ≤ (|ξ |2 + |η|2)1/2 ≤ 2k+1}, we have

m̃j (ξ, η)=m(2j ξ, 2j η)Φ(2j ξ, 2j η)Ψ̃ (ξ, η)

=
k0∑

k=−k0

m(2j ξ, 2j η)Ψ (ξ/2k, η/2k)Φ(2j ξ, 2j η)Ψ̃ (ξ, η)

=
k0∑

k=−k0

mj+k(ξ/2k, η/2k)Φj (ξ, η) ,
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where mj+k is defined by (1.3) and Φj (ξ, η) = Φ(2j ξ, 2j η)Ψ̃ (ξ, η). Combining this with
(3.1), we see that

∥∥∥∥∥(I −�ξ)
s/2m̃j (ξ, η)

∥∥
L2
ξ

∥∥∥
L∞
η

�
k0∑

k=−k0

∥∥∥∥∥(I −�ξ)
s/2[mj+k(·/2k, ·/2k)](ξ, η)

∥∥
L2
ξ

∥∥∥
L∞
η

×
∥∥∥∥∥(1 + |x|2)|s|/2F1Φj (x, η)

∥∥
L1
x

∥∥∥
L∞
η

.

By a change of variables, for |k| ≤ k0,∥∥∥∥∥(I −�ξ)
s/2[mj+k(·/2k, ·/2k)](ξ, η)

∥∥
L2
ξ

∥∥∥
L∞
η

�
∥∥∥∥∥(I −�ξ)

s/2mj+k(ξ, η)
∥∥
L2
ξ

∥∥∥
L∞
η

≤ sup
j∈Z

∥∥∥∥∥(I −�ξ)
s/2mj(ξ, η)

∥∥
L2
ξ

∥∥∥
L∞
η

,

where the implicit constant is independent of j . On the other hand, since

|∂αξ Φj (ξ, η)| � χ{|ξ |≤2k0 }(ξ, η)

for each α, we see that

sup
j∈Z

∥∥∥∥∥(1 + |x|2)|s|/2F1Φj(x, η)
∥∥
L1
x

∥∥∥
L∞
η

< ∞.

Therefore, we obtain the desired result. �

One of the ideas in our proof of Theorem 1.1 is to decompose m as m(ξ, η) =∑
j∈Z mj(ξ/2

j , η/2j ) and use pointwise estimate of Tmj (·/2j ,·/2j )(f, g)(x). The pointwise
estimate is based on the following two lemmas.

LEMMA 3.2. Let s > n/2 and max{1, n/s} < q < 2. If suppσ ⊂ {(x, ξ) ; |ξ | ≤ 10},
then

|σ(X,D/r)f (x)| �
∥∥(I −�ξ)

s/2σ(x, ξ)
∥∥
L2
ξ
Mqf (x)

for all r > 0. The implicit constant is independent of r and f ∈ S(Rn).

PROOF. Using the formula

σ(X,D/r)f (x) =
∫

Rn

rnF−1
2 σ(x, r(x − y))f (y) dy ,

where F−1
2 σ(x, y) is the partial inverse Fourier transform of σ(x, ξ) with respect to the ξ -

variable, we have by Hölder’s inequality

|σ(X,D/r)f (x)| ≤
(∫

Rn

|(1 + r|y|)sF−1
2 σ(x, ry)|q ′

rndy

)1/q ′

×
(∫

Rn

∣∣∣∣ f (y)

(1 + r|x − y|)s
∣∣∣∣
q

rndy

)1/q

.
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Note that q ′ > 2, and then Lemma 2.2 gives(∫
Rn

|(1 + r|y|)sF−1
2 σ(x, ry)|q ′

rndy

)1/q ′

=
( ∫

Rn

|(1 + |y|)sF−1
2 σ(x, y)|q ′

dy

)1/q ′

�
∥∥(I −�ξ)

s/2σ(x, ξ)
∥∥
L2
ξ
.

Since sq > n, we also have( ∫
Rn

∣∣∣∣ f (y)

(1 + r|x − y|)s
∣∣∣∣
q

rndy

)1/q

� M(|f |q)(x)1/q = Mqf (x) .

Combining these inequalities, we obtain the desired result. �

LEMMA 3.3. Let s > n/2 and max{1, n/s} < q < 2. If suppm ⊂ {(ξ, η) ; |ξ | ≤ 10},
then

|Tm(·/r, ·/r)(f, g)(x)| � Mqf (x)

∥∥∥∥
∫

Rn

eix·η(I −�ξ)
s/2m(ξ, η/r)̂g(η) dη

∥∥∥∥
L2
ξ

for all r > 0. Similarly, if suppm ⊂ {(ξ, η) ; |η| ≤ 10}, then

|Tm(·/r, ·/r)(f, g)(x)| � Mqg(x)
∥∥∥∥
∫

Rn

eix·ξ (I −�η)
s/2m(ξ/r, η)f̂ (ξ) dξ

∥∥∥∥
L2
η

for all r > 0. The implicit constants in the above inequalities are independent of r and
f, g ∈ S(Rn).

PROOF. By symmetry of the situation, we consider only the case suppm ⊂
{(ξ, η) ; |ξ | ≤ 10}.

We write the bilinear operator Tm(·/r, ·/r) as a combination of linear operators in the
following form:

Tm(·/r, ·/r)(f, g)(x)= 1

(2π)n

∫
Rn

eix·ξ
(

1

(2π)n

∫
Rn

eix·ηm(ξ/r, η/r)̂g(η) dη
)
f̂ (ξ) dξ

= σr(g;X,D/r)f (x) ,
where

σr(g; x, ξ) = 1

(2π)n

∫
Rn

eix·ηm(ξ, η/r)̂g(η) dη .

Since suppσr(g; x, ξ) ⊂ {(x, ξ) ; |ξ | ≤ 10}, Lemma 3.2 gives

|Tm(·/r, ·/r)(f, g)(x)| = |σr(g;X,D/r)f (x)|
�

∥∥(I −�ξ)
s/2σr(g; x, ξ)∥∥

L2
ξ
Mqf (x)

=
∥∥∥∥ 1

(2π)n

∫
Rn

eix·η(I −�ξ)
s/2m(ξ, η/r)̂g(η) dη

∥∥∥∥
L2
ξ

Mqf (x) .

The proof is complete. �
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PROOF OF THEOREM 1.1. We assume that m(ξ, η) satisfies

sup
j∈Z

(∥∥∥∥∥(I −�ξ)
s/2mj (ξ, η)

∥∥
L2
ξ

∥∥∥
L∞
η

+
∥∥∥∥∥(I −�η)

s/2mj(ξ, η)
∥∥
L2
η

∥∥∥
L∞
ξ

)

= A < ∞ ,

(3.2)

where s > n/2 and mj is defined by (1.3). By Lemma 2.1, we can decomposem as

m = mΦ(1,1) +mΦ(0,1) +mΦ(1,0) = m(1) +m(2) +m(3) .

Note that

suppm(1) ⊂ {(ξ, η) ∈ Rn × Rn ; |ξ |/8 ≤ |η| ≤ 8|ξ |} ,
suppm(2) ⊂ {(ξ, η) ∈ Rn × Rn ; |ξ | ≤ |η|/2} ,
suppm(3) ⊂ {(ξ, η) ∈ Rn × Rn ; |η| ≤ |ξ |/2} .

By Lemma 3.1, we have

(3.3) sup
j∈Z

(∥∥∥∥∥(I −�ξ)
s/2m

(i)
j (ξ, η)

∥∥
L2
ξ

∥∥∥
L∞
η

+
∥∥∥∥∥(I −�η)

s/2m
(i)
j (ξ, η)

∥∥
L2
η

∥∥∥
L∞
ξ

)
� A

for i = 1, 2, 3, where m(i)j (ξ, η) = m(i)(2j ξ, 2j η)Ψ (ξ, η). It is sufficient to prove the esti-

mate ‖Tm(i)‖L2×L2→L1 � A for i = 1, 2, 3. By symmetry of the situation, m(2) and m(3) are
treated in the same way. Thus, we shall only consider m(1) and m(2).

Since n/s < 2, we can take q satisfying max{1, n/s} < q < 2. We denote by A the set
of ψ ∈ S(Rn) for which suppψ is a compact subset of Rn \ {0}.

Estimate for Tm(1) : We simply write m and mj instead of m(1) and m(1)j , respectively.
Since

m(ξ, η) =
∑
j∈Z

m(ξ, η)Ψ (ξ/2j , η/2j ) =
∞∑

j=−∞
mj(ξ/2

j , η/2j ) ,

we have

(3.4) Tm =
∑
j∈Z

Tmj (·/2j ,·/2j ) .

In the present case (m = m(1)), an important fact is that |ξ | ≈ |η| for (ξ, η) ∈ suppm. This
implies that

mj(ξ/2j , η/2j ) = 0 ⇒ |ξ | ≈ |η| ≈ 2j .

By this fact, we can take a ψ ∈ A such that ψ(ξ/2j ) = ψ(η/2j ) = 1 for all (ξ, η) satisfying
mj(ξ/2j , η/2j ) = 0. Thus Tmj (·/2j ,·/2j )(f, g)(x) can be written as

Tmj (·/2j ,·/2j )(f, g)(x)

= 1

(2π)2n

∫
R2n

eix·(ξ+η)mj (ξ/2j , η/2j )ψ(ξ/2j )f̂ (ξ)ψ(η/2j )̂g(η) dξdη

= Tmj (·/2j ,·/2j )(fj , gj )(x),

where fj = ψ(D/2j )f and gj = ψ(D/2j )g .
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We shall estimate the L1-norm of Tmj (·/2j ,·/2j )(fj , gj ). Note that suppmj ⊂
{(ξ, η) ; |ξ |2 + |η|2 ≤ 4} for all j ∈ Z. Hence, by Lemma 3.3,

|Tmj (·/2j ,·/2j )(fj , gj )(x)| � Mq(fj )(x)

∥∥∥∥
∫

Rn

eix·η(I −�ξ)
s/2mj(ξ, η/2j )ĝj (η) dη

∥∥∥∥
L2
ξ

.

Integrating with respect to x and using Schwarz’s inequality, we obtain

‖Tmj (·/2j ,·/2j )(fj , gj )‖L1 � ‖Mq(fj )‖L2

∥∥∥∥
∫

Rn
eix·η(I −�ξ)

s/2mj(ξ, η/2
j )̂gj (η) dη

∥∥∥∥
L2
ξ,x

.

For the formerL2-norm, we have ‖Mq(fj )‖L2 � ‖fj‖L2 since q < 2. For the latter L2-norm,
Plancherel’s theorem and (3.3) give∥∥∥∥

∫
Rn

eix·η(I −�ξ)
s/2mj(ξ, η/2j )̂gj (η) dη

∥∥∥∥
L2
ξ,x

= (2π)n/2
∥∥∥(I −�ξ)

s/2mj(ξ, η/2
j )̂gj (η)

∥∥∥
L2
η,ξ

� A
∥∥ĝj (η)

∥∥
L2
η

= (2π)n/2A‖gj‖L2 .

Thus
‖Tmj (·/2j ,·/2j )(fj , gj )‖L1 � A‖fj‖L2‖gj‖L2 .

Hence, using Schwarz’s inequality, we obtain

‖Tm(f, g)‖L1 =
∥∥∥∥ ∑
j∈Z

Tmj (·/2j ,·/2j )(fj , gj )
∥∥∥∥
L1

≤
∑
j∈Z

‖Tmj (·/2j ,·/2j )(fj , gj )‖L1

� A
∑
j∈Z

‖fj‖L2‖gj‖L2 ≤ A

( ∑
j∈Z

‖fj‖2
L2

)1/2( ∑
j∈Z

‖gj‖2
L2

)1/2

� A‖f ‖L2‖g‖L2 ,

where the last inequality holds because ψ has compact support away from the origin. This
proves the boundedness of Tm(1) .

Estimate for Tm(2) : We simply writem andmj instead ofm(2) andm(2)j , respectively. In

the present case (m = m(2)), an important fact is that |ξ | � |η| ≈ |ξ + η| for (ξ, η) ∈ suppm.
This implies that

(3.5) mj(ξ/2
j , η/2j ) = 0 ⇒ |η| ≈ |ξ + η| ≈ 2j .

By (3.5), we can take aψ ∈A such thatψ(η/2j )=1 for all (ξ, η) satisfyingmj(ξ/2j , η/2j ) =
0. Thus Tmj (·/2j ,·/2j )(f, g)(x) can be written as

Tmj (·/2j ,·/2j )(f, g)(x)

= 1

(2π)2n

∫
R2n

eix·(ξ+η)mj (ξ/2j , η/2j )f̂ (ξ)ψ(η/2j )̂g(η) dξdη

= Tmj (·/2j ,·/2j )(f, gj )(x),
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where gj = ψ(D/2j )g . From (3.5), it also follows that there exists a constantB > 1 such that
the Fourier transform of Tmj (·/2j ,·/2j )(f, g)(x) is included in the annulus {ζ ∈ Rn ; B−12j ≤
|ζ | ≤ B2j }.

Using the above facts and using Lemma 2.4, we can estimate the L1-norm of Tm(f, g)
as follows:

‖Tm(f, g)‖L1 � ‖Tm(f, g)‖H 1 =
∥∥∥∥ ∑
j∈Z

Tmj (·/2j ,·/2j )(f, gj )
∥∥∥∥
H 1

�
∥∥∥∥
( ∑
j∈Z

|Tmj (·/2j ,·/2j )(f, gj )|2
)1/2∥∥∥∥

L1

.

Since suppmj ⊂ {(ξ, η) ; |ξ |2 + |η|2 ≤ 4} for all j ∈ Z, Lemma 3.3 yields

|Tmj (·/2j ,·/2j )(f, gj )(x)| � Mqf (x)

∥∥∥∥
∫

Rn
eix·η(I −�ξ)

s/2mj(ξ, η/2
j )ĝj (η) dη

∥∥∥∥
L2
ξ

.

Taking �2-norm with respect to j ∈ Z, we have( ∑
j∈Z

|Tmj (·/2j ,·/2j )(f, gj )(x)|2
)1/2

� Mqf (x)

( ∑
j∈Z

∥∥∥∥
∫

Rn

eix·η(I −�ξ)
s/2mj(ξ, η/2j )ĝj (η) dη

∥∥∥∥
2

L2
ξ

)1/2

.

Thus, by Schwarz’s inequality,∥∥∥∥
( ∑
j∈Z

|Tmj (·/2j ,·/2j )(f, gj )(x)|2
)1/2∥∥∥∥

L1

� ‖Mqf ‖L2

( ∑
j∈Z

∥∥∥∥
∫

Rn

eix·η(I −�ξ)
s/2mj (ξ, η/2j )ĝj (η) dη

∥∥∥∥
2

L2
ξ,x

)1/2

.

For the former L2-norm, we have ‖Mqf ‖L2 � ‖f ‖L2 since q < 2. For the latter L2-norm,
Plancherel’s theorem and (3.3) give∑

j∈Z

∥∥∥∥
∫

Rn
eix·η(I −�ξ)

s/2mj(ξ, η/2j )̂gj (η) dη
∥∥∥∥

2

L2
ξ,x

= (2π)n
∑
j∈Z

∥∥∥(I −�ξ)
s/2mj(ξ, η/2j )̂gj (η)

∥∥∥2

L2
η,ξ

� A2
∑
j∈Z

∥∥ĝj (η)
∥∥2
L2
η

= (2π)nA2
∑
j∈Z

‖gj‖2
L2 � A2‖g‖2

L2 ,

where the last inequality holds because ψ has compact support away from the origin. Com-
bining the above inequalities, we obtain the desired estimate. This completes the proof of
Theorem 1.1. �
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REMARK 3.4. For the multiplierm(2) appearing in the proof of Theorem 1.1, we have
actually proved

‖Tm(2)‖L2×L2→H 1 � A ,

whereA is the same as in (3.2). By symmetry of the situation, Tm(3) has the same boundedness
property.

4. Proof of Theorem 1.2. The former part of Theorem 1.2 readily follows from The-
orem 1.1 and Theorem A by duality and interpolation. To see this, we use the following
lemma.

LEMMA 4.1. Let s > 0 and ε > 0. If suppF ⊂ {(|ξ |2 + |η|2)1/2 ≤ 10}, then∥∥∥∥∥(I −�ξ)
s/2F(ξ, η)

∥∥
L2
ξ

∥∥∥
L∞
η

+
∥∥∥∥∥(I −�η)

s/2F(ξ, η)
∥∥
L2
η

∥∥∥
L∞
ξ

� ‖F(ξ, η)‖Bs+ε∞,∞ .

PROOF. Let ϕ ∈ S(Rn) be such that ϕ = 1 on {ξ ∈ Rn ; |ξ | ≤ 10}. Since s > 0 and
F(ξ, η) = ϕ(ξ)F (ξ, η), it follows from Lemma 2.3 that∥∥(I −�ξ)

s/2F(ξ, η)
∥∥
L2(Rnξ )

≈ ‖F(ξ, η)‖Bs2,2(Rnξ ) = ‖ϕ(ξ)F (ξ, η)‖Bs2,2(Rnξ )
� ‖ϕ(ξ)‖Bs2,2(Rnξ ) ‖F(ξ, η)‖Bs∞,2(R

n
ξ )
.

We denote by {ψj }∞j=0 and {Ψj }∞j=0 the sequences of functions used in the definition of Besov

spaces on Rn and R2n, respectively. Then

‖F(ξ, η)‖Bs∞,2(R
n
ξ )

≤ ‖F(ξ, η)‖Bs∞,1(R
n
ξ )

=
∞∑
j=0

2js‖ψj (Dξ )F (ξ, η)‖L∞(Rn
ξ )

≤
∞∑
k=0

∞∑
j=0

2js‖ψj (Dξ )Ψk(Dξ,η)F (ξ, η)‖L∞(Rnξ ) .

Since ψj(ξ)Ψk(ξ, η) = 0 if j ≥ k + 2, the last sum can be estimated as

∞∑
k=0

k+1∑
j=0

2js‖ψj (Dξ )Ψk(Dξ,η)F (ξ, η)‖L∞(Rn
ξ )

≤
∞∑
k=0

k+1∑
j=0

2js‖F−1ψj‖L1‖Ψk(Dξ,η)F (ξ, η)‖L∞(Rn
ξ )

�
∞∑
k=0

2ks‖Ψk(Dξ,η)F (ξ, η)‖L∞(Rnξ )

� sup
k∈Z

2k(s+ε)‖Ψk(Dξ,η)F (ξ, η)‖L∞(Rnξ,η) = ‖F‖Bs+ε∞,∞ .

Combining these inequalities, we obtain the desired result for the term ‖‖ · ‖L2
ξ
‖L∞

η
. Inter-

changing the roles of ξ and η, we can estimate the term ‖‖ · ‖L2
η
‖L∞

ξ
in the same way. �
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PROOF OF THE FORMER PART OF THEOREM 1.2. We shall divide the proof into two
steps.

Step 1. Here we give a general result for interpolation. We write ζ = (ξ, η) ∈ Rn×Rn.
Let Xν , ν = 0, 1, be Banach spaces satisfying S(R2n) ↪→ Xν ↪→ S ′(R2n), and let

(4.1) Xθ = (X0,X1)θ , 0 < θ < 1 ,

be the complex interpolation spaces of X0 and X1 in the sense of Triebel [20, 2.4.4]. We
assume that Xν , ν = 0, 1, have the following properties:

(4.2) ‖F(ζ )Θ(ζ )‖Xν � ‖F(ζ )‖Xν for each Θ ∈ S(R2n) ,

where the implicit constant is allowed to depend on Θ , and

(4.3) ‖F(tζ )‖Xν � ‖F(ζ )‖Xν for all 1/4 ≤ t ≤ 4 .

We shall prove that if

(4.4) ‖Tm‖Hpν×Hqν→Lrν � sup
j∈Z

‖mj‖Xν , ν = 0, 1 ,

then

(4.5) ‖Tm‖Hpθ×Hqθ →Lrθ � sup
j∈Z

‖mj‖Xθ ,

where 1/pθ = (1 − θ)/p0 + θ/p1, 1/qθ = (1 − θ)/q0 + θ/q1 and 1/rθ = (1 − θ)/r0 + θ/r1.
For m(ζ ) ∈ S(R2n) and 0 < θ < 1, we set

Aj = ‖mj‖Xθ , j ∈ Z ,

where mj is defined by (1.3). By (4.1) and the definition of complex interpolation, there
exists an S ′(R2n)-valued function mj,z which is analytic on the strip S = {z ∈ C ; 0 <

Re z < 1}, bounded and continuous on S (for precise meanings of analyticity, boundedness,
and continuity, see [20, 2.4.4]) such that mj,θ = mj and(

sup
y∈R

‖mj,iy‖X0

)1−θ(
sup
y∈R

‖mj,1+iy‖X1

)θ
≈ Aj

([20, Definition 2.4.4/2, Lemma 2.4.6/3]). Setting

eαj = supy∈R ‖mj,iy‖X0

supy∈R ‖mj,1+iy‖X1

and m̃j,z = eαj (z−θ)mj,z ,

we have m̃j,θ = mj,θ = mj and

(4.6) sup
y∈R

‖m̃j,iy‖X0 = sup
y∈R

‖m̃j,1+iy‖X1 ≈ Aj .

Let Ψ̃ ∈ S(R2n) be such that supp Ψ̃ ⊂ {2−2 ≤ |ζ | ≤ 22} and Ψ̃ = 1 on suppΨ , where
Ψ is the function appearing in (1.3). We define a family of bilinear Fourier multipliersmz by

mz(ζ ) =
∑
j∈Z

m̃j,z(2−j ζ )Ψ̃ (2−j ζ ) , z ∈ S .
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Then mθ(ζ ) = ∑
j∈Z mj(2

−j ζ )Ψ̃ (2−j ζ ) = m(ζ ). From the support properties of Ψ and Ψ̃ ,
it follows that

(mz)k (ζ ) = mz(2kζ )Ψ (ζ ) =
k+2∑
j=k−2

m̃j,z(2−j+kζ )Ψ̃ (2−j+kζ )Ψ (ζ )

for each k ∈ Z, and consequently

∥∥(mν+iy)k∥∥Xν ≤
k+2∑
j=k−2

∥∥m̃j,ν+iy(2−j+kζ )Ψ̃ (2−j+kζ )Ψ (ζ )
∥∥
Xν

for ν = 0, 1. Hence, by (4.2), (4.3) and (4.6),

∥∥(mν+iy)k∥∥Xν �
k+2∑
j=k−2

∥∥∥m̃j,ν+iy(2−j+k·)
∥∥∥
Xν

�
k+2∑
j=k−2

∥∥m̃j,ν+iy∥∥Xν � sup
j∈Z

Aj .

Combining this with (4.4), we have∥∥Tmν+iy∥∥Hpν×Hqν→Lrν
� sup
k∈Z

∥∥(mν+iy)k∥∥Xν � sup
j∈Z

Aj .

Therefore, the interpolation theorem for analytic families of operators ([10, 18]) gives (4.5).

Step 2. We shall introduce a notation. For s0 ∈ (0,∞) and t, p, q ∈ [1,∞], we simply
write [s0, 1/t; 1/p, 1/q] to mean that the estimate

‖Tm‖Hp×Hq→Lr � sup
j∈Z

‖mj‖Bst,∞ , 1/r = 1/p + 1/q ,

holds for each s > s0 with the implicit constant depending on s, where we replace H∞ ×
H∞ → L∞ by L∞ × L∞ → BMO in the case p = q = r = ∞.

We shall apply the general result of Step 1 to the case of the Besov spaces. These spaces
have the properties (4.2) and (4.3) (see Lemma 2.3 and [16, Proposition 2.1.3/3], respectively).
Also, it is known that

Bst,∞ = (B
s0
t0,∞, B

s1
t1,∞)θ ,

where t, t0, t1 ∈ [1,∞], s, s0, s1 ∈ (0,∞), 0 < θ < 1, and

1/t = (1 − θ)/t0 + θ/t1, s = (1 − θ)s0 + θs1

(see [20, Theorem 2.4.7]). Hence, the interpolation argument in Step 1 implies the follow-
ing: if sν ∈ (0,∞), tν, pν, qν ∈ [1,∞], and [sν, 1/tν; 1/pν, 1/qν] for ν = 0, 1, then
[s, 1/t; 1/p, 1/q] for s, t, p, q given by

(s, 1/t, 1/p, 1/q) = (1 − θ)(s0, 1/t0, 1/p0, 1/q0)+ θ(s1, 1/t1, 1/p1, 1/q1)

with 0 < θ < 1.
We also use the duality. Recall the formula

(4.7)
∫

Rn

Tm(f, g) h dx =
∫

Rn

Tm∗1(h, g) f dx =
∫

Rn

Tm∗2(f, h) g dx ,
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where m∗1(ξ, η) = m(−(ξ + η), η) and m∗2(ξ, η) = m(ξ,−(ξ + η)) (see [8, p.1155]). This
formula says that

‖Tm‖Lp×Lq→Lr = ‖Tm∗1‖Lr′×Lq→Lp
′ = ‖Tm∗2‖Lp×Lr′→Lq

′

for p, q, r ∈ [1,∞]. Similar equality holds if we replace L1 or L∞ by H 1 or BMO in an
appropriate way. Since the Besov space Bst,∞ is invariant under the mapsm �→ m∗i , i = 1, 2,
([16, Proposition 2.1.3/6]), we have the following: if s ∈ (0,∞), t, p, q ∈ [1,∞], 1/r =
1/p+ 1/q ≤ 1, and [s, 1/t; 1/p, 1/q], then [s, 1/t; 1 − 1/r, 1/q] and [s, 1/t; 1/p, 1 − 1/r].

Now we shall see that the former part of Theorem 1.2 follows from Theorem A and
Theorem 1.1. First, Theorem 1.1 and Lemma 4.1 yield [n/2, 0; 1/2, 1/2]. Then duality gives
[n/2, 0; 1/2, 0] and [n/2, 0; 0, 1/2]. Hence interpolation between these three points gives
[n/2, 0; 1/p, 1/q] for all (1/p, 1/q) ∈ J0. Next, by Theorem A and the embeddings

B
s1+s2+ε
2,∞ ↪→ B

s1+s2
2,2 = Ws1+s2 ↪→ W(s1,s2),

we have [n, 1/2; 1/p, 1/q] for (1/p, 1/q) ∈ ∂I0, where ∂I0 denotes the boundary of the
region I0, which consists of five line segments. Finally, the results for (1/p, 1/q) ∈ ⋃4

i=1 Ji

follow from the results for (1/p, 1/q) ∈ J0 and (1/p, 1/q) ∈ ∂I0 by interpolation. This
completes the proof of the former part of Theorem 1.2. �

To prove the latter part of Theorem 1.2, we use the following theorem of [14].

THEOREM B ([14]). Let s ∈ R, 1 ≤ p, q ≤ ∞, 2/3 ≤ r ≤ ∞, and 1/p+1/q = 1/r .
If there exists a positive integer N such that

‖Tm‖Hp(Rn)×Hq(Rn)→Lr(Rn) � max|α|+|β|≤N

(
sup

ξ,η∈Rn
(1 + |ξ | + |η|)s|∂αξ ∂βη m(ξ, η)|

)

for all m(ξ, η) ∈ C∞(Rn × Rn), then s ≥ s(p, q) with s(p, q) given in Theorem 1.2. In
the case p = q = r = ∞, the same conclusion holds if we replace H∞ × H∞ → L∞ by
L∞ × L∞ → BMO .

It should be remarked that in [14] the claim of Theorem B is given for bilinear pseudo-
differential operators. But, from its proof, we see that the claim actually holds for bilinear
Fourier multiplier operators (see the proofs of [14, Lemma 6.3, Theorem 6.4]).

The following lemma reduces the latter part of Theorem 1.2 to Theorem B.

LEMMA 4.2. Let s > 0. Then

sup
j∈Z

‖mj‖Bs∞,∞(R2n) � max
|α|+|β|≤[s]+1

(
sup

ξ,η∈Rn
(1 + |ξ | + |η|)s |∂αξ ∂βη m(ξ, η)|

)

for all m(ξ, η) ∈ C∞(Rn × Rn), where mj is defined by (1.3) and [s] is the integer part of s.

PROOF. Let m ∈ C∞(Rn × Rn), N = [s] + 1, and

A = max|γ |≤N

(
sup
ζ∈R2n

(1 + |ζ |)s|∂γm(ζ )|
)
.
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Take 0 < θ < 1 such that s = θN . Then

‖mj‖Bs∞,∞ = sup
k∈N0

(‖Ψk(D)mj‖L∞
)1−θ (

2kN‖Ψk(D)mj‖L∞
)θ

≤ ‖mj‖1−θ
B0∞,∞

‖mj‖θBN∞,∞
.

(4.8)

By the lifting property of Besov spaces ([20, Theorem 2.3.8]) and by the embedding L∞ ↪→
B0∞,∞, we have

(4.9) ‖mj‖BN∞,∞ ≈
∑

|γ |≤N
‖∂γmj‖B0∞,∞ �

∑
|γ |≤N

‖∂γmj‖L∞ .

Since Ψ appearing in (1.3) satisfies suppΨ ⊂ {1/2 ≤ |ζ | ≤ 2}, we see that

|∂γmj (ζ )| =
∣∣∣∣ ∑
γ1+γ2=γ

Cγ1,γ22j |γ1|(∂γ1m)(2j ζ )(∂γ2Ψ )(ζ )

∣∣∣∣
�

∑
γ1+γ2=γ

2j |γ1|A(1 + 2j |ζ |)−s|(∂γ2Ψ )(ζ )| � A(max{1, 2j })|γ |−s

for |γ | ≤ N . Hence

(4.10) ‖mj‖BN∞,∞ �
∑

|γ |≤N
A(max{1, 2j })|γ |−s ≈ A(max{1, 2j })N−s .

Similarly we have

(4.11) ‖mj‖B0∞,∞ � ‖mj‖L∞ � A(max{1, 2j })−s .
Since s = θN , combining (4.8), (4.10), and (4.11), we have

‖mj‖Bs∞,∞ �
{
A

(
max{1, 2j })−s}(1−θ){

A
(

max{1, 2j })N−s}θ = A .

This completes the proof. �

PROOF OF THE LATTER PART OF THEOREM 1.2. Let p, q, r satisfy the assumptions
of Theorem 1.2 and let s(p, q) be the number as given in the theorem. Assume that s > 0 and
t ∈ [1,∞] satisfy

(4.12) ‖Tm‖Hp×Hq→Lr � sup
j∈Z

‖mj‖Bst,∞ ,

where H∞ ×H∞ → L∞ is replaced by L∞ × L∞ → BMO in the case p = q = r = ∞.
Taking Ψ̃ ∈ S(R2n) satisfying Ψ̃ = 1 on suppΨ , where Ψ is the function appearing in (1.3),
we can write mj(ζ ) = Ψ̃ (ζ )mj(ζ ). By Lemma 2.3,

(4.13) ‖mj‖Bst,∞ � ‖Ψ̃ ‖Bst,∞‖mj‖Bs∞,∞ ≈ ‖mj‖Bs∞,∞ .

From (4.12), (4.13), and Lemma 4.2, we have

‖Tm‖Hp×Hq→Lr � sup
j∈Z

‖mj‖Bs∞,∞ � max|α|+|β|≤[s]+1

(
sup

ξ,η∈Rn

(1 + |ξ | + |η|)s |∂αξ ∂βη m(ξ, η)|
)
.

Hence we must have s ≥ s(p, q) by Theorem B. This completes the proof. �
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5. A comparison of Theorem 1.2 and Theorem A. The following proposition shows
that the case s(p, q) < n of Theorem 1.2 covers multipliers that cannot be dealt with by
Theorem A.

PROPOSITION 5.1. Let 0 < s < n, s1 > n/2, and s2 > n/2. Then there exists a
function m(ξ, η) on Rn × Rn such that supj∈Z ‖mj‖Bst,∞(R2n) < ∞ for any 1 ≤ t ≤ ∞, but
supj∈Z ‖mj‖W(s1 ,s2)(R2n) = ∞, where mj is defined by (1.3).

PROOF. We shall divide the proof into three steps. In Steps 1 and 2, we assume that
m(ζ ) is a function in C∞(R2n) satisfying suppm ⊂ {|ζ | ≥ 1}, where ζ = (ξ, η) ∈ Rn × Rn.

Step 1. Let s > 0. In this step, we prove that if m(ζ ) satisfies

(5.1) |∂γζ m(ζ )| ≤ Cγ |ζ |−s , γ ∈ N2n
0 ,

then supj∈Z ‖mj‖Bst,∞ < ∞ for any 1 ≤ t ≤ ∞. By (4.13), it is sufficient to prove
supj∈Z ‖mj‖Bs∞,∞ < ∞ under the assumption (5.1). This follows from Lemma 4.2, since
m(ζ ) satisfies

|∂γζ m(ζ )| ≤ Cγ (1 + |ζ |)−s , γ ∈ N2n
0 ,

where we have used the fact suppm ⊂ {|ζ | ≥ 1}.
Step 2. Let s1 > n/2 and s2 > n/2. In this step, we prove that if m(ζ ) satisfies

supj∈Z ‖mj‖W(s1 ,s2) < ∞, then for any ε > 0

(5.2) F−1[|ζ |−εm(ζ )] ∈ L1(R2n) .

Taking Ψ̃ ∈ S(R2n) satisfying Ψ̃ = 1 on suppΨ and supp Ψ̃ � 0, whereΨ is the function ap-
pearing in (1.3), we can write |ζ |−εmj (ζ/2j ) = |ζ |−εΨ̃ (ζ/2j )mj (ζ/2j ). Then, by Young’s
inequality and changes of variables,

‖F−1[| · |−εmj (·/2j )]‖L1 ≤ ‖F−1[| · |−εΨ̃ (·/2j )]‖L1‖F−1[mj(·/2j )]‖L1

= 2−jε‖F−1[| · |−εΨ̃ ]‖L1‖F−1mj‖L1 = C2−jε‖F−1mj‖L1 .

Since s1, s2 > n/2, we have by Schwarz’s inequality and Plancherel’s theorem

‖F−1mj‖L1 = 1

(2π)2n

∫
Rn

∫
Rn

|m̂j (x, y)| dxdy

= 1

(2π)2n

∫
Rn

∫
Rn

(1 + |x|2)s1/2(1 + |y|2)s2/2|m̂j (x, y)|
(1 + |x|2)s1/2(1 + |y|2)s2/2 dxdy

�
(∫

Rn

∫
Rn

1

(1 + |x|2)s1(1 + |y|2)s2 dxdy
)1/2

×
(∫

Rn

∫
Rn

∣∣∣(1 + |x|2)s1/2(1 + |y|2)s2/2m̂j (x, y)
∣∣∣2 dxdy)1/2

=C‖(I −�ξ)
s1/2(I −�η)

s2/2mj(ξ, η)‖L2 = C‖mj‖W(s1 ,s2) � 1 ,

and consequently
‖F−1[| · |−εmj (·/2j )]‖L1 � 2−jε .
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Hence, using the decomposition

|ζ |−εm(ζ ) =
∞∑
j=0

|ζ |−εm(ζ )Ψ (ζ/2j ) =
∞∑
j=0

|ζ |−εmj (ζ/2j ) ,

where we have used the facts that suppm ⊂ {|ζ | ≥ 1} and suppΨ (·/2j ) ⊂ {2j−1 ≤ |ζ | ≤
2j+1}, we have

‖F−1[| · |−εm]‖L1 ≤
∞∑
j=0

‖F−1[| · |−εmj (·/2j )]‖L1 �
∞∑
j=0

2−jε < ∞ .

Step 3. In this step, we finish the proof of Proposition 5.1. We assume that 0 < s < n,
s1 > n/2, and s2 > n/2. Take a number 0 < a < 1 satisfying s < na. Let us consider the
function m(ζ ) defined by

(5.3) m(ζ ) = Θ(ζ )|ζ |−s exp(i|ζ |a) , ζ ∈ R2n ,

where Θ ∈ C∞(R2n) satisfies Θ(ζ ) = 0 if |ζ | ≤ 1 and Θ(ζ ) = 1 if |ζ | ≥ 2. We shall see
that this m(ζ ) is a function which we are looking for.

It is easy to check that m(ζ ) defined by (5.3) satisfies (5.1). Thus, it follows from Step
1 that supj∈Z ‖mj‖Bst,∞ < ∞ for any 1 ≤ t ≤ ∞. On the other hand, by [21, Theorem 9], if
s + ε ≤ 2n− na, then

|F−1[| · |−εm](X)| ≈ |X|(−2n+s+ε+na)/(1−a) , X ∈ R2n , X → 0 .

From this we see that F−1[| · |−εm] ∈ L1(R2n) if and only if s + ε > na. Hence, if ε > 0
is so small that s + ε ≤ na (this is possible because s < na), then F−1[| · |−εm] ∈ L1(R2n),
namely (5.2) does not hold for such small ε. Therefore, it follows from Step 2 thatm(ζ ) does
not satisfy supj∈Z ‖mj‖W(s1,s2) < ∞. The proof is complete. �

Appendix A. The first commutator of Calderón is defined by

C1(f )(x) = p.v.
∫

R

A(x)− A(y)

(x − y)2
f (y) dy .

It is known that C1 is a bounded operator in Lp(R), 1 < p < ∞, if A is a Lipschitz function
on R and

(A.1) ‖C1(f )‖Lp(R) ≤ cp‖A′‖L∞(R)‖f ‖Lp(R) , 1 < p < ∞ .

See Calderón [1], Coifman-McIntosh-Meyer [2] and Coifman-Meyer [12] for its history. In
this appendix, we shall observe that the estimate (A.1) and other estimates for the case A′ ∈
Lq(R) immediately follow from Theorem 1.2.

If we set A′ = a, then C1 can be written as a bilinear Fourier multiplier operator con-
cerning f and a:

C1(f, a)(x) = 1

(2π)2

∫
R2
eix(ξ+η)

(
− iπ

∫ 1

0
sgn(ξ + αη) dα

)
f̂ (ξ )̂a(η) dξdη .
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Since ∫ 1

0
sgn(ξ + αη) dα = 2

∫ 1

0
χ(0,∞)(ξ + αη) dα − 1,

we can reduce the boundedness of C1 to that of Tm with

(A.2) m(ξ, η) =
∫ 1

0
χ(0,∞)(ξ + αη) dα , (ξ, η) ∈ R × R .

This explanation can be found in Muscalu [15].
Suppose 1 < p, q ≤ ∞, 1/p + 1/q = 1/r , and 2/3 < r < ∞. Let s(p, q) and t (p, q)

be the numbers given in Theorem 1.2. Note that we are treating the case n = 1 and observe
that s(p, q) < 1. Hence Theorem 1.2 and (4.13) yield

‖Tm‖Lp×Lq→Lr � sup
j∈Z

‖mj‖B1∞,∞ .

Thus, once the condition

(A.3) sup
j∈Z

‖mj‖B1∞,∞ < ∞

is checked, we obtain

‖C1(f, a)‖Lr � ‖f ‖Lp‖a‖Lq ;
the estimate (A.1) is the case q = ∞ of this estimate.

Since m(ξ, η) defined by (A.2) is homogeneous of degree 0, to obtain (A.3), it is suffi-
cient to consider the case j = 0, namely m0(ξ, η) = m(ξ, η)Ψ (ξ, η). Hence, by (4.9), our
goal is to check

(A.4) ‖m0(ξ, η)‖L∞ + ‖∂ξm0(ξ, η)‖L∞ + ‖∂ηm0(ξ, η)‖L∞ < ∞ .

Note that m(ξ, η) can be written as

�

�
�

�
�

�
�

�
�

�
�

�
�

�

ξ

η

ξ + η = 0 .

1 + ξ
η

1

1

− ξ
η

0

0

Since the functionm(ξ, η) is Lipschitz continuous away from the origin, the estimate (A.4) is
obvious.
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