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Introduction. Since G. de Rham [2] proved an interesting theorem con-
cerning the decomposition of simply-connected, complete, reducible Rieman-
nian manifolds, it has been referred to by many authors. The author [3]
already attempted an extension of the theorem to an afBnely connected
manifold. In this note let us treat further to extend it to a differentia le
manifold. For this purpose, we shall first introduce the notion of a locally
decomposed C?ί-manifold with latticed maps (§ 1). In such a manifold, we
prove a theorem on its fundamental group and we show that the manifold
decomposes globally if it is simply-connected (Theorems 1, 2). Further, as
its applications, we prove that locally decomposed, affinely connected mani-
fold and Finsler manifold (§ 4) admit always latticed maps and we show
that they decompose globally if they are simply-connected (Theorems 3, 4).
All of these results are nothing but extensions of the G. de Rham's theo-
rem, and further note that the idea is analogous to that in [3]. Throughout
the whole discussion, let us suppose that the indices run as follows :

a, b, c = 1, 2, , r; i, j, k = r + 1, r -f 2, , n\

a, β, γ = 1, 2, , n.
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1. Locally decomposed CM-manifolds with latticed maps. We take an
^-dimensional connected manifold M of class Cu such that the maximal system
Ω of admissible coordinate neighbourhoods has the following properties :

1) In each neighbourhood U € Ω, its coordinate system (xa) consists of
all of Grα)'s such that 0 < x« < 1.

2) For each pair U, U' € Ω, U Π V Φ 0, if x is any point of U Π U
there is a neighbourhood V C U Π f/ of x where the transformation from
the coordinates xΛ in U to the ones xα in U' is expressed by decomposed
relations

X = X (x\ x\ χι = (χ+\ 9χ)

(x'a depends on χa only and xι on xι only).
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Let us call such a manifold M a locally decomposed Cu-manifold. Now
put s = n — r. By the property 2) we can introduce into M, apart from the
original topology, a newtopology TR(Ts) which gives to M a structure of an
r-(.?-) dimensional manifold of class Cu under the coordinate systems induced
naturally from M [5]. Under the topology, we denote a maximal connected
manifold passing through each point x € M by R(x) (S(x)) and sometimes
we use an abbreviated notation R (S). R and S have clearly the structure
of submanifolds of M under the original topology. They are called R- and
S-submanifolds respectively. Here, we shall give the following notion : Given
a curve x{t) {a <; t < b) in M, by its parlitin we mean a finite set of arcs
x(t) (tv-i ^ t ^ tv) together with coordinate neighbourhoods Uv € ί2 such that

x{t)(ti,-ι ^t^tv)dUv for z> = 1, 2, , w and a = t0 < tι < < tm =
&. And, it is denoted by

7r = {x{t)(tv^ι S t < tv\ Uv\ v = 1, 2, , m\

[1]. Using this notion let us prove the following assertion:

Given two curves x(σ) (ax S σ <; ό j α?z<ί y(τ) (α2 <; T S έ2) z^ i?(o) and
S(o) respectively where x{aγ) = y(α2) = o ,€ M, assume that there exists one
continuous map f: a rectangle ί ( σ ? τ )l^i ^ σ ^ î> <̂2 ^ τ ^ ^ ( ~^ Λί which
satisfies the following conditions:

/(σ, α2) = x(σ), f(auτ) = y(τ), /(σ, r)

/, such a map is only one.

Let us call such a map f the latticed map with respect to the curves

x(σ) and y(τ)

PROOF. Consider first a case where the curves x{σ) and y(τ) are wholly
contained in a neighbourhood U € ί2. When we express r(σ-) and y(τ) by
(.rα(σ"), ^X^a)) and (^(αj), xι(j)) respectively in terms of coordinates in U,
it is easily seen that a map

| ( σ , τ ) | β l ^ σ < bu a2^τsb2}-* ((σ, T) ^ U » , ^(τ)»

is one and only one latticed map. Further using this fact we shall prove
our assertion in the general case. For simplicity let us sssume ax = a2 = 0
and bx = b2 = 1. In the other cases too, our proof is quite similarly applied.

Now suppose that another latticed map / ' does exist. Then, when we
construct a partition of x(p~) and use the above fact, we can easily find
values T' > 0 such that /(σ, T) = f'(σ, T) for 0 < σ ^ 1, 0 S r < r'. Let τ0

be the least upper bound of τ\ Then it follows (by the continuity of f, f)
that /(σ, r) = /'(σ, r) for 0 S <r ^ 1, 0 < r < τ0. If τ0 < 1, by constructing
again a partition of a curve f(σ9 τ0) (0 < σ < 1) we can find h > 0 such
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that f(σ, T) = / (σ, T) for 0 ^ σ S l , τ 0 < τ g τ 0 + A. This contradicts with
the fact that τ0 is maximal. Therefore τ0 = 1. Hence / = / ' . So, our
assertion is proved.

Under the assumption in the above assertion, let curves xicr') (a{ S <r' S b\)
and y (r') (az <; T' < b'2) represent the same ones as x(σ) and y(τ) respectively.
Then we can easily obtain: With respect to the curves x(σ)and y(τ)too,
the latticed map f does exist. And further,

as compact subsets in M.
From now on, we assume that in M there exists always the latticed map

with respect to any two (parametrized) curves of class Cu starting from any
point o € M9 in R(o) and S(o) respectively. Let us call such a manifold M a
locally decomposed Cu-manifold with latticed maps. Let x(σ) (aί S <* S bx)
and y(τ) (a2 < T < b2) be any two curves of class Du starting from any o € M
in R(o) and £(0) respectively. Then, the following assertion is easily verified :
With respect to the curves x(σ) and y(τ\ one and only one latticed map f
does exist. Both of curves /(σ, b2) (aλ < σ < bj) and f(bu r) (a2 < r < έ2)
ίΛz/̂  obtained are of class Du. Further, the curves themselves are uniquely
determined from the given curves x(σ), y(τ) alone, independently of their
parametric representations. The curve /(σ, b2) {aι < σ < &χ) is called the
natural displacement of .z(σ) along y(τ), and we denote it by D{ — y)x(σ) or
£*( — yC7"))^0"), where σ {aι S <τ S £2) denotes also the parameter. Similarly,
to the curve /(δ 1 ? T) (α2 ^ T ̂  δ2) too, such a definition and such notations
will be given.

2. Fundamental groups.

LEMMA 2. 1. Suppose that two continuous maps φ : |(σ, ί ) | αx S <*" S έi,
a ^ t ^ β) -> M andψ : j(τ, ί) |α 2 S

 τ S έ2, a S t S β] -> M are given and
satisfy the following conditions:

1) For aS tS β, φ(al9 t) = ψ(al9 t) ( = o(ί))
2) WÂ w / = const., xt(σ) ( = ^(σ, ί)) (^ <" σ < Jx) and yt(τ) ( = ψ(τ9 t))

(a2S T < έ2) αr^ cwrt/^ of class Du in R(o{t)) and S(o(t)) respectively.
Then a map

fx : \(σ> t)\ax Sσ^bl9CL<t<β\-*M (O, t)-*D(~yt)xt(σ))

is continuous, and if ψ(b2, i) (cc S t <" β) is a curve in an R-submanifold

R, the map fx is continuous into R. For the similar map fy, too, the similar

results are obtained.

We omit the proof here.
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Now we shall adopt the following notations: Given a curve x(t) {a S t^ b),
we denote by x~ι(t) or x~ι a curve x{a + b — ί) {a S ί ϋ b) which has the
opposite orientation as in x(i). Let Q denote a square {(σ, τ ) | 0 < σ , T <; 1).

On the other hand, let ,z(2) ( 0 $ ί ^ 1) be a curve of class Du in M and
let iτ = )#(*)(*„_, < ί g £„), f/,,|i> = 1, 2, , m\ be any of its partitions. We
denote an arc x{t) (tv-x ^ t S- ίv) by ^ ( ί ) or (x? (t)) in terms of the coordinate
system of Uv. The curve x(i) is then represented by a product curve Xι(t)
xM' *xjj>)> We denote arcs (xa

v(t), x (̂A-i)) and (xXU-^, xl{t)){tv^ι <" * < O
by Rxv(t) and Sxv(t) respectively, and arcs (xl(l), xί(tv)) and (xl(t,), x&t))
(tu-ι S t S O by Kxv{t) and Sxv(t) respectively.
Then,

2?'*„(*) = D(^ Sχv)Rxv(i\ Sx£i) = D ( ~ Rxv(t))Sx£t).

Further, each of product curves Rx^i) Sx^t) ' Rx2(t) - S x2(t) S xm(t)
and ίSz^ί) R'x^t) *Sr2(*) i^ ^2W i? ^m(ί) is called a step-curve of

with respect to 7r. Using the step-curve first mentioned, we put

φ) = iϊ̂ Cί), AXO = S'x^t),

φ) = D(~ k?)Rxlt\ Hi) = D(~ ̂ jfe/O S';c2(*),

6-3(ί) = D(~ kf)Rxli\ kit) = D(~ £?3)jt2(/) Sx'lt),

and let Λx(^) (0 <Ξ t ^ 1) denote a product curve έ ̂ ί) φ) xm(t)-
Similarly, Sx(t) (0 S t S 1) will be defined by using the other step-curve.

LEMMA 2. 2. 77z£ curves Rx(t) and Sx(t) are uniquely determined from
the given curve x{t) alone, independently of its partition IT. Further, when
t = const., points Rx(t) and Sx(t) are contained in submanifolds S(x(t)) and
R(x(t)) respectively.

PROOF. AS the latter part is evident from the construction, we prove
the former part only. Now, we have Rx(0) = Sx(0) = x(0). And, as the curves
Rx(t) and Sx(t) are curves in R(x(0)) and S(x(0)) respectively, there is one
and only one latticed map f:Q->M which satisfies f(σ, 0) = Rx(σ), /(0, T)
= Sx(τ) and /(σ, T) € R(Sx(j)) f] S(Rx(σ)). By the construction it is obvious
that a compact subset f(Q) contains the curve χ(t) and the step-curves with
respect to 7r. Further f(Q) contains all of step-curves of x{t) with respect to
other partitions. This is easily verified by the property of latticed maps, and
shows that our assertion is true.

From now on, each of the curves Rx(t) and Sx(t) is called a natural pro-
jection of x(t).
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LEMMA 2. 3. Let φ be a continuous map Q -> M which satisfies the
following conditions:

1) Each curve xσ{j) ( = φ(σ> r)) (0 < r S l )/or σ = 6Ό^ί. is of class Du.
2) For 0 ^ σ < 1, <p(cr, 0) zs o/zZy <z />owί tf/zJ JO ZS 99(0-, 1).

Then a map

φn. Q->R(o) ((σ, τ)->Λrσ(τ)),

where o = φ{σ, 0), is continuous and φ^σ9 l ) ( 0 S < r < 1) is only a point. For
the similar map φSi too, the similar results are obtained.

PROOF. For a constant d(0 < d S 1) let τr(J) = Ud(τ) (τ,_1 < r < T,),
ίΛ|^ = 1, 2, , ra| be a partition of a curve xd(j). Under the same Uv

and τV9 we can find δ > 0 such that, for all σ(0 <" σ S 1) satisfying |σ — J | < 8,
ττ(σ) = (Λ*σ(τ) (τv_ι S 7" S τ"Λ C/μ|i; = 1, 2, , m\ become partitions of curves
£σ(τ)(0 S T S I ) . If we suppose that from the step-curves of ^rσ(

τ) with respect
to 7r(σ) their natural projections Rxσ(j) are constructed, it is seen ty Lemma
2. 1 that the map φR is continuous over a domain, \σ — d\<8, O ^ T ^ I in
Q. Accordingly, φR is a continuous map from Q into i?(o).

On the other hand, a curve φE(σ, l ) ( 0 $ σ g l ) in /?(σ) is contained in
5(0 ) where 6 — φ(σ9 1), and also is a curve in S(o ). In fact, if we consider
a map^ί?: <2-• £(0 ) ((σ, T)-* SxόXτ)) it is also continuous. Hence φ'χ(σ, 1)
(0 S σ <; 1) is a curve in S(o'), and as seen from the proof of Lemma 2. 2
we obtain φs(σ, 1) = ^κ(σ, 1). These imply that φ^σ, 1) is a curve in i?(o)
and also in S(o). Therefore, the curve <pR(<r, 1) is only a point. This is
obvious by the local structure of M. So, our lemma has been proved.

LEMMA 2. 4. Let f be a continuous map of the boundary dQ of Q into
any of R- and S-submanifolds. If f is homotopic in M to a constant map, then
it is homotopic in the submanifold to a constant map.

PROOF. Let us prove the lemma for an Λ-submanifold R. First suppose
f{σ, 0) = x0 and f{σ, 1) = χγ for 0 $ σ £ 1, where xθ9 xx € R. This assump-
tion does not lose the generality of our assertion. Now, we can find a
continuous map φ : Q-> M which satisfies the following conditions : 1) φ(σ, 0)
= Xo and φ(σ, 1) = χx for 0 S σ ^ 1, 2) each curve xσ{τ) ( = φ{σ, T)) (0 < T 2 1)
for σ = const, is of class Dw, 3) xjj) and ^i(τ) are curves in R, 4) a map
φ\dQ is homotopic in i? to the map /. Now, if we consider a map φR:
Q -> R ((σ, T) -> Rxσ(r)\ the map is continuous and ^i?(σ? 1) = ^ for 0 ^ σ < l
by Lemma 2. 3. Further, since ^ σ , 0) = x0 for O ^ σ g l and φR(0, T)
- ^(0, T), ̂ 1 , r) = ^(1, r) for 0 S T S 1, we have ^ β (9Q) = φ(dQ). These
facts imply that our assertion is true.

THEOREM I. The fundamental group of any of R- and S-submanifolds is
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isomorphic into the fundamental group of M under the homomorphίsm induced

by the inclusion map.

PROOF. Let us prove the theorem for an i?-submanifold R. The inclusion

map i : R ~^>M induces the homomorphism % : 7r:(i?) -> ir^M), and it follows

by Lemma 2. 4 that the kernel of i* consists of only the identity element

of TΓJGR). Hence, our theorem is easily seen to be true.

3. Decompositions.. Let c\x9 y] denote a curve of class Du whose initial

point is x and whose terminal point is y.

LEMMA 3. 1. If R and S are any R- and S-submanifolds, then R Π S Φ 0.

PROOF. Take up a curve c[x9 y] where x € JR, y € S, and denote by z

the terminal point of its natural projection Rc[x, y], then z € R(x) Π S(y)

from Lemma 2. 2. So, R Π 5 Φ 0.

LEMMA 3. 2. Lέtf S(xo\ x0 € M, be simply-connected and c[x0, y0] ^ #
£&rt;£ given zra R(x0). For each point x € S(x0), if cx and c2 are any two

curves of class Du in S(x0) joining x0 to x} then

y0] = D(r~c^cixQ9 yol

PROOF. From the assumption for S(x0), we can find a continuous map
Ψ Q -> S(x0) which satisfies the following conditions: 1) ψ (p , 0) = x0 and

ψ(σ9 1) = x ίoτ 0 S <r S 1, 2) when σ = const., each curve 3v( τ)(= ψ (o", T))

(0 $ T < 1) is of class Du, 3) curves yo(
τ) and yi(τ) represent the same ones

as cx and c2 respectively. Then, for a constant J ( O ^ i S l ) there exists

δ > 0 such that D(~y σ (τ)) ^ 0 , y0] = D(~y Λ (τ)) ^ 0 , y0] for any σ (0 ^ σ S 1)

satisfying ]σ — d\ < δ. From this fact we can easily prove our assertion.

LEMMA 3. 3. Under Lemma 3. 2, wΛen 5(y0) « also simply connected and

y is the terminal point of Z)(—'C )̂c\_xQ9 y0], ί^w y ^ ^(yo) ^ ^ ^(^o) ^ Cu-

homeomorphic to S(y0) under a map f: S(x0) -> S(y0) (x -> y).

By "Cu-homeomorphic" we mean a homeomorphism under a map which

is of class Cu together with the inverse. Let us call such a map / the Cu-

homeomorphism with respect to the curve c[xQ, yo]

PROOF. It is obvious that y € S(y0). Hence / is a map of S(x0) into
S(yo) On the other hand, for any y €. S(y0) if we denote by x the terminal
point of D(~c[yo, y'Ί)c\xθ9 yQ~\~ι where c[y09 y"] is any curve in S(y0), it

follows that f{x') =3/ . Accordingly / i s an onto-map. Further, by constructing

a partition of D(—d) c[x0, yo\ we can earily see that the map / i s of class

Cw(at x) together with the inverse. So, our lemma is proved.

It is quite obvious that Lemmas 3, 2 and 3. 3 hold true, though we
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exchange the roles of R and S there.

LEMMA 3. 4. When all the R- and S-submanifolds in M are simply -

connected, the product M = R X S of any R and S of them is regarded as
the universal covering space of M.

PROOF. Let o be a point of R Π S. We take a point x € M, then x is
represented by a pair (3;, 2:) where y € R and z € S. Let c[o, y] and c[p9 z]
be any curves in R and S respectively. Let x be the terminal point of a
curve D ( ~ c[o, zj)c[o, y], then x € R(z) Π S(y). By Lemma 3. 2, we see that
the point x does not depend on the curves c[o, y] and c[o, z]9 I ut does depend
on the points y and z, namely x. We consider thereby a map

/ : M->M (x->x).

1) Conversely, let x t e a point of M. Now take a point y € i? Π *SΌr)
and let 2; be the terminal point of a curve Z)(—- cQy, 3;]) c[y9 o], where c[y, x~\
and c\_y, o] are any curves in S(x) and i? respectively. Then z €: S. If we

denote by x a pair (3/, 2) as a point of M, it follows that f(x) = .r. So, the
map / is an onto-map.

2) Again let x be a point of M. We represent a set i? Π S(x) by j^λjλ
6 J\ where J is an index-set. Let zλ be the point determined from yκ by
the manner in 1). Then zκ € R(x) (Ί 5. Now let c\_yλ, o] and c[zλ, 0} be
any curves in R and 5 respectively. When we take a neighbourhood W(x)
ζ Ω of x, WGr) is necessarily represented by the product WR(X) X Ws(x)
of coordinate neighbourhoods WR(x) and Ws(αr) in submanifolds R(x) and
AS(Λ:) respectively. Let WR(yκ) and W!S(^A) be the image of WR(x) and W^x)
under the Cw-homeomorphisms with respect to c[zλ, o] and c[yκ, o] respectively.
If we denote by xλ a pair (yλ, zκ) as a point of M, then the product Wλ =

Wfi(3/λ) X Ws(zλ) is regarded as a neighbourhood of α:λ and is Cw-homeom-
orphic to W(x) under f.

3) In 2), we have/^Cx) = Uλeĵ λ Now let us verify Wκ Π Wμ = 0 for

λ, μ € J ( λ Φ /A). In fact, suppose that W"λ Π Wμ Φ 0, and let cfxλ, ΛΓJ be

a curve in Wλ U W"μ. Then f(c[x}, xj) is a closed curve with endpoint x

contained in W(x). This contradicts with the fact that Wκ is C^-homeomor-

phic to W(x) under /. Hence Wκ Π W^ = 0.
Summing up these facts we see that our assertion is true.

THEOREM 2. When M is simply-connected, M is CL-homeomorphic to the
product R X S of any R- and S-submanifolds R and S.
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This is immediately proved by Theorem 1 and Lemma 3. 4.

4. Locally decomposed, affinely connected manifolds and Finsler mani-

folds. Let Mγ and M2 be locally decomposed C°°-manifolds defined in § 1.

In each of them, too, some notations and words already defined will be used

under the same sense, unless defined otherwise.

We assume further that Mγ has an affine connection without torsion of

class C°° and satisfies the following conditions :

1) In each U € Ω, if we denote the aίfine connection by Γ ŷ in terms

of its coordinate system (xa\ IYC are functions of xι, , χr only and T'Jk

of xr+1, , xn only and the remaining YgΊ are all zero.

2) Mi is complete, i. e. every path may be extended to arbitrarily large

values of its affine parameter.

We call such a manifold Mx a. locally decomposed, affinely connected

manifold [3], and treat all of its R- and S-su .manifolds as affinely connected

manifolds with the affine connection naturally induced from Mλ.

Next we assume that M2 has a (Finsler) metric such that in each C/€ί2

the square of the infinitesimal distance between two neighboring points (x*)

and (xa + dxa) is given by Fdίxa, dχa) + Fs(x\ dx%\ where FR satisfies as a

function in a domain 0 < xa < 1, — °o < ya < oo the following conditions :

1) Fτiχa, ya) is continuous and FR(xa, Xya) = X2FR(χa, ya) for any real

number λ,

2) except the point where all of ya take zero, FR(χa, ya) are of class

C°° and the matrix (d2FR/dyadyb) is positive definite.

And Fs also satisfies as a function in a domain 0 < xι < 1, — oo < y < oo

the similar conditions. Further, let us assume that every geodesic there defined

may be extended to arbitrarily large values of its curve-length, i. e. M be

complete. We call such a manifold M2 a locally decomposed Finsler manifold

and treat all of its R- and 5-submanifolds as Finsler manifolds with metrics

naturally induced from M2. For the sake of convenience we call each of

geodesies a path, and by its affine parameter we mean one obtained by a

linear transformation from its curve-length, as usually defined.

From now on, we denote any of M1 and M2 oy Me. The following pro-

perties are easily verified : Any path in an R- or S-submanifold of Me is also

a path in Me, and a path in Me through x, whose tangent vector at x is

contained in the tangent space of R(x) (S(x)) at x, is contained in R(x) (S(x))

and is a path in R(x) (S(x)). Hence R(x) and S(x) are complete. Using

these properties let us prove :

LEMMA 4. 1. Let o be a point of Me. Let x(σ) (a S & ̂  b) be a curve

of class C°° in R(o) and let y(r) (0 g T < 1) be a path with an affine para-
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"meter T in S{o) where x(a) = y(0) = o. Then there exists one and only one
latticed map with respect to x{<r) and y(j).

PROOF. Let us denote a partition of x(σ) by 7Γ = \x(σ) ( σ ^ <= σ <Ξ σv\
Uv\v = 1, 2, , m) and an arc ^:(σ)(σί/_1 <̂  σ <Ξ σv) by ^(σ). In each arc

Xv(<r\ we plant at each point of it a vector which has v* as components in
Uv and satisfies the following conditions :

1) all of v\ are constant and vΊ = 0, on each arc xv(
σ\ 2) at each point

^:(σλ) (λ = 1, 2, , m — 1) the vector (t;^) in Uκ coincides with the vector
(v\%ι) in ί/λ+i, 3) the vector (vf) at the point o coincides with the initial
vector of y(τ). A vector field v(σ) is thereby defined on the curve x(<τ).
Regarding σ us a constant let gσ(τ) (0 ^ T £ 1) be a path passing through a
point .r(V) and having v(σ) as its initial vector, where T denotes its affine
parameter. Then, when we consider a map

/ : l(σ, τ)\a ^ σ ^ b, 0%τ<l\-+Me ((σ, r) -•flfσ(τ)),

it is one and only one latticed map with respect to the curves x(σ) and y(τ).

In fact, if we express paths gσ(τ) by differential equations, this is easily veri

fied. So, our lemma is true.

Next, say, in S, a neighbourhood (open set in S) W such that any two
points in W are joined by one and only one path-arc wholly contained in
W9 is called a simple convex neighbourhood in S. And, at any point of S
such a neighbourhood does always exists. For an affiinely connected manifold,
see [4], and for a Finsler manifold too, it is true.

THEOREM 3. The underlying manifold of Me is a locally decomposed
C°°-manifold with latticed maps. Hence, Theorem 1 holds true in Me too.

PROOF. Let o be any point of Me, and let x(σ) (ax <i σ <Ξ bx) and y(τ)
(a2 ^ T <; b2) be any curves of class C°° in R(o) and S(o) respectively, where
•̂ Gzi) = y(a<d = o. It suffices to show that there exists the latticed map with
respect to them.

First let us consider a case where the curve y(j) is contained in a simple
convex neighbourhood W in S(o). Regarding T as a constant we join the
point o to a point y(τ) with a path-arc gτ(t) (0 S t < 1) in W, where #τ(0) = o,

.#τ(l) = y(τ) and ί is an affine parameter. Then we see that a map

( ( τ , ί ) K ^ τ < i 2 , 0 ^ ^ i μ S(o) ((T, ί) ^ 0τ(ί))

.are continuous. On the other hand, we have the latticed map

hτ: |(σ, ί ) | f l l S σ S ί i , 0 S ^ l | ->Me

with respect to :̂(σ) and gτ(t) (0 S ί S 1) by Lemma 4. 1. Using the map
Λτ if we consider a map
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ffS K, a, S τ»< δ2) -* Me((σ, τ)-+h&r, 1)),

it is the latticed map with respect to the curves x(<r) and y(?). This is easily

verified.

Secondly let us consider the other case. In S(o) we construct a partition

of the curve y(τ)y as defined in M. Using simple convex neighbourhoods

Wv we denote it by

τ r = bOOOv-i S T ^ T V ) , WV\V = 1, 2, , m).

Then, with respect to x(σ) (aλ S σ S bγ) and y(r) (a2 S\τ S τ i ) we have the

latticed map from the above fact, and denote it by fλ. Next, with respect

to curves /j(σ, τ2) (a^ <: σ <; 62) and jy(τ) (τι <; T <; τ 2) of class C°° we have

also the latticed map and denote it by f2. By continuing this manner latticed

maps /„ (y = 1, 2, , m) are o! tained. Let / denote their union map.

Then / is clearly the latticed map with respect to x(σ) and y{r). So, the

underlying manifold of Me is a locally decomposed C°°-manifold with latticed

maps and hence Theorem 1 holds also true in Me.

In two submanifold R and S of Ml9 let Γ&

α

c and Γ/fc be the connection

coefficients in any WR and Ws of their coordinate neighbourhoods respective-

ly. Then we may give the product R X S an affine connection whose

connection coefficients Γ^7 in WR X Ws satisfy the following relations : Γ6

ι

c

= Γ6

α

c, Γ/fc = ΓjSb and the remaining Γ ^ are all zero. The affinely connected

manifold R X S thus obtained is called the affine product of R and 5.

Further, in R and *S of M2 let us denote the Finsler metrics in any WR

and Ws of their coordinate neighbourhoods by ds'R = FR(xa, dxa) and ώ |

= F^Λ:*, rfj:*) respectively. Then we have a Finsler manifold R X S whose

metric in WR X Ws is expressed by J^2 = FR(χa, dχa) + Fs(x\ dx%), and call

it the metric product of R and S. Under such notions we have :

THEOREM 4. When Mi (M2) is simply connected, Mγ (M2) is equivalent

to the affine {metric) product R. X S of any R- and S-submanifolds R and S.

By "equivalent" we mean the equivalence as affinely connected manifolds.

or as Finsler manifolds.

PROOF. Of course, Lemmas 3. 2 is true in Me, and Lemma 3. 3 holds

good in Me even if we substitute "equivalent" for "CM-homeomorphic" there.

Let us suppose here that the universal covering space of Mι (M2) has the

affine connection (Finsler metric) naturally induced from it by the covering

map. Then, it is easily seen that in Lemma 3. 4 if we substitute "M^M^"

and "affine (Finsler) product" for " M " and "product" respectively it holds

also true. This fact together with Theorem 3 proves our assertion.
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