ON THE SUMMATION OF MULTIPLE FOURIER SERIES ${ }^{\text {i }}$

Kôsi Kanno

(Received June 17, 1958)

1. Generalities. Let $f\left(x_{1}, \ldots \ldots, x_{k}\right)=f(x)$ be a real valued integrable function periodic with period 2π in $0 \leqq x_{i} \leqq 2 \pi, i=1,2, \ldots \ldots k$. Following S. Bochner [1] and K.Chandrasekharan [2], we define the 'spherical means' $f(x, t)$ of a function $f(x)$ at a point $x=\left(x_{1} \ldots \ldots, x_{k}\right)$, for $t>0$,

$$
\begin{equation*}
f(x, t)=\frac{\Gamma(k / 2)}{2(\pi)^{k / 2}} \int_{\sigma} f\left(x_{1}+t \xi_{1}, \ldots \ldots, x_{k}+t \xi_{k}\right) d \sigma_{\xi} \tag{1.1}
\end{equation*}
$$

where σ is the sphere $\xi_{1}^{2}+\ldots \ldots+\xi_{k}^{2}=1$ and $d \sigma_{\xi}$ is its $(k-1)-$ dimentional volume element. $f(x, t)$ considered as a function of the single variable t exists for almost all t, and integrable in every finite t-interval.

If $p>0$, we define

$$
\begin{equation*}
f_{p}(x, t)=\frac{2}{B(p, k / 2) t^{2 p+k-2}} \int_{0}^{t}\left(t^{2}-s^{2}\right)^{p-1} s^{k-1} f(x, s) d s \tag{1.2}
\end{equation*}
$$

which called the spherical mean of order p of the function $f(x)$. At a point x, we write $f_{p}(x, t)=f_{p}(t)$ for $p \geqq 0$, where we assume that $f_{0}(x, t)=f(x, t)$. The following properties of $f_{p}(t)$ are known [2].

$$
\begin{equation*}
\int_{0}^{u} t^{k-1}|f(x, t)| d t=O\left(u^{k}\right), \quad \text { as } u \rightarrow \infty \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{u} t^{k-1}|f(x, t)| d t=o(1), \quad \text { as } u \rightarrow 0 \tag{1.4}
\end{equation*}
$$

(1. 5) $\quad f_{p}(u)=O(1)$, for $p \geqq 1, \quad$ as $u \rightarrow \infty$.

Further, if we define, for $p \geqq 0$ [2],

$$
\begin{equation*}
\boldsymbol{\varphi}_{p}(t)=t^{2 p+k-2} f_{p}(t) B(p, k / 2) / 2^{p} \Gamma(p), \tag{1.6}
\end{equation*}
$$

then we have, for $p+q \geqq 1$,

$$
\begin{equation*}
\boldsymbol{\varphi}_{p+q}(t)=\frac{1}{2^{q-1}} \overline{\Gamma(q)} \int_{0}^{t}\left(t^{2}-s^{2}\right)^{q-1} s \boldsymbol{\varphi}_{p}(s) d s \tag{1.7}
\end{equation*}
$$

It is clear for (1.7) that if $p \geqq 1$ then $\boldsymbol{\varphi}_{p}(t)$ is absolutely continuous in every finite interval excluding the origin.

Next, let us write the Fourier series of $f(x)$ in the form,

[^0]\[

$$
\begin{equation*}
f(x) \sim \Sigma a_{n_{1} . n_{k}} e^{i\left(n_{1} x_{1}+\ldots+n_{k} x_{k}\right)} \tag{1.8}
\end{equation*}
$$

\]

where

$$
a_{n_{1} \ldots n_{k}}=\frac{1}{(2 \pi)^{k}} \int_{-\pi}^{\pi} \ldots \ldots . \int_{-\pi}^{\pi} f(x) e^{i\left(n_{1} x_{1}+\ldots+n_{k} x_{k}\right)} d x_{1} \ldots \ldots d x_{k} .
$$

Define, for $\delta \geqq 0$,

$$
\begin{equation*}
S_{R}^{\delta}(x)=\sum_{n \leqq R 2}\left(1-\frac{n}{R^{2}}\right)^{\delta} a_{n_{1} \ldots n_{k}} e^{i\left(n_{1} x_{1}+\ldots+n_{k} x_{k}\right)} \tag{1.9}
\end{equation*}
$$

where

$$
n=n_{1}^{2}+\ldots \ldots+n_{\hat{k}}^{2} .
$$

At a fixed point x, we may write $S_{R}^{\delta}(x)=S^{\delta}(R) ; S^{\delta}(R)$ is the Riesz mean of order δ of the series (1.8), when summed 'spherically'. If we write

$$
\begin{equation*}
A_{n}=\sum_{n=n_{1} 2+\ldots+n_{k} 2} a_{n_{1} \ldots n_{k}} e^{i\left(n_{1} x_{1}+\ldots+n_{k} x_{k}\right)} \tag{1.10}
\end{equation*}
$$

with the convention that $A_{n}(x) \equiv 0$ if n cannot be represented as the sum of k squeres,

$$
S^{\delta}(R)=\sum_{n \leqq R^{2}<n+1}\left(1-\frac{n}{R^{2}}\right)^{\delta} A_{n}
$$

We write $S^{\delta}(R)=T^{s}(R) R^{-2 \delta}$ so that $S^{0}(R)=S(R)=T^{0}(R)=T(R)$. We have the analogue of (1.7)

$$
\begin{equation*}
T^{p+q}(R)=\frac{2 \Gamma(p+q+1)}{\Gamma(p+1) \Gamma(q)} \int_{0}^{R}\left(R^{2}-t^{2}\right)^{q-1} t T^{p}(t) d t \tag{1.11}
\end{equation*}
$$

If $J_{\mu}(t)$ denote the Bessel function of order μ, it is well-known that [10]
(1. 12)

$$
\frac{d}{d t}\left(\frac{J_{\mu}(t)}{t^{\mu}}\right)=\frac{d}{d t} V_{\mu}(t)=-t V_{\mu+1}(t)
$$

$$
V_{\mu}(t)=\left\{\begin{array}{lr}
O(1), & \text { as } t \rightarrow 0, \tag{1.13}\\
O\left(t^{-\mu-1 / 2}\right), & \text { as } t \rightarrow \infty,
\end{array}\right.
$$

and

$$
\begin{equation*}
\int_{z}^{\infty} t V_{\mu}(a t)\left(t^{2}-z^{2}\right)^{\rho} d t=c a^{-2 \rho-2} V_{\mu-\rho-1}(a z) \tag{1.15}
\end{equation*}
$$

for $a>0, \mu-1 / 2 \geqq 2 \rho+2>0$, where c is a unspecipied numerical constant (here and elesewhere in this paper).

Then we know that

$$
\begin{equation*}
S^{\delta}(R)=c R^{k} \int_{0}^{\infty} t^{k-1} f(t) V_{\delta+k: 2}(t R) d t \tag{1.16}
\end{equation*}
$$

At last, if $D(n)$ denotes the number of solutions in integers of

$$
n \geqq n_{1}^{2}+\ldots \ldots+n_{k}^{2}
$$

and $d(n)$ denotes the number of solutions in integers of the equation

$$
n=n_{1}^{2}+\ldots \ldots+n_{k}^{2},
$$

then

$$
\begin{equation*}
D(n)-D(n-1)=d(n) \tag{1.17}
\end{equation*}
$$

and

$$
\begin{equation*}
D(n)=O\left(n^{k / 2}\right) . \tag{1.18}
\end{equation*}
$$

2. K.Chandrasekharan [4] have proved the following theorems.

THEOREM A. If $p>0, h$ is the greatest integer less than p, and $\alpha>0$, then

$$
\begin{equation*}
f^{p}(t)=o\left(t^{\alpha}\right) \quad \text { as } \quad t \rightarrow 0 \tag{2.1}
\end{equation*}
$$

implies
(2. 2)

$$
S^{\delta}(R)=o(1) \quad \text { as } \quad R \rightarrow \infty,
$$

where

$$
\delta=p+\frac{k-1}{2}-\theta \quad \text { and } \quad \theta=\frac{\alpha(p-h)}{1+h+\alpha}
$$

THEOREM B. If $0<\alpha<1$ and $\alpha<\delta$ then

$$
S^{\delta}(R)=o\left(R^{-\alpha}\right) \quad \text { as } R \rightarrow \infty
$$

implies

$$
f_{p}(t)=o(1) \quad \text { as } t \rightarrow 0
$$

for

$$
p=\delta-\frac{1}{2}(k-3)-\theta,
$$

where

$$
\theta=\alpha\left(1+\frac{\delta-h}{1+h+\alpha}\right)
$$

h being the greatest integer less than δ provided that

$$
p \geqq \frac{k+1}{2}+k\left(\frac{\theta-\alpha}{\theta+\alpha}\right) .
$$

Above theorems are quite questional to us compared with the theorems of Fourier series of one variable. Especially the estimation (3. 23) and (4. 10) of Chandrasekharan's [4] seems to be incorrect.

Concerning these theorems we obtain the following theorems:

THEOREM 1. If $p>0, \alpha>0$
(2. 1)

$$
f_{p}(t)=o\left(t^{\alpha}\right)
$$

$$
\text { as } \quad t \rightarrow 0
$$

implies

(2. 2)

$$
S^{\delta}(R)=o(1)
$$

$$
\text { as } \quad R \rightarrow \infty,
$$

where

$$
\begin{equation*}
\delta=\frac{p(1+2 \tau)}{1+2 \tau+\alpha}+\tau \text { and } \tau=\frac{k-1}{2} . \tag{2.3}
\end{equation*}
$$

THEOREM 2. If $\alpha>0$
(2. 4)

$$
S^{8}(R)=o\left(R^{-\alpha}\right) \quad \text { as } \quad R \rightarrow \infty
$$

implies

$$
f_{p}(t)=o(1) \quad \text { as } \quad t \rightarrow 0
$$

where
(2. 5) $\quad p=\frac{(\delta+1)(1+2 \tau)}{1+2 \tau+\alpha}-\tau, \tau=\frac{k-1}{2}$ and $\delta>2 \tau+\alpha$.

Theorem 3. If $\alpha>0,1>\mu>0, p>0$
(2. 6)

$$
f_{0}(t)=O\left(t^{-2 \tau-\mu}\right)
$$

$$
\text { as } \quad t \rightarrow 0
$$

and
(2. 1)

$$
f_{p}(t)=o\left(t^{\alpha}\right)
$$

$$
\text { as } \quad t \rightarrow 0
$$

implies
(2. 2)

$$
S^{\delta}(R)=o(1)
$$

$$
\text { as } \quad R \rightarrow \infty,
$$

where
(2. 7) $\quad \delta=\frac{p(\mu+2 \tau)}{\mu+2 \tau+\alpha}+\tau \quad$ and $\quad \tau=\frac{k-1}{2}$.

THEOREM 4. If $\mu>0, \delta>0, \alpha>0$
(2. 8) $\quad a_{n_{1} \ldots n_{k}}=O\left\{\left(n_{1}^{2}+\ldots \ldots+n_{k}^{2}\right)^{-\mu / 2}\right\}$
and
(2. 3)
$S^{\delta}(R)=o\left(R^{-\alpha}\right)$
as $\quad R \rightarrow \infty$
implies

$$
f_{p}(t)=o(1) \quad \text { as } \quad t \rightarrow 0
$$

for

$$
p=\frac{(\delta+1)(1+2 \tau-\mu)}{1+2 \tau+\alpha-\mu}-\tau
$$

where

$$
\delta>2 \tau+\alpha-\mu>-1 \quad \text { and } \quad \tau=\frac{k-1}{2}
$$

For the case $k=1 \mathrm{~S}$. Isumi [7], G. Sunouchi [9] and the present author [8] has obtained the theorems of similar type.
3. Proof of thcorem 1. Since $\delta>\tau$ we can appeal to the formula

$$
\begin{align*}
S^{\delta}(R) & =c R^{k} \int_{0}^{\infty} t^{k-1} f_{0}(t) V_{\delta+k, 2}(t R) d t \tag{1.16}\\
& =c R^{k} \cdot\left[\int_{0}^{\eta}+\int_{\eta}^{\infty}\right] t^{k-1} f_{0}(t) V_{\delta+k \mid 2}(t R) d t=I+J \tag{3.1}
\end{align*}
$$

say, where η be chosen sufficiently small and kept fixed. Using the formula (1.3) and (1.13) we get

$$
\begin{aligned}
& J=O\left\{R^{k-\left(\delta+\frac{k+1}{2}\right)} \int_{\eta}^{\infty} t^{k-1} f_{0}(t) t^{-\left(\delta+\frac{k+1}{2}\right)} d t\right\} \\
= & O\left\{R^{(k-1) / 2-\delta} \int_{\eta}^{\infty} \frac{d F(t)}{t^{\delta+(k+1) / 2}} d t\right\}, F(t)=\int_{0}^{t} s^{k-1}\left|f_{0}(s)\right| d s, \\
= & O\left\{R^{(k-1) / 2-\delta}\left(\left[F(t) t^{-(\delta+(k+1) / 2)}\right]_{\eta}^{\infty}+\int_{\eta}^{\infty} \frac{F(t)}{t^{\delta+(k+1) / 2+1}} d t\right)\right\} \\
= & O\left\{R^{(k-1) 2-\delta}\left[t^{\delta+(k-1) / 2}\right]_{\eta}^{\infty}\right\}
\end{aligned}
$$

(3. 2) $=o(1) \quad$ as $R \rightarrow \infty$, by integration by part.
(3. 3) $I=C R^{k}\left[\int_{0}^{C R^{-\rho}}+\int_{C R-\rho}^{\eta} t^{k-1} f_{0}(t) V_{\delta+k / 2}(t R) d t=I_{1}+I_{2}\right.$,
say, where C is a sufficiently large constant and

$$
\begin{equation*}
\rho=\frac{\delta-\tau}{\delta+\tau+1}<1 \tag{3.4}
\end{equation*}
$$

$$
I_{2}=C R^{k} \int_{C R^{-\rho}}^{\eta} t^{k-1} f_{0}(t) V_{\delta+k / 2}(t R) d t
$$

$$
=O\left\{R^{(k-1) / 2-\delta} \int_{C R^{-\rho}}^{\eta} t^{k-1} f_{0}(t) t^{-\delta-(k-1) / 2} d t\right\}
$$

$$
=O\left\{R^{(k-1) / 2-\delta} R^{\rho(\delta+\overline{k+1} / 2)} C^{-(\delta+\overline{k+1} / 2)} \int_{C R^{-\rho}}^{\eta} t^{k-1}\left|f_{0}(t)\right| d t\right\}
$$

$$
=O\left\{R^{\tau-\delta+\rho(\delta+\tau+1)} C^{-(\delta+\tau+1)}\right\}
$$

(3. 5) $\quad=O\left\{C^{-(\delta+\tau+1)}\right\}=o(1)$,
by (1.3), (1. 13) and (3. 4),

We may assume that p is not an integer. For the case that p is an integer we can easily deduced the theorem by the familiar argument. Let h be the greatest integer less than p. By $(h+1)$-times applications of integration by parts, and noting (1.6), (1.7) and (1.12) the integral I_{1}, becomes

$$
\begin{aligned}
& I_{1}= C R^{k} \int_{0}^{C R^{-\rho}} t^{k-1} f_{0}(t) V_{\delta+k / 2}(t R) d t \\
&=\left[\sum_{s=0}^{h} c_{s} R^{k+2 s} \boldsymbol{\varphi}_{s+1}(t) V_{\delta+k / 2+s}(R t)\right]_{0}^{C R^{-\rho}} \\
& \quad+C R^{k+2 h+2} \int^{C R^{-\rho}} \boldsymbol{\varphi}_{l+1}(t) t V_{\delta+k / 2+h+1}(R t) d t
\end{aligned}
$$

(3. 6) $=\sum_{s=0}^{n} K_{s}+K$,
say, where $s=0$ if $p<1$ and $s=0,1,2, \ldots \ldots h$ if $p \geqq 1$.
Now, by K. Chandrasekharan and O. Szász [6],

$$
\phi_{p}(t)=t^{2 p+k-2} f_{p}(t)=c \int_{0}^{t}\left(t^{2}-s^{2}\right)^{p-1} s \varphi_{0}(s) d s=o\left(t^{2 p+k-2+\alpha}\right)
$$

is equivalent to

$$
\varphi_{p}^{*}(t)=c \int_{0}^{t}(t)-s^{p-1} s \boldsymbol{\varphi}_{0}(s) d s=o\left(t^{p+k-1+\alpha}\right) .
$$

Therefore, according to $\quad \varphi_{1}^{*}(t)=\boldsymbol{\varphi}_{1}(t)=\int_{0}^{t} s \boldsymbol{\varphi}_{0}(s) d s=o(1) \quad$ and $\phi_{p}^{*}(t)=o\left(t^{p+k-1+\alpha}\right)$, applying M. Riesz's convexity theorem we have

$$
\boldsymbol{\phi}_{s}^{*}(t)=o\left(t^{\left.(s-1)^{\prime} p+k-1+\alpha\right):(p-1)}\right), \quad 1 \leqq s \leqq h,
$$

and

$$
\boldsymbol{\varphi}_{h+1}^{*}(t)=o\left(t^{h+k+\alpha}\right) .
$$

That is,

$$
\varphi_{s}(t)=o\left(t^{\left.(s-1))^{p}+k-1+\alpha\right)+s-1}\right), \quad 1 \leqq s \leqq h,
$$

and

$$
\boldsymbol{\varphi}_{h+1}(t)=o\left(t^{2 h+k+\alpha}\right) .
$$

Hence, we obtain

$$
\begin{aligned}
\sum_{s=0}^{h-1} K_{h} & =\sum_{s=1}^{h-1} o\left[R^{k+2 s} R^{-(\delta+s+k / 2+1 / 2)} t^{(p+k-1+\alpha) /(p-1)+s} t^{-(\delta+s+k / 2+1 / 2)}\right]_{0}^{C_{R}-\rho} \\
& =\sum_{s=0}^{h-1} 0\left[R^{(k-1) / 2+\delta-\delta} R^{-\rho[(s(p+k+\alpha-1) /(p-1)-\delta-(k+1) / 2]}\right]_{0}^{C R^{-\rho}}
\end{aligned}
$$

The exponent of R in the bracket is

$$
\begin{aligned}
& (k-1) / 2+s-\delta-\rho\{s(p+k+\alpha-1) /(p-1)-\delta-(k+1) / 2\} \\
& =\tau+s-\delta-\frac{\delta-\tau}{\delta+\tau+1}\{s(p+2 \tau+\alpha) /(p-1)-(\delta+\tau+1)\} \\
& =\tau+s-\delta-\frac{p s(p+2 \tau+\alpha)}{(p+2 \tau+\alpha+1)(p-1)}+\delta-\tau \\
& =-(2 \tau+\alpha+1) s /(p-1)(p+1+2 \tau+\alpha) \leqq 0
\end{aligned}
$$

And

$$
\begin{aligned}
K_{h} & =\left[c_{h} R^{k+2 h} \boldsymbol{\varphi}_{h+1}(t) V_{\delta+k / 2+h}(R t)\right]_{0}^{c R^{-\rho}} \\
& =o\left[R^{k+2 h} R^{-(\delta+h+k / 2+1 / 2)} t^{h+k+\alpha} t^{-(\delta+h+k / 2+1,2)}\right]_{0}^{c R^{-\rho}} \\
& =o\left[R^{(k-1) / 2+h-\delta-\rho(k-1) / 2+h+\alpha-\delta)}\right] .
\end{aligned}
$$

The exponent of R in the last bracket is equal to

$$
\begin{aligned}
h+\tau & -\delta-\rho(h+\tau-\delta+\alpha)=h+\tau-\delta-\frac{\delta-\tau}{\delta+\tau+1}(h+\tau-\delta+\alpha) \\
& =\{(h+\tau-\delta)(2 \tau+1)+(\tau-\delta) \alpha\} /(\delta+\tau+1) \\
& =\{h(2 \tau+1)-(\delta-\tau)(1+2 \tau+\alpha)\} /(\delta+\tau+1) \\
& =\{h(2 \tau+1)-p(1+2 \tau)\} /(\delta+\tau+1) \\
& =(2 \tau+1)(h-p) /(\delta+\tau+1)<0, \\
\text { for } \delta & -\tau=p(1+2 \tau) /(1+2 \tau+\alpha) \text { and } h<p .
\end{aligned}
$$

Thus we have

$$
\begin{equation*}
\sum_{s=0}^{n} K_{s}=o(1) \tag{3.7}
\end{equation*}
$$

$$
\text { as } \quad R \rightarrow \infty .
$$

Let us estimate K. For the sake of completeness, we reproduce the same method to theorem 1 of K. Chandrasekharan [4]. Using (1. 7) we get

$$
\begin{aligned}
K & =c R^{k+2 h+2} \int_{0}^{c R^{-\rho}} t V_{\delta+k \mid 2+h+1}(R t) d t \int_{0}^{t}\left(t^{2}-s^{2}\right)^{h-p} s \varphi_{p}(s) d s \\
& =c R^{k+2 h+2} \int_{0}^{c R^{-\rho}} s \boldsymbol{\varphi}_{p}(s) d s \int_{s}^{c R^{-\rho}}\left(t^{2}-s^{2}\right)^{h-p} t V_{\delta+k / 2+h+1}(R t) d t \\
(3.8)= & c R^{k+2 h+2} \int_{0}^{c R^{-\rho}} s \boldsymbol{\varphi}_{p}(s) \psi(s, R) d s,
\end{aligned}
$$

say.
The interchange in the order being justified by the succeeding argument. We may write, by (1, 15),
(3. 9) $\psi(s, R)=\left(\int_{s}^{\infty}-\int_{C R-\rho}^{\infty}\right)\left(t^{2}-s^{2}\right)^{h-p} t V_{\delta+k / 2+h+1}(R t) d t$

$$
=R^{2 p-2 h-2} V_{\delta+p+k ; 2}(R s)-\int_{C R^{-\rho}}^{\infty}\left(t^{2}-s^{2}\right)^{h-p} t V_{\delta+k / 2+h+1}(R t) d t,
$$

where

$$
\begin{aligned}
& \int_{C R^{-\rho}}^{\infty}\left(t^{2}-s^{2}\right)^{h-p} t V_{\delta+k / 2+h+1}(R t) d t \\
&=\left(C^{2} R^{-2 \rho}-s^{2}\right)^{h-p} \int_{C R^{-\rho}}^{\xi} t V_{\delta+k / 2+h+1}(R t) d t, \\
&=\left(C^{2} R^{-2 \rho}-s^{2}\right)^{h-p} R^{-2} \int_{C R^{1-\rho}}^{\xi R} s V_{\delta+k / 2+h+1}(s) d s \\
&=\left(C^{2} R^{-2 \rho}-s^{2}\right)^{h-\rho}<\xi<\infty \\
& R^{-2}\left[V_{\delta+k / 2+h}(s)\right]_{C R^{1-\delta}}^{\xi R}
\end{aligned}
$$

(3. 10) $=O\left\{\left(R^{-2 \rho}-s^{2}\right)^{h-p} R^{-2} R^{-(1-\rho)(\delta+k / 2+1 / 2+h)}\right\}$, by (1. 12) and (1. 14).

Using (3. 9) and (3. 10) in (3. 8) we obtain

$$
K=c R^{k+2 p} \int_{0}^{c R^{-\rho}} s \boldsymbol{\varphi}_{p}(s) V_{\delta+k / 2+p}(R s) d s
$$

(3. 11)

$$
+O\left\{R^{k+2 h+(\rho-1)\left(\delta+k^{2}+1 / 2+h\right)} \int_{0}^{\sigma R^{-\rho}}\left(R^{-2 \rho}-s^{2}\right)^{h-p} s\left|\varphi_{p}(s)\right| d s\right\} .
$$

The first term is

$$
c R^{k+2 p}\left(\int_{0}^{1 / R}+\int_{1 / R}^{C R^{-\rho}}\right) s \boldsymbol{\varphi}_{p}(s) V_{\delta+k / 2+p}(R s) d s=L_{1}+L_{2}, \text { say }
$$

By (1. 6), (1. 13) and (2. 1), we get
(3. 12) $\quad L_{1}=o\left\{R^{k+2 p} \int_{0}^{1 / R} s^{2 p+k+\alpha-1} d s\right\}=o\left(R^{-\alpha}\right)=o(1)$ as $R \rightarrow \infty$, and in addition, by (1. 14),

$$
\begin{aligned}
L_{2} & =o\left\{R^{k+2^{p}} \int_{1 / R}^{\sigma R^{-\rho}} s^{2 p+k+\alpha-1}(s R)^{-\delta-(k+1) / 2-p} d s\right\} \\
& =o\left\{R^{k+p-\delta-(k+1) / 2}\left[s^{p+(k-1) / 2-\delta+\alpha}\right]_{i / R}^{c R^{-\rho}}\right\} \\
(3.13) & =o\left\{R^{p+\tau-\delta-\rho(p+\tau-\delta+\alpha)}\right\},
\end{aligned}
$$

for $p+\tau-\delta+\alpha=p \alpha /(1+2 \tau+\alpha)+\alpha=\alpha(p+1+2 \tau+\alpha) /(1+2 \tau+\alpha)<0$.
The exponent of R is
because

$$
\begin{array}{r}
p+\tau-\delta-\rho(p+\tau-\delta+\alpha)=0 \\
p+\tau-\delta=p \alpha /(1+2 \tau+\alpha) \\
\rho=p /(p+1+2 \tau+\alpha)
\end{array}
$$

Since $\varphi_{p}(t)=o\left(t^{2 p+k-2+\alpha}\right)$ by hypothesis, the second term is

$$
\begin{align*}
& o\left\{R^{k+2 h+(\rho-1)\{\delta+(k+1) / 2+h\}} \int_{0}^{c R^{-\rho}}\left(R^{-\rho}-s\right)^{h-p}\left(R^{-\rho}+s\right)^{h-p} s^{2 p+k+\alpha-1} d s\right\} \\
& =o\left\{R^{k+2 h+(\rho-1)(\delta+(k+1) /[2+h\}} R^{-\rho(h-p)-\rho(2 p+k+\alpha-1)} \int_{0}^{h R^{-\rho}}\left(R^{-\rho}-s\right)^{h-p} d s\right\} \\
& \text { 3. } 14) \quad=o\left\{R^{h+2 h+(\rho-1)(\delta+(k+1) / 2+h\}} R^{-\rho(2 h+k+\alpha)}\right\} . \tag{3.14}
\end{align*}
$$

The exponent of R is

$$
\begin{aligned}
k+ & 2 h-\delta-\frac{1}{2}(k-1)-h-\rho\{h+(k-1) / 2+\alpha-\delta\} \\
& =-\delta+\tau+h-\rho(h+\tau-\delta+\alpha) \\
& =(h+\tau-\delta)(1-\rho)-\alpha p<(p+\tau-\alpha)(1-\rho)-\alpha \rho \\
& =\frac{p \alpha}{1+2 \tau+\alpha} \cdot \frac{1+2 \tau+\alpha}{p+1+2 \tau+\alpha}-\frac{\alpha p}{p+1+2 \tau+\alpha}=0 .
\end{aligned}
$$

Therefore, we obtain
(3.15) $\quad K=o(1) \quad$ as $\quad R \rightarrow \infty$.

Summing up (3. 1), (3. 2), (3. 3), (3. 5), (3. 6), (3.7) and (3.15) we have

$$
S^{\delta}(R)=o(1) \quad \text { as } \quad R \rightarrow \infty
$$

which is the required.
4. proof of theorem 2. We need the following lemma.

LEMMA. Let $W(x)$ be a positive non-decreasing function of $x, V(x)$ any positive function of x, both defined for $x>0, A(t)$ a function of t which is of bounded variation in every finite interval, and

$$
A_{k}(t)=k \int_{0}^{t}(t-u)^{k-1} A(u) d u
$$

Then

$$
A(x+t)-A(x)=O\left(t^{\gamma} V(x)\right), o<t=O\left[\{W / V\}^{1 /(k+\gamma)}\right], \gamma>0,
$$

and

$$
A_{k}(x)=o[W(x)], \quad k>0
$$

where

$$
0<W(x) / W(x)<H<\infty, \text { for } 0<x^{\prime}-x=O(W / V)^{1 /(k+\gamma)}
$$

together imply

$$
A(x)=o\left[V^{k /(k+\gamma)} W^{\gamma /(k+\gamma)}\right] .
$$

If further $V^{k /(k+\gamma)} W^{\gamma /(k+\gamma)}$ is non-decreasing, then

$$
A_{r}(x)=o\left[V^{(k-\gamma)(k+\gamma)} W^{(\gamma+r) /(k+\gamma)}\right], 0 \leqq r \leqq k .
$$

(See, for example [5, p. 20].)

We know that
(4. 1)

$$
f_{p}(t) \sim c \sum_{n=0}^{\infty} A_{n} V_{p+(k-2) / 2}(\sqrt{ } n t)
$$

(see [3]). Let us put $m=[t]^{-p}$, where

$$
\begin{equation*}
\rho=2(p+\tau) /(p-\tau-1)>0 \tag{4.2}
\end{equation*}
$$

for

$$
p-\tau-1=(1+2 \tau)(\delta-2 \tau-\alpha) /(1+2 \tau+\alpha)>0
$$

Then we have, since $a_{n 1 n_{k} \ldots} \rightarrow 0$ and (1. 18),

$$
\begin{aligned}
& \sum_{n=m+1}^{\infty} A_{n} V_{p+\tau-1 / 2}(\sqrt{n} t)=o\left(\sum_{m=1}^{\infty} \frac{d(n)}{n^{(p+\tau) 2} t^{p+\tau}}\right) \\
& =o\left(t^{-p-\tau} \int_{m+1}^{\infty} \frac{d D(x)}{x^{(p+\tau) / 2}}\right)=o\left(t^{-p-\tau} \int_{m+1}^{\infty} \frac{d x}{x^{p+\tau)(2+1-k / 2}}\right)
\end{aligned}
$$

(4. 3)

$$
=o\left(t^{-p-\tau} m^{-(p+\tau) / 2+\tau+1 / 2}\right)=o\left(t^{-(p+\tau)} m^{-(p-\tau-1), 2}\right)=o(1) .
$$

Since $p-\tau-1>0$, the " \sim " in (4.1) can be replaced by equality.
Let h be the greatest integer less than δ, for the case δ is an integer we can deduced by the following argument, then by partial integration $(h+1)$-times, we obtain

$$
\begin{aligned}
& \sum_{n=0}^{m} A_{n} V_{p+\tau-1,2}(\sqrt{n} t) \\
& =\sum_{r=0}^{n+1} c_{r} t^{2 r} T^{r}(\sqrt{ } \bar{m}) V_{p+\tau-1 / 2+r}(\sqrt{ } \bar{m} t)+t^{2 n+4} \int_{0}^{\sqrt{ } m} S^{h+1}(R) R^{2 h+3} V_{p+\tau+h+3 / 2}(R t) d R \\
& =\sum_{r=0}^{n} \psi_{r}(t)+\psi_{h+1}(t)+\psi(t), \text { say. }
\end{aligned}
$$

For $t=O(R)$ we get

$$
\begin{aligned}
& \left|S\left\{(R+t)^{1 / 2}\right\}-S\left(R^{1 / 2}\right)\right| \leqq \sum_{R<n \leqq R+t}\left|A_{n}(t)\right| \\
& =\sum_{R<n \leq R+t}\left|a_{n_{\mathbf{1}} \ldots n_{k}}\right|=o\left(\sum_{R<n \leq R+t} d(n)\right) \\
& =o\left(\int_{R}^{R+t} d D(x)\right)=o\left(t R^{k / 2-1}\right), \text { by (2. 18). }
\end{aligned}
$$

Since $S^{\delta}(R)=o\left(n^{-\alpha}\right)$ by hypothesis, we obtain by Lemma

$$
S^{r}(R)=o\left[R^{\frac{2}{\delta+1}\{\delta r+(\delta-r) k[2+r(1-\alpha / 2)-\alpha / 2\}-2 r}\right], 0 \leqq r \leqq h .
$$

Thus we get
(4. 4) $\quad T^{r}(R)=o\left[R^{\frac{2}{\delta+1}\{\delta r+(\tau+1 / 2) \delta-r(\tau+1 / 2)+r(1-\alpha / 2)-\alpha / 2]}\right]$

$$
=\mathrm{o}\left[R^{\frac{1}{\delta+1}[r(2 \delta-\cdots \tau+1-\alpha)+(\underline{2}+1) \delta-\alpha\}}\right], 0 \leqq r \leqq h .
$$

And by hypothesis (2. 4), we obtain

$$
\begin{equation*}
T^{h+1}(R)=o\left(R^{2 h+2-\alpha}\right) \tag{4.5}
\end{equation*}
$$

Substituting (4. 4), we have

$$
\begin{aligned}
& \sum_{r=0}^{n} \psi_{r}(t)=o\left[\sum_{r=0}^{n} t^{2 r} t^{-(p+\tau+r)} m^{\frac{1}{2(\delta+1)}\{r(2 \delta-2 \tau+1-\alpha)+(2 \tau+1) \delta-\alpha)-\frac{1}{2}(p+\tau+r)}\right]
\end{aligned}
$$

The exponent of t in the last bracket is

$$
\begin{aligned}
& 2 r-(r+p+\tau)-\frac{\delta+1}{\delta-2 \tau-\alpha} \frac{1}{\delta+1}\{2(\delta-2 \tau-\alpha)+(1+2 \tau+\alpha) r \\
& +(1+2 \tau) \delta-\alpha\}+\frac{\delta+1}{\delta-2 \tau-\alpha}(p+\tau+r) \\
& =-\frac{r(1+2 \tau+\alpha)+\delta(1+2 \tau)-\alpha}{\delta-2 \tau-\alpha}+\frac{p+\tau+r}{\delta-2 \tau-\alpha}(1+2 \tau+\alpha) \\
& =\{(p+\tau)(1+2 \tau+\alpha)-\delta(1+2 \tau+\alpha\} /(\delta-2 \tau-\alpha) \\
& =\{(\delta+1)(1+2 \tau)-\delta(1+2 \tau)+\alpha\} /(\delta-2 \tau-\alpha) \\
& =(1+2 \tau+\alpha) /(\delta-2 \tau-\alpha)>0 \\
& \text { for } \quad p+\tau=(\delta+1)(1+2 \tau) /(1+2 \tau+\alpha) \\
& \text { and } p-\tau-1=(\delta-2 \tau-\alpha)(1+2 \tau) /(1+2 \tau+\alpha) \text {. Thus, we obtain }
\end{aligned}
$$

$$
\begin{equation*}
\sum_{r=0}^{n} \psi_{r}(t)=o(1) \quad \text { as } t \rightarrow 0 \tag{4.7}
\end{equation*}
$$

From (4. 5), we have

$$
\begin{aligned}
& \psi_{h+1}(t)=o\left\{t^{2(h+1)} t^{-(p+\tau+h+1)} m^{\frac{1}{2}(2 h+2-\alpha)} m^{-\frac{1}{2}(p+\tau+h+1)}\right\} \\
& (4.8)=o\left\{t^{h+1-p-\tau} m^{(h+1-\alpha-p-\tau) / 2}\right\}=o\left\{t^{h+1-q-\tau-\rho(h+1-\alpha-p-\tau) / 2}\right\} .
\end{aligned}
$$

The exponent of t is

$$
\begin{aligned}
& h+1-p-\tau+\frac{p+\tau}{p-\tau-1}(\alpha+p+\tau-h-1) \\
& =\{(h+1-p-\tau)(p-\tau-1)+(p+\tau)(\alpha+p+\tau-h-1)\} /(p-\tau-1) \\
& =\{(p+\tau)(1+2 \tau+\alpha)-(h+1)(1+2 \tau)\} /(p-\tau-1) \\
& =\{(\delta+1)(1+2 \tau)-(1+2 \tau)(h+1)\} /(p-\tau-1) \\
& =(1+2 \tau)(\delta-h) /(p-\tau-1)>0 .
\end{aligned}
$$

Hence, we have
(4. 9)

$$
\boldsymbol{\psi}_{h+1}(t)=o(1)
$$

$$
\text { as } \quad t \rightarrow 0 .
$$

Now we consider the integral $\psi(t)$. By the same reason as in theorem 1 , we repreat the argument of [4].

$$
\begin{aligned}
\psi(t) & =c t^{2 h+4} \int_{0}^{\sqrt{m}} R V_{p_{+\tau+h+3,2}}(R t) d R \int_{0}^{R}\left(R^{2}-s^{2}\right)^{h-\delta} s T^{\delta}(s) d s \\
\text { (4. 10) } & =c t^{2 h+4} \int_{0}^{\sqrt{m}} s T^{\delta}(s) d s \int_{s}^{\sqrt{m}} R V_{p+\tau+h+3 / 2}(R t)\left(R^{2}-s^{2}\right)^{h-\delta} d R
\end{aligned}
$$

The interchange of integration keing justified by the succeeding argument. (4. 10) may be written as

$$
\begin{aligned}
& c t^{2 h+4}\left[\int_{0}^{\sqrt{m}} s T^{\delta}(s) d s \int_{s}^{\infty} R V_{p+\tau+h+3 / 2}(R t)\left(R^{2}-s^{2}\right)^{h-\delta} d R\right. \\
& \left.\quad-\int_{0}^{\sqrt{n}} s T^{\delta}(s) d s \int_{, ~}^{\infty} R V_{p+\tau+h+3 / 2}(R t)\left(R^{2}-s^{2}\right)^{h-\delta} d R\right] \\
& =c t^{2 h+4} t^{-2 h+2 \delta-2} \int_{0}^{\sqrt{v}} s T^{\delta}(s) V_{p+\tau+h+3 / 2-h+\delta 11}(s t) d s \\
& \quad-c t^{2 h+4} \int_{0}^{\checkmark m} s T^{\delta}(s) d s \int_{\sqrt{\prime m}}^{\infty} R V_{p+\tau+l+3 / 2}(R t)\left(R^{2}-s^{2}\right)^{h-\delta} d R
\end{aligned}
$$

(4. 11) $=\chi_{1}(t)+\chi_{2}(t)$, say. And

$$
\begin{aligned}
& \left|\int_{\sqrt{m}}^{\infty} R V_{p+\tau+3 / 2}(R t)\left(R^{2}-s^{2}\right)^{h-\delta} d R\right| \leqq\left(m-s^{2}\right)^{n-\delta} \max _{\sqrt{\overline{m^{\prime}}>\sqrt{ } \bar{m}}}\left|\int_{\sqrt{\bar{m}}}^{\sqrt{\overline{m^{\prime}}}} R V_{p+\tau+h+3 / 2}(R t) d R\right| \\
& \quad=\left(m-s^{2}\right)^{h-\delta} \max _{\sqrt{\bar{m}^{\prime}>\sqrt{m}}} t^{-2}\left[V_{p+\tau+h+1 / 2}(R t)\right]_{\sqrt{\bar{m}}}^{\sqrt{m^{\prime}}} \\
& \quad=O\left\{\left(m-s^{2}\right)^{h-\delta} t^{-2} t^{-(p+\tau+h+1)} m^{-(p+\tau+h+1) / 2}\right\} .
\end{aligned}
$$

Thus we obtain, by $\quad T^{s}(R)=R^{2 \delta} S^{\delta}(R)=o\left(R^{2 \delta-\alpha}\right)$,

$$
\begin{aligned}
\chi_{2}(t) & =O\left\{t^{2 h+1-p-\tau-h} m^{-(p+\tau+h+1) / 2} \int_{0}^{\sqrt{m}} s\left|T^{\delta}(s)\right|\left(m-s^{2}\right)^{h-\delta} d s\right\} \\
& =o\left\{\left\{t^{h-p-\tau+1} m^{-(p+\tau+h+1)} \int_{0}^{\sqrt{m}} s^{2 \delta+1-\alpha}\left(m-s^{2}\right)^{h-\delta} d s\right\}\right. \\
& =o\left\{t^{h-p-\tau+1} m^{-(p+\tau+h+1) / 2} m^{(2 \delta-\alpha) / 2+h+1-\delta}\right\}
\end{aligned}
$$

(4. 12) $=o\left\{t^{h-p-\tau+1} m^{-(p+\tau-h+\alpha-1) / 2}\right\}=o(1)$,
by the same reasoning as in (4. 8).
And at last

$$
\begin{aligned}
& \chi_{1}(t)=t^{2 \delta+2}\left(\int_{0}^{1 / t}+\int_{1 / t}^{\sqrt{m}}\right) s T^{\delta}(s) V_{p+\tau+\delta+1 / 2}(s t) d s \\
&= o\left\{t^{2 \delta+2} \int_{0}^{1 / t} s^{2 \delta+1-\alpha} d s\right\}+o\left\{t^{\delta \delta+2} \int_{1 / t}^{\sqrt{m}} s^{1+2 \delta-\alpha} s^{-(p+\tau+\delta+1)} t^{-(p+\tau+\delta+1)} d s\right\} \\
&= o\left(t^{\alpha}\right)+o\left\{t^{2 \delta+1-p-\tau-\delta} m^{(\delta+1-\alpha-p-\tau) / 2}\right\} \\
&= o(1)+o\left(t^{\delta+1-p-\tau-\digamma(\delta+1-\alpha-p-\tau) / 2}\right), \\
& \text { for } \delta+1-\alpha-p-\tau=\delta+1-\alpha-(\delta+1)(1+2 \tau) /(1+2 \tau+\alpha) \\
&= \alpha(\delta-2 \tau-\alpha) /(1+2 \tau+\alpha)>0 .
\end{aligned}
$$

The exponent of t of the second term is

$$
\begin{aligned}
& \delta+1-p-\tau-\frac{p+\tau}{p-\tau-1}(\delta+1-\alpha-p-\tau) \\
= & \{p(1+2 \tau+\alpha)-2 \tau(\delta+1)-(\delta+1)+\tau(1+2 \tau+\alpha)\} /(p-\tau-1) \\
= & \{(p+\tau)(1+2 \tau+\alpha)-(1+2 \tau)(\delta+1)\} /(p-\tau-1)=0, \\
& f+\tau=(\delta+1)(1+2 \tau) /(1+2 \tau+\alpha) .
\end{aligned}
$$

Therefore, we get
(4. 13)
$\chi_{1}(t)=o(1)$
as $t \rightarrow 0$.
On account of (4. 1), (4. 3), (4. 7), (4. 9), (4. 11), (4. 12) and (4. 13) we have

$$
f_{p}(t)=o(1) \quad \text { as } t \rightarrow 0
$$

Thus the proof is completed.
5. Proof of Theorem 3. The argument closely resembles that of Theorem 1. And so, we omit the detailed calculation. Since
$\delta=p(2 \tau+\mu) /(\mu+2 \tau+\alpha)+\tau>\tau$, we have
(5. 1) $\quad S^{\delta}(R)=c R^{k} \int_{0}^{\eta} t^{k-1} f_{0}(t) V_{\delta+k / 2}(t R) d t+o(1)=I+o(1)$,
say, as $R \rightarrow \infty$.
(5. 2) $\quad I=c R^{k}\left[\int_{0}^{C R^{-\rho}}+\int_{C R^{-} \rho}^{\eta}\right] t^{k-1} f_{0}(t) V_{\delta+k / 2}(R t) d t=I_{1}+I_{2}$, say, where C is a sufficiently large constant and
(5. 3) $\quad \rho=(\delta-\tau) /(\mu+\delta+\tau)<1$.

$$
\begin{aligned}
I_{2} & =c R^{k} \int_{C R^{-\rho}}^{\eta} t^{k-1} f_{0}(t) V_{\delta+k / 2}(t R) d t \\
& =O\left\{R^{k-(\delta+k / 2+1 / 2)} \int_{C R^{-\rho}}^{\eta} t^{-\mu-\delta-(k+1) / 2} d t\right\}, \text { by (1. 14) and (2.6), }
\end{aligned}
$$

$$
\begin{aligned}
& =O\left\{R^{(k-1) / 2-\delta} C^{-(\mu+\delta+k / 2-1 \mid 2)} R^{\rho(\mu+\delta+k / 2-1 / 2)}\right\} \\
& =O\left\{R^{\tau-\delta+\rho(\mu+\delta+\tau)} C^{-(\mu+\delta+\tau)}\right\}
\end{aligned}
$$

(5. 4) $=O\left\{C^{-(\mu+\delta+\tau)}\right\}=o(1)$, by (5. 3).

Now we consider I_{1}. Let h be the greatest integer less than p. By $(h+1)$-times applications of integration by parts, we have

$$
\begin{aligned}
I_{1}= & {\left[\sum_{s=0}^{n} c_{s} R^{k+2 s} \boldsymbol{\varphi}_{s+1}(t) V_{\delta+k / 2+s}(t R)\right]_{0}^{c R-\rho}+c R^{k+2 h+2} \int_{0}^{c_{R}-\rho} \boldsymbol{\varphi}_{h+1}(t) t V_{\delta+k / j+h+1}(t R) d t } \\
& (5.5)=\sum_{s=0}^{n} K_{s}+K, \quad \text { say. }
\end{aligned}
$$

Applying similar method to that of Theorem 1, by (2.6) and (2. 1), we get

$$
\begin{aligned}
\boldsymbol{\varphi}_{s}(t) & =o\left(t^{-\mu+s-1+s(p+\mu+2 \tau+\alpha), p}\right), & 0 \leqq s \leqq h, \\
\boldsymbol{\varphi}_{h+1}(t) & =o\left(t^{2 h+2 \tau+\alpha+1}\right) . &
\end{aligned}
$$

Hence, we obtain

$$
\begin{aligned}
\sum_{s=0}^{h-1} K_{s} & =\sum_{s=0}^{h-1} o\left[R^{k+2 s} R^{-(\delta+k / 2+s+1 / 2)} t^{-\mu+(s+1)(p+2 \tau+\alpha+\mu) / p+s} t^{-(\delta+k / 2+s+1 / 2)}\right]_{0}^{C_{1}-\rho} \\
& =\sum_{s=1}^{h-1} o\left[R^{(k-1) / 2+s-\delta-\rho[(s+1)(p+2 \tau+\alpha \mid \mu) / p-(\mu|\delta| k / 2 / 2+p / 2)\}}\right]
\end{aligned}
$$

The exponent of R in the bracket is

$$
\begin{aligned}
& \tau+s-\delta-\rho\{(s+1)(p+2 \tau+\alpha+\mu) / p-(\mu+\delta+\tau+1)\} \\
& =\tau+s-\delta-\frac{\delta-\tau}{\mu+\delta+\tau}\{(s+1)(p+2 \tau+\alpha+\mu) / p-1\}+\delta-\tau \\
& =s-\frac{(s+1)(p+2 \tau+\alpha+\mu)-p}{\mu+2 \tau+\alpha+\mu}=-\frac{\mu+2 \tau+\alpha}{\mu+2 \tau+\alpha+p}<0
\end{aligned}
$$

$$
\text { for } \quad \rho=(\delta-\tau) /(\mu+\delta+\tau)=p /(\mu+2 \tau+\alpha+p)
$$

Thus we have

$$
\begin{aligned}
& \text { (5. 6) } \quad \sum_{s=0}^{h-1} K_{s}=o(1) \\
& \begin{aligned}
K_{h} & =\left[c_{h} R^{k+2 h} \varphi_{h+1}(t) V_{\delta+k / 2+h}(R t)\right]_{0}^{c R^{-\rho}} \\
& =o\left[R^{k+2 h-\delta-k / 2-1 / 2-h} t^{2 h+2 \tau+\alpha+1-(\delta+k / 2+1 / 2+h)}\right]_{0}^{c R^{-\rho}} \\
& =o\left[R^{\tau+h-\delta-\rho(\tau+h+\alpha-\delta)}\right] .
\end{aligned}
\end{aligned}
$$

$$
\text { as } \quad R \rightarrow \infty .
$$

The exponent of R is

$$
\tau+h-\delta-\rho(\tau+h-\delta+\alpha)
$$

$$
\begin{aligned}
& =\tau+h-\delta-\frac{\delta-\tau}{\mu+\delta+\tau}(\tau+h-\delta+\alpha) \\
& =\{(h+\tau-\delta)(\mu+2 \tau)-(\delta-\tau) \alpha\} /(\mu+\delta+\tau) \\
& =\{h(\mu+2 \tau)-(\delta-\tau)(\alpha+2 \tau+\mu)\} /(\mu+\delta+\tau) \\
& =\{h(\mu+2 \tau)-p(\mu+2 \tau)\} /(\mu+\delta+\tau) \\
& =(h-p)(\mu+2 \tau) /(\mu+\delta+\tau)<0,
\end{aligned}
$$

for $\quad \delta-\tau=p(\mu+2 \tau) /(\mu+2 \tau+\alpha) \quad$ and $\quad h<p$.
Hence we get
(5. 7) $\quad K_{h}=o(1)$
as $\quad R \rightarrow \infty$.
Next we have, in the similar way as (3.11),

$$
\begin{aligned}
K=c R^{1+2 \tau+乡 p} & \int_{0}^{C R^{-\rho}} s \boldsymbol{\varphi}_{p}(s) V_{\delta+k / 2+\boldsymbol{p}}(s R) d s \\
& +c R^{1+2 \tau+2 h+\rho-1)(\delta+\tau+1+h)} \int_{0}^{C R^{-\rho}}\left(R^{-2 \rho}-s^{2}\right)^{h-p} s\left|\boldsymbol{\varphi}_{p}(s)\right| d s .
\end{aligned}
$$

We may write the first term as

$$
c R^{1+2 \tau-2 p}\left(\int_{0}^{1 / R}+\int_{1 / R}^{\left(R^{-\rho}\right.}\right) s \boldsymbol{\varphi}_{p}(s) V_{\delta+k / 2+p}(s R) d s=L_{1}+L_{2}
$$

say.
$L_{1}=o\left(R^{-\alpha}\right)=o(1)$,
by (3. 12), as $R \rightarrow \infty$. By (3. 13)

$$
L_{2}=o\left\{R^{p+\tau-\delta-\rho(p+\tau-\delta+\alpha)}\right\}=o(1) \quad \text { as } R \rightarrow \infty,
$$

for $\quad(p+\tau-\delta) /(p+\tau-\delta+\alpha)=p /(p+\alpha+2 \tau+\mu)=\rho$.
The second term is, by (3. 14),

$$
\text { for } \begin{gathered}
\mathrm{o}\left\{R^{h+\tau-\delta-\rho(h+\tau+\alpha-\delta)}\right\}=o(1) \quad \text { as } R \rightarrow \infty, \\
h+\tau-\delta-\rho(h+\tau+\alpha-\delta)<(p+\tau-\delta)(1-\rho)-\alpha \rho \\
=\frac{p \alpha}{\alpha+2 \tau+\mu} \cdot \frac{\alpha+2 \tau+\mu}{p+\alpha+2 \tau+\mu}-\frac{p \alpha}{p+\alpha+2 \tau+\mu}=0
\end{gathered}
$$

Hence we o'btain

$$
\begin{equation*}
K=o(1) \tag{5.8}
\end{equation*}
$$

$$
\text { as } \quad R \rightarrow \infty .
$$

Summing up (5.1), (5.2), (5.4), (5.5), (5.6), (5.7) and (5.8) we have

$$
S^{\delta}(R)=o(1) \quad \text { as } \quad R \rightarrow \infty,
$$

which is the required.
6. Proof of Theorem 4. By the same reasoning as in Theorem 3, we omit the detailed calculation. We know that

$$
\begin{equation*}
f_{p}(t) \sim c \sum_{n=0}^{\infty} A_{n} V_{p+(k-2) / 2}(\sqrt{n} t) \tag{6.1}
\end{equation*}
$$

Let us put $m=[\varepsilon t]^{-p}$, where

$$
\begin{aligned}
& \text { (6. 2) } \quad \rho=2(p+\tau) /(p+\mu-\tau-1)>0 \text {, because } p+\mu-\tau-1 \\
& =(1+2 \tau-\mu)(\delta+1) /(1+2 \tau+\alpha-\mu)+\mu-2 \tau-1 \\
& =(1+2 \tau-\mu)(\delta+\mu-2 \tau-\alpha) /(1+2 \tau+\alpha-\mu)>0,
\end{aligned}
$$

and ε is sufficiently small positive number.
Then, by hypothesis (2. 8), we get

$$
\begin{aligned}
& \sum_{n=m+1}^{\infty} A_{n} V_{p+\tau-1 / 2}(\sqrt{n} t)=O\left\{\sum_{n=m+1}^{\infty} \frac{n^{-\mu / 2} d(n)}{n^{(p+\tau) / 2} t^{p+\tau}}\right\} \\
& \quad=O\left\{t^{-p-\tau} \int_{m+1}^{\infty} \frac{d D(x)}{x^{(p+\tau+\mu) / 2}}\right\}=O\left\{t^{-(p+\tau)} t^{\rho(p+\mu-\tau-1) / 2} \varepsilon^{\rho(p+\mu-\tau-1) / 2}\right\}
\end{aligned}
$$

(6. 3) $\quad=O\left(\varepsilon^{(p+\tau)}\right)=o(1)$, by (6. 2)

Since $p+\mu-\tau-1>0$, the "~" in (6.1) can be replaced by equality.
If h is the greatest integer less than δ, then by partial integration $(h+1)$ times, we get

$$
\begin{gathered}
\sum_{n=0}^{m} A_{n} V_{p^{+\tau-1 / 2}}(\sqrt{n} t)=\sum_{r=0}^{h+1} c_{r} t^{2 r} T^{r}(\sqrt{m}) V_{p+\tau-1 / 2+r}(\sqrt{m} t) \\
+c t^{2 h+4} \int_{0}^{\sqrt{m}} S^{h+1}(R) R^{2 h+3} V_{p+\tau+h+3,2}(R t) d R
\end{gathered}
$$

(6. 4) $=\sum_{r=0}^{n} \psi_{r}(t)+\psi_{n+1}(t)+\psi(t)$,
say.
For $t=O(R)$, by hypothesis, we have

$$
\begin{aligned}
& \left|S\left\{(R+t)^{1 / 2}\right\}-S\left(R^{1 / 2}\right)\right| \leqq \sum_{R_{<n} \leqq R+t}\left|A_{n}\right|=\sum_{R<n \leqq R+t}\left|a_{n_{1} \cdots n_{k}}\right| \\
& =O\left\{\Sigma\left\{\left(n_{1}^{2}+\ldots \cdots+n_{k}^{3}\right)^{-\mu / 2}\right\}=O\left\{\sum_{R<n \leqq R+t} d(n) n^{-\mu / 2}\right\}\right. \\
& =O\left\{\int_{R}^{R+t} x^{-\mu / 2} d D(x)\right\}=O\left(t R^{(k+\mu) / 2-1}\right) .
\end{aligned}
$$

Therefore we obtain,by Lemma,

$$
S^{r}(R)=o\left[R^{\frac{2}{\delta+1}[\delta r+(\delta-r)(k-\mu) / 2+r(1-\alpha / 2)-\alpha / 2]-2 r}\right],
$$

that is,

$$
T^{r}(R)=\sigma\left[R^{\frac{2}{\delta+1}\left(\delta r+(\delta-r)\left(\tau+1 / 2-\mu(2)+\mu(1-\alpha / 2)-\left.\alpha\right|^{2}\right\}\right.}\right]
$$

$$
=o\left[R^{\frac{1}{\delta+1}\{r(2 \delta-2 \tau+1+\mu-\alpha)+\delta(1+2 \tau-\mu)-\alpha)}\right]
$$

Moreover, it is easy to see that

$$
T^{h+1}(R)=o\left(R^{2 h+2-\alpha}\right)
$$

Hence we get

$$
\begin{aligned}
\sum_{r=0}^{n} \psi_{r}(t) & =\sum_{r=0}^{n} o\left[t^{2 r-(p+\tau+r)} m^{-(p+\tau+r) \mid 2+[r(2 \delta-2 \tau+1+\mu-\alpha)+\delta(1+!\tau-\mu)-\alpha) / 2(\delta+1)}\right] \\
& =\sum_{r=0}^{n} o\left[t^{r-p-\tau-(\rho / 2)[(r(2 \delta-2 \tau+1+\mu-\alpha)+\delta(1+2 \tau-\mu)-\alpha\} /(\delta+1)-(p+\tau+r)]}\right]
\end{aligned}
$$

The exponent of t in the bracket is

$$
\begin{aligned}
& r-p-\tau-\frac{\delta+1}{\delta-2 \tau-\alpha+\mu}[\{r(2 \delta-2 \tau+1+\mu-\alpha)+\delta(1+2 \tau-\mu)-\alpha\} /(\delta+1)-(p+\tau+r)] \\
& =2 r-(r+p+\tau)-\frac{1}{\delta-2 \tau-\alpha+\mu}\{2(\delta-2 \tau-\alpha+\mu) r+(1+2 \tau+\alpha-\mu) r+\delta(1+2 \tau-\mu)-\alpha\} \\
& \\
& \quad+\frac{(\delta+1)(p+\tau+r)}{\delta-2 \tau-\alpha+\mu} \\
& = \\
& =\frac{(1+2 \tau+\alpha-\mu)(p+\tau+r)}{\delta-2 \tau-\alpha+\mu}-\frac{1}{\delta-2 \tau-\alpha+\mu}\{(1+2 \tau+\alpha-\mu) r+\delta(1+2 \tau-\mu)-\alpha\} \\
& =
\end{aligned} \quad\{(2 \tau+\alpha+1-\mu)(p+\tau)-\delta(1+2 \tau-\mu)+\alpha\} /(\delta-2 \tau-\alpha+\mu),
$$

for $p+\tau=(1+2 \tau-\mu)(\delta+1) /(1+2 \tau+\alpha-\mu)$ and $\rho=2(\delta+1) /(\delta-2 \tau-\alpha+\mu)$.
Thus we have
(6. 5)

$$
\sum_{r=0}^{n} \psi_{r}(t)=o(1)
$$

$$
\text { as } t \rightarrow 0
$$

By the same reasoning as in (4. 8) we have,

$$
\psi_{h+1}(t)=o\left\{t^{h+1-p-\tau-\rho(h+1-\alpha-p-\tau) / 2}\right\} .
$$

The exponent of t is

$$
\begin{aligned}
h & +1-p-\tau+\frac{p+\tau}{p+\mu-\tau-1}(\alpha+p+\tau-h-1) \\
& =\{(1+2 \tau+\alpha-\mu)(p+\tau)-(1+2 \tau-\mu)(h+1)\} /(p+\mu-\tau-1) \\
& =\{(\delta+1)(1+2 \tau-\mu)-(h+1)(1+2 \tau-\mu)\} /(p+\mu-\tau-1) \\
& (6.6) \quad=(1+2 \tau-\mu)(\delta-h) /(p+\mu-\tau-1)>0, \quad \text { for } \delta>h .
\end{aligned}
$$

Thus we get
(6. 7)

$$
\psi_{h+1}(t)=o(1)
$$

$$
\text { as } t \rightarrow 0
$$

By the similar calculation to that of Theorem 2, we obtain

In addition, by (6. 6), we have

$$
h+1-p-\tau-\rho(h+1-\alpha-p-\tau) / 2>0
$$

Hence, we have

$$
\begin{equation*}
\psi(t)=o(1) \tag{6.3}
\end{equation*}
$$

$$
\text { as } \quad t \rightarrow 0
$$

From (6. 1), (6. 3), (6. 4), (6.5), (6.7) and (6.8) we obtain

$$
f_{p}(t)=o(1) \quad \text { as } \quad t \rightarrow 0
$$

which is the required.

REFERENCES

[1] S. BOchner, Summation of multiple Fourier series by spherical means, Trans. Amer. Math. Soc. 40 (1936), 175-207.
[2] K. Chandrasekharan, On the summation of multiple Fourier series I, II, Proc. London Math. Soc. 50 (1948), 210-229.
[3] K. Chandrasekharan, On Fourier series in several variables, Ann. Math. 49(1948), 991-1007.
[4] K. Chandrasekharan, On the summation of multiple Fourier series (IV), Ann. Math. 54(1951), 198-213.
[5] K. Chandrasekharan and S. Minakshinsundaram, Typical means, Oxford (1952).
[6] K. Chandrasekharan and O. Szász, On Bessel summation, Amer. Journ. Math. 70(1948), 709-729.
[7] S. IZUMI, Notes on Fourier analysis (XXV), Tôhoku Math. Journ. 1(1950), 285302.
[8] K. Kanno, On the Cesàro Summability of Fourier series (II), Tôhoku Math. Journ. 7(1955), 265-278.
[9] G. SUnouchi, Cesàro summability of Fourier series, Tôhoku Math. Journ. 5(1953), 198-210.
[10] G.N. Watson, A treatise on Bessel function, Cambridge, (1922).

Department of Mathematics, Yamagata University, Yamagata.

$$
\begin{aligned}
& \psi(t)=c t^{2 \delta+2}\left(\int_{0}^{1 / t}+\int_{1 / t}^{\sqrt{m}}\right) s T^{\delta}(s) V_{p+\tau+\delta+1 / 2}(s t) d s \\
& +c t^{2 h+4} \int_{0}^{\vee^{m}} s T^{\delta}(s) d s \int_{\sqrt{m}}^{\infty} R V_{p+\tau+3,2+h}(R t)\left(R^{2}-s^{2}\right)^{n-\delta} d R \\
& =o\left(t^{\alpha}\right)+o\left\{t^{\delta+1-p-\tau-\beta(\delta+1-\alpha-p-\tau / 2}\right\}+o\left\{t^{h+1-p-\tau-\rho(h+1-\alpha-p \tau) / 2}\right\} \\
& \delta+1-p-\tau-\frac{p+\tau}{p+\mu-\tau-1}(\delta+1-\alpha-p-\tau) \\
& =\{(\delta+1)(\mu-2 \tau-1)-(p+\tau)(\mu-2 \tau-\alpha-1)\} /(p+\mu-\tau-1)=0 .
\end{aligned}
$$

[^0]: 1) The problem considered here was suggested by Professor G. Sunouchi.
