SOME REMARKS ON A REPRESENTATION OF A GROUP, II

TEISHIRÔ SAITÔ

(Received March 25, 1965)

1. This note is a continuation of [5] and two examples of II₁-factors are constructed. The first example shows the following proposition that is an analogy of an example of [3] and that of [1].

PROPOSITION 1. Let M be a hyperfinite continuous von Neumann algebra. Then there exist a regular maximal abelian subalgebra A and an abelian subalgebra B of M with the following properties.

- (1) $\mathbf{B}' \cap \mathbf{M} = \mathbf{A}$
- (2) **A** is a unique maximal abelian subalgebra of **M** which contains **B** and $A \neq B$.
- $(3) \quad (\mathbf{B}' \cap \mathbf{M})' \cap \mathbf{M} \neq \mathbf{B}.$

The second example reproduces the following result of [2].

PROPOSITION 2. There exists a group G of outer automorphisms of a hyperfinite continuous factor \mathbf{M} such that the crossed product (\mathbf{M}, G) does not have property P in the sense of [6].

2. For convenience sake, we shall summerize the result of [7]. Let G be an arbitrary countably infinite group. Let Δ be the set of all functions $\alpha(g)$ on $G: \alpha(g)=1$ on a finite subset of G and =0 elsewhere, and Δ is an additive group under the addition $[\alpha+\beta](g)=\alpha(g)+\beta(g)\pmod{2}$, 0(g)=0 for all $g\in G$. Let Δ' be the set of all functions $\varphi(\gamma)$ on $\Delta: \varphi(\gamma)=1$ on a finite subset of Δ and =0 elsewhere. Δ' is an additive group under the addition $|\varphi+\psi|(\gamma)=\varphi(\psi)+\psi(\gamma)\pmod{2}$ and $0(\gamma)=0$ for all $\gamma\in\Delta$. For every $\alpha\in\Delta$, $\varphi\to\varphi^\alpha: \varphi^\alpha(\gamma)=\varphi(\gamma+\alpha)$ is an automorphism of Δ' . Defining the product $(\varphi,\alpha)(\psi,\beta)=(\varphi^\beta+\psi,\alpha+\beta)$, we have a locally finite countably infinite group $\mathfrak G$ of all elements $(\varphi,\alpha)\in(\Delta',\Delta)$ with the identity (0,0) and $(\varphi,\alpha)^{-1}=(\varphi^\alpha,\alpha)$. Let $\mathbf H$ be the Hilbert space $l_2(\mathfrak G)$, and for each $(\varphi,\alpha)\in\mathfrak G$ let $V_{(\varphi,\alpha)}$ be the unitary operator on $\mathbf H$ defined by $[V_{(\varphi,\alpha)}f]((\psi,\beta))=f((\psi,\beta)(\varphi,\alpha))$. Then the ring of operators $\mathbf M=\mathbf R$ $(V_{(\varphi,\alpha)}|(\varphi,\alpha)\in\mathfrak G)$ is a hyperfinite continuous factor.

Next, define an operator T_q (resp. T_q) on Δ (resp. Δ') for each $q \in G$ as follows:

$$[T_g \alpha](h) = \alpha(gh), \quad [T_g \varphi](\gamma) = \varphi(T_g^{-1}\gamma) \quad \text{for} \quad \alpha \in \Delta, \ \varphi \in \Delta'.$$

Then, for each $g \in G$ we define a unitary operator U_{σ} on H by $[U_{\sigma}f]((\varphi, \alpha)) = f((T_{\sigma}\varphi, T_{\sigma}\alpha))$, and $g \to U_{\sigma}$ is a faithful unitary representation of G on H and for each $g \in G$ $(\neq e)$

$$V_{(\varphi,\alpha)} \to U_g^{-1} V_{(\varphi,\alpha)} U_g = V_{(T_g'\varphi,T_g\varphi)}$$

defines an outer automorphism of M. Thus we can construct the crossed product (M, G) in the sense of [8] and (M, G) is a factor of type II_1 .

3. In this section we shall prove Proposition 1. In §3 and §4 we use the notations used in §2. Let φ_0 be the element of Δ' which takes value 1 only at $0 \in \Delta$. Let $A = R(V_{(\varphi,0)} | \varphi \in \Delta')$ and $B = R(V_{(\varphi,0)})$. Then it is obvious that A and B are abelian subalgebras of $M = R(V_{(\varphi,\alpha)} | (\varphi,\alpha) \in \mathfrak{G})$ which is a hyperfinite continuous von Neumann algebra. We shall prove that these A and B satisfy the assertion of Proposition 1.

LEMMA 1. A is a regular maximal abelian subalgebra of M.

PROOF. Let (φ, α) be an element of \mathfrak{G} such that $(\varphi, \alpha)(\psi, 0) = (\psi, 0)(\varphi, \alpha)$ for all $\psi \in \Delta'$. Then, by the law of multiplication in \mathfrak{G} we have $\psi = \psi^{\alpha}$ for all $\psi \in \Delta'$, and so $\alpha = 0$. Hence we have $A' \cap M = A$. Let A be an element of A. According to [4], there is a unique family of scalars $\{\lambda_{\varphi}\}_{\varphi \in \Delta'}$ such that $A = \sum_{\varphi \in \Delta'} \lambda_{\varphi} V_{(\varphi,0)}$ where Σ is taken in the sense of metric convergence in M. Thus we have

$$egin{aligned} V_{(\psi,eta)}^* \, A \, V_{(\psi,eta)} &= \sum_{arphi \in eta'} \lambda_{arphi} \, V_{(\psi^eta,eta)(arphi,0)(\psi,eta)} \ &= \sum_{arphi \in eta'} \lambda_{arphi} \, V_{(arphi^eta,0)} \in \, oldsymbol{A} \, . \end{aligned}$$

Hence $P \equiv R$ ($U \in M$, unitary $|U^*AU \subseteq A| = M$, that is A is a regular maximal abelian subalgebra of M.

LEMMA 2. $A \neq B$, $B' \cap M = A$ and so A is a unique maximal abelian subalgebra of M which contains B.

208 T. SAITÓ

PROOF. It is obvious that $A \neq B$ and $B' \cap M \supseteq A$. If $(\varphi, \alpha)(\varphi_0, 0) = (\varphi_0, 0)(\varphi, \alpha)$, $(\varphi + \varphi_0, \alpha) = (\varphi + \varphi_0^{\alpha}, \alpha)$ and we have $\varphi_0 = \varphi_0^{\alpha}$. Hence $\alpha = 0$ by the definition of φ_0 and $(\varphi, \alpha) = (\varphi, 0)$. Therefore $B' \cap M \subseteq A$. Let C be a maximal abelian subalgebra of M which contains B. Then we have $A = B' \cap M \supseteq C' \cap M = C$, and A = C by the maximality of C.

By Lemma 2, we have

$$(B' \cap M)' \cap M = A' \cap M = A \neq B$$

and the assertion of Proposition 1 is proved.

4. In this section, we shall prove Proposition 2. For each $g \in G$, $(\varphi, \alpha) \to (T'_{\sigma}\varphi, T_{\sigma}\alpha)$ defines an automorphism of \mathfrak{G} , and the collection of all pair $(g, (\varphi, \alpha)) \in (G, \mathfrak{G})$ is a countably infinite group by the law of composition:

$$\begin{split} (g,(\boldsymbol{\varphi},\boldsymbol{\alpha}))\,(h,(\boldsymbol{\psi},\boldsymbol{\beta})) &= (gh,(\boldsymbol{\varphi},\boldsymbol{\alpha})(T_{\sigma^{-1}}^{\prime}\boldsymbol{\psi},T_{\sigma^{-1}}\boldsymbol{\beta}))\,,\\ (g,(\boldsymbol{\varphi},\boldsymbol{\alpha}))^{-1} &= (g^{-1},(T_{\sigma}^{\prime}\boldsymbol{\varphi}^{\boldsymbol{\alpha}},T_{\sigma}\boldsymbol{\alpha}))\,,\\ (e,(0,0))(g,(\boldsymbol{\varphi},\boldsymbol{\alpha})) &= (g,(\boldsymbol{\varphi},\boldsymbol{\alpha}))(e,(0,0)) = (g,(\boldsymbol{\varphi},\boldsymbol{\alpha}))\,. \end{split}$$

By $\widetilde{\boldsymbol{M}}$ we mean the ring of operators generated by $V_{(g,(\varphi,\alpha))}$ on $l_2((G,\mathfrak{G})):$ $[V_{(g,(\varphi,\alpha))}f]((h,(\psi,\beta)))=f((h,(\psi,\beta)))(g,(\varphi,\alpha))).$

Then the following lemma is easily seen.*)

LEMMA 3. The crossed product (\mathbf{M}, G) is isomorphic to $\widetilde{\mathbf{M}}$.

By Lemma 3 and the result of [6] we have

PROPOSITION 2'. If G is a free group with two generators, the crossed product (\mathbf{M}, G) does not have property P.

PROOF. To prove this proposition, it is sufficient to show that (G, \mathfrak{G}) does not admit a non-negative, right invariant, finitely additive measure μ such that $\mu((G, \mathfrak{G})) = 1$ by Lemma 3 and [6: Lemma 7]. Suppose that such a μ exist. Let p be the projection of (G, \mathfrak{G}) to G, that is, $p((g, (\varphi, \alpha))) = g$. For each $E \subset G$, we define $\mu_1(E) = \mu(p^{-1}(E))$, and then μ_1 is a non-negative, right invariant, finitely additive measure on G. This contradicts to [6: p. 24] and the assertion is proved.

^{*)} N. Suzuki has pointed out that more general discussion can be done in the context of crossed extension of a group.

REFERENCES

- [1] J. DIXMIER, Sous-annaux abélien maximaux dans les facteurs de type fini, Ann. of Math., 59(1954), 279-286.
- [2] H. CHODA AND M. ECHIGO, A remark on a construction of finite factors I, Proc. Japan Acad., 40(1964), 474-478.
- [3] R. V. KADISON, Normalcy in operator algebras, Duke Math. Journ., 29(1962), 459-464.
- [4] F. J. MURRAY AND J. VON NEUMANN, On rings of operators, IV, Ann. of Math., 44
- (1943), 716-808. [5] T. SAITÔ, Some remarks on a representation of a group, Tôhoku Math. Journ., 12(1960), 383-388.
- [6] J. SCHWARTZ, Two finite, non-hyperfinite, non-isomorphic factors, Comm. Pure Appl. Math., 16(1963), 19-26.
- [7] N. SUZUKI, A linear representation of a countably infinite group, Proc. Japan Acad., 34(1958), 575-579.
- [8] N. SUZUKI, Crossed products of rings of operators, Tôhoku Math. Journ., 11(1959), 113-124.

TÔHOKU UNIVERSITY.