SOME REMARKS ON A REPRESENTATION OF A GROUP, II

TEISHIrô Saitô

(Received March 25, 1965)

1. This note is a continuation of [5] and two examples of II_{1}-factors are constructed. The first example shows the following proposition that is an analogy of an example of [3] and that of [1].

Proposition 1. Let \boldsymbol{M} be a hyperfinite continuous von Neumann algebra. Then there exist a regular maximal abelian subalgebra \boldsymbol{A} and an abelian subalgebra \boldsymbol{B} of \boldsymbol{M} with the following properties.
(1) $\boldsymbol{B}^{\prime} \cap \boldsymbol{M}=\boldsymbol{A}$
(2) \boldsymbol{A} is a unique maximal abelian subalgebra of \boldsymbol{M} which contains \boldsymbol{B} and $\boldsymbol{A} \neq \boldsymbol{B}$.
(3) $\left(\boldsymbol{B}^{\prime} \cap \boldsymbol{M}\right)^{\prime} \cap \boldsymbol{M} \neq \boldsymbol{B}$.

The second example reproduces the following result of [2].
Proposition 2. There exists a group G of outer automorphisms of a hyperfinite continuous factor \boldsymbol{M} such that the crossed product (\boldsymbol{M}, G) does not have property P in the sense of [6].
2. For convenience sake, we shall summerize the result of [7]. Let G be an arbitrary countably infinite group. Let Δ be the set of all functions $\alpha(g)$ on $G: \alpha(g)=1$ on a finite subset of G and $=0$ elsewhere, and Δ is an additive group under the addition $[\alpha+\beta](g)=\alpha(g)+\beta(g)(\bmod 2), 0(g)=0$ for all $g \in G$. Let Δ^{\prime} be the set of all functions $\varphi(\gamma)$ on $\Delta: \varphi(\gamma)=1$ on a finite subset of Δ and $=0$ elsewhere. Δ^{\prime} is an additive group under the addition $|\varphi+\psi|(\gamma)=\varphi(\psi)+\psi(\gamma)(\bmod 2)$ and $0(\gamma)=0$ for all $\gamma \in \Delta$. For every $\alpha \in \Delta$, $\varphi \rightarrow \varphi^{\alpha}: \varphi^{\gamma}(\gamma)=\varphi(\gamma+\alpha)$ is an automorphism of Δ^{\prime}. Defining the product $(\varphi, \alpha)(\psi, \beta)=\left(\phi^{\beta}+\psi, \alpha+\beta\right)$, we have a locally finite countably infinite group ${ }^{(5)}$ of all elements $(\varphi, \alpha) \in\left(\Delta^{\prime}, \Delta\right)$ with the identity $(0,0)$ and $(\varphi, \alpha)^{-1}=\left(\phi^{\alpha}, \alpha\right)$. Let \boldsymbol{H} be the Hilbert space $l_{2}(\mathbb{B})$, and for each $(\phi, \alpha) \in \mathscr{G}$ let $V_{(\varphi, \alpha)}$ be the unitary operator on \boldsymbol{H} defined by $\left[V_{(\varphi, \alpha)} f\right]((\psi, \beta))=f((\psi, \beta)(\varphi, \alpha))$. Then the ring of operators $\boldsymbol{M}=\boldsymbol{R}\left(V_{(\varphi, \alpha)} \mid(\boldsymbol{\phi}, \alpha) \in \mathbb{(}\right)$ is a hyperfinite continuous factor.

Next, define an operator T_{g} (resp. T_{g}^{\prime}) on Δ (resp. Δ^{\prime}) for each $g \in G$ as follows:

$$
\left.\left|T_{g} \alpha\right|(h)=\alpha(!, h), \quad \mid T_{g}^{\prime} \varphi\right](\gamma)=\phi\left(T_{g}^{-1} \gamma\right) \quad \text { for } \quad \alpha \in \Delta, \varphi \in \Delta^{\prime}
$$

Then, for each $g \in G$ we define a unitary operator U_{g} on \boldsymbol{H} by $\left[U_{g} f\right]((\phi, \alpha))$ $=f\left(\left(T_{g}^{\prime} \boldsymbol{\varphi}, T_{g} \alpha\right)\right)$, and $g \rightarrow U_{g}$ is a faithful unitary representation of G on \boldsymbol{H} and for each $g \in G(\neq e)$

$$
V_{(\varphi, \alpha)} \rightarrow U_{g}^{-1} V_{(\varphi, \alpha)} U_{g}=V_{\left(T_{g}^{\prime}, r_{g}, q^{q}\right)}
$$

defines an outer automorphism of \boldsymbol{M}. Thus we can construct the crossed product (\boldsymbol{M}, G) in the sense of $[8]$ and (\boldsymbol{M}, G) is a factor of type II_{1}.
3. In this section we shall prove Proposition 1. In $\S 3$ and $\S 4$ we use the notations used in $\$ 2$. Let φ_{0} be the element of Δ^{\prime} which takes value 1 only at $0 \in \Delta$. Let $\boldsymbol{A}=\boldsymbol{R}\left(V_{(\varphi, 0)} \mid \boldsymbol{\varphi} \in \Delta^{\prime}\right)$ and $\boldsymbol{B}=\boldsymbol{R}\left(V_{(\varphi, 0)}\right)$. Then it is obvious that \boldsymbol{A} and \boldsymbol{B} are abelian subalgebras of $\boldsymbol{M}=\boldsymbol{R}\left(V_{(\varphi, \alpha)} \mid(\varphi, \alpha) \in(\xi)\right.$ which is a hyperfinite continuous von Neumann algebra. We shall prove that these \boldsymbol{A} and \boldsymbol{B} satisfy the assertion of Proposition 1.

Lemma 1. \boldsymbol{A} is a regular maximal abelian subalgebra of \boldsymbol{M}.

Proof. Let $(\boldsymbol{\varphi}, \alpha)$ be an element of ${ }^{6}$ such that $(\boldsymbol{\varphi}, \alpha)(\psi, 0)=(\psi, 0)(\boldsymbol{\mathcal { L }}, \alpha)$ for all $\psi \in \Delta^{\prime}$. Then, by the law of multiplication in ($\$ 3$ we have $\psi=\psi^{\alpha}$ for all $\psi \in \Delta^{\prime}$, and so $\alpha=0$. Hence we have $\boldsymbol{A}^{\prime} \cap \boldsymbol{M}=\boldsymbol{A}$. Let A be an element of \boldsymbol{A}. According to [4], there is a unique family of scalars $\left\{\lambda_{\phi}\right\}_{\varphi \in \Delta^{\prime}}$ such that $A=\sum_{\varphi \in \Delta^{\prime}} \lambda_{\varphi} V_{(\varphi, 0)}$ where \sum is taken in the sense of metric convergence in M. Thus we have

$$
\begin{aligned}
V_{(\psi, \beta)}^{*} A V_{(\psi, \beta)}^{*} & =\sum_{\varphi \in \Delta^{\prime}} \lambda_{\varphi} V_{\left(\psi^{\beta}, \beta\right)(\varphi, 0)(\psi, \beta)} \\
& =\sum_{\psi \in \Lambda^{\prime}} \lambda_{\varphi} V_{\left(\varphi^{\beta}, 0\right)} \in \boldsymbol{A} .
\end{aligned}
$$

Hence $\boldsymbol{P} \equiv \boldsymbol{R}\left(U \in \boldsymbol{M}\right.$, unitary $\left.\mid U^{*} \boldsymbol{A} U \subseteq \boldsymbol{A}\right)=\boldsymbol{M}$, that is \boldsymbol{A} is a regular maximal abelian subalgebra of \boldsymbol{M}.

Lemma 2. $\boldsymbol{A} \neq \boldsymbol{B}, \boldsymbol{B}^{\prime} \cap \boldsymbol{M}=\boldsymbol{A}$ and so \boldsymbol{A} is a unique maximal abelian subalgebra of \boldsymbol{M} which contains \boldsymbol{B}.

Proof. It is obvious that $\boldsymbol{A} \neq \boldsymbol{B}$ and $\boldsymbol{B}^{\prime} \cap \boldsymbol{M} \supseteq \boldsymbol{A}$. If $(\boldsymbol{\varphi}, \boldsymbol{\alpha})\left(\boldsymbol{\varphi}_{0}, 0\right)$ $=\left(\boldsymbol{\varphi}_{0}, 0\right)(\varphi, \alpha),\left(\boldsymbol{\phi}+\varphi_{0}, \alpha\right)=\left(\boldsymbol{\phi}+\boldsymbol{\varphi}_{0}^{\alpha}, \alpha\right)$ and we have $\boldsymbol{\varphi}_{0}=\boldsymbol{\varphi}_{0}^{\alpha}$. Hence $\alpha=0$ by the definition of $\boldsymbol{\varphi}_{0}$ and $(\boldsymbol{\phi}, \boldsymbol{\alpha})=(\boldsymbol{\phi}, 0)$. Therefore $\boldsymbol{B}^{\prime} \cap \boldsymbol{M} \subseteq \boldsymbol{A}$. Let \boldsymbol{C} be a maximal abelian subalgebra of \boldsymbol{M} which contains \boldsymbol{B}. Then we have $\boldsymbol{A}=\boldsymbol{B}^{\prime}$ $\cap \boldsymbol{M} \supseteqq \boldsymbol{C}^{\prime} \cap \boldsymbol{M}=\boldsymbol{C}$, and $\boldsymbol{A}=\boldsymbol{C}$ by the maximality of \boldsymbol{C}.

By Lemma 2, we have

$$
\left(\boldsymbol{B}^{\prime} \cap \boldsymbol{M}\right)^{\prime} \cap \boldsymbol{M}=\boldsymbol{A}^{\prime} \cap \boldsymbol{M}=\boldsymbol{A} \neq \boldsymbol{B}
$$

and the assertion of Proposition 1 is proved.
4. In this section, we shall prove Proposition 2. For each $g \in G,(\boldsymbol{\rho}, \alpha)$ $\rightarrow\left(T_{g}^{\prime} \varphi, T_{g} \alpha\right)$ defines an automorphism of \mathscr{G}, and the collection of all pair $(g,(\varphi, \alpha)) \in(G, \mathbb{B})$ is a countably infinite group by the law of composition:

$$
\begin{aligned}
& (g,(\boldsymbol{\phi}, \alpha))(h,(\psi, \beta))=\left(g h,(\boldsymbol{\phi}, \alpha)\left(T_{g^{-1}}^{\prime} \psi, T_{g^{-1}} \beta\right)\right) \\
& (g,(\boldsymbol{\varphi}, \alpha))^{-1}=\left(g^{-1},\left(T_{g}^{\prime} \boldsymbol{\varphi}^{\alpha}, T_{g} \alpha\right)\right) \\
& (e,(0,0))(g,(\boldsymbol{\phi}, \alpha))=(g,(\boldsymbol{\phi}, \alpha))(e,(0,0))=(g,(\boldsymbol{\phi}, \alpha))
\end{aligned}
$$

By $\widetilde{\boldsymbol{M}}$ we mean the ring of operators generated by $V_{(g,(q, \alpha))}$ on $l_{2}((G,(\oiint))$: $\left[V_{(g,(\varphi, \alpha))} f\right]((h,(\psi, \beta)))=f((h,(\psi, \beta))(g,(\boldsymbol{\phi}, \alpha)))$.

Then the following lemma is easily seen.*)
Lemma 3. The crossed product (\boldsymbol{M}, G) is isomorphic to $\widetilde{\boldsymbol{M}}$.
By Lemma 3 and the result of [6] we have
Proposition 2'. If G is a free group with two generators, the crossed product (M, G) does not have property P.

Proof. To prove this proposition, it is sufficient to show that (G, (5) does not admit a non-negative, right invariant, finitely additive measure μ such that $\mu((G,(\xi))=1$ by Lemma 3 and [6: Lemma 7]. Suppose that such a μ exist. Let p be the projection of (G, \mathscr{G}) to G, that is, $p((g,(\varphi, \alpha)))=g$. For each $E \subset G$, we define $\mu_{1}(E)=\mu\left(p^{-1}(E)\right.$), and then μ_{1} is a non-negative, right invariant, finitely additive measure on G. This contradicts to [6: p.24] and the assertion is proved.

[^0]
References

[1] J. Dixmier, Sous-annaux abélien maximaux dans les facteurs de type fini, Ann. of Math., 59(1954), 279-286.
[2] H. Choda and M. Echigo, A remark on a construction of finite factors I, Proc. Japan Acad., 40(1964), 474-478.
[3] R. V. Kadison, Normalcy in operator algebras, Duke Math. Journ., 29(1962), 459-464.
[4] F. J. Murray and J. von Neumann, On rings of operators, IV, Ann. of Math., 44 (1943), 716-808.
[5] T. SAITÔ, Some remarks on a representation of a group, Tôhoku Math. Journ., 12(1960), 383-388.
[6] J. Schwartz, Two finite, non-hyperfinite, non-isomorphic factors, Comm. Pure Appl. Math., 16(1963), 19-26.
[7] N. Suzuki, A linear representation of a countably infinite group, Proc. Japan Acad., 34(1958), 575-579.
[8] N. SuZuki, Crossed products of rings of operators, Tôhoku Math. Journ., 11(1959), 113-124.

Tôhoku University.

[^0]: *) N. Suzuki has pointed out that more general discussion can be done in the context of crossed extension of a group.

