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1. Let G be a connected semi-simple algebraic group over the field C of
complex numbers such that defined over the field Q of rational numbers and
of Chevalley type (i.e. whose Lie algebra is anti-compact). Then G has a
uniquely determined Z-structure (i.e. the structure of group scheme over the
ring Z of rational integers) satisfying a proper condition (cf. C. Chevalley [2]).
Denote by G, the group consisting of the Z-rational elements of G with
respect to the structure. Suppose G is simply connected and simple. Let 3 be
the system of roots of G with respect to a Cartan subgroup of G. Then G
is isomorphic to the algebraic group generated by the symbols x(r,¢) (< 3,
teC) (as an abstract group) with the following relations (A), (B) and (C)
when the rank of G is >1 and (A), (B) and (C) when the rank of G is =1
(cf. R. Steinberg [5]).

(A) x(r,t) x(r,u) = x2(r,t+u) (rel; t,ucC),

(B) (x(r, t), 2(s, w)) = [[ xGr+js,cijmst'e’) (r,5€3; r+s#0),
i

where (x,7y) is the commutator xyzx~'y~!, the product is taken over all pairs
(i,7) of positive integers such that 7r+js is a root, the pairs being arranged
so that the roots ¢7+js form an increasing sequence with respect to a fixed
order in 3, and where ¢; ;s are integral constants depending only on 3. We
define w(r,t) = 2(r,t) x(—r, —t7 ") 2(r,t) and h(r,t) = w(r,t) w(r, —1) where
t is an element of the multiplicative group C* of C. Then

(B) w(r, ) 2, u) wir, t) ™' = x(—r, —t*u) (red;teC* uc(),
©) h(r,t) h(r,u) = h(r,tw) (re2; t,ucC¥).

We shall identify the group with G. Then we see that the group G, is
the subgroup of G generated by x(r,¢t) for €32 and t< Z (cf. C. Chevalley
[2]). If G is of type A, or C,, then G,= SL(n+1,Z) or G,=Sp(2n,Z) and
it is known that SL(rn+1,Z) (n=1) and Sp(2n,Z) (n > 3) are generated by



GENERATION OF SOME DISCRETE SUBGROUPS 179

two elements (cf. P. Stanek [3]). In this note we improve it and prove in 2
the following

THEOREM. Let G be a connected, simply connected simple algebraic
group defined over Q of Chevalley type. If G is of type A, (n=1) or the
rank of G is >3, then G, is generated by two elements. For other cases,
G, is generated by at most three elements.

Further, we give in 3 an application to the adjoint groups of complex
simple Lie algebras.

2. For r,s€ 3, define the integer a(r,s) = p—q where g (resp. —p) is
the maximum (resp. minimum) integer ¢ such that s+ir is a root. Let
IT={a;,--+,a,} be the fundamental system of roots with respect to a fixed
order of 2. Denote a(i,j) = a(ai,a;) and a,,+--,a, are so labelled once for
all that a(7,7)=2, a(¢,7£1)= —1 and a(z,5) = O for all other pairs (7,7) with
the following exceptions: a(n—1,7n)= —2 for type B,, a(n,n—1)=—2 for type
C, aln—1,n) =an,n—1)=0 and an—2,n)=aln,n—2) = —1 for type D,
(n=4), an,n—1) =a(n—1,7n) =0 and a(n—1,7n—3) = a(n—3,n—1)= —1 for
type E, (n=6,7 and 8), a(2,3)=—2 for type F, and a(1,2)= —3 for type G,.
The symmetry o, with respect to <3 is the permutation of ¥ defined by
o.(s)=s—a(r,s)r. The Weyl group W of 3 is the group generated by all
a,, ¥€3. Denote by o; the symmetry with respect to a; (1=:=mn). Then
W is generated by o, (1=:7=n). We shall use the following relations
between generators where & and n are 1 or —1 which are uniquely deter-
mined by the roots » and s (cf. R. Steinberg [5], 7.2 and 7.3).

( 1 ) ‘Z,U(T, 1) ‘ZU(S, 1) w(r, - 1) = w(o,(s), 8)’
(2) w(r, 1) 2(s, t) w(r, —1) = x(a(s), &).

Suppose G is not of type G, and let r,s and »+s<3, then the possible
relations (B) are the following (cf. C. Chevalley [1], p. 36): If r, s generate
a system of type A,, then »—s is not a root and

(3) (x(r, 2), x(s, w)) = 2(r+s, Etw).
If ,s generate a system of type B,, when r—s is not a root,

(4) (x(r,b), z(s,w)) = x(r+s,Etu) x(r+2s, ntu?) or x(r+s, &tu) x(2r+s, yt*u)
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and when »—s is a root,
(5) (x(r, t), x(s, u)) = x(r+s, E2¢tu) .
LEMMA 1. G, is generated by x(*a;, 1) for 1=i=n.

Let H be the subgroup of G, generated by x(=%a;,1) (1 =17 =n). Then
H contains w(a;,1) (1 =1:¢=n) by definition. Since W is generated by o;
(1=i{=mn) and for any root r, there exists an element ¢ of W such that
o(r) = *a; for some Z, (1) and (2) show that H contains x(r, 1) for all » € 3.

LEMMA 2. (R. Steinberg [4], 2.1) If W is not of type A, (n=2), D,
(n odd) or E;, then W contains the central reflexion —1 defined by r — —r
(re3) and it is a power of o=a,0y++a, (0perations from right to left).

N.B. The order of the operations o; of ¢ is some what different from that
of [4], however we have the assertion in the same way.

Now we define w = w(a,, 1) w(a,, 1) -+ - w(a,, 1), then we have

PROPOSITION 1. If G is of type A, (n=1), then G, is generated by
w and u = x(a,,1). For other cases, G, is generated by w, x(a,, 1) and
x(a,, 1).

Let H be the subgroup generated by two or three elements stated in the
proposition. By Lemma 1, it is sufficient to show that H contains x(Za;, 1)
for 1=i=n. First, we notice that if a,,---,a, (¢ =n) form a system of
type A; and a; is orthogonal to a; (1=17¢= k—1) for all j > %, then

(6) w'x(a,, ) w? = x(a;,& 1=i=k—-1).

Case of type A, m=1): (6) holds for 1=:7=n—1. Therefore x(a;, 1) H
for 1=7=mn. From relations w"x(a,,1) w™" = x(—(a,+ -+ + a,), &) and x(a,,
D x(—(a;+ + - +a,), D) x(a;, —1) = 2(—(a@y,+ =+ +a,),8) 1=i=n—1), we
have 2(—a,,1)¢c H. Then w'zx(—a,, 1)w*=2x2(—a;_.,&) (2 =1i=n) shows
that x(—a;,1)e H for 1={=mn. Case of type B, or C, (n=2): (6) holds
for 1=7=n—2. Therefore, from Lemma 2, we have x(za;,1)c H for 1 =1
=n—1 and also we have x(za,,1)c H. Case of type D, (n=4, even):
(6) holds for 1 =7 =n—3. Therefore, from Lemma 2, we have x(=a;,1)e H
for 1=7=n—2. Since w" x(a,, 1) w """ = 2(—(a,_,+a,-.), &), the relation
3) for r=a,, and s= —(a,_,+a,_,) shows that x(—a,_,,1)e H. Thus
x(*a,-,,1) and x(=*a,, 1) are also contained in H. Case of type D, (n > 4,
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odd): (6) holds for 1 =7=n—3. Therefore from w" 'x(a,,1) w""'=x(—a,,
&), we have x(=*+a;,1)e H for 1 =7=n—2. From the relations w"?x(a,, 1)
w ' = 2(—(ap-0t+ay) f), w"tx(a, ) w " = x(—(a;+ +++ +a,), &) and (3),
we see that x(=*+a,,1) and x(=a,-,,1) are contained in H. Case of type E,:
(6) holds for ¢ = 1,2. Therefore x(a;, 1) H for i = 1,2 and 3. wx(a,,1) w™!
=x(—(a,+a,+a;+a,), € and (3) show that x(=*a;,1)e H for i =1,2,3 and 6.
From w’x(zxa,, 1) w™? = 2(F(ay+as+a,),E), w'x(zxas, )w® = z(F(a;+a,
+a;), €), we have x(=*a,,1) and x(=*a;, 1) are contained in H. Case of type
E, n=7,8): (6) holds for 1=7¢=n—4. Therefore, from Lemma 2, we have
x(*+a;,1)e H for 1=i=n—3. Since w"*x(a,l)w ™" = x(a,+ +++ +a,_,
+a,,€) and w"x(a,, 1) w " =x(a,++ - +a,_,,E), using (3), we have x(*a,_,, 1)
and x(*a,_,,1) are contained in H. Case of type F,: From wzx(a,1) w™*
= x(a,, &), wala, Dw™' = 2(—(a,+ -+ - +a,),€) and Lemma 2, we have x(za,,
1)eH for 1=¢=4. Case of type G,: From Lemma 2, we have z(za; 1)
€eH for i =1,2.

PROPOSITION 2. If G is not of type A, and the rank of G is >3, then
G, is generated by w=w(a,, 1)+ wl(a,, 1) and u = x(a,,1)x(—a,,l).

Denote by H the subgroup of G, generated by w and «. It is sufficient
to show that x(a,, 1) and x(a,, 1) are contained in H. If ¢*=—1 (cf. Lemma
2), denote by x*=wfrw™ for xe€ G, Case of type B, (n>3): We have
vi=wuw '=x(a,, &) x(a,+ ¢+« » +a,,n), vi=wuw?=1x(a, &) x(ay+ o+ +a,n)
and v;=(u, v,) = x(a,+a,, &) x(a,+ +++ +a,_y,27), v,=(vs, v5) = x(a,+a,+ a,,&).
Since, by Lemma 2, vF and «* < H, we have ((v,,vs), vF) = x(a,+a,, ) and
(x(a,+as, 1), u*) = x(a,, €) are contained in H. Therefore, from (6), x(a,, 1)
¢ H and also we have x(a,, 1) € H. Case of type C, (n>3): We have
vi=wuw ' =x(a,, & x(2a+ + + + +2a,_,+a,,n), &, v,) = x(a,+a,, &). Since, by
Lemma 2, «* € H, (v, u*) = x(a,, &) € H. From (6), x(a,,1)e H and also we
have x(a,,1)€ H. Case of type D, (n =4): We have v, = wuw™" = x(a,, &)
x(a+ «+« +a,stayn), v:=wuwl=x(a;&x(@+ - +a,,+ a,_,m) and
vy = (u,v5) = x(a,+ +++ +a,_,8). U nisodd, w"?v;w"*? = x(a, & and
vy = (U, X(ay, 1)) = 2(a,+ +++ +a,, ). If nis even, w" v, w "*? = x(a,_, &)
and v,=(v,, x(a,-i,1))=x(a,+ + + + +a,, ). Therefore wv,w™ = 2(—a,, 1) and
we have w"'x(—a;,)w ™" = x(a, & is contained in H. Case of type E,
(n=26,7 and 8): We have v, = wuw™ = x(a,, & x(a,+ +++ +a,_s;+a,mn),
v, = wuw = x(a,, &) x(ay+ +«* +a,_s,n), v; = (u,v,) = x(a,+a,, & xla,+ -
+an_3,n) and v, = (vy, vs) = X(a;+a,+a; &). U n=6, vy = wuw™" = x(a;, &)
x(—(a,+ay+as+ag),n), (v, vs)=x(—as, ). Therefore x(a,,1) and x(a,, 1)< H.
If n=7,8, since u*, vf € H, (v, u*) = x(a,+a;, &) and (x(a,+a,, 1), v5) = x(a,,
& e H. Therefore from (6), we have x(a,, 1)< H and also z(a,,1)c H. Case
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of type F,: We have v, = wuw™ = x(a,, &) x(—(a,+ + -+ +ay), ), v, = (&, v,)
= z(a,+a,, &). Since vfe H, (u,v¥) = x(—a,, & € H. Thus we have x(a,, 1),
x(a,, 1) € H.

From Propositions 1 and 2, we have the theorem. As a special case of
the theorem, we have

COROLLARY 1. (cf. P. Stanek [3]) SL(n+ 1,Z) (n=1) and Sp(2n,Z)
(n > 3) are generated by two elements.

For G=SL(n+1,C) (n=1), let S={N—N;, £ #j, 1 =14, j=n+1} be the
root system of type A,. Then the set of matrices x(A,—M\;,2) = [ +tE;;
(M—N; € 3, t < C) where E;; is the (n+1,n+1) matrix whose (7,7) component
is 1 and all other components are 0, is a system of generators of G which
satisfy (A), (B) (or (B")) and (C). We have G,= SL(n+1,Z) and also our
assertion. For G=Sp(2n,C) (n > 3), let S={N=N;, 2200 %7, 1=14, j = n}
be the root system of type C,. Then the following matrices are generators
of G satisfying (A), (B) and (C): x(N—N;,8) = [+ HE;;— E;ip,i40), TN+, L)
=I+HE; ;i +E; i), =N+, 8) = I+ HE; i+ Eivn ), @0, 8) = I+t E; 0,
2(—=2N;, )=1+tE;,, .. We see that G,=Sp(2n,Z) and we have our assertion.
Note that x(A;—N\;,2), *(A;+A;,2) and w are the matrices denoted by R;i(2),
T:,(8), T(¢) and D respectively in [3].

3. Let G be the adjoint group of a complex simple Lie algebra ¢ (i.e.
the connected component of the identity of the group of all automorphisms
of 4. We fix a canonical base (H,,---,H,, X,, r<3) of 8 defined by Chevalley
(cf. 1], Th. 1). Then we may suppose that G is a linear algebraic group
defined over Q in GL(N,C) where N is the dimension of 8. We denote by
G, the subgroup of G consisting of the elements with integral coefficients
and determinants = 1. Then we have

COROLLARY 2. Let G be the adjoint group of a complex simple Lie
algebra and suppose that G is a linear algebraic group with respect to a
canonical base of g. If g is not of type D,, n=4 and cven, then G, is
generated by two elements.

Denote by x(r,¢t)=exp tadX,, r € 3, ¢t € C, and by G the subgroup of G
generated by x(r,1), r€3. Then G, is also generated by two elements by
the theorem. For G, is the homomorphic image of éz where G is the
universal covering group of G. G is a normal subgroup of G, and further
we shall show the following
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LEMMA 3. If g is of type A, (n even), E,, E,, F, or G,, then G, = G,
If § is of type A, (n odd), B,,C,, D, (n =5, odd) or E,, then G,/G; is the
cyclic group of order 2. If § is of type D, (n=4, even), then G,/G is
the direct product of two cyclic groups of order 2.

Denote by H, the subgroup of G, generated by A(X), where A(X) is the
automorphism of g defined by H; — H;, X, — X(r) X,, X being a homomorphism
of the additive group P, generated by the roots of g into the multiplicative
group U=1{1, —1}, and by H,=H,NG, Then H, is the group generated by
h(X) such that X can be extended to a homomorphism of the additive group
P of the weights of the representations of § into U. We have G,/G,= H,/H,
(cf. Cvevalley [2]). Since [H,: H;] is equal to the order of Hom (P/P,,U)
(cf. Chevalley [1], p. 63), G,/G, is the elementary abelian group of order 2¢
where d=n—rank A, A being the (#,7) matrix with coefficients in Z/2Z
whose (7,7) component is the image of a(7,j) in Z/2Z. From this we have
the lemma.

When G,= G, the corollary is trivial by theorem. When G,/G is the
cyclic group of order 2, let w,u be the generators of G, which are the
canonical image of the generators of G, denoted by the same letters in 2,
h be an element of H, not contained in H, Then wh and « generate the
group G

In the case of type D,, n =4 and even, we have not known whether the
group G, may be generated by two elements or not, but from theorem, we
have that G, is generated by three elements.

REMARK. Let G be the group consisting of the matrices x such that
txJxr = J, det x=1, where J = (I I), I being the unit matrix of degree n

and G, be the subgroup of G consisting of the matrices with integral
coefficients. Since G, is the group of Z-rational elements with respect to an
admissible Z-structure of G, we have, in the same way as the proof of
corollaries 1 and 2, that if >3, G, is generated by two elements. (Note
that in this case G,/G), is a cyclic group of order 2.) The same reasoning
doesn’t hold for the classical group of type B,.
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