ON THE INTEGRABILITY OF A STRUCTURE DEFINED BY TWO SEMI-SIMPLE O-DEFORMABLE VECTOR 1-FORMS WHICH COMMUTE WITH EACH OTHER

Yoji Hatakeyama

(Received March 5, 1965)

Introduction. Recently, C. S. Houch considered a structure defined by two vector 1 -forms (tensor fields of type (1,1)) h and k on a differentiable manifold satisfying the following conditions,

1) $h^{2}=\lambda^{2} E, k^{2}=\mu^{2} E$,
where E is a vector 1 -form defined by the identity matrix, and $\lambda^{2}= \pm 1$, $\mu^{2}= \pm 1$,
2) $h k=k h$,
and proved that this structure is integrable if and only if the vector 2 -forms (tensor fields of type (1,2), skew symmetric in their covariant part) $[h, h]$, [k, k] and [h, k] vanish identically (Cf. [2] ${ }^{1)}$).

In this paper, we consider the case when h and k are vector 1 -forms defined on a differentiable manifold M satisfying some algebraic equations without multiple roots, and prove that the structure defined by h and k is integrable, i.e., for any point $x \in M$, we can always find a local coordinate system around x with respect to which the vector 1 -forms h and k have constant components, if and only if $[h, h],[k, k]$ and $[h, k]$ vanish identically. We use a Theorem of E. T. Kobayashi (Cf. [3]). Although he supposes that the real vector 1-form h is of class C^{∞}, by virtue of A. Nijenhuis and W. H. Woolf's theorem (Cf. [4]), we get the same result if we suppose the vector 1 -form h is of class C^{2}. So, throughout this paper, we suppose that all the structure and the tensor fields are of class C^{2} when h and k are real vector 1 -forms, and analytic when h and k are complex. Moreover, let $f(x)$ be a polynomial of x, i.e.,

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n},
$$

and let h be a vector 1 -form, then $f(h)$ means a vector 1 -form defind by

[^0]$$
f(h)=a_{0} E+a_{1} h+a_{2} h^{2}+\cdots+a_{n} h^{n} .
$$

1. The square bracket of two vector 1 -forms. Let h and k be two vector 1 -forms on M. The square bracket $[h, k]$ of h and k is a vector 2 -form defined by

$$
\begin{align*}
{[h, k](u, v)=} & {[h u, k v]-h[u, k v]-k[h u, v]+h k[u, v] } \tag{1.1}\\
& +[k u, h v]-k[u, h v]-h[k u, v]+k h[u, v],
\end{align*}
$$

where u and v are vector fields over M and the square brackets [$h u, k v$] etc. of two vector fields are the usual Poisson brackets (Cf. [1]).

With respect to a local coordinate system (x^{i}), the components $([h, k])^{i}{ }_{j k}$ of $[h, k]$ are given by

$$
\begin{align*}
([h, k])^{i}{ }_{j k}= & h^{m}{ }_{j} \partial_{m} k^{i}{ }_{k}-h^{m}{ }_{k} \partial_{m} k^{i}{ }_{j}-h^{i}{ }_{m} \partial_{j} k^{m}{ }_{k}+h^{i}{ }_{m} \partial_{k} k^{m}{ }_{j} \tag{1.2}\\
& +k^{m}{ }_{j} \partial_{m} h_{k}^{i}{ }_{k}-k^{m}{ }_{k} \partial_{m} h_{j}{ }_{j}-k_{m}^{i} \partial_{j} h^{m}{ }_{k}+k^{i}{ }_{m} \partial_{k} h^{m}{ }_{j},
\end{align*}
$$

where $h^{i}{ }_{j}$ and $k^{i}{ }_{j}$ are the components of h and k respectively, and ∂_{j} denotes the differential operator $\partial / \partial x^{j}$.

From the definition (1.1), it follows immediately
Proposition 1. For arbitrary vector 1 -forms h, k and l, the following relations hold good.

1) $[h, E]=[E, h]=0$.
2) $[h, k]=[k, h]$.
3) $[h+k, l]=[h, l]+[k, l], \quad[h, k+l]=[h, k]+[h, l]$.
4) $[c h, k]=c[h, k]$,
where c is a constant.
5) $[h, k l](u, v)+[h l, k](u, v)$

$$
=[h, k](l u, v)+[h, k](u, l v)+h([k, l](u, v))+k([h, l](u, v)),
$$

where u and v are vector fields over M.
Making use of 5) in Proposition 1, we obtain
COROLLARY. If $[h, h]=[k, k]=[h, k]=0$, then $[h k, k]=0$.

Moreover, when there is a linear relation with constant coefficients between $h k$ and $k h$, we get the following Proposition by direct calculations.

PROPOSITION 2. If h and k are two vector 1 -forms satisfying

$$
h k+\mu k h=0 \quad(\mu: \text { const } .),
$$

then the relation

$$
\begin{aligned}
{[h k, h k](u, v)=} & {[h, h](k u, k v)-\mu(h[k, k](h u, v)+h[k, k](u, h v)) } \\
& -2 \mu h k[h, k](u, v)-h^{2}[k, k](u, v)
\end{aligned}
$$

holds good for arbitrary vector fields u and v.
Corollary. If h and k are two vector 1 -forms satisfying

$$
h k+\mu k h=0 \quad \text { and } \quad[h, h]=[k, k]=[h, k]=0,
$$

then $[h k, h k]$ vanishes identically.
2. On the structure defined by a semi-simple 0-deformable vector 1 -form. Theorem of E. T. Kobayashi. Let h be a vector 1 -form defined on M. We consider the case when the Jordan canonical form of h_{x} for $x \in M$ is equal to a fixed diagonal matrix, and we call such a vector 1 -form a semisimple 0 -deformable vector 1 -form (Cf. [3]). Moreover, let $I_{h}[x]$ be the set of polynomials which vanish identically for $x=h$, then $I_{h}[x]$ is an ideal of the polynomial ring of x, and we call the generator of $I_{h}[x]$ the minimal polynomial of h. Then we can easily see that h is a semi-simple 0 -deformable vector 1 -form if and only if the minimal polynomial of h admits only simple roots.

For the structure defined by such a vector 1 -form, E. T. Kobayashi (Cf. [3]) proved the following

THEOREM. The structure defined by a semi-simple 0 -deformable vector 1 -form h is integrable if and only if the vector 2 -form $[h, h]$ vanishes identically.

Next, we introduce some complex vector 1 -forms which we use in $\S 3$. Let $f(x)=\prod_{i=1}^{n}\left(x-\lambda_{i}\right)$ be the minimal polynomial of h. Then, since h is semisimple, $f^{\prime}\left(\lambda_{i}\right) \neq 0$ for all i. If we set

$$
f_{i}(x)=\frac{1}{f^{\prime}\left(\lambda_{i}\right)} \frac{f(x)}{x-\lambda_{i}},
$$

$f_{i}(x)$ is a polynomial of x, and for any polynomial $g(x)$ of degree smaller than n, we have

$$
g(x)=\sum_{i=1}^{n} g\left(\lambda_{i}\right) f_{i}(x) .
$$

In particular, we have

$$
1=\sum_{i=1}^{n} f_{i}(x) \quad \text { and } \quad x=\sum_{i=1}^{n} \lambda_{i} f_{i}(x) .
$$

So, if we put $p_{i}=f_{i}(h)$, we get the following relations,

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i}=E \tag{2,1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=1}^{n} \lambda_{i} p_{i}=h . \tag{2.2}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
p_{i} p_{j}=0 \quad(i \neq j), \tag{2.3}
\end{equation*}
$$

for $f_{i}(x) f_{j}(x)$ is a multiple of $f(x)$. So, if we multiply both sides of (2.1) by p_{i}, we get

$$
p_{i}{ }^{2}=p_{i} .
$$

Summarizing these, we get the following

Proposition 3. If h is a semi-simple 0 -deformable vector 1 -form with minimal polynomial $\prod_{i=1}^{n}\left(x-\lambda_{i}\right)$, then we can find n polynomials $p_{i}(i=1$, \cdots, n) of h which satisfy the following relations.

1) $p_{i} p_{j}=0$, if $i \neq j, p_{i}^{2}=p_{i}$.
2) $h=\sum_{i=1}^{n} \lambda_{i} p_{i}$.

We call the tensor p_{i} the projection tensor for λ_{i}.
REmARK. In fact, we can easily see that the tensor p_{i} is the projection tensor of the distribution D_{i} which consists of the vectors u satisfying $h u=\lambda_{i} u$.
3. The integrability of the structure defined by two semi-simple 0 -deformable vector 1 -forms which commute with each other. In this section, we shall study the condition for the structure defined by two semisimple 0 -deformable vector 1 -forms h and k which commute with each other to be integrable. From (1.2), it follows immediately that if the structure is integrable, we have

$$
[h, h]=[k, k]=[h, k]=0 .
$$

Now we consider the converse problem. For this purpose, we shall find a vector 1 -form l such that h and k can be expressed as polynomials of l.

Let $f(x)=\prod_{i=1}^{m}\left(x-\lambda_{i}\right)$ and $g(x)=\prod_{\alpha=1}^{n}\left(x-\mu_{\alpha}\right)$ be the minimal polynomial of h and k respectively. If we take a real number λ different from $-\lambda_{i}$'s, and next we choose a real number μ different from the following $\frac{m(m-1)}{2} \times n^{2}$ numbers

$$
-\mu_{\alpha}-\frac{\left(\lambda+\lambda_{j}\right)\left(\mu_{\alpha}-\mu_{\beta}\right)}{\lambda_{i}-\lambda_{j}} \quad(i<j),
$$

then the $m n$ numbers $\left(\lambda_{i}+\lambda\right)\left(\mu_{\alpha}+\mu\right)$'s are all different from one another. We arrange these $m n$ numbers in a certain order, and denote them by ν_{ρ} ($\rho=1$, $\cdots, m n)$. Now we put

$$
l=(h+\lambda E)(k+\mu E),
$$

i.e.,

$$
l=\sum_{i=1}^{m}\left(\lambda_{i}+\lambda\right) p_{i} \sum_{\alpha=1}^{n}\left(\mu_{\alpha}+\mu\right) p_{\alpha}
$$

where p_{i} and p_{x} denote the projection tensors given by Proposition 3 associated with h and k respectively. Then l is a real vector 1 -form when h and k are
real. If we arrange $p_{i} p_{\alpha}$'s in the same order as $\left(\lambda_{i}+\lambda\right)\left(\mu_{\alpha}+\mu\right)$'s and denote them by $p_{\rho}(\rho=1, \cdots, m n)$, then we have

$$
l=\sum_{\rho=1}^{m_{n}} \nu_{\rho} p_{\rho} .
$$

And by virtue of the fact that h and k commute with each other, we have

$$
p_{\rho}{ }^{2}=p_{\rho} \quad \text { and } \quad p_{\rho} p_{\rho^{\prime}}=0 \quad \text { if } \rho \neq \rho^{\prime} .
$$

So we get

$$
a(l)=\sum_{\rho=1}^{m_{n}} a\left(\nu_{\rho}\right) p_{\rho},
$$

where $a(x)$ is a polynomial of x. Therefore, the polynomial $\prod_{\rho=1}^{m n}\left(x-\nu_{\rho}\right)$ vanishes identically for $x=l$, which shows that l is a semi-simple 0 -deformable vector 1 -form.

On the other hand, by virtue of Corollaries of Propositions 1 and 2, if the relation

$$
[h, h]=[k, k]=[h, k]=0
$$

holds good, we have

$$
[l, l]=0 .
$$

So, from E. T. Kobayashi's theorem, we can find a local coordinate system (x^{i}) around each $x \in M$, with respect to which the components of l are constant.

Next, we consider the square matrix $\left(\nu_{\rho}^{p}\right)(p=0,1, \cdots, m n-1 ; \rho=1, \cdots$, $m n)$. Since

$$
\operatorname{det}\left(\nu_{\rho}^{p}\right)=(-1)^{\frac{1}{2} m n(m n-1)} \triangle\left(\nu_{1}, \cdots, \nu_{m n}\right) \neq 0
$$

(Vandermonde's determinant), it is a regular matrix. So, if we denote the inverse matrix of it by (a_{p}^{p}), we have

$$
a_{p}^{\rho^{\prime}} l^{p}=a_{\rho}^{\rho^{\prime}} \sum_{\rho=1}^{m_{n}} \nu_{\rho}^{p} p_{\rho}=\sum_{\rho=1}^{m_{n}} \delta_{\rho}^{\delta^{\prime}} p_{\rho}=p_{\rho^{\prime}},
$$

which shows that p_{ρ} is expressed as a polynomial of l for all ρ. But it is
evident that h and k can be expressed as linear combinations of p_{ρ} 's. So we see that h and k can be expressed as polynomials of l. Therefore, the components of h and k with respect to $\left(x^{i}\right)$ are constant.

Summarizing these, we get
THEOREM. A structure defined by two semi-simple 0 -deformable vector 1-forms h and k which commute with each other is integrable if and only if the vector 2 -forms $[h, h],[k, k]$ and $[h, k]$ vanish identically.

If we proceed this argument step by step, we obtain the following
ThEOREM. A structure defined by several semi-simple 0-deformable vector 1 -forms $h_{1}, h_{2}, \cdots, h_{p}$ which commute with each other is integrable if and only if the vector 2 -forms $\left[h_{i}, h_{j}\right]$ vanish identically for all pairs i, j.

Bibliography

[1] A. Frölcher and A. Nujenhuis, Theory of vector valued differential forms I, Proc. Kon. Ned. Ak. Wet. Amsterdam, A 59(3), 338-357.
[2] C. S. Houch, The integrability of a structure on a differentiable manifold, Tôhoku Math. Journ., 17(1965), 72-75.
[3] E. T. Kobayashi, A remark on the Nijenhuis tensor, Pacific Journ. of Math., 12(1962), 963-977.
[4] A. Nijenhuis and W. H. Woolf, Some integration problems in almost complex manifolds, Ann. of Math., 77(1963), 424-489.

[^0]: 1) The number in brackets refers to Bibliography at the end of the paper,
