THE HOMOLOGY DECOMPOSITION FOR A COFIBRATION

Kisuke Tsuchida

(Received December 23, 1964)

1. Introduction. As a homology analogue of the Postnikov decomposition, the homology decomposition of a 1 -connected polyhedron was introduced by B. Eckmann and P. J. Hilton ([3], [5]). Moreover, as a generalization of this notion, B. Eckmann and P. J. Hilton ([4], [5]) and J. C. Moore ([6]) introduced the notion of the homology decomposition of a map. However, the homology decomposition of a map seems to be inconvenient for the actual applications.

Now as an intermediate notion of the above two decompositions, we introduce a notion of the homology decomposition for a cofibration $B \xrightarrow{q} X \xrightarrow{p}$ F. This notion corresponds with a homology analogue of the Moore-Postnikov decomposition ([1]) and seems to have many applications in the algebraic topology.

In $\S 3$, we shall give a definition of the homology decomposition for a cofibration $B \xrightarrow{q} X \xrightarrow{P} F$ and its actual construction. If B reduces to a point, then such decomposition reduces to the usual homology decomposition for X. The decomposition for the cofibre F in such decomposition gives the usual one for F.

In §4 we introduce the notion of weak H^{\prime}-cofibration as a generalization of the induced cofibration. The weak H^{\prime}-cofibration weakens the notion of H^{\prime}-cofibration defined in [7]. In §4, we explain the relations between the weak H^{\prime}-cofibration and the homology decomposition for a cofibration.
2. Preliminaries. All spaces have base points denoted by $*$ and respected by maps f, g, \cdots and their homotopies f, g, \cdots. Let $\pi(X, Y)$ denote the set of all homotopy classes of maps $X \rightarrow Y$. The homotopy class of a map $f: X \rightarrow Y$ is denoted by $[f]$. Let $K^{\prime}(G, n)$ be a polyhedron with abelian fundamental group such that $H_{r}\left(K^{\prime}(G, n)\right)=0$ for $r \neq n$ and $H_{n}\left(K^{\prime}(G, n)\right)=G$. The homotopy type of the polyhedron $K^{\prime}(G, n)$ is uniquely determined for $n \geqslant 2$. $K^{\prime}(G, n)(n \geqslant 2)$ has an H^{\prime}-structure and we define the n-th homotopy group of X with coefficients in G by $\pi_{n}(G, X)=\pi\left(K^{\prime}(G, n), X\right)$ and the n-th homotopy group of a map $f: X \rightarrow Y$ with coefficients in G by $\pi_{n}(G, f)$ $=\pi_{1}\left(K^{\prime}(G, n-1), f\right)([2],[5])$. Let $B \xrightarrow{q} X \xrightarrow{p} F$ be a cofibration and let $f: Y \rightarrow X$ be a map. Let C_{f} (resp. $C_{p f}$) denotes the space obtained by attaching the
reduced cone over Y to X (resp. F) by means of f (resp. $p f$), i.e. $C_{f}=C Y \cup_{f} X$ (resp. $C_{p f}=C Y \cup_{p f} F$). Then $F \xrightarrow{s} C_{p f} \rightarrow \Sigma Y$ is an inclusion cofibration and the following diagram is commutative:

where $\iota k, i$ and s are inclusion maps and \bar{p} is defined by

$$
\bar{p}(y, t)=(y, t) \quad(y, t) \in C Y \text { and } \bar{p}(x)=p x \quad x \in X
$$

Since $\bar{p}(y, 1)=(y, 1)=p f(y)$ and $\bar{p}(f y)=p(f y), \bar{p}$ is well defined. Then the following lemma is an obvious consequence of these considerations.

Lemma $2.1 \quad B \xrightarrow{i q} C_{f} \xrightarrow{\bar{p}} C_{p s}$ is a cofibration.
3. The homology decomposition for an (inclusion) cofibration. In this section we only consider 1 -connected polyhedra.

Definition 3.1 The homology decomposition for an (inclusion) cofibration $B \xrightarrow{q} X \xrightarrow{p} F$ consists of a sequence of spaces and maps $\left(X_{n}, F_{n}, i_{n}, j_{n}, q_{n}, p_{n}\right)_{n=1,2, \ldots}$ subject to the following conditions;
(I) $\quad X_{1}=B \quad j_{1}=q \quad q_{1}=i d$.
(II) $\quad B \xrightarrow{q_{n}} X_{n} \xrightarrow{p_{n}} F_{n}$ is an inclusion cofibration.
(III) $q=j_{n} \cdot q_{n}: B \xrightarrow{q_{n}} X_{n} \xrightarrow{j_{n}} X$
(IV) $\quad X_{n-1} \xrightarrow{i_{n}} X_{n} \longrightarrow K^{\prime}\left(H_{n}(F), n\right)$ is an inclusion cofibration $(n \geqslant 2)$ (where $i_{2}=q_{2}$).
(V) maps q_{n}, j_{n} induce the following;
(1) $j_{n *}: H_{r}\left(X_{n}\right) \stackrel{\approx}{\approx} H_{r}(X)$ for $r<n$,
(2) in the sequence $H_{n}(B) \xrightarrow{q_{n *}} H_{n}\left(X_{n}\right) \xrightarrow{j_{n *}} H_{n}(X)$, $q_{n *}$ is a monomorphism, $j_{n *}$ is an epimorphism and Im. $q_{n *} \supset$ Ker. $j_{n *}$.
(3) $q_{n *}: H_{r}(B) \xrightarrow{\approx} H_{r}\left(X_{n}\right)$ for $r>n$.
(VI) (1) a map $\bar{j}_{n}: F_{n} \rightarrow F$ induced by j induces

$$
\begin{gather*}
\bar{j}_{n *}: H_{r}\left(F_{n}\right) \xrightarrow{\approx} H(F) \text { for } r \leqslant n, \\
H_{r}(F)=0 \text { for } r>n . \tag{2}
\end{gather*}
$$

COnStruction. We will construct the homology decomposition for an (inclusion) cofibration $B \xrightarrow{q} X \xrightarrow{p} F$ inductively. From the homology exact sequence for a map q (cf. [2], [5])

$$
\longrightarrow H_{r}(B) \xrightarrow{q_{*}} H_{r}(X) \xrightarrow{J} H_{r}(q) \xrightarrow{\partial} H_{r-1}(B) \longrightarrow
$$

and the homology exact sequence for an inclusion cofibration q

$$
\begin{equation*}
\longrightarrow H_{r}(B) \xrightarrow{q_{*}} H_{r}(X) \xrightarrow{p_{*}} H_{r}(F) \xrightarrow{\partial} H_{r-1}(B) \longrightarrow, \tag{1}
\end{equation*}
$$

we have $H_{r}(q) \approx H_{r}(F)$ for all r.
We first describe the case $n=2$. By the universal coefficient theorem for the homotopy group of a map ($|5|$), we have an exact sequence

$$
\pi_{2}\left(H_{2}(F), q\right) \xrightarrow{\eta} \operatorname{Hom}\left(H_{2}(F), \pi_{2}(q)\right) \longrightarrow 0 .
$$

F is 1-connected and so $H_{1}(q)=0$. Hence by the generalized Hurewicz theorem ([5]), $\pi_{2}(q) \approx H_{2}(q)$. Thus we have an isomorphism $\theta_{1}: \pi_{2}(q) \approx H_{2}(F)$ and $\left[\left(u_{1}, v_{1}\right)\right] \in \pi_{2}\left(H_{2}(F), q\right)$ such that $\eta\left[\left(u_{1}, v_{1}\right)\right]=\theta_{1}^{-1}$. Hence we have the following commutative diagram:

Let $X_{2}=C K^{\prime}\left(H_{2}(F), 1\right) \cup_{u_{1}} B$ and $F_{2}=K^{\prime}\left(H_{2}(F), 2\right)$; then, $B \xrightarrow{q} X_{2} \xrightarrow{p} F_{2}$ is an inclusion cofibration, where q is an inclusion and p a projection. Next we define $j_{2}: X_{2} \rightarrow X$ by $j_{2} \mid B=q$ and $j_{2} \mid C K^{\prime}\left(H_{2}(F), 1\right)=v_{1}$. Evidently j_{2} is well defined and $j_{2} q_{2}=q$, if we denotes the injection $B \rightarrow X_{2}$ by q_{2}. Now we consider the commutative diagram:

where the upper sequence is a part of the homology exact sequence for an inclusion cofibration q_{2} and the lower sequence is that of an (inclusion) cofibration q. Then it is evident that $q_{2 *}$ is a monomorphism, $j_{2 *}$ is an epimorphism and Im. $q_{2 *} \supset$ Ker. $j_{2 *}$. Also obviously we have $j_{2 *}: H_{r}\left(X_{2}\right)$ $\approx H_{r}(X)$ for $r<2$ and $H_{r}(B) \approx H_{r}\left(X_{2}\right)$ for $r>2$.

Thus a sequence of spaces and maps ($X_{2}, F_{2}, j_{2}, p_{2}, q_{2}$) was constructed so as to satisfy the conditions in Definition 3.1.

Now we assume that spaces and maps ($X_{m}, F_{m}, i_{m}, j_{m}, p_{m}, q_{m}$) for $m<n$ were constructed so as to satisfy the conditions in Definition 3.1.

From the homology exact sequence for a map j_{n-1} and the condition (V), (1), (2) in 3.1.

$$
\begin{equation*}
H_{r}\left(j_{n-1}\right)=0 \quad \text { for } \quad r \leqslant n-1 \tag{2}
\end{equation*}
$$

Since $q=j_{n-1} q_{n-1}$ (the condition (III) for $n-1$), the following homology sequence is exact (cf. \5〕).

$$
\longrightarrow H_{r}\left(q_{n-1}\right) \longrightarrow H_{r}(q) \longrightarrow H_{r}\left(j_{n-1}\right) \longrightarrow H_{r-1}\left(q_{n-1}\right) \longrightarrow .
$$

Using the condition (II) in 3.1. and the observation done in the beginning of the construction, $\quad H_{r}\left(q_{n-1}\right) \approx H\left(E_{n-1}\right)$ for all r.
Combining these facts and the condition (VI) in 3.1, we have

$$
\begin{equation*}
H_{r}\left(j_{n-1}\right) \approx H_{r}(q) \text { for } \quad r \geqslant n \tag{4}
\end{equation*}
$$

Let M be the mapping cylinder of j_{n-1}. Then j_{n-1} can be factorized into the compcsite map $X_{n-1} \xrightarrow{l_{n-1}} M \xrightarrow{\alpha} X$, where l_{n-1} is an inclusicn cofibration and α a homotopy equivalence. Then it is clear that

$$
\begin{equation*}
H_{r}\left(j_{n-1}\right) \approx H_{r}\left(l_{n-1}\right) \text { for all } r \tag{5}
\end{equation*}
$$

Now by the universal coefficient theorem for the homotopy group of a map, we see that

$$
\pi_{n}\left(H_{n}(F), l_{n-1}\right) \xrightarrow{\eta} \operatorname{Hom}\left(H_{n}(F), \pi_{n}\left(l_{n-1}\right)\right) \longrightarrow 0 \text { is exact. }
$$

By (2) and (5), $H_{r}\left(l_{n-1}\right)=0$ for $r \leqslant n-1$. Hence by the generalized Hurewicz theorem, $\pi_{n}\left(l_{n-1}\right) \approx H_{n}\left(l_{n-1}\right)$. Combining (1), (4) and (5), we have an isomorphism $\pi_{n}\left(l_{n-1}\right) \approx H_{n}\left(l_{n-1}\right) \approx H_{n}\left(j_{n-1}\right) \approx H_{n}(q) \approx H_{n}(F)$. Let θ_{n-1} be such an isomorphism. Then there exists $\left[\left(u_{n-1}, v_{n-1}\right) \in \pi_{n}\left(H_{n}(F), l_{n-1}\right)\right.$ such that $\eta\left[\left(u_{n-1}, v_{n-1}\right)\right]=\epsilon_{n=1}^{-1}$. Hence we have the following commutative diagram:

We set $X_{n}=C K^{\prime}\left(H_{n}(F), n-1\right) \cup_{u_{n-1}} X_{n-1}$ and define $j_{n}: X_{n} \rightarrow X$ by $j_{n} \mid C K^{\prime}\left(H_{n}(F)\right.$, $n-1)=\alpha v_{n-1}$ and $j_{n} \mid X_{n-1}=j_{n-1}$. Obviously j_{n} is well defined.

Let $i_{n}: X_{n-1} \rightarrow X_{n}$ be an inclusion map. Then we see immediately that i_{n} is an inclusion cofibration with cofibre $K^{\prime}\left(H_{n}(F), n\right)$ and

$$
\begin{equation*}
H_{r}\left(i_{n}\right)=0 \quad \text { for } \quad r \neq n \quad \text { and } \quad H_{n}\left(i_{n}\right) \approx H_{n}(F) . \tag{6}
\end{equation*}
$$

Next we define $q_{n}: B \rightarrow X_{n}$ to be a composite map $q_{n}=i_{n} \cdot q_{n-1}$. Then q_{n} is an inclusion cofibration. We denote its cofibre F_{n}. From the definition of j_{n}, it is evident that $j_{n} q_{n}=q$ and $j_{n-1}=j_{n} i_{n}$. From the homology exact sequence for the composite map $j_{n-1}=j_{n} i_{n}$,

$$
\rightarrow H_{r}\left(i_{n}\right) \rightarrow H_{r}\left(j_{n-1}\right) \rightarrow H_{r}\left(j_{n}\right) \rightarrow H_{r-1}\left(i_{n}\right) \rightarrow \text { is exact. }
$$

Hence by (2), (4), and (6),

$$
\begin{equation*}
H_{r}\left(j_{n}\right)=0 \quad \text { for } \quad r \leqslant n \text { and } H_{r}\left(j_{n}\right) \approx H_{r}(q) \text { for } r>n . \tag{7}
\end{equation*}
$$

Moreover $\rightarrow H_{r+1}\left(j_{n}\right) \xrightarrow{\partial} H_{r}\left(X_{n}\right) \xrightarrow{j_{n *}} H_{r}(X) \xrightarrow{J} H_{r}\left(j_{n}\right) \rightarrow$ is exact, and hence by (7), $j_{n *}: H_{r}\left(X_{n}\right) \approx H_{r}(X)$ for $r<n$.

On the other hand, from the homology exact sequence for the composite $\operatorname{map} q_{n}=i_{n} \cdot q_{n-1}$,

$$
\begin{equation*}
\rightarrow H_{r+1}\left(i_{n}\right) \rightarrow H_{r}\left(q_{n-1}\right) \rightarrow H_{r}\left(q_{n}\right) \rightarrow H_{r}\left(i_{n}\right) \rightarrow \text { is exact. } \tag{8}
\end{equation*}
$$

But $H_{r}\left(q_{n-1}\right) \approx H_{r}\left(F_{n-1}\right)$ for all $r\left(H_{r}\left(q_{n}\right) \approx H_{r}\left(F_{n}\right)\right.$ for all $\left.r\right)$.
Hence by (VI) in 3.1. and (6),

$$
\begin{equation*}
H_{r}\left(F_{n}\right)=0 \quad \text { for } \quad r>n . \tag{9}
\end{equation*}
$$

Since $\rightarrow H_{r+1}\left(F_{n}\right) \rightarrow H_{r}(B) \xrightarrow{q_{n *}} H_{r}\left(X_{n}\right) \xrightarrow{p_{n *}} H_{r}\left(F_{n}\right) \rightarrow$ is exact, it follows from (9) that $q_{n *}: H_{r}(B) \approx H_{r}\left(X_{n}\right)$ for $r>n$.

Applying the five lemma to the commutative diagram:

$$
\begin{align*}
& H_{r+1}\left(F_{n}\right) \xrightarrow{\partial} H_{r}(B) \xrightarrow{q_{n *}} H_{r}\left(X_{n}\right) \xrightarrow{p_{n *}} H_{r}\left(F_{n}\right) \xrightarrow{\partial} H_{r-1}(B) \rightarrow H_{r-1}\left(X_{n}\right) \tag{10}
\end{align*}
$$

where the upper sequence is the homology exact sequence for an inclusion cofibration q_{n} and the lower is that of an inclusion cofibration q, we obtain

$$
H_{r}\left(F_{n}\right) \approx H_{r}(F) \text { for } \quad r<n
$$

If we apply condition (6), (9) and (11) to the sequence (8) with $r=n$, we have

$$
\begin{equation*}
H_{n}\left(F_{n}\right) \approx H_{n}(F) \tag{11}
\end{equation*}
$$

Finally we consider again the above commutative diagram (10) with $r=n$. Then, by (9) and (11), we easily see that $q_{n *}$ is a monomorphism and $j_{n *}$ is an epimorphism and Im. $q_{n *} \supset$ Ker. $j_{n *}$.

REmark 1. If $H_{m}(F)=0$ for some m, then $X_{m}=X_{m-1}$ and $F_{m}=F_{m-1}$.
REmARK 2. If F is ($q-1$)-connected ($q \geqslant 2$), $F_{m}=*$ and $X_{m}=B$ for $m \leqslant q-1$ and $F_{m}(m \geqslant q)$ is $(q-1)$-connected. In addition for $p \leqslant q$, if B is $(p-1)$-connected, then each X_{m} is $(p-1)$-connected.

Remark 3. If $H_{r}(F)=0$ for $r>m$, then sequences $\left\{X_{i}\right\}$ and $\left\{F_{i}\right\}$ terminate with X_{m} and F_{m} respectively. Then maps $j_{m}: X_{m} \rightarrow X$ and $\bar{j}_{m}: F_{m}$ $\rightarrow F$ are homotopy equivalences.

As the assertion on \bar{j}_{m} is obvious and we prove only about j_{m}. By (V) in 3.1, $j_{m *}: H_{r}\left(X_{m}\right) \approx H_{r}(X)$ for $r<m$. As for $r \geqslant m$, we consider the preceding commutative diagram (10) and apply the five lemma to obtain the isomorphism $j_{m *}: H_{r}\left(X_{m}\right) \approx H_{r}(X)$ for $r \geqslant m$. Thus j_{m} induces the singular homotopy equivalence. In the construction of each X_{i}, we may choose u_{i-1} to be cellular and we may arrange so that X_{i} is itself a polyhedron. Hence j_{m} is an actual homotopy equivalence.

REMARK 4. Generally we may form $X_{\infty}=\cup X_{n}$ and $F_{\infty}=\cup F_{n}$, and give them the weak topology. We define $j_{\infty}: X_{\infty} \rightarrow X$ by $j_{\infty} \mid X_{n}=j_{n}$, and $\bar{j}_{\infty}: F_{\infty}$ $\rightarrow F$ by $\overline{j_{\infty}} \mid F_{n}=\overline{j_{n}}$. Then j_{∞} and \bar{j}_{∞} are homotopy equivalences. Also two cofibration $B \rightarrow X_{\infty} \rightarrow F_{\infty}$ and $B \rightarrow X \rightarrow F$ are equivalent in the sense of [7; Definition 2.5]. The assertion on \bar{j}_{∞} is obvious (cf. [4]) and the assertion on j_{∞} follows from the similar argument as in Remark 3.

REMARK 5. If an (inclusion) cofibration $B \xrightarrow{q} X \xrightarrow{p} F$ is obtained by applying the suspension functor Σ to an (inclusion) cofibration $B^{\prime} \xrightarrow{q^{\prime}} X^{\prime} \xrightarrow{p^{\prime}} F^{\prime}$ with all spaces 1-connected polyhedra, then the homology decomposition (X_{u}, F_{u},
$\left.i_{n}, j_{n}, p_{n}, q_{n}\right)_{n=2,3,} \ldots$ for $B \xrightarrow{q} X \xrightarrow{p} F$ may be obtained by applying the suspension functor to the homology decomposition $\left(X_{n-1}^{\prime}, F_{n-1}^{\prime}, i_{n-1}^{\prime}, j_{n-1}^{\prime}, p_{n-1}^{\prime}, q_{n-1}^{\prime}\right)_{n=2,3}, \ldots$ for $B^{\prime} \xrightarrow{q^{\prime}} X^{\prime} \xrightarrow{p^{\prime}} F^{\prime}$; i.e.

$$
\begin{array}{r}
X_{n}=\Sigma X_{n-1}^{\prime}, F_{n}=\Sigma F_{n-1}^{\prime}, i_{n}=\Sigma i_{n-1}^{\prime}, j_{n}=\Sigma j_{n-1}^{\prime}, p_{n}=\Sigma p_{n-1}^{\prime} \text { and } q_{n}=\Sigma q_{n-1}^{\prime} \\
(n=2,3, \cdots) .
\end{array}
$$

REMARK 6. In the preceding construction, each F_{n} was defined by F_{n} $=X_{n} / B$. However we may also construct F_{n} in the usual way (cf. [3]). We consider the composite map $p_{2} u_{2}: K^{\prime}\left(H_{3}(F), 2\right) \xrightarrow{u_{2}} X_{2} \xrightarrow{p_{2}} F_{2}$ where F_{2} $=K^{\prime}\left(H_{2}(F), 2\right)$ and maps u_{2}, p_{2} are those defined in the peeceding construction.

By Lemma 2.1, $B \rightarrow C_{u_{2}} \rightarrow C_{p_{2} u_{2}}$ is a cofibration. But $C_{u_{2}}=X_{3}$. Hence we have $H_{r}\left(C_{p_{2} u_{2}}\right) \approx H_{r}\left(F_{3}\right)$ for all r. Consider the homology exact sequence of the cofibration $F_{2} \rightarrow C_{p_{2} u_{2}} \rightarrow K^{\prime}\left(H_{3}(F), 3\right)$, then $H_{2}\left(F_{2}\right) \approx H_{2}\left(C_{p_{2} u_{2}}\right)$ and $H_{3}(F)$ $\approx H_{3}\left(C_{p_{2} u_{2}}\right)$. It follows from [3: Proposition 4'] that $p_{2} u_{2}$ is homologically trivial. Thus $C_{p_{2} u_{2}}=C K^{\prime}\left(H_{3}(F), 2\right) \cup_{p_{2} u_{2}} F$ obtained by attaching the cone $C K^{\prime}\left(H_{3}(F), 2\right)$ to F by a homologically trivial map $p_{2} u_{2}$ has the homotopy type of F_{3}. The same considerations are done for $F_{n}(n>3)$.

Thus we may also built up the homotopy type F_{∞} of F by an usual process of successively attaching cones ${C K^{\prime}}^{\prime}\left(H_{n}(F), n-1\right)$ by homologically trivial maps.

Definition 3.2. The 1 -connected polyhedron X is said to be normal if it admits a filtration into 1 -connected subcomplexes

$$
X_{2} \subset X_{3} \subset \cdots \subset X_{n} \subset \cdots ; \cup X_{n}=X
$$

with $H_{r}\left(X_{n}\right)=0$ for $r>n$ and $i_{\varkappa}: H_{r}\left(X_{n}\right) \approx H(X)$ for $r \leqslant n$.
REmARK 7. $F_{\infty}=\cup F_{n}$ in Remark 3 is a normal polyhedron. Now we consider an inclusion cofibration $B \xrightarrow{q} X \xrightarrow{p} F$ with a normal polyhedron F. Let $\left\{F_{2} \subset F_{3} \subset \cdots \subset F_{n} \subset \cdots ; \cup F_{n}=F\right\}$ be a normalization of F and we set $X_{n}=p^{-1}\left(F_{n}\right)$. Then $X_{1}=B$ and $B \xrightarrow{q_{n}} X_{n} \xrightarrow{p_{n}} F_{n}$ is an inclusion cofibration where q_{n} is an inclusion map and $p_{n}=p \mid X$.

Since $\rightarrow H_{r+1}\left(F_{n}\right) \rightarrow H_{r}(B) \rightarrow H_{r}\left(X_{n}\right) \rightarrow H_{r}\left(F_{n}\right) \rightarrow$ is exact and $H_{r}\left(F_{n}\right)=0$ for $r>n$, it follows that $q_{n *}: H_{r}(B) \approx H_{r}\left(X_{n}\right)$ for $r>n$.

Next we consider the commutative diagram (10). Then by the values of the homology groups of F_{n} and five lemma, we have $H_{r}\left(X_{n}\right) \approx H(X)$ for $r<n$. Moreover, for $r=n$, we easily see that $q_{n *}$ is a monomorphism, $j_{n *}$ is an epimorphism and Im. $q_{n *} \supset \operatorname{Ker} . j_{n *}$.
4. Weak H^{\prime}-cofibration and the homology decomposition for a cofibration. In this section we assume that the cofibrations whose homology decompositions are considered constitute 1 -connected polyhedra.

DEFINITION 4.1. ([7]) A cofibration $B \xrightarrow{q} X \xrightarrow{p} F$ is called weak H^{\prime}-cofibration if there exists a map $\phi: X \rightarrow F \vee X$ and a homotopy $H_{t}: X \rightarrow F \times X$ such that
(a)

where i_{2} is the injection into the second factor.
(b) $H_{0}=j \phi$ (where $j: F \vee X \rightarrow F \times X$ is the injection) and $H_{1}=(p \times 1) \Delta_{1}$.

Let Y be an H^{\prime}-space with comultiplication μ and let $B \xrightarrow{q} X \xrightarrow{p} F$ be a weak H^{\prime}-cofibration.

Definition 4.2. ([7]) A map $f: Y \rightarrow X$ is said to be coprimitive if the diagram :

is homotopy-commutative.
Example. Let $f: A \rightarrow B$ be a map. Then the induced cofibration $B \rightarrow C_{f}$ $\rightarrow \Sigma A$ via f is a weak H^{\prime}-cofibration. In fact, following to [7], we define a map $\phi: C_{f} \rightarrow \Sigma A \vee C_{f}$ by

$$
\begin{gathered}
\phi(b)=(*, b) \quad b \in B \subset C_{f} \\
\phi(a, t)=\left\{\begin{array}{ll}
(<a, 2 t>, *) & 0 \leqslant t \leqslant 1 / 2 \\
(*,(a, 2 t-1)) & 1 / 2 \leqslant t \leqslant 1
\end{array} \quad(a, t) \in C A \subset C_{f} .\right.
\end{gathered}
$$

Then the condition (a) in 4.1 holds evidently. Now we define a homotopy $H_{s}: C_{f} \rightarrow \Sigma A \times C_{f}$ by

$$
H_{s}(b)=(*, b) \quad b \in B \subset C_{f},
$$

$$
H_{s}(a, t)=\left\{\begin{array}{l}
\left(<a, \frac{2 t}{1+s}>,\left(a, \frac{2 s t}{1+s}\right)\right) \quad 0 \leqslant t \leqslant \frac{1+s}{2}, \\
(*,(a, 2 t-1)) \quad \frac{1+s}{2} \leqslant t \leqslant 1 \quad(a, t) \in C A \subset C_{j}
\end{array}\right.
$$

Then H_{s} is well-defined and satisfies the condition (b) in 4.1.
PROPOSITION 4.1. Let an (inclusion) cofibration $B \xrightarrow{q} X \xrightarrow{p} F$ be obtained by applying the suspension functor Σ to an (inclusion) cofibration $B^{\prime} \xrightarrow{q^{\prime}} X^{\prime}$ $\xrightarrow{p^{\prime}} F^{*}$. Then there is the homology decomposition $\left\{X_{n}, F_{n}, i_{n}, j_{n}, \dot{p}_{n}, q_{n}\right\}$ for $B \xrightarrow{q} X \xrightarrow{p} F$ such that $B \xrightarrow{q_{n}} X_{n} \xrightarrow{p_{n}} F_{n}$ is a weak H^{\prime}-cofibration for each n.

PROOF. From $\S 3$ Remark 5 , the homology decomposition for $B \xrightarrow{q} X \xrightarrow{p}$ F may be obtained by applying the suspension functor Σ to the homology decomposition for $B^{\prime} \xrightarrow{q^{\prime}} X^{\prime} \xrightarrow{p^{\prime}} F^{\prime}$, i.e. $X_{n}=\Sigma X_{n-1}^{\prime}, F_{n}=\Sigma F_{n-1}^{\prime}, q_{n}=\Sigma q_{n-1}^{\prime}$ and $p_{n}=\Sigma p_{n-1}^{\prime}$.

Now we define a map $\phi: X_{n} \rightarrow F_{n} \vee X_{n}$ to be the composite

$$
\Sigma X_{n-1}^{\prime} \xrightarrow{\mu} \Sigma X_{n-1}^{\prime} \vee \Sigma X_{n-1}^{\prime} \xrightarrow{\dot{\Sigma} p_{n-1}^{\prime} \vee 1} \Sigma F_{n-1}^{\prime} \vee \Sigma X_{n-1}^{\prime}
$$

where μ is a comultiplication in ΣX_{n-1}^{\prime}.
Then we can show that the conditions (a) and (b) in 4.1 are satisfied for a cofibration $B \xrightarrow{q_{n}} X_{n} \xrightarrow{p_{n}} F_{n}$.

First we consider the following diagram :

$$
\begin{aligned}
& \Sigma B^{\prime} \xrightarrow{i_{2}} \Sigma F_{n-1}^{\prime} \vee \Sigma B^{\prime}
\end{aligned}
$$

From the definition of ϕ, for $<x, t>\in \Sigma B^{\prime}=B$

$$
\left(\phi \cdot \Sigma q_{n-1}^{\prime}\right)<x, t>= \begin{cases}(*, *) & \text { for } 0 \leqslant t \leqslant 1 / 2 \\ \left(*,<q_{n-1}^{\prime} x, 2 t-1>\right) & \text { for } 1 / 2 \leqslant t \leqslant 1 .\end{cases}
$$

On the other hand,

$$
\left(1 \vee \Sigma q_{n-1}^{\prime}\right) \cdot i_{2}<x, t>=\left(*,<q_{n-1}^{\prime} x, t>\right) \quad \text { for } \quad 0 \leqslant t \leqslant 1 .
$$

Thus the above diagram is homotopy-commutative and condition (a) in 4.1 is satisfied.

Next we consider the diagram :

Since $j \cdot \mu \simeq \Delta$, we have $j \cdot \phi=j \cdot\left(\Sigma p_{n-1}^{\prime} \vee 1\right) \mu \simeq\left(\Sigma p_{n-1}^{\prime} \times 1\right) \cdot \Delta=\left(p_{n-1} \times 1\right) \cdot \Delta$. Thus condition (b) in 4.1 is satisfied.
Q.E.D.

THEOREM 4.2. Let $B \xrightarrow{q} X \xrightarrow{p} F$ be a weak H^{\prime}-cofibration, Y an H^{\prime}-space with comultiplication $\mu, f: Y \rightarrow X$ coprimitive, and $X \xrightarrow{i} C_{f} \xrightarrow{\boldsymbol{\pi}} \Sigma Y$ an induced cofibration via.f. Then $B \xrightarrow{i q} C_{f} \xrightarrow{\bar{D}} C_{p s}$ is a weak H^{\prime}-cofibration.

Proof. By Lemma 2.1, $B \xrightarrow{i q} C_{f} \xrightarrow{\bar{p}} C_{p f}$ is a cofibration and so it suffices to show that conditions (a) and (b) in 4.1 are satisfied. By the hypothesis $B \xrightarrow{q} X \xrightarrow{p} F$ is a weak H^{\prime}-cofibration and hence there exists a map $\phi: X$ $\rightarrow F \vee X$ satisfying the conditions (a) and (b) in 4.1. First we consider a composite map $(s \vee i) \cdot \phi: X \xrightarrow{\phi} F \bigvee X \xrightarrow{s \bigvee i} C_{p s} \vee C_{f}$ where s and i are inclusion maps. Since

$$
\begin{aligned}
(s \vee i) \phi f & \cong(s \vee i)(p f \vee f) \mu \quad \text { (by the coprimitivity of } f) \\
& =(s p f \vee i f) \mu=(\bar{p} k \iota \vee k \iota) \mu \simeq 0 \quad \text { (see §2) }
\end{aligned}
$$

and $\iota: Y \rightarrow C Y$ is a cofibration, there exists a homotopy $\omega_{l}: C Y \rightarrow C_{p r} \vee C_{f}$ such that $\omega_{1} \iota=(s \vee i) \cdot \phi \cdot f$ and $\omega_{0}=*$.

Now we define a map $\lambda: C_{f} \rightarrow C_{p s} \vee C_{f}$ by

$$
\lambda(y, t)=\omega_{1}(y, t) \quad(y, t) \in C Y \quad \lambda(x)=(s \bigvee i) \cdot \phi(x) \quad x \in X .
$$

Since $\quad \lambda(y, 1)=\omega_{1}(y, 1)=\omega_{1} \iota(y)=(s \bigvee i) \phi \cdot f(y)=\lambda(f y), \lambda$ is well defined.

Next we consider the following diagram :

where the top square is homotopy commutative and all other squares except the bottom square are strict commutative.
Then $\quad j \lambda i=j \cdot(s \vee i) \phi=(s \times i) \cdot j \cdot \phi \simeq(s \times i)(p \times 1) \Delta_{x} \quad$ (by (b) in 4.1)

$$
\begin{aligned}
& =(\bar{p} \times 1) \cdot(i \times i) \Delta_{X} \quad(\text { by the definition of } \bar{p}) \\
& =(\bar{p} \times 1) \cdot \Delta \cdot i .
\end{aligned}
$$

Since $X \xrightarrow{\boldsymbol{i}} C_{f} \rightarrow \Sigma Y$ is an induced cofibration ([7]), it follows from [7; Lemma 2.2] that there exists a map $w: \Sigma Y \rightarrow C_{p f} \times C_{f}$ such that $(w \nabla j \lambda) \cdot \psi \simeq(\bar{p} \times 1) \Delta$, where $\psi: C_{f} \rightarrow \Sigma Y \vee C_{f}$ is a cooperation in the induced cofibration $X \xrightarrow{i} C_{f}$ $\rightarrow \Sigma Y$ and ∇ denotes the wedge product of maps (see [7]).

Let $p_{1}: C_{p f} \times C_{f} \rightarrow C_{p f}, p_{2}: C_{p f} \times C_{f} \rightarrow C_{f}$ be the projection and $\bar{\mu}: \Sigma Y$ $\rightarrow \Sigma Y \bigvee \Sigma Y$ be the comultiplication for ΣY, then we have

$$
j\left(p_{1} w \vee p_{2} w\right) \bar{\mu} \simeq\left(p_{1} w \times p_{2} w\right) \Delta=w
$$

If we set $\kappa=\left(p_{1} w \vee p_{2} w\right) \bar{\mu}$ and define a map $\widetilde{\phi}: C_{f} \rightarrow C_{p f} \vee C_{f}$ to be the composite map $\widetilde{\phi}=(\kappa \nabla \lambda) \psi$, then

$$
j \widetilde{\phi}=j(\kappa \nabla \lambda) \psi \simeq(j \kappa \nabla j \lambda) \psi \simeq(w \nabla j \lambda) \psi \simeq(\bar{p} \times 1) \Delta
$$

Thus the condition (b) in 4.1 holds.
Also, for $b \in B$,

$$
\begin{aligned}
\widetilde{\phi} i q(b) & =(\kappa \nabla \lambda) \cdot \psi \cdot i \cdot q(\mathrm{~b}) \\
& \simeq(\kappa \nabla \lambda) \cdot(1 \vee i) \cdot i_{2} q(b) \text { (since } i \text { is an weak } H^{\prime} \text {-cofibration) } \\
& =(\kappa \nabla \lambda)(1 \vee i)(*, q(b))=(\kappa \nabla \lambda)(*, i q(b)) \\
& =\lambda q(b) \quad \text { (by the definition of } \nabla)
\end{aligned}
$$

$$
\begin{aligned}
& =(s \vee i) \phi q(b) \simeq(s \vee i) \cdot(1 \vee q)(*, b) \\
& =(*, i \cdot q(b))=(1 \vee i \cdot q) \cdot i_{2}(b) .
\end{aligned}
$$

Hence the condition (a) in 4.1 holds.
Q.E.D.

THEOREM 4.3. Let $B \xrightarrow{q} X \xrightarrow{p} F$ be an (inclusion) cofibration with B : $(r-1)$-connected and $F:(s-1)$-connected $(2 \leqslant r \leqslant s)$. Then there is the homology decomposition $\left(X_{n}, F_{u}, i_{n}, j_{n}, p_{n}, q_{n}\right)$ for $B \xrightarrow{q} X \xrightarrow{p} F$ such that $B \rightarrow$ $X_{n} \rightarrow F_{n}$ is a weak H^{\prime}-cofibration for $n \leqslant r+s-2$.

Proof. If $n \leqslant s$, then $F_{n-1}=*$ and $X_{n-1}=B$. Hence $B \xrightarrow{q_{n}} X_{n} \xrightarrow{p_{n}} F_{n}$ is an induced cofibration and so a weak H^{\prime}-cofibration. Thus we may take $n>s$. Inductively we assume that $B \xrightarrow{q_{n-1}} X_{n-1} \xrightarrow{p_{n-1}} F_{n-1}$ is a weak H^{\prime}-cofibration and we shall show that $B \xrightarrow{q_{n}} X_{n} \xrightarrow{p_{n}} F_{n}$ is a weak H^{\prime}-cofibration for $n \leqslant$ $r+s-2$. From Theorem 4.2, it suffices to show that $u_{n-1}: K^{\prime}\left(H_{n}(F), n-1\right)$ $\rightarrow X_{n-1}$ is co-primitive.

Now we consider the following diagram :

where μ is a comultiplication for $K^{\prime}\left(H_{n}(F), n-1\right)$ and ϕ is a map defined for the weak H-cofibration $B \xrightarrow{q_{n-1}} X_{n-1} \xrightarrow{p_{n-1}} F_{n-1}$. Then $j \cdot\left(p_{n-1} u_{n-1} \vee u_{n-1}\right) \cdot \mu \simeq\left(p_{n-1} u_{n-1} \times u_{n-1}\right) \cdot \Delta_{K^{\prime}}$,
$K^{\prime}\left(H_{n}(F), n-1\right) \xrightarrow{\mu} K^{\prime}\left(H_{n}(F), n-1\right) \vee K^{\prime}\left(H_{n}(F), n-1\right) \xrightarrow{p_{n-1} u_{n-1} \vee u_{n-1}} F_{n-1} \vee X_{n-1}$

$$
K^{\prime}\left(H_{n}(F), n-1\right) \times K^{\prime}\left(H_{n}(F), n-1\right) \stackrel{p_{n-1} u_{n-1} \times u_{n-1}}{\xrightarrow{n}} F_{n-1} \times X_{n-1}
$$

On the other hand, we have $\left(p_{n-1} u_{n-1} \times u_{n-1}\right) \Delta_{K^{\prime}}=\left(p_{n-1} \times 1\right) \Delta u_{n-1}$.

Also, by (b) in 4.1, $\left(p_{n-1} \times 1\right) \Delta \simeq j \phi$. Thus we have $j\left(p_{n-1} u_{n-1} \vee u_{n-1}\right) \mu \simeq j \phi u_{n-1}$. Now we consider the homotopy exact sequence for a map $j: F_{n-1} \vee X_{n-1}$ $\rightarrow F_{n-1} \times X_{n-1}$ (cf. [2], [5]).

$$
\pi_{n}\left(H_{n}(F), j\right) \xrightarrow{\partial} \pi_{n-1}\left(H_{n}(F), F_{n-1} \vee X_{n-1}\right) \xrightarrow{j_{\dot{*}}} \pi_{n-1}\left(H_{n}(F), F_{n-1} \times X_{n-1}\right) .
$$

Since B is $(r-1)$-connected and F is $(s-1)$-connected $(r \leqslant s)$, it follows from Remark 2 that each X_{m} is $(r-1)$-connected and $F_{m}(m \geqslant s)$ is $(s-1)$-connected. Hence $F_{n-1} \vee X_{n-1}$ is $(r-1)$-connected and $F_{n-1} \# X_{n-1}=F_{n-1} \times X_{n-1} / F_{n-1} \vee X_{n-1}$ is $(r+s-1)$-connected. By using the generalized Blakers-Massey theorem ([5]) for an inclusion cofibration $F_{n-1} \vee X_{n-1} \rightarrow F_{n-1} \times X_{n-1} \rightarrow F_{n-1} \# X_{n-1}$, we have

$$
\pi_{i}\left(H_{n}(F), j\right) \approx \pi_{i}\left(H_{n}(F), F_{n-1} \# X_{n-1}\right) \quad \text { for } \quad i<2 r+s-2
$$

By the universal coefficient theorem ([5]) for the homotopy group,

$$
\begin{aligned}
0 \rightarrow \operatorname{Ext}\left(H_{n}(F),\right. & \left.\pi_{n+1}\left(F_{n-1} \# X_{n-1}\right)\right) \rightarrow \pi_{n}\left(H_{n}(F), F_{n-1} \# X_{n-1}\right) \\
& \rightarrow \operatorname{Hom}\left(H_{n}(F), \pi_{n}\left(F_{n-1} \# X_{n-1}\right)\right) \rightarrow 0 \text { is exact. }
\end{aligned}
$$

Since $F_{n-1} \# X_{n-1}$ is $(r+s-1)$-connected, then we have

$$
\pi_{n}\left(H_{n}(F), F_{n-1} \# X_{n-1}\right)=0 \text { for } n \leqslant r+s-2 .
$$

Hence $j_{*}: \pi_{n-1}\left(H_{n}(F), F_{n-1} \vee X_{n-1}\right) \rightarrow \pi_{n-1}\left(H_{n}(F), F_{n-1} \times X_{n-1}\right)$ is a monomorphism for $n \leqslant r+s-2$.

Thus, for $n \leqslant r+s-2$, it can be deduced from $j \cdot\left(p_{n-1} u_{n-1} \vee u_{n-1}\right) \cdot \mu$ $\simeq j \cdot \phi \cdot u_{n-1}$ that $\left(p_{n-1} u_{n-1} \vee u_{n-1}\right) \simeq \phi \cdot u_{n-1}$.
Q.E.D.

References

[1] W. D. Barcus and J. P. Meyer, The suspension of a loop space, Amer. Journ. Math., 80(1958), 895-920.
[2] B. Eckmann and P. J. Hilton, Groupes d'homotopie et dualité, C. R. Acad. Sci., Paris, 246(1958), 2444-2447, 2555-2558, 2991-2993.
[3] B. Eckmann and P. J. Hilton, Décomposition homologique d'un polyèdre simplement connexe, ibid, 248(1959), 2054-2056.
[4] B. Eckmann and P. J. Hilton, On the homology and homotopy decomposition of continuous maps, Proc. Nat. Acad. Sci. U. S. A., 45(1959), 372-375.
[5] P. J. Hilton, Homotopy theory and duality, Lecture notes, Cornell University, 1959.
[6] J. C. Moore, Le théorèm de Freudenthal, la suite exacte de James et l'invariant de Hopf généralisé, Séminaire H. Cartan, 1954~55.
[7] K. Tsuchida, Principal cofibration, Tôhoku Math. Journ., 16(1964), 321-333.
Hirosaki University.

