THE HOMOLOGY DECOMPOSITION FOR A COFIBRATION

KISUKE TSUCHIDA

(Received December 23, 1964)

1. Introduction. As a homology analogue of the Postnikov decomposition, the homology decomposition of a 1-connected polyhedron was introduced by B. Eckmann and P. J. Hilton ([3], [5]). Moreover, as a generalization of this notion, B. Eckmann and P. J. Hilton ([4], [5]) and J. C. Moore ([6]) introduced the notion of the homology decomposition of a map. However, the homology decomposition of a map seems to be inconvenient for the actual applications.

Now as an intermediate notion of the above two decompositions, we

introduce a notion of the homology decomposition for a cofibration $B \xrightarrow{q} X \xrightarrow{p}$ F. This notion corresponds with a homology analogue of the Moore-Postnikov decomposition ([1]) and seems to have many applications in the algebraic topology.

In §3, we shall give a definition of the homology decomposition for a cofibration $B \xrightarrow{q} X \xrightarrow{p} F$ and its actual construction. If B reduces to a point, then such decomposition reduces to the usual homology decomposition for X. The decomposition for the cofibre F in such decomposition gives the usual one for F.

In §4 we introduce the notion of weak H'-cofibration as a generalization of the induced cofibration. The weak H'-cofibration weakens the notion of H'-cofibration defined in [7]. In §4, we explain the relations between the weak H'-cofibration and the homology decomposition for a cofibration.

2. Preliminaries. All spaces have base points denoted by * and respected by maps f, g, \cdots and their homotopies f, g, \cdots . Let $\pi(X, Y)$ denote the set of all homotopy classes of maps $X \to Y$. The homotopy class of a map $f: X \to Y$ is denoted by [f]. Let K'(G, n) be a polyhedron with abelian fundamental group such that $H_r(K'(G, n))=0$ for $r \neq n$ and $H_n(K'(G, n))=G$. The homotopy type of the polyhedron K'(G, n) is uniquely determined for $n \geq 2$. K'(G, n) $(n \geq 2)$ has an H'-structure and we define the *n*-th homotopy group of X with coefficients in G by $\pi_n(G, X) = \pi(K'(G, n), X)$ and the *n*-th homotopy group of a map $f: X \to Y$ with coefficients in G by $\pi_n(G, f)$

 $=\pi_1(K'(G, n-1), f)$ ([2], [5]). Let $B \xrightarrow{q} X \xrightarrow{p} F$ be a cofibration and let $f: Y \to X$ be a map. Let C_f (resp. C_{pf}) denotes the space obtained by attaching the

reduced cone over Y to X (resp. F) by means of f (resp. pf), i.e. $C_f = CY \cup_f X$ (resp. $C_{pf} = CY \cup_{pf} F$). Then $F \xrightarrow{s} C_{pf} \to \Sigma Y$ is an inclusion cofibration and the following diagram is commutative:

$$\begin{array}{cccc} Y \xrightarrow{f} & X \xrightarrow{p} F \\ \iota & & & \downarrow i & \downarrow s \\ CY \xrightarrow{k} & C_{f} \xrightarrow{\overline{p}} & C_{pf} \end{array}$$

where $\iota k, i$ and s are inclusion maps and \overline{p} is defined by

$$\overline{p}(y,t) = (y,t) \quad (y,t) \in CY \text{ and } \overline{p}(x) = px \quad x \in X$$

Since $\overline{p}(y, 1) = (y, 1) = pf(y)$ and $\overline{p}(fy) = p(fy)$, \overline{p} is well defined. Then the following lemma is an obvious consequence of these considerations.

LEMMA 2.1
$$B \xrightarrow{iq} C_f \xrightarrow{\overline{p}} C_{pf}$$
 is a cofibration.

3. The homology decomposition for an (inclusion) cofibration. In this section we only consider 1-connected polyhedra.

DEFINITION 3.1 The homology decomposition for an (inclusion) cofibration $B \xrightarrow{q} X \xrightarrow{p} F$ consists of a sequence of spaces and maps $(X_n, F_n, i_n, j_n, q_n, p_n)_{n=1,2,...}$ subject to the following conditions;

$$(I)$$
 $X_1 = B$ $j_1 = q$ $q_1 = id$.

(II) $B \xrightarrow{q_n} X_n \xrightarrow{p_n} F_n$ is an inclusion cofibration.

(III)
$$q = j_n \cdot q_n : B \xrightarrow{q_n} X_n \xrightarrow{j_n} X$$

- (IV) $X_{n-1} \xrightarrow{i_n} X_n \longrightarrow K'(H_n(F), n)$ is an inclusion cofibration $(n \ge 2)$ (where $i_2 = q_2$).
- (V) maps q_n, j_n induce the following;
 - (1) $j_{n*}: H_r(X_n) \xrightarrow{\sim} H_r(X)$ for r < n,
 - (2) in the sequence $H_n(B) \xrightarrow{q_{n*}} H_n(X_n) \xrightarrow{j_{n*}} H_n(X)$, q_{n*} is a monomorphism, j_{n*} is an epimorphism and Im. $q_{n*} \supset \text{Ker. } j_{n*}$.

(3)
$$q_{n*}: H_r(B) \xrightarrow{\approx} H_r(X_n)$$
 for $r > n$.

119

(1)

(VI) (1) a map $\overline{j}_n: F_n \to F$ induced by j induces

$$\overline{j}_{n*}: H_r(F_n) \xrightarrow{\boldsymbol{\approx}} H(F) \text{ for } r \leq n,$$
(2)
$$H_r(F) = 0 \text{ for } r > n.$$

CONSTRUCTION. We will construct the homology decomposition for an (inclusion) cofibration $B \xrightarrow{q} X \xrightarrow{p} F$ inductively. From the homology exact sequence for a map q (cf. [2], [5])

$$\longrightarrow H_r(B) \xrightarrow{q_*} H_r(X) \xrightarrow{J} H_r(q) \xrightarrow{\partial} H_{r-1}(B) \longrightarrow$$

and the homology exact sequence for an inclusion cofibration q

$$\longrightarrow H_r(B) \xrightarrow{q_*} H_r(X) \xrightarrow{p_*} H_r(F) \xrightarrow{\partial} H_{r-1}(B) \longrightarrow ,$$

we have $H_r(q) \approx H_r(F)$ for all r.

We first describe the case n=2. By the universal coefficient theorem for the homotopy group of a map ([5]), we have an exact sequence

$$\pi_2(H_2(F),q) \xrightarrow{\eta} \operatorname{Hom}(H_2(F),\pi_2(q)) \longrightarrow 0$$
.

F is 1-connected and so $H_1(q) = 0$. Hence by the generalized Hurewicz theorem ([5]), $\pi_2(q) \approx H_2(q)$. Thus we have an isomorphism $\theta_1 : \pi_2(q) \approx H_2(F)$ and $[(u_1, v_1)] \in \pi_2(H_2(F), q)$ such that $\eta[(u_1, v_1)] = \theta_1^{-1}$. Hence we have the following commutative diagram:

$$\begin{array}{ccc} K'(H_2(F),1) & \xrightarrow{u_1} & B \\ \iota & & & \downarrow q \\ cK'(H_2(F),1) & \xrightarrow{v_1} & X \end{array}$$

Let $X_2 = CK'(H_2(F), 1) \cup_{u_1} B$ and $F_2 = K'(H_2(F), 2)$; then, $B \xrightarrow{q} X_2 \xrightarrow{p} F_2$ is an inclusion cofibration, where q is an inclusion and p a projection. Next we define $j_2: X_2 \to X$ by $j_2 | B = q$ and $j_2 | CK'(H_2(F), 1) = v_1$. Evidently j_2 is well defined and $j_2q_2 = q$, if we denotes the injection $B \to X_2$ by q_2 . Now we consider the commutative diagram:

where the upper sequence is a part of the homology exact sequence for an inclusion cofibration q_2 and the lower sequence is that of an (inclusion) cofibration q. Then it is evident that q_{2*} is a monomorphism, j_{2*} is an epimorphism and Im. $q_{2*} \supset$ Ker. j_{2*} . Also obviously we have $j_{2*}: H_r(X_2) \approx H_r(X)$ for r < 2 and $H_r(B) \approx H_r(X_2)$ for r > 2.

Thus a sequence of spaces and maps $(X_2, F_2, j_2, p_2, q_2)$ was constructed so as to satisfy the conditions in Definition 3.1.

Now we assume that spaces and maps $(X_m, F_m, i_m, j_m, p_m, q_m)$ for m < n were constructed so as to satisfy the conditions in Definition 3.1.

From the homology exact sequence for a map j_{n-1} and the condition (V), (1), (2) in 3.1.

$$H_r(j_{n-1}) = 0 \text{ for } r \leq n-1.$$
 (2)

Since $q = j_{n-1}q_{n-1}$ (the condition (III) for n-1), the following homology sequence is exact (cf. [5]).

$$\longrightarrow$$
 $H_r(q_{n-1}) \longrightarrow$ $H_r(q) \longrightarrow$ $H_r(j_{n-1}) \longrightarrow$ $H_{r-1}(q_{n-1}) \longrightarrow$.

Using the condition (II) in 3.1. and the observation done in the beginning of the construction, $H_r(q_{n-1}) \approx H(E_{n-1})$ for all r. (3) Combining these facts and the condition (VI) in 3.1, we have

$$H_r(j_{n-1}) \approx H_r(q) \quad \text{for} \quad r \ge n \,.$$
 (4)

Let M be the mapping cylinder of j_{n-1} . Then j_{n-1} can be factorized into the composite map $X_{n-1} \xrightarrow{l_{n-1}} M \xrightarrow{\alpha} X$, where l_{n-1} is an inclusion cofibration and α a homotopy equivalence. Then it is clear that

$$H_r(i_{n-1}) \approx H_r(l_{n-1}) \quad \text{for all } r. \tag{5}$$

Now by the universal coefficient theorem for the homotopy group of a map, we see that

$$\pi_n(H_n(F), l_{n-1}) \xrightarrow{\eta} \operatorname{Hom}(H_n(F), \pi_n(l_{n-1})) \longrightarrow 0$$
 is exact.

By (2) and (5), $H_r(l_{n-1}) = 0$ for $r \leq n-1$. Hence by the generalized Hurewicz theorem, $\pi_n(l_{n-1}) \approx H_n(l_{n-1})$. Combining (1), (4) and (5), we have an isomorphism $\pi_n(l_{n-1}) \approx H_n(l_{n-1}) \approx H_n(j_{n-1}) \approx H_n(q) \approx H_n(F)$. Let θ_{n-1} be such an isomorphism. Then there exists $[(u_{n-1}, v_{n-1}) \in \pi_n(H_n(F), l_{n-1})]$ such that $\eta[(u_{n-1}, v_{n-1})] = \theta_{n-1}^{-1}$. Hence we have the following commutative diagram:

$$\begin{array}{cccc} K'(H_n(F), n-1) & \xrightarrow{u_{n-1}} & X_{n-1} & \xrightarrow{id} & X_{n-1} \\ & & & & \downarrow l_{n-1} & & \downarrow j_{n-1} \\ CK'(H_n(F), n-1) & \xrightarrow{v_{n-1}} & M & \xrightarrow{\alpha} & X \end{array}$$

We set $X_n = CK'(H_n(F), n-1) \cup_{u_{n-1}} X_{n-1}$ and define $j_n : X_n \to X$ by $j_n | CK'(H_n(F), n-1) = \alpha v_{n-1}$ and $j_n | X_{n-1} = j_{n-1}$. Obviously j_n is well defined.

Let $i_n: X_{n-1} \to X_n$ be an inclusion map. Then we see immediately that i_n is an inclusion cofibration with cofibre $K'(H_n(F), n)$ and

$$H_r(i_n) = 0$$
 for $r \neq n$ and $H_n(i_n) \approx H_n(F)$. (6)

Next we define $q_n: B \to X_n$ to be a composite map $q_n = i_n \cdot q_{n-1}$. Then q_n is an inclusion cofibration. We denote its cofibre F_n . From the definition of j_n , it is evident that $j_nq_n = q$ and $j_{n-1} = j_ni_n$. From the homology exact sequence for the composite map $j_{n-1} = j_n i_n$,

$$\rightarrow H_r(i_n) \rightarrow H_r(j_{n-1}) \rightarrow H_r(j_n) \rightarrow H_{r-1}(i_n) \rightarrow \text{ is exact.}$$

Hence by (2), (4), and (6),

$$H_r(j_n) = 0$$
 for $r \leq n$ and $H_r(j_n) \approx H_r(q)$ for $r > n$. (7)

Moreover $\rightarrow H_{r+1}(j_n) \xrightarrow{\partial} H_r(X_n) \xrightarrow{j_{n*}} H_r(X) \xrightarrow{J} H_r(j_n) \rightarrow \text{ is exact, and hence}$ by (7), $j_{n*}: H_r(X_n) \approx H_r(X)$ for r < n.

On the other hand, from the homology exact sequence for the composite map $q_n = i_n \cdot q_{n-1}$,

$$\to H_{r+1}(i_n) \to H_r(q_{n-1}) \to H_r(q_n) \to H_r(i_n) \to \text{ is exact.}$$
(8)

But $H_r(q_{n-1}) \approx H_r(F_{n-1})$ for all r $(H_r(q_n) \approx H_r(F_n)$ for all r). Hence by (VI) in 3.1. and (6),

$$H_r(F_n) = 0 \quad \text{for} \quad r > n \,. \tag{9}$$

Since $\to H_{r+1}(F_n) \to H_r(B) \xrightarrow{q_{n*}} H_r(X_n) \xrightarrow{p_{n*}} H_r(F_n) \to \text{ is exact, it follows from}$ (9) that $q_{n*}: H_r(B) \approx H_r(X_n)$ for r > n.

Applying the five lemma to the commutative diagram :

where the upper sequence is the homology exact sequence for an inclusion cofibration q_n and the lower is that of an inclusion cofibration q, we obtain

$$H_r(F_n) \approx H_r(F)$$
 for $r < n$.

If we apply condition (6), (9) and (11) to the sequence (8) with r=n, we have

$$H_n(F_n) \approx H_n(F) \,. \tag{11}$$

Finally we consider again the above commutative diagram (10) with r=n. Then, by (9) and (11), we easily see that q_{n*} is a monomorphism and j_{n*} is an epimorphism and Im. $q_{n*} \supset \text{Ker. } j_{n*}$.

REMARK 1. If $H_m(F) = 0$ for some *m*, then $X_m = X_{m-1}$ and $F_m = F_{m-1}$.

REMARK 2. If F is (q-1)-connected $(q \ge 2)$, $F_m = *$ and $X_m = B$ for $m \le q-1$ and F_m $(m \ge q)$ is (q-1)-connected. In addition for $p \le q$, if B is (p-1)-connected, then each X_m is (p-1)-connected.

REMARK 3. If $H_r(F) = 0$ for r > m, then sequences $\{X_i\}$ and $\{F_i\}$ terminate with X_m and F_m respectively. Then maps $j_m: X_m \to X$ and $\bar{j}_m: F_m \to F$ are homotopy equivalences.

As the assertion on \overline{j}_m is obvious and we prove only about j_m . By (V) in 3.1, $j_{m*}: H_r(X_m) \approx H_r(X)$ for r < m. As for $r \ge m$, we consider the preceding commutative diagram (10) and apply the five lemma to obtain the isomorphism $j_{m*}: H_r(X_m) \approx H_r(X)$ for $r \ge m$. Thus j_m induces the singular homotopy equivalence. In the construction of each X_i , we may choose u_{i-1} to be cellular and we may arrange so that X_i is itself a polyhedron. Hence j_m is an actual homotopy equivalence.

REMARK 4. Generally we may form $X_{\infty} = \bigcup X_n$ and $F_{\infty} = \bigcup F_n$, and give them the weak topology. We define $j_{\infty}: X_{\infty} \to X$ by $j_{\infty}|X_n = j_n$, and $\overline{j}_{\infty}: F_{\infty} \to F$ by $\overline{j_{\infty}}|F_n = \overline{j_n}$. Then j_{∞} and $\overline{j_{\infty}}$ are homotopy equivalences. Also two cofibration $B \to X_{\infty} \to F_{\infty}$ and $B \to X \to F$ are equivalent in the sense of [7; Definition 2.5]. The assertion on $\overline{j_{\infty}}$ is obvious (cf. [4]) and the assertion on j_{∞} follows from the similar argument as in Remark 3.

REMARK 5. If an (inclusion) cofibration $B \xrightarrow{q} X \xrightarrow{p} F$ is obtained by applying the suspension functor Σ to an (inclusion) cofibration $B' \xrightarrow{q'} X' \xrightarrow{p'} F'$ with all spaces 1-connected polyhedra, then the homology decomposition (X_n, F_n) ,

122

 $i_n, j_n, p_n, q_n)_{n=2,3,\dots}$ for $B \xrightarrow{q} X \xrightarrow{p} F$ may be obtained by applying the suspension functor to the homology decomposition $(X'_{n-1}, F'_{n-1}, i'_{n-1}, j'_{n-1}, p'_{n-1}, q'_{n-1})_{n=2,3,\dots}$ for $B' \xrightarrow{q'} X' \xrightarrow{p'} F'$; i.e.

$$X_n = \Sigma X'_{n-1}, \ F_n = \Sigma F'_{n-1}, \ i_n = \Sigma i'_{n-1}, \ j_n = \Sigma j'_{n-1}, \ p_n = \Sigma p'_{n-1} \ \text{and} \ q_n = \Sigma q'_{n-1} \ (n = 2, 3, \cdots).$$

REMARK 6. In the preceding construction, each F_n was defined by $F_n = X_n/B$. However we may also construct F_n in the usual way (cf. [3]). We consider the composite map $p_2u_2 : K'(H_3(F), 2) \xrightarrow{u_2} X_2 \xrightarrow{p_2} F_2$ where $F_2 = K'(H_2(F), 2)$ and maps u_2, p_2 are those defined in the peeceding construction.

By Lemma 2.1, $B \to C_{u_2} \to C_{p_2u_2}$ is a cofibration. But $C_{u_2} = X_3$. Hence we have $H_r(C_{p_2u_3}) \approx H_r(F_3)$ for all r. Consider the homology exact sequence of the cofibration $F_2 \to C_{p_2u_2} \to K'(H_3(F), 3)$, then $H_2(F_2) \approx H_2(C_{p_2u_3})$ and $H_3(F) \approx H_3(C_{p_2u_2})$. It follows from [3: Proposition 4'] that p_2u_2 is homologically trivial. Thus $C_{p_2u_2} = CK'(H_3(F), 2) \cup_{p_2u_2} F$ obtained by attaching the cone $CK'(H_3(F), 2)$ to F by a homologically trivial map p_2u_2 has the homotopy type of F_3 . The same considerations are done for F_n (n > 3).

Thus we may also built up the homotopy type F_{∞} of F by an usual process of successively attaching cones $CK'(H_n(F), n-1)$ by homologically trivial maps.

DEFINITION 3.2. The 1-connected polyhedron X is said to be normal if it admits a filtration into 1-connected subcomplexes

 $X_2 \subset X_3 \subset \cdots \subset X_n \subset \cdots; \ \cup \ X_n = X$

with $H_r(X_n) = 0$ for r > n and $i_*: H_r(X_n) \approx H(X)$ for $r \leq n$.

REMARK 7. $F_{\infty} = \bigcup F_n$ in Remark 3 is a normal polyhedron. Now we consider an inclusion cofibration $B \xrightarrow{q} X \xrightarrow{p} F$ with a normal polyhedron F. Let $\{F_2 \subset F_3 \subset \cdots \subset F_n \subset \cdots; \bigcup F_n = F\}$ be a normalization of F and we set $X_n = p^{-1}(F_n)$. Then $X_1 = B$ and $B \xrightarrow{q} X_n \xrightarrow{p_n} F_n$ is an inclusion cofibration where q_n is an inclusion map and $p_n = p | X$.

Since $\to H_{r+1}(F_n) \to H_r(B) \to H_r(X_n) \to H_r(F_n) \to \text{ is exact and } H_r(F_n) = 0$ for r > n, it follows that $q_{n*}: H_r(B) \approx H_r(X_n)$ for r > n.

Next we consider the commutative diagram (10). Then by the values of the homology groups of F_n and five lemma, we have $H_r(X_n) \approx H(X)$ for r < n. Moreover, for r=n, we easily see that q_{n*} is a monomorphism, j_{n*} is an epimorphism and Im. $q_{n*} \supset \text{Ker. } j_{n*}$.

4. Weak H'-cofibration and the homology decomposition for a cofibration. In this section we assume that the cofibrations whose homology decompositions are considered constitute 1-connected polyhedra.

DEFINITION 4.1. ([7]) A cofibration $B \xrightarrow{q} X \xrightarrow{p} F$ is called weak H-cofibration if there exists a map $\phi: X \to F \lor X$ and a homotopy $H_t: X \to F \times X$ such that

(a)
$$\begin{array}{ccc} B & \stackrel{i_2}{\longrightarrow} F \lor B \\ q & & \downarrow 1 \lor q \\ X & \stackrel{\phi}{\longrightarrow} F \lor X \end{array}$$
 is homotopy-commutative

where i_2 is the injection into the second factor.

(b) $H_0 = j\phi$ (where $j: F \lor X \to F \times X$ is the injection) and $H_1 = (p \times 1)\Delta_X$.

Let Y be an H'-space with comultiplication μ and let $B \xrightarrow{q} X \xrightarrow{p} F$ be a weak H'-cofibration.

DEFINITION 4.2. ([7]) A map $f: Y \to X$ is said to be coprimitive if the diagram:

$$\begin{array}{ccc} X & \stackrel{\mu}{\longrightarrow} & Y \lor Y \\ \downarrow f & \qquad \downarrow pf \lor f \\ X & \stackrel{\phi}{\longrightarrow} & F \lor X \end{array}$$

is homotopy-commutative.

EXAMPLE. Let $f: A \to B$ be a map. Then the induced cofibration $B \to C_f$ $\to \Sigma A$ via f is a weak H-cofibration. In fact, following to [7], we define a map $\phi: C_f \to \Sigma A \lor C_f$ by

$$\phi(b) = (*,b) \qquad b \in B \subset C_f$$
 $\phi(a,t) = \left\{ egin{array}{ccc} (<\!a,2t\!>\!,*) & \!0 \leqslant t \leqslant 1/2 \ (*,(a,2t\!-\!1)) & \!1/2 \leqslant t \leqslant 1 \end{array}
ight. (a,t) \in CA \subset C_f \, .$

Then the condition (a) in 4.1 holds evidently. Now we define a homotopy $H_s: C_f \to \Sigma A \times C_f$ by

$$H_s(b) = (*,b)$$
 $b \in B \subset C_f$,

124

THE HOMOLOGY DECOMPOSITION FOR A COFIBRATION

$$H_{s}(a,t) = \begin{cases} \left(\langle a, \frac{2t}{1+s} \rangle, \left(a, \frac{2st}{1+s}\right) \right) & 0 \leqslant t \leqslant \frac{1+s}{2}, \\ (*, (a, 2t-1)) & \frac{1+s}{2} \leqslant t \leqslant 1 \end{cases} \quad (a,t) \in CA \subset C_{j} \end{cases}$$

Then H_s is well-defined and satisfies the condition (b) in 4.1.

PROPOSITION 4.1. Let an (inclusion) cofibration $B \xrightarrow{q} X \xrightarrow{p} F$ be obtained by applying the suspension functor Σ to an (inclusion) cofibration $B' \xrightarrow{q'} X'$ $\xrightarrow{p'} F$. Then there is the homology decomposition $\{X_n, F_n, i_n, j_n, p_n, q_n\}$ for $B \xrightarrow{q} X \xrightarrow{p} F$ such that $B \xrightarrow{q_n} X_n \xrightarrow{p_n} F_n$ is a weak H'-cofibration for each n.

PROOF. From §3 Remark 5, the homology decomposition for $B \xrightarrow{q} X \xrightarrow{p} F$ may be obtained by applying the suspension functor Σ to the homology decomposition for $B' \xrightarrow{q'} X' \xrightarrow{p'} F'$, i.e. $X_n = \Sigma X'_{n-1}$, $F_n = \Sigma F'_{n-1}$, $q_n = \Sigma q'_{n-1}$ and $p_n = \Sigma p'_{n-1}$.

Now we define a map $\phi: X_n \to F_n \lor X_n$ to be the composite

$$\Sigma X'_{n-1} \xrightarrow{\mu} \Sigma X'_{n-1} \vee \Sigma X'_{n-1} \xrightarrow{\Sigma p'_{n-1} \vee 1} \Sigma F'_{n-1} \vee \Sigma X'_{n-1},$$

where μ is a comultiplication in $\Sigma X'_{n-1}$.

Then we can show that the conditions (a) and (b) in 4.1 are satisfied for a cofibration $B \xrightarrow{q_n} X_n \xrightarrow{p_n} F_n$.

First we consider the following diagram:

$$\Sigma B' \xrightarrow{i_2} \Sigma F'_{n-1} \vee \Sigma B'$$

$$\downarrow \Sigma q'_{n-1} \qquad \qquad \downarrow 1 \vee \Sigma q'_{n-1}$$

$$\Sigma X'_{n-1} \xrightarrow{\phi} \Sigma F'_{n-1} \vee \Sigma X'_{n-1}.$$

From the definition of ϕ , for $\langle x,t \rangle \in \Sigma B' = B$

$$(\phi \cdot \Sigma q'_{n-1}) < x, t > = \begin{cases} (*, *) & \text{for } 0 \leqslant t \leqslant 1/2, \\ (*, < q'_{n-1}x, 2t-1 >) & \text{for } 1/2 \leqslant t \leqslant 1. \end{cases}$$

On the other hand,

$$(1 \lor \Sigma q'_{n-1}) \cdot i_2 < x, t > = (*, < q'_{n-1} x, t >) \text{ for } 0 \leq t \leq 1$$

Thus the above diagram is homotopy-commutative and condition (a) in 4.1 is satisfied.

Next we consider the diagram :

Since $j \cdot \mu \simeq \Delta$, we have $j \cdot \phi = j \cdot (\Sigma p'_{n-1} \vee 1) \mu \simeq (\Sigma p'_{n-1} \times 1) \cdot \Delta = (p_{n-1} \times 1) \cdot \Delta$. Thus condition (b) in 4.1 is satisfied. Q.E.D.

THEOREM 4.2. Let $B \xrightarrow{q} X \xrightarrow{p} F$ be a weak H'-cofibration, Y an H'-space with comultiplication $\mu, f: Y \to X$ coprimitive, and $X \xrightarrow{i} C_f \xrightarrow{\pi} \Sigma Y$ an induced cofibration via f. Then $B \xrightarrow{iq} C_f \xrightarrow{\overline{p}} C_{pf}$ is a weak H'-cofibration.

PROOF. By Lemma 2.1, $B \xrightarrow{iq} C_f \xrightarrow{p} C_{pf}$ is a cofibration and so it suffices to show that conditions (a) and (b) in 4.1 are satisfied. By the hypothesis $B \xrightarrow{q} X \xrightarrow{p} F$ is a weak *H*'-cofibration and hence there exists a map $\phi: X \to F \lor X$ satisfying the conditions (a) and (b) in 4.1. First we consider a composite map $(s \lor i) \cdot \phi: X \xrightarrow{\phi} F \lor X \xrightarrow{s \lor i} C_{pf} \lor C_f$ where *s* and *i* are inclusion maps. Since

$$(s \lor i) \phi f \cong (s \lor i) (pf \lor f) \mu \qquad \text{(by the coprimitivity of } f)$$
$$= (spf \lor if) \mu = (\bar{p}k\iota \lor k\iota) \mu \cong 0 \qquad (\text{see } \S2)$$

and $\iota: Y \to CY$ is a cofibration, there exists a homotopy $\omega_{\iota}: CY \to C_{pf} \vee C_{f}$ such that $\omega_{1}\iota = (s \vee i) \cdot \phi \cdot f$ and $\omega_{0} = *$.

Now we define a map $\lambda: C_f \to C_{pf} \lor C_f$ by

$$\lambda(y,t) = \omega_1(y,t) \quad (y,t) \in CY \quad \lambda(x) = (s \lor i) \cdot \phi(x) \quad x \in X.$$

Since $\lambda(y, 1) = \omega_1(y, 1) = \omega_1\iota(y) = (s \lor i)\phi \cdot f(y) = \lambda(fy)$, λ is well defined.

126

Next we consider the following diagram:

where the top square is homotopy commutative and all other squares except the bottom square are strict commutative.

Then $j\lambda i = j \cdot (s \lor i)\phi = (s \times i) \cdot j \cdot \phi \simeq (s \times i)(p \times 1) \Delta_x$ (by (b) in 4.1) = $(\overline{p} \times 1) \cdot (i \times i) \Delta_x$ (by the definition of \overline{p}) = $(\overline{p} \times 1) \cdot \Delta \cdot i$.

Since $X \xrightarrow{i} C_f \to \Sigma Y$ is an induced cofibration ([7]), it follows from [7; Lemma 2.2] that there exists a map $w: \Sigma Y \to C_{pf} \times C_f$ such that $(w \bigtriangledown j\lambda) \cdot \psi \simeq (\overline{p} \times 1)\Delta$, where $\psi: C_f \to \Sigma Y \lor C_f$ is a cooperation in the induced cofibration $X \xrightarrow{i} C_f \to \Sigma Y$ and \bigtriangledown denotes the wedge product of maps (see [7]).

Let $p_1: C_{pf} \times C_f \to C_{pf}$, $p_2: C_{pf} \times C_f \to C_f$ be the projection and $\overline{\mu}: \Sigma Y \to \Sigma Y \vee \Sigma Y$ be the comultiplication for ΣY , then we have

$$j(p_1w \lor p_2w)\,\overline{\mu} \simeq (p_1w imes p_2w)\,\Delta = w$$
 .

If we set $\kappa = (p_1 w \lor p_2 w) \overline{\mu}$ and define a map $\widetilde{\phi} : C_f \to C_{pf} \lor C_f$ to be the composite map $\widetilde{\phi} = (\kappa \bigtriangledown \lambda) \psi$, then

$$j\widetilde{\phi} = j(\kappa \bigtriangledown \lambda) \psi \simeq (j\kappa \bigtriangledown j\lambda) \psi \simeq (w \bigtriangledown j\lambda) \psi \simeq (\overline{p} \times 1) \Delta$$

Thus the condition (b) in 4.1 holds. Also, for $b \in B$,

$$\begin{split} \widetilde{\phi} i q(b) &= (\kappa \bigtriangledown \lambda) \cdot \psi \cdot i \cdot q(b) \\ &\simeq (\kappa \bigtriangledown \lambda) \cdot (1 \lor i) \cdot i_2 q(b) \text{ (since } i \text{ is an weak } H'\text{-cofibration)} \\ &= (\kappa \bigtriangledown \lambda) (1 \lor i) (*, q(b)) = (\kappa \bigtriangledown \lambda) (*, iq(b)) \\ &= \lambda q(b) \qquad \text{(by the definition of } \bigtriangledown) \end{split}$$

$$= (s \lor i) \phi q(b) \simeq (s \lor i) \cdot (1 \lor q)(*, b)$$
$$= (*, i \cdot q(b)) = (1 \lor i \cdot q) \cdot i_2(b).$$

Hence the condition (a) in 4.1 holds.

THEOREM 4.3. Let $B \xrightarrow{q} X \xrightarrow{p} F$ be an (inclusion) cofibration with B: (r-1)-connected and F: (s-1)-connected ($2 \leqslant r \leqslant s$). Then there is the homology decomposition ($X_n, F_u, i_n, j_n, p_n, q_n$) for $B \xrightarrow{q} X \xrightarrow{p} F$ such that $B \rightarrow X_n \rightarrow F_n$ is a weak H'-cofibration for $n \leqslant r+s-2$.

PROOF. If $n \leq s$, then $F_{n-1} = *$ and $X_{n-1} = B$. Hence $B \xrightarrow{q_n} X_n \xrightarrow{p_n} F_n$ is an induced cofibration and so a weak H-cofibration. Thus we may take n > s. Inductively we assume that $B \xrightarrow{q_{n-1}} X_{n-1} \xrightarrow{p_{n-1}} F_{n-1}$ is a weak H-cofibration and we shall show that $B \xrightarrow{q_n} X_n \xrightarrow{p_n} F_n$ is a weak H-cofibration for $n \leq r+s-2$. From Theorem 4.2, it suffices to show that $u_{n-1}: K'(H_n(F), n-1) \to X_{n-1}$ is co-primitive.

Now we consider the following diagram:

$$\begin{array}{cccc} K'(H_n(F), n-1) & \stackrel{\mu}{\longrightarrow} & K'(H_n(F), n-1) \lor K'(H_n(F), n-1) \\ & \downarrow & u_{n-1} & & \downarrow & p_{n-1}u_{n-1} \lor u_{n-1} \\ & X_{n-1} & \stackrel{\phi}{\longrightarrow} & F_{n-1} \lor X_{n-1} \\ & \downarrow & \downarrow & j \\ & X_{n-1} \times X_{n-1} & \stackrel{p_{n-1} \times 1}{\longrightarrow} & F_{n-1} \times X_{n-1} \end{array}$$

where μ is a comultiplication for $K'(H_n(F), n-1)$ and ϕ is a map defined for the weak *H*-cofibration $B \xrightarrow{q_{n-1}} X_{n-1} \xrightarrow{p_{n-1}} F_{n-1}$. Then $j \cdot (p_{n-1}u_{n-1} \vee u_{n-1}) \cdot \mu \simeq (p_{n-1}u_{n-1} \times u_{n-1}) \cdot \Delta_{K'}$,

On the other hand, we have $(p_{n-1}u_{n-1} \times u_{n-1})\Delta_{K'} = (p_{n-1} \times 1)\Delta u_{n-1}$.

128

Q.E.D.

Also, by (b) in 4.1, $(p_{n-1} \times 1)\Delta \simeq j\phi$. Thus we have $j(p_{n-1}u_{n-1} \vee u_{n-1})\mu \simeq j\phi u_{n-1}$. Now we consider the homotopy exact sequence for a map $j: F_{n-1} \vee X_{n-1} \rightarrow F_{n-1} \times X_{n-1}$ (cf. [2], [5]).

$$\pi_n(H_n(F),j) \xrightarrow{O} \pi_{n-1}(H_n(F), F_{n-1} \vee X_{n-1}) \xrightarrow{j_*} \pi_{n-1}(H_n(F), F_{n-1} \times X_{n-1}).$$

Since B is (r-1)-connected and F is (s-1)-connected $(r \leq s)$, it follows from Remark 2 that each X_m is (r-1)-connected and F_m $(m \geq s)$ is (s-1)-connected. Hence $F_{n-1} \lor X_{n-1}$ is (r-1)-connected and $F_{n-1} \not\equiv X_{n-1} = F_{n-1} \times X_{n-1}/F_{n-1} \lor X_{n-1}$ is (r+s-1)-connected. By using the generalized Blakers-Massey theorem ([5]) for an inclusion cofibration $F_{n-1} \lor X_{n-1} \rightarrow F_{n-1} \times X_{n-1} \rightarrow F_{n-1} \not\equiv X_{n-1}$, we have

$$\pi_i(H_n(F), j) \approx \pi_i(H_n(F), F_{n-1} \# X_{n-1})$$
 for $i < 2r + s - 2$.

By the universal coefficient theorem ([5]) for the homotopy group,

$$0 \to \operatorname{Ext}(H_n(F), \pi_{n+1}(F_{n-1} \# X_{n-1})) \to \pi_n(H_n(F), F_{n-1} \# X_{n-1})$$

 $\to \operatorname{Hom}(H_n(F), \pi_n(F_{n-1} \# X_{n-1})) \to 0 \text{ is exact.}$

Since $F_{n-1} \# X_{n-1}$ is (r+s-1)-connected, then we have

$$\pi_n(H_n(F), F_{n-1} \# X_{n-1}) = 0 \text{ for } n \leq r+s-2.$$

Hence $j_*: \pi_{n-1}(H_n(F), F_{n-1} \vee X_{n-1}) \rightarrow \pi_{n-1}(H_n(F), F_{n-1} \times X_{n-1})$ is a monomorphism for $n \leq r+s-2$.

Thus, for $n \leq r+s-2$, it can be deduced from $j \cdot (p_{n-1}u_{n-1} \vee u_{n-1}) \cdot \mu \simeq j \cdot \phi \cdot u_{n-1}$ that $(p_{n-1}u_{n-1} \vee u_{n-1}) \simeq \phi \cdot u_{n-1}$. Q.E.D.

References

- W. D. BARCUS AND J. P. MEYER, The suspension of a loop space, Amer. Journ. Math., 80(1958), 895-920.
- [2] B. ECKMANN AND P. J. HILTON, Groupes d'homotopie et dualité, C. R. Acad. Sci., Paris, 246(1958), 2444-2447, 2555-2558, 2991-2993.
- [3] B. ECKMANN AND P. J. HILTON, Décomposition homologique d'un polyèdre simplement connexe, ibid, 248(1959), 2054-2056.
- [4] B. ECKMANN AND P. J. HILTON, On the homology and homotopy decomposition of continuous maps, Proc. Nat. Acad. Sci. U.S.A., 45(1959), 372-375.
- [5] P. J. HILTON, Homotopy theory and duality, Lecture notes, Cornell University, 1959.
- [6] J. C. MOORE, Le théorèm de Freudenthal, la suite exacte de James et l'invariant de Hopf généralisé, Séminaire H. Cartan, 1954~55.
- [7] K. TSUCHIDA, Principal cofibration, Tôhoku Math. Journ., 16(1964), 321-333.

HIROSAKI UNIVERSITY.