Tôhoku Math. Journ. Vol. 19, No. 3, 1967

REMARKS ON GROTHENDIECK RINGS

Kôji Uchida

(Received June 12, 1967)

R.G.Swan has obtained several important results on Grothendieck rings of a finite group. In this note we derive generalizations of some of his results. Throughout this note, R denotes a noetherian integral domain and K denotes its quotient field. All modules we consider are finitely generated unitary left modules. If A is a finite R-algebra (or K-algebra), G(A) denotes the Grothendieck group of A-modules, P(A) denotes the Grothendieck group of projective A-modules, and $C_0(A)$ its reduced class group, i.e, the subgroup of P(A) generated by the elements of the form [P]-[Q], where P, Q are projective and $K \otimes_R P \cong K \otimes_R Q$.

1. R is called regular if its localization $R_{\mathfrak{p}}$ is a regular local ring for each prime ideal \mathfrak{p} . A regular domain is integrally closed [1. Proposition 4.2]. In this section we calculate $G(R\pi)$ for a regular domain R of prime characteristic p and for any finite group π .

PROPOSITION 1. Any finitely generated module over a regular domain R has a finite projective dimension.

PROOF. Let M be such a module and let

$$\rightarrow X_n \xrightarrow{d_n} X_{n-1} \rightarrow \cdots \rightarrow X_0 \rightarrow M \rightarrow 0$$

be its projective resolution, where we assume every X_k is finitely generated. Let Y_n be the kernel of d_n . Then Y_n is a finitely generated torsion-free *R*-module. To show that some Y_n is projective, we first prove the following lemma.

LEMMA. Let R be an integral domain (not necessarily noetherian), and Y be a finitely generated torsion-free R-module. Let \mathfrak{p} be a prime ideal of R. If $Y_{\mathfrak{p}} = R_{\mathfrak{p}} \otimes_{\mathbb{R}} Y$ is $R_{\mathfrak{p}}$ -projective, then $Y_{\mathfrak{l}}$ is $R_{\mathfrak{q}}$ -projective for each \mathfrak{q} which does not contain a certain element $r \notin \mathfrak{p}$.

PROOF. Let $F \xrightarrow{f} Y \rightarrow 0$ be exact where F is a finitely generated free Rmodule. Then the sequence $F_y \xrightarrow{f_p} Y_y \rightarrow 0$ splits by assumption, and we have a

homemorphism $g_{\mathfrak{p}}: Y_{\iota} \to F_{\mathfrak{p}}$ such that $f_{\mathfrak{p}} \cdot g_{\mathfrak{p}} = \text{identity. Let } y_1, \dots, y_n$ be a set of generators for Y, and let $g_{\mathfrak{p}}(y_i) = v_i/r_i$, where $v_i \in F$, $r_i \in R - \mathfrak{p}$. If a prime \mathfrak{q} does not contain $r = r_1 r_2 \cdots r_n$, it is clear that $g_{\mathfrak{q}}: y_i \to v_i/r_i$ induces a homomorphism of $Y_{\mathfrak{q}}$ into $F_{\mathfrak{q}}$ which splits $f_{\mathfrak{q}}$. Then $Y_{\mathfrak{q}}$ is $R_{\mathfrak{q}}$ -projective.

We now continue the proof of Proposition 1. As $R_{\mathfrak{p}}$ is regular for each \mathfrak{p} , it has the finite global dimension [11. Theorem 1]. Therefore $Y_{n,\mathfrak{p}}$ is $R_{\mathfrak{p}}$ projective for some $n=n(\mathfrak{p})$. By the lemma there exists an element $r=r(\mathfrak{p})$ not contained in \mathfrak{p} such that $Y_{n,\mathfrak{q}}$ is $R_{\mathfrak{q}}$ projective for every \mathfrak{q} which does not contain $r(\mathfrak{p})$. As $\{r(\mathfrak{p}), \mathfrak{p} \text{ prime}\}$ generates a unit ideal, there exist a finite number of $r(\mathfrak{p})$ which generate a unit ideal. Let n be the maximal value of corresponding $n(\mathfrak{p})$. Then it is clear that $Y_{n,\mathfrak{p}}$ is $R_{\mathfrak{p}}$ -projective for every prime \mathfrak{p} . Then Y_n is R-projective by [2. Proposition 2.6].

Let R be a regular domain of prime characteristic p, and let π be a finite group. Then R contains a prime field F_0 of characteristic p. Let F be the set of the elements of K which are algebraic over F_0 . Then F is a field contained in R because R is integrally closed. Let N_0 denote the radical of $F\pi$. Then $N=R\otimes_F N_0$ is the nil-radical of $R\pi\cong R\otimes_F F\pi$, and

$$R\pi/N\cong R\otimes_{F}(F\pi/N_{0})\cong R\otimes_{F}M_{1}\oplus\cdots\oplus R\otimes_{F}M_{r}$$

holds. Where $M_i = M(n_i, F_i)$ is the total matric algebra of degree n_i over a finite extension field F_i of F. $R_i = R \otimes_F F_i$ is an integral domain with the quotient field $K_i = K \otimes_F F_i$. Then we have

$$R\pi/N\cong M(n_1,R_1)\oplus\cdots\oplus M(n_r,R_r),$$

and so

$$G(R\pi/N)\cong G(M(n_1,R_1))\oplus\cdots\oplus G(M(n_r,R_r)).$$

As F_i is separable over F, any finitely generated R_i -module has a finite projective dimension by Proposition 1,[4. IX. Theorem 7.10] and [6. Proposition 2]. By Morita theorem [9. Theorem 3.4], it is also true for any finitely generated $M(n_i, R_i)$ -module. So $G(M(n_i, R_i)) \cong P(M(n_i, R_i))$ holds by [12. Proposition 11]. Then by [15. Proposition 4.1] and [15. Proposition 1.1],

$$0 \to C_0(M(n_i, R_i)) \to G(M(n_i, R_i)) \to G(M(n_i, K_i)) \to 0$$

holds. So also holds

$$0 \to C_0(R\pi/N) \to G(R\pi/N) \to G(K\pi/N) \to 0.$$

Now as N is nilpotent, $P(R\pi) \cong P(R\pi/N)$ by [3. Lemma 18.1]. This isomorphism is obtained by corresponding P/NP to any finitely generated projective module P. If $K \bigotimes_R (P/NP) \cong K \bigotimes_R P/K \bigotimes_R NP$ is $K\pi/KN$ -free, $K \bigotimes_R P$ is $K\pi$ -free because

KN is the radical of $K\pi$. So we have an isomorphism $C_0(R\pi)\cong C_0(R\pi/N)$. There exist natural homomorphisms

$$G(R\pi/N) \rightarrow G(R\pi), \ G(K\pi/KN) \rightarrow G(K\pi).$$

They are isomorphisms by [7. Proposition 9.4]. Hence

THEOREM 1. Let R be a regular domain of prime characteristic p, and let π be a finite group. Then we have an exact sequence

 $0 \to C_0(R\pi) \xrightarrow{\phi} G(R\pi) \to G(K\pi) \to 0,$

 $\phi([P_1]-[P_2])=[P_1/NP_1]-[P_2/NP_2].$

where

This theorem generalizes Theorem 1 of [15].
$$G(R\pi)$$
 has a ring structure is nilarly to [13, §1] by Proposition 1. If R is a Dedekind ring, ϕ is a ring momorphism. In fact $C(R\pi)^2 = (Im\phi)^2 = 0$ holds. In order to prove this

similarly to [13. §1] by Proposition 1. If R is a Dedekind ring, ϕ is a ring homomorphism. In fact $C_0(R\pi)^2 = (\mathrm{Im}\phi)^2 = 0$ holds. In order to prove this analogously to [15. §12], we need only to note that P/NP is R-projective if P is $R\pi$ -projective and

$$0 \to F/NF \to P/NP \to A/NA \to 0$$

is exact if

$$0 \to F \to P \to A \to 0$$

is exact, F is $R\pi$ -projective and A is of R-torsion. We do not know if it is true for any regular ring, but we have

THEOREM 2. The ring extension

$$0 \to Im \ \phi \to G(R\pi) \to G(K\pi) \to 0$$

splits.

PROOF. Every simple $K\pi$ -module is of the form $K_i^{n_i}$ which is a minimal left ideal of $M(n_i, K_i)$. Let $R_i^{n_i}$ be a corresponding ideal of $M(n_i, R_i)$. Let

$$K_i^{n_i} \otimes_{\kappa} K_j^{n_j} \sim \sum_{l} m_l \cdot K_l^{n_l}$$

be the decomposition into simple factors as $K\pi$ -modules. As $K_i^{n_i} \cong K \otimes_F F_i^{n_i}$, we can take a F-basis of $F_i^{n_i} \otimes_F F_j^{n_j}$ as a K-basis of $K_i^{n_i} \otimes_K K_j^{n_j}$. As every simple $F\pi$ -module $F_i^{n_i}$ induces simple $K\pi$ -module $K_i^{n_i}$, the above decomposition comes from a transformation of F-basis. As F is contained in R, and a F-basis of $F_i^{n_i}$ becomes an R-basis of $R_i^{n_i}$, this transformation induces a transformation of R-basis of $R_i^{n_i} \otimes_F R_j^{n_j}$. Therefore $R_i^{n_i} \otimes_F R_j^{n_j} \sim \sum_i m_i \cdot R_i^{n_i}$ holds, so the corre-

spondence $K_i^{n_i} \to R_i^{n_i}$ induces a ring homomorphism which splits the ring extension.

2. Let A be a finite R-algebra. We assume that A is torsion-free as an R-module and $K \otimes_{\mathbb{F}} A$ is a separable algebra. Let \mathfrak{o} denote a maximal order containing A. Then by [8], there exists a commutative diagram with exact rows

Where $W(K \otimes A)$ is the Whitehead group of $K \otimes A$ -modules, and $G_t(A)$, $G_t(v)$ are Grothendieck groups of R-torsion A-modules and v-modules respectively. φ, ψ are natural homomorphisms. From this diagram we have

$$G_t(A)/\varphi G_t(\mathfrak{o}) \cong G(A)/\psi G(\mathfrak{o}).$$

If R is of Krull dimension one, $G_t(A) \cong \sum_{\mathfrak{p}} G(A/\mathfrak{p}A)$, $G_t(\mathfrak{o}) \cong \sum_{\mathfrak{p}} G(\mathfrak{o}/\mathfrak{p}\mathfrak{o})$ where sums are direct sums over all non-zero prime ideals \mathfrak{p} . Then φ is also a direct product of $\varphi_{\mathfrak{p}}: G(\mathfrak{o}/\mathfrak{p}\mathfrak{o}) \to G(A/\mathfrak{p}A)$. So we have

$$G(A)/\psi G(\mathfrak{o}) \cong \sum_{\mathfrak{p}} G(A/\mathfrak{p}A)/\varphi_{\mathfrak{p}}G(\mathfrak{o}/\mathfrak{p}\mathfrak{o}) \quad (\text{direct}).$$

Z denotes the rational integers and Q denotes the rationals. Let $A = \{a + b\sqrt{m}, a, b \in Z\}$ be a subring of $Q(\sqrt{m})$ where $m \equiv 1 \pmod{4}$. Then $\mathfrak{o} = \left\{a + b\frac{1+\sqrt{m}}{2}\right\}$ is the ring of integers of $Q(\sqrt{m})$. If $\mathfrak{q} \neq \mathfrak{p} = (2, 1 + m)$ is a prime ideal of

A,
$$A/\mathfrak{q} \cong \mathfrak{o}/\mathfrak{q}\mathfrak{o}$$
 so that $G(A/\mathfrak{q}) = \varphi_\mathfrak{q}G(\mathfrak{o}/\mathfrak{q}\mathfrak{o})$. It is well known that
 $\mathfrak{p}\mathfrak{o} = 2\mathfrak{o} = \begin{cases} \mathfrak{P}_1\mathfrak{P}_2 \text{ if } m \equiv 1 \mod 8 \\ & \text{prime in } \mathfrak{o} \text{ if } m \equiv 5 \mod 8. \end{cases}$

Hence

$$\mathfrak{o}/\mathfrak{p}\mathfrak{o} = \begin{cases} \mathfrak{o}/\mathfrak{P}_1 \oplus \mathfrak{o}/\mathfrak{P}_2 & \text{if } m \equiv 1 \mod 8\\ \text{simple } \mathfrak{o} \cdot \text{module } \text{if } m \equiv 5 \mod 8 \end{cases}$$

As $\mathfrak{o}/\mathfrak{po} \cong A/\mathfrak{p} \oplus A/\mathfrak{p}$ as A-modules,

$$G(A/\mathfrak{p})/\varphi_{\mathfrak{p}}G(\mathfrak{o}/\mathfrak{po}) \left\{ \begin{array}{l} = 0 \text{ if } m \equiv 1 \mod 8 \\ \cong Z/2Z \text{ if } m \equiv 5 \mod 8 \, . \end{array} \right.$$

So we have $G(A) \cong \psi G(\mathfrak{o})$ if $m \equiv 1 \mod 8$ and $G(A)/\psi G(\mathfrak{o}) \cong Z/2Z$ if $m \equiv 5 \mod 8$. In the latter case, the sequence

$$C_0(\mathfrak{o}) \longrightarrow G(A) \longrightarrow G(Q(\sqrt{m})) \longrightarrow 0$$

is not exact. As $C_0(A) \to G(A)$ factors not $C_0(A) \to C_0(\mathfrak{o}) \to G(A)$, the sequence

$$C_0(A) \longrightarrow G(A) \longrightarrow G(Q(\sqrt{m})) \longrightarrow 0$$

is not exact. This shows the analogy of Theorem 1 of [15] does not hold in general even if A is commutative (We consider A as a Z-algebra).

3. In this section we consider special cases of Corollary 2 of [15]. T.Obayashi [10] has determined the ring structure of $G(Z\pi)$ more explicitly in the case of a finite abelian p-group.

THEOREM 3. Let π be a finite p-group and 0 be a maximal order of $Q\pi$ containing $Z\pi$. Then

$$0 \longrightarrow C_0(\mathfrak{o}) \longrightarrow G(Z\pi) \longrightarrow G(Q\pi) \longrightarrow 0$$

is exact.

PROOF. It suffices to prove that $0 \to C_0(\mathfrak{o}) \to G(Z\pi)$ is exact. Let $Z_{(p)}$ denote the ring of the rationals whose denominators are powers of p. Then the sequence

$$G((Z/pZ)\pi) \longrightarrow G(Z\pi) \longrightarrow G(Z_{(p)}\pi) \longrightarrow 0$$

is exact by [15. Proposition 1.1]. But the unique simple $(Z/pZ)\pi$ -module is Z/pZ, and

$$0 \longrightarrow Z \xrightarrow{p} Z \longrightarrow Z/pZ \longrightarrow 0$$

is exact. So the class of Z/pZ in $G(Z\pi)$ is zero. Therefore $G(Z\pi) \cong G(Z_{(p)}\pi)$ holds. In the commutative diagrams

all the rows are exact by [15. Theorem 1. Proposition 5.1]. The last row is exact because $Z_{(p)}\pi$ is a maximal order [15. Lemma 5.1]. As $Z_{(p)}\pi$ contains 0, the kernel of $C_0(Z\pi) \to C_0(0)$ is contained in the kernel of $C_0(Z\pi) \to C_0(Z_{(p)}\pi)$. If we show they are equal, $\operatorname{Ker}(C_0(Z\pi) \to G(Z\pi))$ is equal to $\operatorname{Ker}(C_0(Z\pi) \to C_0(0))$. So $G(0) \to G(Z\pi)$ becomes the isomorphism, and we have the assertion.

Let [P]-[F] be an element of the kernel of $C_0(Z\pi) \to C_0(Z_{(p)}\pi)$. Here P is a projective $Z\pi$ -module and F is a free $Z\pi$ -module. By assumption

$$Z_{(p)} \otimes_{Z} P \oplus Z_{(p)} \otimes_{Z} F' \cong Z_{(p)} \otimes_{Z} F \oplus Z_{(p)} \otimes_{Z} F$$

for some free $Z\pi$ -module F'. This isomorphism, by multiplying some power of p if necessary, can be assumed to be induced from an injection

 $\varphi_{\mathfrak{o}}: P \oplus F' \longrightarrow F \oplus F'$

whose cokernel has a finite order of some power of p. So we may assume P is contained in F, and (F:P) is a power of p. Tensoring with v over $Z\pi$ we have

 $\varphi_{\mathfrak{o}}: \mathfrak{O} \otimes p \longrightarrow \mathfrak{O}^r$

for some r. The order of the cokernel is also a power of p, and φ_0 is an injection because $\mathfrak{o} \otimes P$ is Z-torsion-free. In general, let A be a semi-simple algebra over Q, and \mathfrak{o} its maximal order. Let M be a sub-module of \mathfrak{o}^r of a finite index. Put $\mathfrak{o}^r = \mathfrak{o}_1 \oplus \cdots \oplus \mathfrak{o}_r$ for convenience. Then $M \cap \mathfrak{o}_1$ is a submodule of \mathfrak{o}_1 of a finite index and $M/M \cap \mathfrak{o}_1$ is torsion-free. It is projective because

 \mathfrak{o} is hereditary, so $M \cong M \cap \mathfrak{o}_1 \oplus M'$. M' is isomorphic to the projection of M into $\mathfrak{o}_2 \oplus \cdots \oplus \mathfrak{o}_r$. Similarly we have $M \cong M_1 \oplus \cdots \oplus M_r$, where M_j is isomorphic to a submodule of \mathfrak{o}_j of a finite index. If the index $(\mathfrak{o}^r : M)$ is a power of p so is every $(\mathfrak{o}_j : M_j)$. If $A \cong A_1 \oplus \cdots \oplus A_r$ where each A_i is a simple algebra, \mathfrak{o} has corresponding decomposition

$$\mathfrak{o} \cong \mathfrak{A}_1 \oplus \cdots \oplus \mathfrak{A}_r.$$

If $(\mathfrak{o}^r: M)$ is a power of p, every $(\mathfrak{A}_i: \mathfrak{A}_i M_j)$ is also a power of p. Applying the above argument to $\mathfrak{o} \otimes P \subset \mathfrak{o}^r$, we have

$$[\mathfrak{o} \otimes P] - [\mathfrak{o}^r] = \sum_i \left([L_i] - [\mathfrak{A}_i] \right),$$

where \mathfrak{A}_i is a component of \mathfrak{o} and L_i is a left \mathfrak{A}_i -ideal of index of a power of p. The center K_i of every simple component A_i of $Q\pi$ is contained in $Q(\zeta_n)$ because $Q\pi$ splits over $Q(\zeta_n)$. Where p^n is the order of π , and ζ_n is a primitive p^n -th root of unity. Therefore p has a unique prime factor \mathfrak{p}_i in K_i . \mathfrak{p}_i is a principal ideal generated by $N_{Q(\zeta_n)/K_i}(1-\zeta_n)$. If K_i is real, it is therefore generated by a total positive element. Hence if the reduced norm of an ideal L_i is a power of \mathfrak{p}_i , then holds either $L_i \cong \mathfrak{A}_i$ or $L_i \oplus \mathfrak{A}_i \cong \mathfrak{A}_i \oplus \mathfrak{A}_i$ [5.Satz 1.See also 14]. Therefore $[L_i] = [\mathfrak{A}_i]$ in $C_0(\mathfrak{A}_i)$ and $[\mathfrak{o} \otimes P] - [\mathfrak{o}^r] = 0$ in $C_0(\mathfrak{o})$ holds. We have Ker $(C_0(Z\pi) \to C_0(Z_{(p)}\pi)) = \operatorname{Ker}(C_0(Z\pi) \to C_0(\mathfrak{o}))$, and this concludes the proof.

It is known that the homomorphism ϕ in the exact sequence

$$C_{\mathfrak{o}}(\mathfrak{o}) \xrightarrow{\phi} G(Z\pi) \longrightarrow G(Q\pi) \longrightarrow 0$$

is not injective even if π is a cyclic group. But we can show

THEOREM 4. The exact sequence

$$0 \longrightarrow Im\phi \longrightarrow G(Z\pi) \longrightarrow G(Q\pi) \longrightarrow 0$$

splits as a ring extension when π is a finite abelian group.

PROOF. Put $Q\pi \cong Q_1 \oplus \cdots \oplus Q_s$, where every Q_i is a field. Let $\rho_i: \pi \to Q_i$ be a corresponding representation. The image of ρ_i consists of roots of unity in Q_i .

If H_i is the kernel of ρ_i , G/H_i is a cyclic group. This correspondence is bijective, and $Q_i = Q(\zeta_i)$ where ζ_i is a primitive $(G: H_i)$ -th root of unity.

Let $\mathfrak{o}_i = Z[\zeta_i]$ and $\mathfrak{o}_j = Z[\zeta_j]$ be the rings of integers in Q_i and in Q_j

respectively. Let f(X) be an irreducible polynomial over Q such that $f(\zeta_j)=0$. Let $f(X) = g(X)g(X)^{\sigma} \cdots g(X)^{\tau}$ be a factorization into irreducible polynomials over Q_i . Let $\zeta_j, \zeta_j^{\sigma}, \cdots, \zeta_j^{\tau}$ be representatives of their roots. Then

$$\mathfrak{o}_i \otimes_{\mathbb{Z}} \mathfrak{o}_j = Z[\zeta_i] \otimes_{\mathbb{Z}} Z[\zeta_j] \cong \sum_{\sigma} Z[\zeta_i, \zeta_j^{\sigma}].$$

Let x be an element of π . Then x acts on $Z[\zeta_i, \zeta_j^{\sigma}]$ as multiplication by $\rho_i(x)\rho_j(x)^{\sigma}$. If we put H_k the kernel of this action, $Z\pi$ -module structure of $Z[\zeta_i, \zeta_j^{\sigma}]$ is the same as \mathfrak{o}_k -module structure. As $Z[\zeta_i, \zeta_j^{\sigma}]$ is \mathfrak{o}_k -free, $\mathfrak{o}_i \otimes \mathfrak{o}_j$ is a direct sum of \mathfrak{o}_k 's. Hence we know that $Q_i \to \mathfrak{o}_i$ is a ring homomorphism which splits the extension.

References

- [1] M. AUSLANDER and D. A. BUCHSBAUM, Homological dimension in local rings, Trans. AMS., 85(1957)
- [2] M. AUSLANDER and O. GOLDMAN, Maximal orders, Trans. AMS., 97(1960)
- [3] H. BASS, K-theory and stable algebra, Publ. IHES., 22(1964)
- [4] H. CARTAN and S. EILENBERG, Homological algebra, Princeton
- [5] M. EICHLER, Über die Idealklassenzahl hyperkomplexer Systeme, Math. Zeitschr., 43 (1937)
- [6] S. EILENBERG, A. ROSENBERG and D. ZELINSKY, On the dimension of modules and algebras (VIII), Nagoya Math. J., 12(1957)
- [7] A. Heller, Some exact sequences in algebraic K-theory, Topology, 3(1965)
- [8] A.HELLER and I.REINER, Grothendieck groups of orders in semi-simple algebras, Trans. AMS., 112(1964)
- [9] K. MORITA, Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku, 6(1958)
- [10] T.OBAYASHI, On the Grothendieck ring of an abelian p-group, Nagoya Math. J., 26 (1966)
- [11] J.P.SERRE, Sur la dimension des anneaux et des modules noethériens, Proc. Int. Symp. Tokyo-Nikko, (1955)
- [12] J.P.SERRE, Modules projectifs et espaces fibrés à fibre vectorielle, Sem. Dubreil, 11 (1957-58)
- [13] R. G. SWAN, Induced representations and projective modules, Ann. of Math., 71(1960)
- [14] R.G.SWAN, Projective modules over group rings and maximal orders, Ann. of Math., 76(1962)
- [15] R.G. SWAN, The Grothendieck ring of a finite group, Topology, 2(1963)

Mathematical Institute Tôhoku University, Sendai, Japan.