REMARKS ON GROTHENDIECK RINGS

Kôjı Uchida

(Received June 12, 1967)
R.G.Swan has obtained several important results on Grothendieck rings of a finite group. In this note we derive generalizations of some of his results. Throughout this note, R denotes a noetherian integral domain and K denotes its quotient field. All modules we consider are finitely generated unitary left modules. If A is a finite R-algebra (or K-algebra), $G(A)$ denotes the Grothendieck group of A-modules, $P(A)$ denotes the Grothendieck group of projective A-modules, and $C_{0}(A)$ its reduced class group, i.e, the subgroup of $P(A)$ generated by the elements of the form $[P]-[Q]$, where P, Q are projective and $K \otimes_{R} P \cong K \otimes_{R} Q$.

1. R is called regular if its localization $R_{\mathfrak{p}}$ is a regular local ring for each prime ideal \mathfrak{p}. A regular domain is integrally closed [1. Proposition 4.2]. In this section we calculate $G(R \pi)$ for a regular domain R of prime characteristic p and for any finite group π.

Proposition 1. Any finitely generated module over a regular domain R has a finite projective dimension.

Proof. Let M be such a module and let

$$
\rightarrow X_{n} \xrightarrow{d_{n}} X_{n-1} \rightarrow \cdots \rightarrow X_{0} \rightarrow M \rightarrow 0
$$

be its projective resolution, where we assume every X_{k} is finitely generated. Let Y_{n} be the kernel of d_{n}. Then Y_{n} is a finitely generated torsion-free R module. To show that some Y_{n} is projective, we first prove the following lemma.

Lemma. Let R be an integral domain (not necessarily noetherian), and Y be a finitely generated torsion-free R-module. Let \mathfrak{p} be a prime ideal of R. If $Y_{\mathfrak{p}}=R_{\mathfrak{p}} \otimes_{R} Y$ is $R_{\mathfrak{v}}$-projective, then $Y_{\mathfrak{q}}$ is $R_{\mathfrak{q}}$-projective for each \mathfrak{q} which does not contain a certain element $r \notin \mathfrak{p}$.

PROOF. Let $F \xrightarrow{f} Y \rightarrow 0$ be exact where F is a finitely generated free R module. Then the sequence $F_{p} \xrightarrow{{ }_{f}^{p}} Y_{\mathfrak{p}} \rightarrow 0$ splits by assumption, and we have a
homcmorphism $g_{\mathfrak{p}}: Y_{\downarrow} \rightarrow F_{\mathfrak{p}}$ such that $f_{p} \cdot g_{p}=$ identity. Let y_{1}, \cdots, y_{n} be a set of $\mathrm{g} \in$ nerctcrs for Y, and let $g_{p}\left(y_{i}\right)=v_{i} / r_{i}$, where $v_{i} \in F, r_{i} \in R-\mathfrak{p}$. If a prime \mathfrak{q} does not contain $r=r_{1} r_{2} \cdots r_{n}$, it is clear that $g_{9}: y_{i} \rightarrow v_{i} / r_{i}$ induces a homomorphism of Y_{q} into F_{q} which splits f_{q}. Then Y_{q} is R_{q}-projective.

We now continue the proof of Proposition 1. As $R_{\mathfrak{p}}$ is regular for each \mathfrak{p}, it has the finite global dimension [11. Theorem 1]. Therefore $Y_{n, p}$ is R_{p} projective for some $n=n(\mathfrak{p})$. By the lemma there exists an element $r=r(\mathfrak{p})$ not contained in \mathfrak{p} such that $Y_{n, \mathfrak{q}}$ is R_{q} projective for every \mathfrak{q} which does not contain $r(\mathfrak{p})$. As $\{r(\mathfrak{p}), \mathfrak{p}$ prime $\}$ generates a unit ideal, there exist a finite number of $r(\mathfrak{p})$ which generate a unit ideal. Let n be the maximal value of corresponding $n(\mathfrak{p})$. Then it is clear that $Y_{n, \mathfrak{p}}$ is $R_{\mathfrak{p}}$-projective for every prime \mathfrak{p}. Then Y_{n} is R-projective by [2. Proposition 2.6].

Let R be a regular domain of prime characteristic p, and let π be a finite group. Then R contains a prime field F_{0} of characteristic p. Let F be the set of the elements of K which are algebraic over F_{0}. Then F is a field contained in R because R is integrally closed. Let N_{0} denote the radical of $F \pi$. Then $N=R \bigotimes_{F} N_{0}$ is the nil-radical of $R \pi \cong R \otimes_{F} F \pi$, and

$$
R \pi / N \cong R \otimes_{F}\left(F \pi / N_{0}\right) \cong R \otimes_{F} M_{1} \oplus \cdots \oplus R \otimes_{F} M_{r}
$$

holds. Where $M_{i}=M\left(n_{i}, F_{i}\right)$ is the total matric algebra of degree n_{i} over a finite extension field F_{i} of $F . R_{i}=R \otimes_{F} F_{i}$ is an integral domain with the quotient field $K_{i}=K \otimes_{F} F_{i}$. Then we have

$$
R \pi / N \cong M\left(n_{1}, R_{1}\right) \oplus \cdots \oplus M\left(n_{r}, R_{r}\right)
$$

and so

$$
G(R \pi / N) \cong G\left(M\left(n_{1}, R_{1}\right)\right) \oplus \cdots \oplus G\left(M\left(n_{r}, R_{r}\right)\right)
$$

As F_{i} is separable over F, any finitely generated R_{i}-module has a finite projective dimension by Proposition 1,[4. IX. Theorem 7.10] and [6. Proposition 2]. By Morita theorem [9. Theorem 3.4], it is also true for any finitely generated $M\left(n_{i}, R_{i}\right)$-module. So $G\left(M\left(n_{i}, R_{i}\right)\right) \cong P\left(M\left(n_{i}, R_{i}\right)\right)$ holds by [12. Proposition 11]. Then by [15. Proposition 4.1] and [15. Proposition 1.1],

$$
0 \rightarrow C_{0}\left(M\left(n_{i}, R_{i}\right)\right) \rightarrow G\left(M\left(n_{i}, R_{i}\right)\right) \rightarrow G\left(M\left(n_{i}, K_{i}\right)\right) \rightarrow 0
$$

holds. So also holds

$$
0 \rightarrow C_{0}(R \pi / N) \rightarrow G(R \pi / N) \rightarrow G(K \pi / N) \rightarrow 0 .
$$

Now as N is nilpotent, $P(R \pi) \cong P(R \pi / N)$ by [3. Lemma 18.1]. This isomorphism is obtained by corresponding $P / N P$ to any finitely generated projective module P. If $K \otimes_{R}(P / N P) \cong K \otimes_{R} P / K \otimes_{R} N P$ is $K \pi / K N$-free, $K \otimes_{R} P$ is $K \pi$-free because
$K N$ is the radical of $K \pi$. So we have an isomorphism $C_{0}(R \pi) \cong C_{0}(R \pi / N)$. There exist natural homomorphisms

$$
G(R \pi / N) \rightarrow G(R \pi), G(K \pi / K N) \rightarrow G(K \pi) .
$$

They are isomorphisms by [7. Proposition 9.4]. Hence

THEOREM 1. Let R be a regular domain of prime characteristic p, and let π be a finite group. Then we have an exact sequence

$$
0 \rightarrow C_{0}(R \pi) \xrightarrow{\phi} G(R \pi) \rightarrow G(K \pi) \rightarrow 0,
$$

where

$$
\phi\left(\left[P_{1}\right]-\left[P_{2}\right]\right)=\left[P_{1} / N P_{1}\right]-\left[P_{2} / N P_{2}\right] .
$$

This theorem generalizes Theorem 1 of [15]. $G(R \pi)$ has a ring structure similarly to [13. §1] by Proposition 1. If R is a Dedekind ring, ϕ is a ring homomorphism. In fact $C_{0}(R \pi)^{2}=(\operatorname{Im} \phi)^{2}=0$ holds. In order to prove this analogously to [15. §12], we need only to note that $P / N P$ is R-projective if P is $R \pi$-projective and

$$
0 \rightarrow F / N F \rightarrow P / N P \rightarrow A / N A \rightarrow 0
$$

is exact if

$$
0 \rightarrow F \rightarrow P \rightarrow A \rightarrow 0
$$

is exact, F is $R \pi$-projective and A is of R-torsion. We do not know if it is true for any regular ring, but we have

Theorem 2. The ring extension

$$
\left.0 \rightarrow \operatorname{Im} \phi \rightarrow G^{\prime} R \pi\right) \rightarrow G^{\prime}(K \pi) \rightarrow 0
$$

splits.
Proof. Every simple $K \pi$-module is of the form $K_{i}^{n_{t}}$ which is a minimal left ideal of $M\left(n_{i}, K_{i}\right)$. Let $R_{i}{ }^{n_{i}}$ be a corresponding ideal of $M\left(n_{i}, R_{i}\right)$. Let

$$
K_{i}^{n_{4}} \otimes_{K} K_{j}^{n_{j}} \sim \sum_{l} m_{l} \cdot K_{l}^{n_{l}}
$$

be the decomposition into simple factors as $K \pi$-modules. As $K_{i}^{n_{i}} \cong K \otimes_{F} F_{i}^{n_{i}}$, we can take a F-basis of $F_{i}^{n_{i}} \otimes_{F} F_{j}^{n_{j}}$ as a K-basis of $K_{i}^{n_{4}} \otimes_{K} K_{j}{ }^{n_{s}}$. As every simple $F \pi$-module $F_{i}^{n_{i}}$ induces simple $K \pi$-module $K_{i}^{n_{i}}$, the above decomposition comes from a transformation of F-basis. As F is contained in R, and a F-basis of $F_{i}{ }^{n_{i}}$ becomes an R-basis of $R_{i}^{n_{t}}$, this transformation induces a transformation of R-basis of $R_{i}^{n_{t}} \otimes_{R} R_{j}{ }^{n_{j}}$. Therefore $R_{i}^{n_{i}} \otimes_{R} R_{j}^{n_{j}} \sim \sum_{l} m_{l} \cdot R_{l}^{n_{i}}$ holds, so the correspondence $K_{i}{ }^{n_{t}} \rightarrow R_{i}{ }^{n_{t}}$ induces a ring homomorphism which splits the ring extension.
2. Let A be a finite R-algebra. We assume that A is torsion-free as an R-module and $K \otimes{ }_{R} A$ is a separable algebra. Let o denote a maximal order containing A. Then by [8], there exists a commutative diagram with exact rows

Where $W(K \otimes A)$ is the Whitehead group of $K \otimes A$-modules, and $G_{t}(A), G_{t}(\mathfrak{p})$ are G rothendieck groups of R-torsion A-modules and 0 -modules respectively. φ, ψ are natural homomorphisms. From this diagram we have

$$
G_{t}(A) / \varphi G_{t}(\mathbb{0}) \cong G(A) / \psi G(\mathfrak{o})
$$

If R is of Krull dimension one, $G_{t}(A) \cong \sum_{\mathfrak{p}} G(A / \mathfrak{p} A), \quad G_{t}(\mathfrak{o}) \cong \sum_{\mathfrak{p}} G(\mathfrak{o} / \mathfrak{p o})$ where sums are direct sums over all non-zero prime ideals \mathfrak{p}. Then $\boldsymbol{\rho}$ is also a direct product of $\varphi_{\mathfrak{p}}: G(\mathfrak{o} / \mathfrak{p o}) \rightarrow G(A / \mathfrak{p} A)$. So we have

$$
G(A) / \psi G(\mathfrak{o}) \cong \sum_{\mathfrak{p}} G(A / \mathfrak{p} A) / \boldsymbol{\varphi}_{\mathfrak{p}} G(\mathfrak{o} / \mathfrak{p o}) \quad(\text { direct })
$$

Z denotes the rational integers and Q denotes the rationals. Let $A=\{a+b \sqrt{m}$, $a, b \in Z\}$ be a subring of $Q(\sqrt{m})$ where $m \equiv 1(\bmod 4)$. Then $\mathfrak{o}=\left\{a+b \frac{1+\sqrt{m}}{2}\right\}$ is the ring of integers of $Q(\sqrt{ } m)$. If $\mathfrak{q} \neq \mathfrak{p}=(2,1+m)$ is a prime ideal of
$A, A / \mathfrak{q} \cong \mathfrak{o} / \mathfrak{q o}$ so that $G(A / \mathfrak{q})=\phi_{\mathfrak{q}} G(\mathfrak{o} / \mathfrak{q o})$. It is well known that

$$
\mathfrak{p o}=2 \mathfrak{o}=\left\{\begin{array}{l}
\mathfrak{B}_{1} \mathfrak{B}_{2} \text { if } \mathrm{m} \equiv 1 \bmod 8 \\
\text { prime in } \mathfrak{o} \text { if } \mathrm{m} \equiv 5 \bmod 8 .
\end{array}\right.
$$

Hence

$$
\mathfrak{o} / \mathfrak{p o}=\left\{\begin{array}{l}
\mathfrak{o} / \mathfrak{B}_{1} \oplus \mathfrak{o} / \mathfrak{B}_{2} \quad \text { if } m \equiv 1 \bmod 8 \\
\text { simple } \mathfrak{o} \cdot \text { module } \quad \text { if } m \equiv 5 \bmod 8 .
\end{array}\right.
$$

As $\mathfrak{o} / \mathfrak{p o} \cong A / \mathfrak{p} \oplus A / \mathfrak{p}$ as A-modules,

$$
G(A / \mathfrak{p}) / \boldsymbol{\varphi}_{\mathfrak{p}} G(\mathfrak{o} / \mathfrak{p o})\left\{\begin{array}{l}
=0 \text { if } m \equiv 1 \bmod 8 \\
\cong Z / 2 Z \text { if } m \equiv 5 \bmod 8 .
\end{array}\right.
$$

So we have $G(A) \cong \psi G(\mathrm{o})$ if $m \equiv 1 \bmod 8$ and $G(A) / \psi G(\mathrm{o}) \cong Z / 2 Z$ if $m \equiv 5$ mod 8. In the latter case, the sequence

$$
C_{0}(\mathbf{v}) \longrightarrow G(A) \longrightarrow G(Q(\sqrt{m})) \longrightarrow 0
$$

is not exact. As $C_{0}(A) \rightarrow G(A)$ factors nto $C_{0}(A) \rightarrow C_{0}(\mathrm{o}) \rightarrow G(A)$, the sequence

$$
C_{0}(A) \longrightarrow G(A) \longrightarrow G(Q(\sqrt{ } m)) \longrightarrow 0
$$

is not exact. This shows the analogy of Theorem 1 of [15] does not hold in general even if A is commutative (We consider A as a Z-algebra).
3. In this section we consider special cases of Corollary 2 of [15]. T.Obayashi [10] has determined the ring structure of $G(Z \pi)$ more explicitly in the case of a finite abelian p group.

ThEOREM 3. Let π be a finite p group and \mathfrak{o} be a maximal order of $Q \pi$ containing $Z \pi$. Then

$$
0 \longrightarrow C_{0}(\mathrm{o}) \longrightarrow G(Z \pi) \longrightarrow G(Q \pi) \longrightarrow 0
$$

is exact.

PROOF. It suffices to prove that $0 \rightarrow C_{0}(0) \rightarrow G(Z \pi)$ is exact. Let $Z_{(p)}$ denote the ring of the rationals whose denominators are powers of p. Then the sequence

$$
G((Z / p Z) \pi) \longrightarrow G(Z \pi) \longrightarrow G\left(Z_{(p)} \pi\right) \longrightarrow 0
$$

is exact by [15. Proposition 1.1]. But the unique simple $(Z / p Z) \pi$-module is $Z / p Z$, and

$$
0 \longrightarrow Z \xrightarrow{p} Z \longrightarrow Z / p Z \longrightarrow 0
$$

is exact. So the class of $Z / p Z$ in $G(Z \pi)$ is zero. Therefore $G(Z \pi) \cong G\left(Z_{(p)} \pi\right)$ holds. In the commutative diagrams

all the rows are exact by [15. Theorem 1. Proposition 5.1]. The last row is exact because $Z_{(p) \pi}$ is a maximal order [15. Lemma 5.1]. As $Z_{(p) \pi}$ contains 0 , the kernel of $C_{0}(Z \pi) \rightarrow C_{0}(0)$ is contained in the kernel of $C_{0}(Z \pi) \rightarrow C_{0}\left(Z_{(p)} \pi\right)$. If we show they are equal, $\operatorname{Ker}\left(C_{0}(Z \pi) \rightarrow G(Z \pi)\right)$ is equal to $\operatorname{Ker}\left(C_{0}(Z \pi) \rightarrow C_{0}(0)\right)$. So $G(0) \rightarrow G(Z \pi)$ becomes the isomorphism, and we have the assertion.

Let $[P]-[F]$ be an element of the kernel of $C_{0}(Z \pi) \rightarrow C_{0}\left(Z_{(p)} \pi\right)$. Here P is a projective $Z \pi$-module and F is a free $Z \pi$-module. By assumption

$$
Z_{(p)} \otimes_{2} P \oplus Z_{(p)} \otimes_{2} F^{\prime} \cong Z_{(p)} \otimes_{2} F \oplus Z_{(p)} \otimes_{2} F^{\prime}
$$

for some free $Z \pi$-module F^{\prime}. This isomorphism, by multiplying some power of p if necessary, can be assumed to be induced from an injection

$$
\varphi_{0}: P \oplus F^{\prime} \longrightarrow F \oplus F^{\prime}
$$

whose cokernel has a finite order of some power of p. So we may assume P is contained in F, and $(F: P)$ is a power of p. Tensoring with o over $Z \pi$ we have

$$
\varphi_{0}: 0 \otimes p \longrightarrow 0^{r}
$$

for some r. The order of the cokernel is also a power of p, and φ_{0} is an injection because $\mathrm{o} \otimes P$ is Z-torsion-free. In general, let A be a semi-simple algebra over Q, and 0 its maximal order. Let M be a sub-module of \boldsymbol{o}^{r} of a finite index. Put $\mathfrak{o}^{r}=\mathfrak{o}_{1} \oplus \cdots \oplus \mathfrak{o}_{r}$ for convenience. Then $M \cap \mathfrak{o}_{1}$ is a submodule of o_{1} of a finite index and $M / M \cap \mathfrak{o}_{1}$ is torsion-free. It is projective because
\mathfrak{o} is hereditary, so $M \cong M \cap \mathfrak{o}_{1} \oplus M^{\prime} . M^{\prime}$ is isomorphic to the projection of M into $0_{2} \oplus \cdots \oplus 0_{r}$. Similarly we have $M \cong M_{1} \oplus \cdots \oplus M_{r}$, where M_{j} is isomorphic to a submodule of o_{j} of a finite index. If the index ($\mathrm{o}^{r}: M$) is a power of p, so is every $\left(\mathfrak{o}_{j}: M_{j}\right)$. If $A \cong A_{1} \oplus \cdots \oplus A_{r}$ where each A_{i} is a simple algebra, \mathfrak{o} has corresponding decomposition

$$
\mathfrak{o} \cong \mathfrak{A}_{1} \oplus \cdots \oplus \mathfrak{A}_{r}
$$

If ($\mathfrak{o}^{r}: M$) is a power of p, every $\left(\mathfrak{A}_{i}: \mathfrak{U}_{i} M_{j}\right)$ is also a power of p. Applying the above argument to $\mathfrak{o} \otimes P \subset \mathfrak{0}^{r}$, we have

$$
[\mathrm{o} \otimes P]-\left[\mathrm{o}^{r}\right]=\sum_{i}\left(\left[L_{i}\right]-\left[\mathfrak{N}_{i}\right]\right),
$$

where \mathfrak{A}_{i} is a component of \mathfrak{o} and L_{i} is a left \mathfrak{A}_{i}-ideal of index of a power of p. The center K_{i} of every simple component A_{i} of $Q \pi$ is contained in $Q\left(\zeta_{n}\right)$ because $Q \pi$ splits over $Q\left(\zeta_{n}\right)$. Where p^{n} is the order of π, and ζ_{n} is a primitive p^{n}-th root of unity. Therefore p has a unique prime factor \mathfrak{p}_{i} in K_{i}. \mathfrak{p}_{i} is a principal ideal generated by $N_{Q\left(\zeta_{n}\right) / K_{i}}\left(1-\zeta_{n}\right)$. If K_{i} is real, it is therefore generated by a total positive element. Hence if the reduced norm of an ideal L_{i} is a power of \mathfrak{p}_{i}, then holds either $L_{i} \cong \mathfrak{A}_{i}$ or $L_{i} \oplus \mathfrak{A}_{i} \cong \mathfrak{A}_{i} \oplus \mathfrak{U}_{i}$ [5.Satz 1.See also 14]. Therefore $\left[L_{i}\right]=\left[\mathscr{H}_{i}\right]$ in $C_{0}\left(\mathscr{H}_{i}\right)$ and $[0 \otimes P]-\left[0^{r}\right]=0$ in $C_{0}(\mathrm{o})$ holds. We have $\operatorname{Ker}\left(C_{0}(Z \pi) \rightarrow C_{0}\left(Z_{(p)} \pi\right)\right)=\operatorname{Ker}\left(C_{0}(Z \pi) \rightarrow C_{0}(\mathrm{o})\right)$, and this concludes the proof.

It is known that the homomorphism ϕ in the exact sequence

$$
C_{0}(\mathrm{a}) \xrightarrow{\phi} G(Z \pi) \longrightarrow G(Q \pi) \longrightarrow 0
$$

is not injective even if π is a cyclic group. But we can show
THEOREM 4. The exact sequence

$$
0 \longrightarrow \operatorname{Im} \phi \longrightarrow G(Z \pi) \longrightarrow G(Q \pi) \longrightarrow 0
$$

splits as a ring extension when π is a finite abelian group.
Proof. Put $Q \pi \cong Q_{1} \oplus \cdots \oplus Q_{s}$, where every Q_{i} is a field. Let $\rho_{i}: \pi \rightarrow Q_{i}$ be a corresponding representation. The image of ρ_{i} consists of roots of unity in Q_{i}.

If H_{i} is the kernel of $\rho_{i}, G / H_{i}$ is a cyclic group. This correspondence is bijective, and $Q_{i}=Q\left(\zeta_{i}\right)$ where ζ_{i} is a primitive $\left(G: H_{i}\right)$-th root of unity.

Let $\mathfrak{o}_{i}=Z\left[\zeta_{i}\right]$ and $\mathfrak{o}_{j}=Z\left[\zeta_{j}\right]$ be the rings of integers in Q_{i} and in Q_{j}
respectively. Let $f(X)$ be an irreducible polynomial over Q such that $f\left(\zeta_{j}\right)=0$. Let $f(X)=g(X) g(X)^{\sigma} \cdots g(X)^{\tau}$ be a factorization into irreducible polynomials over Q_{i}. Let $\zeta_{j}, \zeta_{j}^{\tau}, \cdots, \zeta_{j}^{\tau}$ be representatives of their roots. Then

$$
\mathrm{o}_{i} \otimes_{z} \mathrm{o}_{j}=Z\left[\zeta_{i}\right] \otimes_{z} Z\left[\zeta_{j}\right] \cong \sum_{\sigma} Z\left[\zeta_{i}, \zeta_{j}^{\sigma}\right]
$$

Let x be an element of π. Then x acts on $Z\left[\zeta_{i}, \zeta_{j}^{\sigma}\right]$ as multiplication by $\rho_{i}(x) \rho_{j}(x)^{o}$. If we put H_{k} the kernel of this action, $Z \pi$-module structure of $Z\left[\zeta_{i}, \zeta_{j}^{\sigma}\right]$ is the same as o_{k}-module structure. As $Z\left[\zeta_{i}, \zeta_{j}^{\sigma}\right]$ is o_{k}-free, $\mathrm{o}_{i} \otimes \mathfrak{0}_{j}$ is a direct sum of $\mathrm{o}_{k}{ }^{\prime}$ s. Hence we know that $Q_{i} \rightarrow \mathrm{o}_{i}$ is a ring homomorphism which splits the extension.

References

[1] M. Auslander and D. A. Buchsbaum, Homological dimension in local rings, Trans. AMS., 85(1957)
[2] M. Auslander and O. Goldman, Maximal orders, Trans. AMS., 97(1960)
[3] H. Bass, K-theory and stable algebra, Publ. IHES., 22(1964)
[4] H. Cartan and S. Eilenberg, Homological algebra, Princeton
[5] M. Eichler, Über die Idealklassenzahl hyperkomplexer Systeme, Math. Zeitschr., 43 (1937)
[6] S. Eilenberg, A. Rosenberg and D. Zelinsky, On the dimension of modules and algebras (VIII), Nagoya Math. J., 12(1957)
[7] A. Heller, Some exact sequences in algebraic K-theory, Topology, 3(1965)
[8] A. HELLER and I. Reiner, Grothendieck groups of orders in semi-simple algebras, Trans. AMS., 112(1964)
[9] K. Morita, Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku, 6(1958)
[10] T. ObAYASHI, On the Grothendieck ring of an abelian p-group, Nagoya Math. J., 26 (1966)
[11] J. P. Serre, Sur la dimension des anneaux et des modules noethériens, Proc. Int. Symp. Tokyo-Nikko, (1955)
[12] J.P.SERRE, Modules projectifs et espaces fibrés à fibre vectorielle, Sem. Dubreil, 11 (1957-58)
[13] R. G. Swan, Induced representations and projective modules, Ann. of Math., 71(1960)
[14] R.G.SWAN, Projective modules over group rings and maximal orders, Ann. of Math., 76(1962)
[15] R.G. SWAN, The Grothendieck ring of a finite group, Topology, 2(1963)
Mathematical Institute
Tôhoku University,
Sendai, Japan.

