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REMARKS ON GROTHENDIECK RINGS

KOJI UCHIDA

(Received June 12, 1967)

R.G.Swan has obtained several important results on Grothendieck rings
of a finite group. In this note we derive generalizations of some of his results.
Throughout this note, R denotes a noetherian integral domain and K denotes
its quotient field. All modules we consider are finitely generated unitary left
modules. If A is a finite i?-algebra (or ^-algebra), G(A) denotes the
Grothendieck group of A-modules, P(A) denotes the Grothendieck group of
projective A-modules, and C0(A) its reduced class group, i.e, the subgroup
of P(A) generated by the elements of the form [P] — [Q], where P, Q are
projective and K®RP^K®RQ.

1. R is called regular if its localization Rp is a regular local ring for each
prime ideal p. A regular domain is integrally closed [1. Proposition 4. 2]. In
this section we calculate G(RTC) for a regular domain R of prime characteristic
p and for any finite group n.

PROPOSITION 1. Any finitely generated module over a regular domain
R has a finite projective dimension.

PROOF. Let M be such a module and let

be its projective resolution, where we assume every Xk is finitely generated.
Let Yn be the kernel of dn. Then Yn is a finitely generated torsion-free R~
module. To show that some Yn is projective, we first prove the following
lemma.

LEMMA. Let R be an integral domain {not necessarily noetherian), and
Y be a finitely generated torsion-free R-module. Let p be a prime ideal of
R. If Yv=Rp®RY is Rx,-projective, then Y-, is R%-projective for each q which
does not contain a certain element r^p.

PROOF. Let F-^Y—*0be exact where F is a finitely generated free R-

mcdule. Then the sequence Fp^Yp—^O splits by assumption, and we have a,
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homcmciphism gp : Y^-^Fp such that fp'gp — identity. Let yu • • ',yn be a set of
generators for Y, and let gp(yi) = vi/ri, where vt z F, rte R—p. If a prime q does
not contain r—rxr2 • • • rw, it is clear that g-q : yi-^vjri induces a homomor-
phism of Yq into Fq which splits fq. Then Yq is i?q-projective.

We now continue the proof of Proposition 1. As Rp is regular for each p,
it has the finite global dimension [11. Theorem 1]. Therefore YntP is Rp-
projective for some n = n(p). By the lemma there exists an element r=r(p)
not contained in p such that YnA is Rq projective for every c\ which does not
contain r(p). As {r(p), p prime} generates a unit ideal, there exist a finite
number of r(p) which generate a unit ideal. Let n be the maximal value of
corresponding n(p). Then it is clear that Yn/P is Rp-projective for every prime
p. Then Yn is i?-projective by [2. Proposition 2.6].

Let R be a regular domain of prime characteristic p, and let it be a finite
group. Then R contains a prime field Fo of characteristic p. Let F be the set
of the elements of K which are algebraic over Fo. Then F is a field contained
in R because R is integrally closed. Let JV0 denote the radical of Fit. Then

Q is the nil-radical of Rn^R®FF7t, and

holds. Where Mi=M(ni, Ft) is the total matric algebra of degree nt over a
finite extension field Ft of F. Ri=R<S>FFi is an integral domain with the
quotient field Ki = K®FFi. Then we have

(nr, Rr),

and so

GiRrr/NmGiMin^))® • • • ®G{M(nn Rr)).

As Ft is separable over F, any finitely generated Rt-module has a finite
projective dimension by Proposition 1,[4. IX. Theorem 7.10] and [6. Proposition 2].
By Morita theorem [9. Theorem 3.4], it is also true for any finitely generated
M(nt, Rt)-mod\ile. So G(M(nt, Rt))^P(M(ni9 Rt)) holds by [12. Proposition 11].
Then by [15. Proposition 4.1] and [15. Proposition 1.1],

0->C0(M(w4, Rt))-*G{M(nu Rt))

holds. So also holds

0 -> C0(R TT/N) -> G(RTC/N) -> G(K7t/N) -> 0.

Now as N is nilpotent, P[Rn)^P(R7t/'N) by [3. Lemma 18.1]. This isomorphism
is obtained by corresponding P/NP to any finitely generated projective module
P. If Kg)R(P/NP)^K®liP/K<g)HNP is Krt/KN-iiee, K®BP is iCTr-free because
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KN is the radical of Kir. So we have an isomorphism CQ(R7t)=CQ(R7t/N).
There exist natural homomorphisms

G(RTT/N) -> G(JRTT), G(KTT/KN) -> G(KTT).

They are isomorphisms by [7. Proposition 9.4].
Hence

THEOREM 1. Let R be a regular domain of prime characteristic p, and
let n be a finite group. Then we have an exact sequence

0 -> COCRTT) - t G(RTT) -> G(Kn) -> 0,

where

This theorem generalizes Theorem 1 of [15]. G(Rn:) has a ring structure
similarly to [13. §1] by Proposition 1. If R is a Dedekind ring, <£ is a ring
homomorphism. In fact C0(R7t)2 = (Imc£)2 = 0 holds. In order to prove this
analogously to [15. §12], we need only to note that P/NP is i?-projective if P
is i?7T-projective and

0-+F/NF-»P/NP-*A/NA-*0

is exact if

is exact, F is i?7r-projective and A is of R-torsion. We do not know if it is
true for any regular ring, but we have

THEOREM 2. The ring extension

0-»Im <l>-+

splits.

PROOF. Every simple J^Tr-module is of the form Kini which is a minimal
left ideal of M(ni9 Kt). Let Rf* be a corresponding ideal of M(nu U4): Let
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be the decomposition into simple factors as iGr-modules. As Kf^K® FFt
ni,

we can take a F-basis of Ff^pF"' as a K-basis of Kini®KK5
ni. As every

simple Ftf-module F^1 induces simple .KTr-module Kt
n\ the above decomposition

comes from a transformation of F-basis. As F is contained in R, and a F-basis
of Fini becomes an i?-basis of i£t

n«, this transformation induces a transformation

of i?-basis of R^RR?1. Therefore R^®^^^ J^mrR^ holds, so the corre-
i

spondence Kint —» Ri711 induces a ring homomorphism which splits the ring
extension.

2. Let A be a finite R-algebra. We assume that A is torsion-free as an
i?-module and K®RA is a separable algebra. Let 0 denote a maximal order
containing A. Then by [8], there exists a commutative diagram with exact
rows

W(K® A) •> Gt(o) — G(o) G(K® A) — 0

Ij
W{K® A) — - Gt(A) — - G(A) — - G(K® A) — - 0.

Where W(K®A) is the Whitehead group of K® A-modules, and Gt(A\ Gt(p)
are Grothendieck groups of i?-torsion A-modules and o-modules respectively.
cp, yfr are natural homomorphisms. From this diagram we have

Gt(A)/<pGt(o)^G(A)/fG(o).

If R is of Krull dimension one, Gt(A) ^ E G(A/pA), Gt(o) ^ J2 G(p/po)
p P

where sums are direct sums over all non-zero prime ideals p. Then <p is also
a direct product of cp* : G(o/po) —• G(A/pA). So we have

) ^ Yl G(A/pA)/<ppG(o/po) (direct).

Z denotes the rational integers and Q denotes the rationals. Let A— {a

a,b ^ Z} be a subring of QWm) where m = 1 (mod 4). Then o = \a 4-

is the ring of integers of QWm), If q ^ p = (2,1 + m) is a prime ideal of
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A, A/q = o/qo so that G(A/q) = <pqG(o/qo). It is well known that

po = 2o = -

' prime in 0 if m = 5 mod 8.

Hence

if m ^ 1 mod 8o/po = I
[simple 0 module if m = 5 mod 8.

As o/po ̂  A/p0A/p as A-modules,

= 0 if ni = 1 mod 8

( ̂  Z/2Z if m = 5 mod 8 .

So we have G{A) ̂  ^G(o) if m = 1 mod 8 and G(A)/^G(o) ^ Z/2Z if m = 5
mod 8. In the latter case, the sequence

Co(o) — G(A) — GiQWm)) 0

is not exact. As C0(A) -> G(A) factors nto C0(A) -> Co(o) -> G(A), the sequence

C0(A) — - G(A) — G(QWm)) — 0

is not exact. This shows the analogy of Theorem 1 of [15] does not hold in
general even if A is commutative (We consider A as a Z-algebra).

3. In this section we consider special cases of Corollary 2 of [15].
T.Obayashi [10] has determined the ring structure of G{Zn) more explicitly
in the case of a finite abelian ^>-group.

THEOREM 3. Let n be a finite p-group and $ be a maximal order of
Qn containing Zit. Then

0 Co(o) G{Zn) G(Qn) 0

is exact.

PROOF. It suffices to prove that 0 -»Co(o) —> G{Zn) is exact. Let Z(p)

denote the ring of the rationals whose denominators are powers of p Then
the sequence

G((Z/pZ)7t) G{Zn) ^ G(Z(P)TT) 0



346 K. UCHIDA

is exact by [15. Proposition 1.1]. But the unique simple .(Z/pZ)7zr-module is
Z/pZ, and

0 Z/pZ -0

is exact. So the class of Z/pZ in G{Zii) is zero. Therefore G{Zn) ^
holds. In the commutative diagrams

* G(Zn) —* G{Qn) -—- 0
I onto I onto

ClZn) ^ G{Zn) *• G(Qn) ^ 0

0 • G(Qn)- 0

all the rows are exact by [15. Theorem 1. Proposition 5.1]. The last row is exact
because Z(p)7r is a maximal order [15. Lemma 5.1]. As Z^n contains 0, the
kernel of CQ(Zn) —> Co(o) is contained in the kernel of CQ(Z7t)—>C0(ZiP)7c). If
we show they are equal, Ker(C0(Z7r)—>G(Z7r)) is e^ual to Ker (C0(Ẑ r)—> Co(o)).
So G(o) —> G(ZTT) becomes the isomorphism, and we have the assertion.

Let [P] — [F] be an element of the kernel of C^Zit) —> C0(Z(p)7r). Here P
is a projective Z7r-module and F is a free ZTzr-module. By assumption

for some free Z7r-module F'. This isomorphism, by multiplying some. power
of p if necessary, can be assumed to be induced from an injection

whose cokernel has a finite order of some power of p. So we may assume P
is contained in F, and (F: P) is a power of p. Tensoring with o over Zn we
have

for some r. The order of the cokernel is also a power of p, and cp0 is an
injection because o®P is Z-torsion-free. In general, let "A be a semi-simple
algebra over Q, and 0 its maximal order. Let M be a sub-module of or of a
finite index. Put or = ox® • • • ©or for convenience. Then M flOj is a submodule
of 0i of a finite index and M/MOOi is torsion-free. It is projective because
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0 is hereditary, so MsMnox®M\ M' is isomorphic to the projection of M
into o2© • • • ©or. Similarly we have M ^ Mx© • • • ©Mr, where M5 is
isomorphic to a submodule of Oj of a finite index. If the index (o r: M) is a
power of p so is every (Oj: M,). If A ^ A!© • • • ©Ar where each At is a simple
algebra, 0 has corresponding decomposition

If (or: Mj is a power of /> every (21*: 9ltM^) is also a power of />. Applying
the above argument to o®Pco r , we have

where 2lt is a component of 0 and Lt is a left 9lrideal of index of a power of
p. The center KL of every simple component At of Q^ is contained in Q(fn)
because QTT splits over Q(£n). Where >̂w is the order of n, and £w is a primitive
/>Mh root of unity. Therefore >̂ has a unique prime factor p* in Xf. p4 is a
principal ideal generated by NQ^ri)/Ki0~ — fw). If ^ i is real, it is therefore
generated by a total positive element. Hence if the reduced norm of an ideal
Lt is a power of p^ then holds either Lt^% or L*©^ ^21*©^ [5.Satz l.See
also 14]. Therefore [Lt] = [8Ti] in C0(«rf) and [0 ® P] - [or] = O in Co(o) holds. We
have Ker (C0(Z7t) —> C0(Z(p)7t)) = Ker (C0(Z7r) —> Co(o)), and this concludes the
proof.

It is known that the homomorphism <£ in the exact sequence

4>
Co(o) G(ZTT) — - G(QTT) 0

is not injective even if n is a cyclic group. But we can show

THEOREM 4. The exact sequence

0 Imcf> G(Zn) G(Qir) 0

splits as a ring extension when it is a finite abelian group.

PROOF. Put QTT = Qi© • * • ©Qs, where every Qt is a field. Let />*:* -> Q*
be a corresponding representation. The image of pt consists of roots of unity

in Q t .
If Ht is the kernel of ft, G/H* is a cyclic group. This correspondence is

bijective, and Qt = Q(£t) where & is a primitive (G: HJ-th root of unity.
Let Of = Z[£t] and Oj = Z[f3] be the rings of integers in Qt and in Qj
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respectively. Let f(X) be an irreducible polynomial over Q such that /(£.,•)=0.
Let f(X) = g(X)g{X)a • • • g(X)T be a factorization into irreducible polynomials
over Qt. Let £j9 0 , • • •, £J be representatives of their roots. Then

Let ^ be an element of n. Then x acts on Z[f i? £"] as multiplication by
Pi(x)pj(x)°. If we put iiffc the kernel of this action, Z7t-raodule structure of
ZlZiA"] is t n e same as o^-module structure. As Z[£t, fj] is ofc-free, o^o^
is a direct sum of o '̂s. Hence we know that Qt —> ot is a ring homomorphism
which splits the extension.
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