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A NOTE ON INVARIANT SUBSPACES

KoH-1cHI KITANO
(Received October 28, 1968)

In this note the following theorem will be proved. We base our
arguments on T. A. Gillespie’s paper [4], F.F. Bonsall’s lecture note [2] and
P. Meyer-Nieberg’s paper [5]. For the sake of completeness, the proof below
repeats the relevant arguments in [4].

THEOREM. Let X be a normed linear space over C (the complex
number field) of dimension greater than one or over R (the real number
field) of dimension greater than two and let T be a bounded linear operator
in X such that liminf |T"e|Y™ = 0 for some non-zero vector e in X. If the
uniformly closed algebra generated by T and the identity contains a non-
zero compact operator S, then T has a proper closed invariant subspace.

In [1] the present theorem is proved in the case X is a Hilbert space
over C.

We need the following notations and some results. X will denote a
normed linear space over K (= C or R); we assume if K=C, dim X >1 and
if K= R, dim X > 2; an operator means a bounded linear operator in X and
a subspace means a closed linear manifold. In order to prove the existence of
an invariant subspace, there is no loss of generality in assuming the existence
of a unit vector ¢ in X such that liminf |7"¢|¥» = 0 and the vectors e, Te,
T,---,T",- -+ are linearly independent and have X for their closed linear

span, ie., if let E, be the linear span of {e,Te,+++,T" 'e}, then X = UE,,
n=1

(cf. Lemma 3 of the present note).

(i) I E is a non-empty subset of X and x ¢ X, the distance from x to
E, d(x, E), is defined by d(x, E)=inf{|x—y| : y € E}.

(ii) Given a sequence E, of subspaces of X, define lim inf E,, to be

liminf E, = {x € X: lim d(x, E,)=0} .
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It is clear that liminf E, is a subspace of X and liminf E;.,, = liminf E,
for any subsequence {j(n)} of {n}. If for every n=1, G, is a subspace of
F,, then

liminf G, C liminf F, .

(iii) Given a finite dimensional subspace E of X and z € X, there exists
a point # € E such that |z—wu| = d(x, E). Each such # we call a nearest
point of E to zx.

(iv) Given finite dimensional subspaces E, F with EC F and E # F, the
canonical map x — x" of F onto F/E is a bounded linear map of norm 1 and
attains its bound, since F has finite dimension; hence there exists v e F such
that |v| = 1 = ||v'| = d(v, E). We call each such v a unit vector orthogonal
to E. In the sequel, let e, be a unit vector in E, orthogonal to E,_,.

LEMMA 1. Let T be an operator given in the theorem. Then there
exists a subsequence {j(n)} of {n} such that

lim d(Te;¢ny, Ejny) = 0.

PROOF. Since E, is the linear span of {E,_,, 7" 'e}, for each integer n
we have

e, =a,T" e + f,
with @, ¢ K, a, # 0 and f, < E,.,. Thus we have
(1) e, =a,T" e (mod E, _)).
By the definition of E,, TE,_,C E,, this gives
(2) Te,=a,T*"'e (mod E,,,,)
for n=1, r=1. Also, replacing n by n+7 in (1), we have
(3) Cnir = Apy, T"" e (mod E,.rmy),
and so, by (2) and (3)

(4) Tres =" eny  (mod Epeo)

n+7r
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for n=1, r=1. We note that, since d(e,, E,_,)=1, it follows from (4) that

||

( 5 ) d(Tren, En+r—l) = ]an+r I

for n=1, r=1. On the other hand, by (2)

d(TT €ns En+r—l) = d(a‘nT‘nH-_le’ En+1'—l) ’

that is,
n+r— — ___1__
(6) d(T le, En+r—l) - Ian-i-rl
for n=1, r =1, therefore we have
ATre,E)= >  n=1
T | Apsrl =
We also have
(7) ITrel zdT e, By =5 =1,
n+1

By hypothesis, lim inf| 7" ¢|V" = 0, so we see that

lim inf d(Te,, E,) = lim inf l‘“n‘
n+1
- 1\ L. .
=< lim inf Tl =< liminf |T7e|* = 0.
n+1

Thus, there exists a sequence {j(n)}C {n} such that
lim d(Te,(,,), Ej(.,,)) =0.
This completes the proof of the Lemma 1.

The following lemma is proved in [5], but we give a proof for convenience’

sake.

LEMMA 2. Let {F,} and {G,} be two sequences of subspaces of X
such that liminf G,y = liminf G, for any subsequence {j(n)} c {n} and
G,CF,, dim (F,/G,) < m for all n, then



A NOTE ON INVARIANT SUBSPACES 147
dim (lim inf F,,/liminf G,) < m.
PROOF. Let vy, v,,+++,v, be vectors of liminf F,. By the definition of
lim inf F,, there exist sequences {v,,} C F,, with v,,—v, as n— o for

»=0,1,---,m. Since dim(F,/G,)=m, we can choose scalars a,,, @, ,
e+, a, € K such that

> A yUnp, =0 (modG,)
2=0
and

Z la, | = 1.

Here, there exists a sequence {j(n)}C {n} such that a,,,—a, as n— o for
p=0,1,--.,m. Therefore it follows that

m m
hmzd;(m,pvnm = Z a,v,
=0

n—o0 =0

and

> a,v,=0 (mod liminf G,,),

=0

> la,] =1is valid. Thus dim (lim inf F,,/lim inf G,) < m.

=0

LEMMA 3. If T is an operator in a finite dimensional normed linear
space X over K, then there exist subspaces Lo, L, --+,L, of X such that
O=LcLc---cL,=XTL,cL; (j=0,1,---,n) and (a) if K =R,
dim(L,/L;-,))=2 or 1 (j=1,2,+++,n), (b) if K=C, dim(L;/L,.,)=1
(G=12,---,n).

This lemma is well known results (see, for example, [3]). We turn now
to the proof of the theorem.

PROOF OF THE THEOREM. We consider the operator T, of E, into
itself (n = 1) defined by

T”]E”_l = T‘E"_l, T,,e,, = Uy,
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where u, is a nearest point of E, to Te,. We show that
(&) ITz—Toxl| = d(Ten, En)|z|  zx<cE, nz=1.
Let x < E,. Then x = y+X\e, for some Ne K,ycE,_,
|Tz—Tyx| = |M|Ten—un| = |Md(Ten, Ey,).
On the other hand, for a unit vector e, orthogonal to E,_,
ety = v ANeK, yeE,,.

In fact, this is trivial if A=0. If A %0,

lew + -1l Z dlew Ea-t) = 1.
Therefore
”Tx"Tnx” é d(Tem En)“xn Ze Em n 2 1.

From Lemma 1 and (8), we see that if {x,} is a bounded sequence, x, € E;(,,,
then

(9) Um | Tz, —Tjny 2l = 0.

It follows from (9) that if H, is a sequence of subspaces of E,,, invariant
for T'j¢ny, then for every subsequence {H,} lim inf H,, is an invariant subspace
for T.

We prove next, by induction on %, that for each positive integer % there
exists a constant M, such that

(10) IT*z—Thz| = Mid(Te, E)|xll xe€E,n=1.

The case k=1; given by (8), (M, = 1). We suppose that (10) holds for some
k, and deduce there of that it holds for 2+1. On this hypothesis, we have
for all z<¢ E,,
| Tozl = | T*z| + Md(Tes, E,)|xl|
=(IT* + M Tzl = Ad=|, say.
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Since T%E, c E., (8) gives that for all z < E,,
|TTrx—T7" x| = d(Ten, E)|Toxl| = Awd(Te,, E,)| x| -
Thus for all z<E,
|T* 2= T | < | T 2~ TTiz| + |TTiz—T5"z]
= |T|T*x—Trx| + |TT7x— Tz x|
= (T My + Ay) d(Ten, E,)l| x| -

Hence, by induction, (10) is now proved. It follows at once from (10) that,
for a given polynomial P(T) in T, there exists a constant K such that

(11) |P(T) x— P(T,)z| = Kd(Te,, E,)| x|
for x < E,, n=1. Hence we can find constants {K,},>; such that
(12) | PAT)x— P(T,)x| = K,d(Te,, Ey,)| x|

for z<¢E,, n=1, r=1, where P, - ) are polynomials such that P(T)— S
(in norm) as r — co. Since ST =TS and S+#0, we may assume that the null
space of S is zero, for otherwise S~'(0) is a propzr invariant subspace for 7.
Therefore Se +0, and we can choose a with 0 <a <1 and a|S| < ||Se]|.
Since T, is an opzrator of E;., into itself, by Lemma 3 there exist
subspaces E}, of E;,, invariant for 7',

O =E,CcE.C+--CE™ =E;4
and

dim (E5/E) < 2.

We have d(e, E}) = 1> a, d(e, EX®) =0 < a. Thus for each n there is a
greatest 7, i, say, such that d(e, E)=a. Let F,=E¥y, G, = Ex**. Then

de, F,)=a, deG,)<a (n=1).

It follows at once from the first of these inequalities that, for any subsequence

{nk} - {n}’
(13) e & liminf F,, .
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Since d(e,G,) < a, there exists a sequence {x,} c G, is bounded, ie,
lx.| < a+ |e| = a+ 1. Using the compactness of S, we have a subsequence
{n,}C {n} such that

lim Sz,, =zxe X.

k—oo

We show next, that x belongs to liminfG,. For any &> 0, there
exists 7, such that

é
1S—P.(T)] < a1

By Lemma 1, there exists %k, such that

&
d(Tesm,ys Ejny) < Kula+1) k=k,.

By (12)
| Pad(T)Zn, = PufTsinpy) Tl = Knyd(T€sinyys Esnp Y@ +1)

fo: k=1. Therefore £ =k, implies that

11820, — PafTino) Tull = 1152, — PufT)Zn, | + | PadT) Zn,— PaTiin) Tl
= IS=Pu(D)li(a+1) + K, d(€smg Esmo)@+1)
<&+ &= 26.
Since il_’l‘g Sx, =z, there exists &, = &, such that
[Szn—z| <& k=4
Thus if 2=k,

2= Po(Tsnp) Znl| = 2= Szn,| + [S20,— PaTinp) Zal < & + 26 = 3¢
Since G,, is invariant for Tju,, we have P,(Tju,)Zn € G,, and so
d(z,Gy) = 2= Po(Tsao) el <36 k=k,.
Therefore limd(x,G,,) =0, and z< liminf G,,. Now, on the other hand,

|Se—z| = lim[Se—Sz,,]| = | S| < [Se] .
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Thus we have x+#0, and so liminfG,, will be a proper invariant subspace
for T unless liminfG,,=X. By (13) and (ii) liminf F,, # X for every
subsequence {m,} C {n}. Now, if liminf F,, = (0) for every subsequence
{m;}c {n}, by Lemma 2

dim (liminf G,) = 2.

Therefore lim inf G,, # X. This completes the proof of the theorem.
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