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A NOTE ON INVARIANT SUBSPACES

KOH-ICHI KlTANO

(Received October 28, 1968)

In this note the following theorem will be proved. We base our
arguments on T. A. Gillespie's paper [4], F. F. Bonsall's lecture note [2] and
P. Meyer-Nieberg's paper [5], For the sake of completeness, the proof below
repeats the relevant arguments in [4],

THEOREM. Let X be a normed linear space over C (the complex
number field) of dimension greater than one or over R (the real number
field) of dimension greater than two and let T be a bounded linear operator
in X such that lim inf ||Tne||1/w = 0 for some non-zero vector e in X. If the
uniformly closed algebra generated by T and the identity contains a non-
zero compact operator S, then T has a proper closed invariant subspace.

In [1] the present theorem is proved in the case X is a Hubert space
over C.

We need the following notations and some results. X will denote a
normed linear space over K ( = C or jR); we assume if K=C, d i m X > 1 and
if K = JR, dim X > 2 an operator means a bounded linear operator in X and
a subspace means a closed linear manifold. In order to prove the existence of
an invariant subspace, there is no loss of generality in assuming the existence
of a unit vector e in X such that lim inf \\Tne\\1/n = 0 and the vectors e, Te,
T2e, , Tne, are linearly independent and have X for their closed linear

span, i.e., if let En be the linear span of {e,Te9 ,Tn~ιe}, then X=\jEn
71 = 1

(cf. Lemma 3 of the present note).

( i ) If E is a non-empty subset of X and x € X, the distance from x to
E, d(x,E), is defined by d(x,E)=hή{\\x—y\\ : yzE}.

(ii) Given a sequence En of subspaces of X, define lim inf En to be

lim inf En = {x e X: lim d(x, En)=0} .
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It is clear that liminf£;n is a subspace of X and lim inf Eά (w) = lim inf En

for any subsequence \j(ri)} of [n]. If for every n g: 1, Gn is a subspace of
Fw, then

lim inf Gn c lim inf jFn .

(iii) Given a finite dimensional subspace E oί X and x € X, there exists
a point z/ € 2ί such that \\x —u\\ =d(x,E). Each such u we call a nearest
point of E to x.

(iv) Given finite dimensional subspaces E, F with Ed F and E Φ F, the
canonical map J -> x' of F onto F/JE is a bounded linear map of norm 1 and
attains its bound, since F has finite dimension hence there exists v € F such
that ||z;|| = 1 = \\v\\ = d(v,E). We call each such v a unit vector orthogonal
to E. In the sequel, let en be a unit vector in En orthogonal to En-λ.

LEMMA 1. Let T be an operator given in the theorem. Then there
exists a subsequence {j(n)} of [n] such that

\imd(TejM,Ej(:nχ) = 0.
n-*oo

PROOF. Since En is the linear span of [En-l9 Tn~λe}y for each integer n
we have

with ctn€ K, an Φ 0 and fn € En-λ. Thus we have

(1) en = ctnT
Λ'ιe (mod JEU) •

By the definition of En, TEn-x<zEn, this gives

(2) Ten = anT
n+'-ie (mod £n + r_0

for n ^ 1, r ^ 1. Also, replacing n by n + r in (1), we have

(3) ^ Ξ E ^ T ^ - 1 * (modΐU.O,

and so, by (2) and (3)

(4) Tren = ^^en+r (mod£n+r_1)
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for wS: 1, rΞϊ 1. We note that, since d(en, En-^)=1, it follows from (4) that

( 5 )
l

for n ^ 1, r ^ 1. On the other hand, by (2)

that is,

( 6 )

for rc ^ 1, r ^ 1, therefore we have

We also have

( 7 )

By hypothesis, liminf||TV||1/n = 0, so we see that

lim inf d(Ten, En) = lim inf J**"1

lim inf ( T - ^ - T Y
 Λ ^ lim inf ||TV||1/W = 0.

\l "n+ll

Thus, there exists a sequence {j(n)} c {w} such that

This completes the proof of the Lemma 1.

The following lemma is proved in [5], but we give a proof for convenience'
sake.

LEMMA 2. Let [Fn] and {Gn} be two sequences of subspaces of X
such that lim inf G j ( r 0 = lim inf Gn for any subsequence [j(n)} c [n] and
Gn<Z Fn, dim (Fn/Gn) fg m for all n, then
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dim (lim inf Fn/lim inf Gn) ^ m.

PROOF. Let vθ9 vu , vm be vectors of lim inf Fn. By the definition of
lim inf F n , there exist sequences {vn,p} c Fn, with vn>p -^vp as n -> 00 for
p = 0,1, ,?n. Since dim (Fn/Gn) :g m , we can choose scalars an>0, anΛ,
• > Λn,m £ JK" such that

m

Σ ^ Λ P ^ O (modGn)

and

ΣK,l=i

Here, there exists a sequence {j(n)}c{n} such that aiin-)ίP-+cLp as n —> 00 for
/>= 0,1, , m. Therefore it follows that

and

= 0 (mod lim inf G j ( n ) ) ,

m

23 I °ίP I = 1 is valid. Thus dim (lim inf FJ lim inf Gn) ^ m.

LEMMA 3. //* T z*5 an operator in a finite dimensional normed linear
space X over K, then there exist subspaces Lo, Lu , Ln of X such that
(O) = LoC Ud -. c LΛ = X,TL j c L, ( i = 0,1,.. - ,ή) and (a) z/ K = R,

j/L^O = 2 or 1 0* = 1,2,. •, n\ (b) if K = C, di

This lemma is well known results (see, for example, [3]). We turn now
to the proof of the theorem.

PROOF OF THE THEOREM. We consider the operator Tn of En into
itself (n Ξ> 1) defined by
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where un is a nearest point of En to Ten. We show that

(8 ) \\Tx-Tnx\\ ^ d(Ten, En)\\x\\ xzEnyn^l.

Let x € En. Then r = y-\-Xen for some λ € K,y ζ En-X

\\Tx-Tnx\\ = |λ|||TeΛ-tfn|| = \\\d(Ten,En).

On the other hand, for a unit vector en orthogonal to En-X

In fact, this is trivial if λ=0. If λ Φ 0,

Therefore

\\Tx-Tnx\\^d(Ten,En)\\x\\ xzEn,n^l.

From Lemma 1 and (8), we see that if [xn] is a bounded sequence, xn ζ EjM,
then

( 9 ) \im\\Txn-TjMxn\\=0.

It follows from (9) that if Hn is a sequence of subspaces of EjM invariant
for T^(n), then for every subsequence [Hnk] lim inf Hnk is an invariant subspace
for T.

We prove next, by induction on k, that for each positive integer k there
exists a constant Mk such that

(10) ||T*x-Ίlx\\ ^ Mkd{Ten, En)\\x\\ xzEn,n^l.

The case k = l; given by (8), (Mj = 1). We suppose that (10) holds for some
k, and deduce there of that it holds for k + l. On this hypothesis, we have
for all x € En>

Mkd{Ten,En)\\x\\

| = i l j 4 . say.
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Since Tk
nEn c En, (8) gives that for all x e En,

\\TT*x-T^x\\ ^d(Ten,En)\\T*x\\ ^ Akd(Ten, En)\\x\\ .

Thus for all x € En

\\Tk+ίx-T*+1x\\ ^ \\T*+* x-TTk

nx\\ + \\TΊlx-Ίl+1x\\

^ ||TH||T*Λ:-7ϊa:|| + \\TT«nx-Tί+1x\\

^{\\T\\Mk+Ak)d{Ten,En)\\x\\.

Hence, by induction, (10) is now proved. It follows at once from (10) that,
for a given polynomial P(T) in T, there exists a constant K such that

(11) \\P(T)x-P(Tn)x\\ ^ Kd(Ten, En)\\x\\

for x <Ξ En, n^l. Hence we can find constants {Kr}r^i such that

(12) | |P r (T)x- Pr(Tn)x\\ ^ Krd{Ten, En)\\x\\

for x e En, n ^ 1, r ^ 1, where Pr{ ) are polynomials such that Pr(T) —> 5
(in norm) as r—> oo. Since 5 T = TiS and SΦO, we may assume that the null
space of S is zero, for otherwise S~ι(0) is a propsr invariant subspace for T.
Therefore Se Φ 0, and we can choose a with 0 < α < l and rt||5|| < \Se\.
Since T j ( n ) is an operator of EjM into itself, by Lemma 3 there exist
subspaces Eι

n of Ejin^ invariant for T j ( n ) ,

(0) = El c E\ c c E*< > = EjM

and

We have d(e, E°n)=l> a, d(e, E%n)) = 0<a. Thus for each n there is a
greatest z, zn say, such that d(e, Ei) ^ α. Let Fn = Έ%9 Gn = ££+ 1. Theα

d(e,Fn)^a, d(e,Gn)<a (n^ΐ).

It follows at once from the first of these inequalities that, for any subsequence
{nk}c{n}9

(13) e <£ lim inf F Λ A .
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Since d(e, Gn) < a, there exists a sequence {xn} c Gn is bounded, i.e.,
||.rΛ|| < a + \e\ — cc + 1. Using the compactness of S, we have a subsequence
{nk}c{n} such that

limi&r^ = x€ X.

We show next, that x belongs to lim inf Gnk. For any £ > 0, there
exists n0 such that

\\S-Pno(T)\\ <

By Lemma 1, there exists k0 such that

Knk)>Ej(nk)) <

By (12)

fo & Ξϊ 1. Therefore k^k0 implies that

\\Sxn-Pno(Tjini))xnt\ ^ \\Sxn-Pno(T)xnt\\ + \\PnίT)xn-Pn,(TKnύ)xJ\

^ \\S-PniT)\\(cc+l) + Knβ{eHnύ,EKnJ(a+l)

< € + € = 2S.

Since \imSxnit=x, there exists kx^k0 such that

||5x^-a;|| < 6 k^k,.

Thus if k^ki,

\\x-PnlTHnι))xnt\\ ^ | | x - 5 ^ J | + \\Sxn-PniTKnk))xn\\ <S + 2€ = 3ε

Since Gn, is invariant for TΛnύ, we have Pnc(THnk))xntζ Gnk and so

J(x, Gnt) ̂  | | x - P n o ( T , ( n t ) ) ^ J | < 3£ ^ ̂  * , .

Therefore lim d(x, Gnk) — 0, and x € lim inf Gn ι. Now, on the other hand,

\\Se-x\\ = l i m | | & - & c j | ^Λ | |S | | < \\Se\\ .
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Thus we have xΦθy and so lim inf Gnk will be a proper invariant subspace
for T unless lim inf Gnk = X. By (13) and (ii) lim inf Fmk Φ X for every
subsequence {mk} c {n}. Now, if lim inf Fmk — (0) for every subsequence
{%}c(w}, by Lemma 2

dim (lim inf Gnk) ^ 2.

Therefore lim inf Gnk Φ X. This completes the proof of the theorem.
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