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ON CONTACT STRUCTURES OF TANGENT SPHERE BUNDLES

YOSHIHIRO TASHIRO

(Received June 26, 1968; Revised October 4, 1968)

Introduction. The present author [6] has shown that an orientable
hypersurface in an almost complex manifold can be given an induced almost
contact structure, and studied conditions for the induced structure to be normal.

On the other hand, K.Yano and S.Kobayashi [8] and K.Yano and S.Ishihara
[9] have introduced the notions of vertical, complete and horizontal lifts of
tensor fields and connections to tangent bundles. Above all, if the base manifold
is almost complex, then the complete or horizontal lift of the structure defines
an almost complex structure in the tangent bundle. It is also known, cf. [5],
that the tangent bundle of a Riemannian manifold is given an almost Kahlerian
structure.υ

Basing on these two kinds of results, we shall be able to induce various
kinds of almost contact structures into tangent sphere bundles. In this paper,
we shall consider a class of hypersurfaces with some property in tangent
bundles; the class contains the tangent sphere bundle of a manifold.

In §§1 to 3, we shall introduce a tensor field for the study of hypersurfaces
in almost complex manifolds and state some theorems on normality of induced
almost contact structures in the language of the tensor field. In §§4 to 8,
various kinds of almost contact structures will be induced to hypersurfaces in
tangent bundles and the normality of the structures will be discussed. In §8,
we shall show that, given the almost Kahlerien structure in the tangent bundle
of a Riemannian manifold, the induced almost contact structure of the tangent
unit-sphere bundule is J^-contact if and only if the base manifold is of positive
constant curvature.

1. Almost complex and almost contact structures.50 Let M be an
almost complex manifold of even dimension 2n. Denote by (x*)^ a local
coordinate system and by F=(FB

A) the tensor field of the almost complex
structure, which satisfies the equation

(1.1) Fΰ

BFB* = -tAc,

1) As to differeerential geometry of tangent bundles, we refer K. Yano [10].
2) Refer [7] as to almost complex structures and [1,2,3,4] as to almost contact structures.
3) In §§1 to 3, indices A , £ , C , D , £ run from 1 to 2n, and α,jβ,γ,δ,e from 1 to 2n-l.
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E=(Bi) being the unit tensor field in M. The (l,2)-tensor field N=(NCB

Λ)
defined by

(1. 2) NCBA = Fc\dEFB

A - dBFE

A) - FB\dEFc

A - daF/)

is called the Nijenhuis tensor of the almost complex structure F. As is well
known, the structure F or the manifold M is complex if and only if N
vanishes.

If V = (TCB) is a symmetric affine connection of M and we denote by V
covariant differentiation with respect to the connection, then the Nijenhuis
tensor ΛΓis written as

(1.3) NoB

Λ = FaE(VEFB

Λ - V* iV) - FΛVEFcA - VCFB

Λ).

A necessary and sufficient condition for F to be complex is that there exists
a symmetric affine connection in M such as

(1.4) VcFB

A = 0.

In an almost complex manifold M, there is a Riemannian metric g=(gBA)
satisfying the relation

(1.5) gBA = FB

DFA

cgDC.

Such a structure (F,g) or an almost complex manifold M with metric g is
said to be almost Hertnitian. The covariant tensor field (FBA) given by

(1.6) FBA = FB

cgCA

is skew symmetric. We put

(1.7) θ = (l/2)FBAdxBΛdxA

and call it the fundamental form of M. If the form Θ is closed, that is,

(1. 8) dcFBA + 3BFAC + dAFCB = 0,

then the metric structure (F,g) or the manifold M is said to be almost
Kάhlerian. The left hand side of (1. 8) is put and rewritten as

FCBA = dcFBA + dBFAC + dAFCB

= VcFBA + VBFAC + VAFQB,



ON CONTACT STRUCTURES 119

where V indicates covariant differentiation with respect to the Riemannian

connection of g. If F is complex, then an almost Hermitian or almost Kahlerian

manifold turns to the so-called Hermitian or Kahlerian manifold, respectively.

A necessary and sufficient condition for an almost Hermitian manifold to be

Kahlerian is that the Riemannian connection satisfies VGFBA=0.

Next let M be an almost contact manifold of odd dimension 2n— 1. Denote

by (ua) a local coordinate system and by (/, ξ, η) the almost contact structure,

where f=(fa

 β) is a (1, l)-tensor field of rank 2n — 2, ξ = (ξa) a contravariant

vector field and η — (ηβ) a covariant vector field, and they satisfy the relations

(1-9)
'-f* = 09fβ*ηB = 09ξ«ηa=lm

There are defined the following tensor fields in M :

Ύβ — J Ί K&εjβ — ^εjβ )—Jβ\OεJy — &yjε )

(1.10)

If Γ = (Γr§) is a symmetric affine connection in M and we denote by V

covariant differentiation with respect to the connection, the above tensor fields

are written as

γ

α - v r / α

ε )

(1.11)

- V(ϊ.)

If we denote by _Γ(^) Lie differentiation with respsct to ξ in M and take

account of (1.9), then the third and fourth tensor fields of (1.10) can be

written as

(1.12)
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The first tensor field N=(Nyβ

a) is called the Nijenhuis tensor of the almost

contact structure. If N does vanish, then so do the other three and the almost

contact structure is said to be normal.

In an almost contact manifold, there is a Riemannian metric g = (gβa)

satisfying the relations

f gβa - VβVa = fβdf*ΊJδy,
(1.13)

I Vβ=ffβaξ"

The structure (f, ξ, η, ~g) of an almost contact structure associated with metric

g is called an almost contact metric structure of M. The covariant tensor field

(fβ*) g i v e n by

is skew symmetric, and we put

(1.15) θ, = ηadu% θ2 = (1/2)fβadu*A du«.

If dθx = θ2, or

(1.16) fβa = dβη* — daVβ = VβVa - Vaηβ,

where V indicates covariant differentiation with respect to the Riemannian

connection of g, then the structure (/, ξ, ηy g) or the manifold M is said to be

contact metric. If, in addition, the vector field ξ is a Killing vector field with

respect to the metric g, that is,

(1. 17) JCiSWβa = VβVa + VaVβ = 0 ,

then the structure or the manifold is said to be K-contact metric, and we have
the equation

(1.18) / * , = 2Vβi7β.

If a contact metric structure is normal, then the structure (f,ξ,η,g) is

said to be Sasakian and it is characterized by the equations
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The first equation means that a Sasakian structure is a special one of K-contact
structures.

2. Almost contact structure of a hypersurface in an almost complex
manifold. Now we consider an almost complex manifold M with structure
tensor F and an orientable hypersurface M in M. Assume that M is locally
represented by parametric equations

(2.1) xA = x\u«).

We put

(2.2) Ba

A=dax
Λ,

which span the tangent hyperplane of M at each point. Further we choose a
vector field C=(CΛ) complementary to the tangent hyperplane of M at each

point, and call it a pseudo-normal to M. The matrix ί ^A \ is regular and the

inverse matrix will be denoted by (B"B, CB). Then we have the equations

(2.3)

1 Bβ

ACA = 0, CACA =

and

(2.4) Ba

AB«B + CACB = Zi.

For an arbitrary (1, l)-tensor field F=(FB

A) in M, we put

Λ β = Bβ

BFB

ABA«, U = CBFB

AB«A,
(2.5)

f BBFAC f C B F A C

If, in particular, F is an almost complex structure in M, then the pseudo-
normal vector field C=(CA) can be chosen such as

(2.6) fJ~ = CBFB

ACA = 0.

Indeed, since there is an almost Hermitian metric g associated with F, we
may take C as the unit normal vector field to the hypersurface M with respect
to g. If we once choose such a pseudo-normal vector C and put
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(2.7)

then we see that (f, ξ, η) defines an almost contact structure in the hypersurface
M, which will be said to be induced in M from an almost complex structure
F in M9 [6].

Given a symmetric aίfine connection T=(TC

Λ

B) in M, the induced connection

Γ = (Γ7§) in the hypersurface M is defined by

(n Q\ TΠ* / o τ> A i -p A τ> GT> B\p«
\Δ. O) 1 Ίβ — yθγ£>β •+- 1 CB&y Έβ )£> A ?

and the tensor fields h=(h7β), l=(lΎ

a) and m—(?ny) in M by

(2.9) ly" = (dyC
A + YO

A

BBΊ

CCB)B"Λ,

{ mΎ = (dyC
A + Tc

A

BBy

cCB)CA,

respectively. Then the so-called van der Waerden-Bortolloti covariant derivatives
of BβΛ and CA are expressed by

β

A + BycBβ

BΓoA

B - Γy%Ba

A = hyβC
A,

+ By

cCBYc

A

B = ly"Ba

Λ + myC
A,

(2.10)

and those of Ba

B and Cβ by

(2.11)
= -hyβB

B

B-mΊCB.

For any (1, l)-tensor field F i n M, the covariant derivatives of the four
tensor fields defined by (2.5) with respect to the induced connection Γ are
written in the forms

(2.12)

- ly«fβ~ + hyβfj

- By

ΰBβ

BCA\7cFB

A - hyjβ« - myfβ

= BΎ°CBB«AVcFB

A + ly"fβ

a

= By°C
BCA l/f/ -
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If F is an almost complex structure in M, then the covariant derivatives
of the induced almost contact structure (f9 ξ, η) in M are given by

(2.13)

/ + ly'ηβ

, = - BΎ

GBβ

BCA\7cFB

A + hyaft

= B7

cCBB«AVcFB

A + l/fβ" + m£",

and we have

Substituting these into (1.11), we obtain the equations

' Nyβ" = ByC

Nyβ = By

cBβ

BCAN0B

A-

(2.15)

- (fβ%* - Iff." ~

β" = CcBβ

BB"ΛNΰB

A -fβ°C
cBBB«AVcFB

A

I Nβ=-C°Bβ

BCANCB

A-

If we put

(2.16) W = If - ηβξ%" + / Λ W + WεΓ + CcBcBB«AVcFB

A),

then we see the tensor field L=(Lβ") satisfies the equations

(2-17) = lg'ηα +fa"mα - CcBβ

BCAVcFB

=f/lβ Vα-

- mβ).
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and the expressions (2.15) are written as

/ \Γa^.Έ>Cr>BΈ>a7sJA „ £* εT a _ι_ „ £εT a
lVyβ — JL>7 JDβ £> A^CB — VΎJβ L*6 » VβJ7 ^ ε >

N7β = By

cBβ

BCANCB

A - η7Lβ«ηΛ + ηβLy«ηa,
(2.18) j _ α _

. ΪV, = - CcBβ

BCANCB

A - fβ*Lε«Va.

Now we can obtain the following

THEOREM 1.4) Let M be a complex manifold and M an orientable
hypersurface in M. Then the conditions in each of the following triples are
equivalent to one another and the first implies the second:

(1) The induced almost contact structure in M is normal, i.e.,

~Nyβ« = 0 #=4 Nβ« = 0 f==> Lβ

a = 0.

(2) Nyβ = Qξ=$ Nβ = 0ί==4Lβ"ηa = 0.

PROOF. It is known [2] that N7β

a = 0 implies Nβ

a = 0, Nyβ=0 and Nβ = 0

and that Nyβ=0 implies Nβ=0. By the assumption, the Nijenhuis tensor iVof

M vanishes. Hence Nβ

a=0 implies Lβ

u = 0, then N7β

a — Q. On the other hand,

Nβ=0 implies fβ

εLε

aηa = 0, from which and the third equation of (2.17) follows

1**^=0, then N7β=0. Q.E.D.

3. Almost contact metric structure of a hypersurface in an almost
Hermitian manifold. Suppose now that M is an almost Hermitian manifold
and M an orientable hypersurface in M. We take C=(CA) as the unit normal
vector field to M. Then the induced metric ]} = ((} βa) is defined by

(3.1) Sfβ* = gBABβ

BBa

A,

and it is associated with the induced almost contact structure (f,ξ,η) in M,

4) Cf. Y. Tashiro [6, Theorem 2].
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see [6]. If the contravariant components of the metric tensor g~ are denoted by
g13", then we have

(3.2) B«B = g«*gBABa

A, CB = gBAC\

and the tensor fields h, I and m have the properties

(3.3) ly" = -9βahΎβ, mΎ = 0.

The covariant components of the tensor field L defined by (2.16) are equal to

(3. 4) L8a = -hea + η^'Ka +f*\httf.' + CcB/Ba

ΛVcFBA)

and satisfy the equation

(3. 5) f / L β ί C = -f/hβa -faβhBΊ - C°By

BBa

AS7ΰFBA

In this case, the second equation of (2.13) is written in the form

(3. 6) V7ηβ = - BΎ

cBβ

BCAVcFBA + hyafe«.

Substituting (3.6) into the equation (1.16), which characterizes for M to
be contact metric, and using (3.5), we have the equation

(3 7) fa = - BΊ

ΰBβ

BC\\7cFBA - VBFCΛ)+ h,.ff - hβafΎ«

= - CcBy

BBβ\F0BA - VcFBΛ) + h7afe« - hfaf,'

= - CCBΎ

BB8

AFCBA-fy"Laβ-2f7»haβ

* + CcB*Bβ

AVcFBA).

If, in particular, the manifold M is almost Kahlerian, FCBA—^, then we contract
(3.7) with ξy and see that

(3.8)

and consequently, from (3.5),
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Hence we can put

gaβ 4- Laβ 4- 2haβ —

or

(3. 9) Laβ = - 2haβ - faβ +ηaVβ.

Contracting this expression with ξβ, and using the third equation of (2.17), we

obtain

va =

Thus we have the following

THEOREM 2. Let M be an almost Kάhlerian manifold and M an

orientable hypersurface in M. If the induced almost contact metric structure

in M is contact metric, then the tensor field Lβa has the form

(3.10) Lβa = - 2hβa - gβa + ηβ{ηa + 2f hεa).

Now we can state the following

THEOREM 3. Let M be a Kάhlerian manifold and M an orientable

hypersurface in M. If the induced almost contact metric structure in M is

K-contact, then the structure is normal, that is, Sasakian. A necessary and

sufficient condition for the case is that the second funda?nental tensor hβa

has the form

(3.11) 2hβa = --gβa + aηβηa,

a being a scalar field in M.5)

PROOF. Since we have V i ^ O in a Kahlerian manifold M, the equation

(3.6) reduces to

V 7ηβ = hΊafβ

a,

5) Cf. Y. Tashiro [6, Theorem 8]. The difference of the coefficients of (3.11) from those
of the theorem is not essential.
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hence it follows from the Killing equation (1.17) that

and from (3.5)

which is equal to zero as is seen by contraction with ξy. By means of this
equation and the third of (2.17), we see that the tensor field L vanishes. By
virtue of Theorem 1, the induced structure is normal.

Then it follows from (3.10) that

v« + 2ξεhεa).

Since both hβa and gβa are symmetric, we may put

ηΛ + 2ξ8kn = aηa9

where a is a scalar field in M given by

Conversely, if hβa has the form (3.11), it follows from (3.4) that the tensor

field L vanishes.

Q.E.D.

4. Hypersurfaces in a tangent bundle. Let M be an ^-dimensional

manifold and TX{M) the tangent space of M at a point x and T(M) the

tangent bundle of M. If (xh) is a local coordinate system in M and (yh) the

cartesian coordinate in the tangent space TX(M) at each point x with respect

to the natural base dh = d/dxh, then (xh,yh) form a local coordinate system in

the tangent bundle T(M), called the induced coordinate system from (xh).

We write often (x%) for (yh) and (xΛ) for (xh,yh).6)

6) We refer [10] as to differential geometry of tangent bundles. From now on, various
kinds of indices run respectively on the following ranges:

A, B, C, . . . = 1,2, •••, n , κ + l , •••, 2»;
h, i, j , ••- = 1,2, •••, n;

h> i, h •••= n-f-1, •••, 2 » ;
a, βf yf . . . = 1,2, •••, n, n + 1, •••, 2 w — 1 ;
K, λ, μ, •••= » + l , •••, 2 « — 1 .
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A regular hypersurface in the tangent space TX(M) at a point x is
represented by parametric equations yh=yh(uλ) with matrix (dχyh) of rank
n—1. Diίferentiable functions yh=yh(xi,uλ) of local coordinates (xl) and n — 1
parameters (wλ) give locally a hypersurface in the tangent space TX(M) at
each point x with coordinates (xι\ and consequently a field of hypersurfaces
in the tangent bundle T(M). Such a field will be denoted by S(M). If the
local coordinates (xh) themselves are regarded as parameters, the field S(M)
is a hypersurface represented by

f χh = χh

yh=y\x\uλ)

in the tangent bundle T(M). We write (wα) for parameters (xι,uλ).
Now we consider S(M) as a hypersurface M treated in the preceeding

paragraphs. The tangent vectors Ba

A=dxA/dua of S(M) in T(M) are given by

(4.2)

We suppose that the square matrix (Bχ^,yh) is regular at each point of S(M).
This means that S(M) is a regular hypersurface in T(A1) and the tangent
hyperplane to S(M) at each point does not pass through the origin of TX(M).
Then we can take the vector field C with components

-C)(4.3)
• r

as a pseudo-normal vector field of S(M) in T(M). The vectors £ % and
have the components

(4.4) B U
\ £> i — — &i & h, & i>

and

(4. 5) CA : Q = - 5t*"Cϊ, Q ,

respectively, among which Bκl and C^ are determined by the non-trivial
relations



ON CONTACT STRUCTURES 129

(4.6)

and satisfy the relation

(4.7)

following from (2.3) and (2.4).
In the next paragraphs, we shall induce almost contact structures in

S(M) from lifted almost complex structures in T(M), and research their
properties.

5. The case of complete lifts. Let Γ = (ΓJi) be a symmetric affine
connection in M. The complete lift of Γ to the tangent bundle T(M) is
denoted by TG. Its components (ΓC

AB) with respect to an induced coordinate
system are given by

jϊ = o,

By computations using (2.8), (5.1) and the results in §4, the induced connection

fc-(T^) in S(M) from T° has components

/ I Λrϊ, =

(5.2) =B\X(y)T%,

x uλ —

where the operatorsX(_y) and V indicate formal Lie and covariant derivatives:
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The tensor fields h, /, and m in S(M) defined dy (2.9) have components

(5.3)

hn = (dj

τyβ

(5.4)

(5.5) μ = 0,

respectively.

Given a (l,5>tensor field P=(Pis...ίι

h) in M, the complete lift
of P to the tangent bundle T(M) has components

= (PBs...βf)

(5.6)

P h _ p Λ
i, ίi ~ Γit-~iχ y

P~~< h _ o p Λ

all the others being zero, with respect to the induced coordinate system. The
complete lift Tc of an affine connection Γ has the property

(5.7)

for any tensor field P in M. In particular, the complete lift Fc to T(M) of
a (1, l)-tensor field F= (Ft

h) in M has components

(5.8)

and the covariant derivative \/GF° of the lift F° with respect to Γ° has
components

(5.9)
= VrF 4

A - VrF τ

Λ = 0,
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Suppose now that M is an almost complex manifold and F is the structure.

Then it is known that the complete lift Fc of F defines an almost complex

structure in T(M) and the Nijenhuis tensor N' of FG coincides with the

complete lift N° to T(M) of the Nijenhuis tensor N of F. Therefore the

complete lift F° is complex if and only if F is complex.

For the pseudo-normal vector field C=(09y
h)9 the equation (2.6) becomes

(5.10) CBFB

ACA = yΨi

hCκ = 0

with respect to the complete lift F°. If an almost Hermitian metric g = (gjt)

in M is associated with the almost complex structure F and we consider the

unit spheres defined by

9ihy
lyh = i

in the tangent spaces TX(M), then the vectors (yh) and (Cj)=(gίhy
h) satisfy

(5.10). Hence the tangent unit-sphere bundle possesses the property. We

shall confine ourselves with fields of hypersurfaces in T(M) such that the

vector field C=(09y
h) satisfies the equation (5.10), and call them S-hyper-

surfaces.

The tensor fields f=(fβa), ζ = {ζOί) and V = (Vβ) °f t n e induced almost contact

structure in an AS-hypersurface S(M) from the complete lift F° to T(M) have

components

(5.11) fe" •

I fih = Ft>,

(5.12)

and

ft = BJ1

= yU

(5.13)

; = " [ 3 F t

Λ
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respectively. Substituting these components and (5.3), (5.4), (5.5) and (5.9) into
the four types of the components, Lt

h, Lχh, Lf, Lλ

κ of the tensor field L
defined by (2.16), we see that all the components vanish.

THEOREM 4. For the induced almost contact structure of an S-hyper-
surface S(M) from the complete lift F° in T(M) of an almost complex
structure F of M, the tensor field L defined by (2.16) vanishes identically.

Hence the Nijenhuis tensor N and the others given by (2.17) of the
induced almost contact structure in S(M) have the components

Nμ

h = Njt\ Nμi

h = Njλ

h = Nμλ

h = 0,

Nβ . Jvζ =

Therefore we have the following

THEOREM 5. Let F be an almost complex structure in a manifold M,
F° the complete lift of F to the tangent bundle T(M) and Fd=(fξ,η)c the
induced almost contact structure in an S-hypersurface S(M). The structure

F° is normal if and only if F is complex,

6. The case of horizontal lifts. Let Γ=(ΓJ<) be a symmetric affine
connection in M. The horizontal lift of Γ to the tangent bundle T(M) will
be denoted by TR. The components (Γ^) of Γff are given by

I Γμ =

i pΛ — Vh F Λ — V - — V& — 0
j[ l ji - i ji, i ji - 1 j 4 - l , » - υ ,

h I 'J1 pΛ pΛ p^_ Q
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with respect to an induced local coordinate system in T(M), where Kkji

h are
the components of the curvature tensor field K of the affine connection Γ and
we put K.Ji

h=ykKkJl

h.

The induced connection, denoted by ΓH=(V%β), in S(M) from the horizontal
lift Γ^ has the components

Γ h "pΛ TΛh ΎΛΪI pΛ Π
j i — J- jU A jλ — •»• μi — A μλ — U j

(6.2)
^ = (V,v,:

The components of the tensor fields h, I and m in 5(M) defined by (2.9) are
given by

(6.3)

hjt =

(6.4) I «

h

(6. 5) mΊ: πι5 = (Vjyh)Cji, mβ = 0 ,

respectively.

On the other hand, the components (/*&,...*/) of the horizontal lift PΠ to
T(M) of a (l,s)-tensor field P=(Pit...iι

h) in M are given by

(6.6) it-Lίi' Ί'-ίi >

the others being zero, with respect to the induced coordinate system in
T(M), where we have put ΓJ = I%y*. The components of the horizontal lift
Fπ of a (l,l)-tensor field F=(Fih) in M are given by

(6.7)
fy = Ff, Fih = 0,

?* = - ΓΪFS + Y\Ft\ Fζ

κ = Ft\
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and those of the covariant derivative ^7BFH of FB with respect to Γ* by

(6.8)

V ,F,* = V,F,\ }Fτ

h = VrF,*

+ ΓίVFΛ

=. VyFr* = 0,

Suppose now that M is an almost complex manifold and F is the
structure. Then it is seen [9] that the horizontal lift FB defines an almost
complex structure in T(M), and the components of the Nijenhuis tensor N of
Fπ are given by

(6.9)

+ ΓKF^-V F,* + Fr

Similarly to §5, we consider an 5-hypersurface S(M) and denote by

Fa=(f, ξ, η)B the induced almost contact structure in S{M) from the horizontal
lift F" to T(M). The components of the tensor fields f, ξ and η of the
structure FB are given by

(6.10) Jβ

- ( - r?F t ' + ΓiF,»

(6.11)

(6.12)

respectively.

=-(- Ft1 F. v.y'Xi,
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Substituting (6.4), (6.5), (6.8), (6.10), (6.11) and (6.12) into the four kinds of
the components, L^, Lχh, Lf, L/, of the tensor field L denned by (2.16), we
see that

THEOREM 6. For the induced almost contact structure Fa of an S-

hypersurface from the horizontal lift FH to T(M) of an almost complex
structure F in M, the tensor field L defined by (2.16) vanishes identically.

Hence the Nijenhuis tensor N and the others given by (2.17) of the

induced almost contact structure Fπ in S(M) have components

N}λ = AXF/V«F,» + F4'

. + F,-V,F.»)]CS,

Sζ- = — y '(F 4 ' V ,F/ + F /

v// + F/

Now we have the following

THEOREM 7. Let M be an almost complex manifold with structure
F and symmetric affine connection Γ. In order that the induced almost

contact structure F ={f, ξ, η) in an S-hy per surf ace S(M)from the horizontal

lift Fs to T(M) of F is normal, it is necessary and sufficient that the
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structure F is complex and the affine connection Γ satisfies the equation

(6.13) F/VW + Ft V ,Ft

h = 0.

PROOF. It is known that N7β

a=0 implies Nyβ=Nβ° = Nβ=0. It follows

from the first components Njt

h = 0 of JVthat the Nijenhuis tensor N vanishes

and F is complex. Moreover, it follows from Nμκ=0 and Nάχ = 0 that

Bλ\FjιVίFi

h + Ft

ιVJFι

h) = O

and from ^ = 0 and ϊ\ζ = 0 that

y\F/\7lFi

h + Fi

iVjFl

h) = 0.

By use of these equations, we obtain the equation (6.13). Q.E.D.

If Γ is the symmetric affine connection which leaves F invariant, \/F= 0

and which exists in a complex manifold, then the equation (6.13) is satisfied.

7. Tangent sphere bundle of a Riemannian manifold. Let M be a

Riemannian manifold with metric tensor g = (gn) and Γ —(Γ^) the Riemannian

connection of g. Putting

(7.1) hyh = dyh + Y)dx\ V) = V%yl,

many authors consider the Riemannian metric g = (gCB) in the tangent bundle

T{M) defined by

(7.2) gCBdxcdxB - g^dx'dx* +

with respect to an induced coordinate system. The components of the metric

tensor g are

(7.3)

and its contravariant components are

(7.4)
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where we have put

The components of the Riemannian connection, denoted by TM=(FOB)> of
the metric g in T(M) are given by

n=n+-f(κ.,

(7.5)

_1_
2

./ΓJ+ K.si

ιΓj)Γί],

In this and the next paragraphs, we consider the tangent sphere bundle
S(M), which consists of the unit spheres denned by

(7.6)

with respect to the metric g{x) in the tangent space TX(M) at each point x.
The sphere bundle S(M) is represented by parametric equations

(7.7) xh = xh, χ}i = yh^ y\x\ uλ)

satisfying the equation (7.6). Differentiating (7.6) covariantly in x5 and partially
in uλ, we have

(7.8) /y" + Tihy> = 0

and

(7. 9) giκBχιyh = 0,

respectively.

By means of (7.8) and (7.9), the vector field C, having the components
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) /0 \= ( h], on S(M) satisfies the equations

(7.10) 3/ + ^ / ) y = ( r , » + ̂ ίftβ/)3'A = o,

= 0

and

(7.11) gBΛC
BCΛ = g-ay

ιyh = gihy
ιyh - 1.

Therefore the vector field C=( Λ is the unit normal to the tangent sphere

bundle S(M) with respect to the metric g. The covariant components of C are
equal to

(7.12) CB: Ct = Γ iΛy\

The induced metric g = (gyβ) in the tangent sphere bundle S(M) from the

metric g is given by

Ί Bβ

and have covariant components

(7.13)
gjsB/B/=

and contravariant components

(7.14)
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Since the Riemannian connection Γ = (T"β) of the induced metric g are
related to the Riemannian connection Γ in T(M) by the equation (2.8), we
obtain by straightforward computations

I

ΓΛ _ x Zf hΈ> s

(7.15)

The second fundamental tensor h in 5(M) has components

(7.16)

8. Contact structure in a tangent sphere bundle. In the tangent bundle
T(M) of a Riemannian manifold M, there exists the 1-from

(8.1) θ=ytdx* = gsιy
}dxι

and the derived form dθ is equal to

(8. 2) dθ=l(d}gkl)y*dx> +

= -|-[(ΓίC - V^yixΆdx* + g}idy>Adxι - glidxiAdyr\.

Putting

(8.3)

we have the skew-symmetric tensor field

= -λ-FCBdx° A dxB,
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f N ~ {a = Γ J t - Γ t J,
(8.4) F

and the (1, l)-tensor field 2?*=(ft*) defined by

FB = ftί?

whose components are

(8.5) ft _
( F t* = - Γ{Γf - $i, Fτ

h = - Γf.

The tensor field F v satisfies the equation

(8.6) ftΛft* = -8 ί ,

that is, it defines an almost Hermitian structure in T(M) with the metric
g. Since the fundamental form dθ is closed, the structure (FM, g) is almost
Kahlerian.

Furthermore, since (FBA) is skew symmetric and we have

the tangent sphere bundle S(M) is an xS-hypersurface in T(M) with respect to

the almost Kahlerian structure (FM

9 g). Hence, to the tangent sphere bundle

S(M), the contact metric structure, denoted by (F, g) =(f9ξ9η9V) l s induced,
from the almost Kahlerian structure in T(M), and the tensor fields f9ξ and
η have components

(8.7)

(8.8)

(8.9)

/« =-κv,yχv,y*)
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The covariant components of f=(fβa) are

fa = Vĵ i ~ Vi^i,

(8.10) fyβ fH=-fiβ =

and we have

(8.11)

Therefore the induced structure (F, #) in the tangent sphere bundle S(M) is a
contact metric structure.

Now we prove the following

THEOREM 8. Let M be a Riemannian manifold with metric g and

(F,'g)M=(fξ,η,~g)M the induced contact metric structure defined above in

the tangent sphere bundle S(M). In order that the structure (F,Ίj) is
K-contact, that is, the vector yeld ξ in S(M) is an infinitesimal isometry
with respect to the induced metric Ίj> it is necessary and sufficient that the
manifold M is of positive constant curvature. Then the induced structure

(F, g) is Sasakian.

PROOF. The Killing equation of ξ in S(M) is now written as

(8. 12) -C(ξ)ffyβ= Vγ^/3 + \7 βVΎ= ^yVβ + ^βVy~ ^yβ^a = 0 ,

where V indicates covariant differentiation with respect to the metric g.
Substituting the expressions (7.15) and (8.9) of the components ηβ and Γ ^ into
(8.12), we have the equations

(8.13)

It follows from the second equation that

I(ξ)gμi - dβyt - K.ti.B£ = 0,
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Bf(gJt-K.jt.) = 0

and, taking account of the symmetry of g5i — K.5i. in ί and j 9 we may put

g5i - K.j{.

Contracting this expression with y\ we see that <X=1 and hence we have the
equation

(8.14) ffji-K.ji.=y3yt.

By means of (7.11), this equation is written as

Kkjihy
kyh = gngkhy

kyh -

Since this equation is valid for an arbitrary tangent vector y, we have the
equation

Kkjih + Khjifc = 2gjigkh — gjkgίh — g5h9ίk>

By interchanging the indices k and /, taking the difference and using Bianchi's
identity, we obtain the equation

(8.15) Kkjih = gkhgn - gihgki,

which means for M to be of positive constant curvature. We see that the first
equation of (8.13) is satisfied by (8.15). Thus the first half of the theorem has
been established.

When the curvature tensor of M has the form (8.15), by substituting
(7.15) and (8.10) into the components of the covariant derivative

and comparing the results with (7.13) and (8.9), we obtain the equations

(9
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1 _
ff

O ^

V

These equations are combined up to the tensor equation

which means that the induced structure (F, jj)lf is Sasakian. Q.E.D.
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