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GALOIS COHOMOLOGY OF FINITELY GENERATED MODULES

Dedicated to Professor T. Tannaka on his 60th birthday

T O Y O F U M I TAKAHASHI

(Received August 20, 1968)

The purpose of this paper is to generalize Tate's theorem concerning
Galois cohomology of finite modules. It will be shown here that a large
part of the theorem holds also for finitely generated modules. In section 2
we shall consider, particularly, unramified cohomology of finitely generated
modules over local fields. In the final section, we shall study the relation
between local and global cohomology. I wish to express my thanks to
Dr. K. Uchida for his useful suggestions.

1. Notation. Let R be a Dedekind ring with field of fractions k. Let Ω
be the union of all finite extensions K of k in which the integral closure of
R is unramified over R, and let R denote the integral closure of R in ίl.
Let GR denote the Galois group of the extension Ά/k. For any discrete
G^-module A, we put

<H>(Ga,A)
HXR,A)=

(cf. [5]). By M we shall always understand a finitely generated discrete
G^-module such that the order of the torsion part of M is invertible in R.
Such a module M is said to be a Galois module over R. We put T = [the
torsion part of M\, F = M/T and M' = Hom(M, £ x ) where R* is the group
of units of R. For any locally compact abelian group H, we let H* denote
its Pontrjagin character group.

2. Local fields. Let k be a local field (i.e., a non-discrete locally compact
field). Then we have isomorphisms

Hr(k, M) s H2~r(k, M')*
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for all r € Z (cf. [2 Chap. II, Theoreme 6]). Suppose k is a non-archimedean
local field with valuation ring 0. Let M be a Galois module over o.

T H E O R E M 1. i) Hr(o, Λf) = 0 ( r g 2).

ii) 77ιe inflation map H2(o,M)-*H2(k,M) and the canonical homo-

morphism H%0, M') -* H°(k, M') are injective. The subgroups H2(o,M) of

H\k, M) and H°(o, M) of H\k9 M') are the exact annihilators of each
other.

iii) The inflation map H\o, M) —• Hι(k, M) and the homomorphism
H1(p9M')—>H1(k9M') by the inflation map and the injection ox—>£x are
injective. The subgroups Hι(o, M) of Hι(k, M) and Hι(o, M') of H\k, M')
are the exact annihilators of each other.

PROOF, i) Since cdG, = l, we have Hr(o9T) = 0 for r ^ 2 , and
Hr(o,M') = O for r ^ 3 . Since ox is cohomologically trivial, we have Hr(o,F')
= 0 for r ^ 1. By the exact sequence

H\o, F') -> H\o, M') -> H\o, T),

we get H\o, M') = 0.
ii) Consider a commutative diagram:

H\k,M) > H\k,F)

inf inf

H*(p,M) > H\o,F) .

Since H2(o,M) is isomorphic to H\o,F) and the inflation map H\d,F)
—>H2(k,F) is injective, the inflation map H2(o,M)—> H2(k,M) is injective.

For any finite extension K of k, let Kx denote the compactification of Kx,

and we put kχA = \JKx, the union taken over all finite separable extensions
K

HK of k. The injectivity of the map H°(p9 M') -> H°(k, M) is an immediate
consequence of the fact H\k,M') = H°(£,Hom(M, P A ) ) . Let knr denote the
maximal unramified extension of k. Now by the G -split exact sequence

0 >όx >% > % >0

and Jί°(θ,Hom(M,%)) = H°(k,Hom(M, I χ A )) , we get an exact sequence

0 > H%o, M) > H\k, Hom(M, k*A)) > H°(o, Hom(M, Z)) > 0 .
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Hence we get an exact sequence

0 —> ff°(o, M) —> H\ky M) —> H%o, MY —> 0,

because Z is a "module dualisant" for the group Go ( = Z) (cf. [2 Chap. I,
Annexe]).

iii) Consider a commutative diagram with exact rows

*0 = H2(o, T)* — > Hι(o, F)* — > Hι(o, M)* — > H^o, T)

H\k, F') — > Hι(k, M') — > HKk, T)

\ \ ί
0 = £P(o, F') > HA(o, M) > H\o, T) > H\o, F') = 0

where Hι(k,F') (ς^Hι(k,F)*)^Hι(p,F)*. The sequence Hι(o,T)-+Hι(k,T)
—> H\o, T)* is exact by [3 Theorem 2.4]. Now it is easily verified that the
sequence

0 > Hι{p, M) > Hι(k, M) > Hι(ρ, MY > 0

is exact and the theorem is proved.

3. Global fields. Let k be a finite extension of Q, or a function field in
one variable over a finite field, let S be a non-empty set of primes of k,
including the archimedean ones, and ks denote the ring of elements in k
which are integers at all primes not in *S. For each prime v in S> let kv

denote the completion of k at v. Throughout this section, M will be a Galois
module over ks. Let Pr(ks,M) (resp. Pr(ks,M')) be the restricted direct
product of HΓ(kv,M) (resp. Hr(kΌ,M') (vzS) relative to the subgroups
Hr(θυ,M) (resp. Hr(ov, M')). Since Hι(oυ,M) and H\ov,M

f) are finite,
Pι(ks,M) and Pι(kSyM') are locally compact. By Theorem 1, Pr{ks,M') is
the direct sum for r ^ 2. Since scd Gkυ = 2 if v is non-archimedean, Pr(ks, M)
and Pr(ks,M

f) are equal to J[ Hr(kυ,M) and J[ Hr(kv,M') respectively for
varch v arch

r ^ 3 . The localization maps Hr(ks, M)^Hr(kυ, M) and H%ks, M')-*H%kv, M)
give canonical maps :

fr:H\ks,M) >P%ks,M),

/ ; : H\ks, M) > P\ks, M).

By Theorem 1, local duality yields an isomorphism
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Hence by duality we obtain maps :

A* : PKks, M) —> HKks, M)*,

f[* : P\ks,M) ^H\ks,M'γ.

Let O be the maximal extension of k unramified outside 5, and let G be
the Galois group of the extension Ω,/k. Let J denote the projection to S of
the idele group of ί2, and we put C = J/kg . Then C is a class formation
for extensions of k unramified outside S. For simplicity, we put J(M)
= Hom(M, J) and C(M) = Hom(M, Q. Let / be a prime number such that
lks = ks.

LEMMA 1. Hr(k8, C(F))(l) = 0 ( r ^ 3 ) .

PROOF. By Nakayama-Tate's Theorem, we have a commutative diagram
whose horizontal arrows are isomorphisms

Hr~\L/k, Hom(F, Z)) - ^ > Hr(L/k, Hom(F, Z) ® H%LS, C))

" [L:K] inf | inf

Hr-\K/k, Hom(F, Z)) - ^ > Hr(K/k, Hom(F, Z) ® H0(K5, C))

for r ^ 3 , where LΌK are sufficiently large Galois extensions of k unramified
outside S. Since l°°\[a:k], we obtain H r ( ^ , C(F))(l) = Hr(ks,Hom(F,Z)®C)(/)
= lim H r (ί :/*, Hom(F, Z) ® H%KS,QXI) = 0.

LEMMA 2. i) H»(fe, J(F)) = F&s.F).

ii) H%ks,J(F)χi) = PXks,F'χi) ( r^2) .

PROOF. By Shapiro's Lemma, we have

Hr(ks, J(F)) = £ Hr(G., Hom(F, Ωί)) ( r ^ 1)

where Gv is the decomposition subgroup for a place lying above v and ί2β is
the extension of £υ corresponding to G .̂ We remark Pr(ks,F') is the direct
sum for r ^ 1. Of course, if z; is archimedean, Gυ = Gkv.

i) Let v be a non-archimedean prime in .5. Consider the inflation-
restriction sequence:
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0 > Hι(Gυ, Hom(F, Ω?)) — > H\kυ, F) > Hι(βv, F').

Since GΩυ acts trivially on F9 we get H1^, F) = 0, hence

Hι(Gv9 Hom(F, Ω?)) = H\kv, F).

ii) Let v bε non-archimedean. Since l°° \ [ίlυ: kv] and GQυ acts trivially
on F, we get H\nv,F)(l)=0. Since scd Gkυ = 2, we get Hr(Ω,υ,F) = 0 for
r Ξg 3. Hence we obtain

H'(GV, Hom(F, ίi?))(/) = H\K F)(l) (r ^ 2)

by the inflation-restriction sequences. Q.E.D.

THEOREM 2. L#£ I be a prime number such that lks = ks. Then

f'r: H\ks,M'){l)^ Π H'(kv,M'XI) ( r ^ 3 ) .
u arch

PROOF, a) Consider an exact sequence :

> H\k8, F) > H'(ks, J(F)) > H%ks, C(F)).

By Lemmas 1 and 2, we get the theorem in case M= F and r ^ 4.
b) Consider a commutative exact diagram:

Hr-\T)(l) > Hr(F')(l) > Hr(M')(ΐ) > Hr(T)(l)

Pr-\T)(l) > P\F){ΐ) > Pr(M')(l) > P\T)(ΐ)

f o r r ^ 4 , where H\ ) = H\ks, ) and P\ ) = P\ks, ). By a) and [3;
Theorem 3.1 (c)], each vertical map except the middle is isomorphic. Hence
by Five Lemma the middle is also isomorphic.

c) Finally we must prove the theorem for r = 3. We can find an open
subgroup U of G such that its invariant field K is totally imaginary and
Mu = M. We have an exact sequence:

0 >M >Q >A >0

where Q is the induced module Sttl%(M) (cf. [2; Chap. I, n° 2.5]) and A=Q/M.
Consider a commutative exact diagram:
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H\M')(l) —+ H\A){1) —> H\Q')(l)

(Q

By Shapiro's Lemma, we have ifr(*5, Q) = iίr(Xs, Λf) and P r (^ , Q)
= Pr(Ks, M'). Since K is totally imaginary, Pr(K8, M) = 0 for r ^ 3. On the
other hand, we have Hr(Ks, F')(l) = 0 for r ^ 3 , because GKs (=£/) acts

trivially on F and Hr(Ks,K£)(l) = 0 for r ^ 3. Hence we have ffr(Jζs, M'XZ)
= Hr(Ks, T)(l) for r ^ 3. Since cd, GKs=2, Hr(Ks, T)(l)=0 for r ^ 3. Thus
we get if 3(fe, M')(/) ̂  Ps(fe, M')(/) by the above diagram. Q.E.D.

REMARK 1. The proof of Tate's Theorem [3 Theorem 3.1 (c)] which
has been used in the above proof has been unpublished. It can be proved
as follows : In the exact sequence 0 —> T" —> J(T) —> C(T), the universal norms
of J(T) are mapped isomorphically onto the universal norms of C(T). Hence we

get an exact sequence: ίϊ-χks,T)-» H~ι(ks, J(T)) -> H'K^ C(T))-+H%ks,T)

-> H°(ks, J(T)) (cf. [5]). Since T has no universal norms, H~ι{ks, T) = 0. It

is easily shown that H°(ks,T)->H\ks, J(T)) is injective, and H-\ks,J{T))

= Π H-\kυ, T). Hence we get H\ks, T) s H~ι(ks, C{T))* ̂  H~\ks, J{T))*

/\^ Π H-ι(kυ,T)*s Π H%kυ,T). Let X,Q and A be as in the proof of
v arch « arch

Theorem 2 respectively, and M=T. Then Q and A are also finite. Consider
a commutative exact diagram:

0 = Hr-\Q) > Hr~\A) > H%T) >H%Q) = 0

0 = Pr-\Q) > Pr~\A) > P\T) > Pr(Q) = 0

for r §: 4. By induction we get the theorem.

LEMMA 3. Suppose that there exists an open subgroup of G which has
strict cohomological dimension 2 for I. Then

fr: HXks, M){1) s Pr(ks, M)(/) (r 2: 3) .

PROOF. By Theorem 2 we obtain Hr(ks,N)(P) - Pr(ks,N)(ΐ) ( r ^ 3) for
any module N of torsion. Using the exact sequence : 0—>F® Zt—*F® Qt

+ 0 and the above isomorphism, we get Hr(ks, Fχi) 5έ Pr(ks, F%ΐ)
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for r ^ 4. Now the lemma can be proved similarly as Theorem 2 and
Remark 1.

THEOREM 3. i) If k is a number field, then we have

fr: H\k, M) s Π H%kυ, M) (r g= 3).
v arch

ii) If k is a function field, then we have

PROOF, i) It is well known that scd, Gk = 2 if k is totally imaginary
(in case I = 2). ii) If k is a function field, C has no universal norm. Hence

REMARK 2. In general case, Tate [3] has asserted that the group Gks has
strict cohomological dimension 2 for I such that lks = J65, except if / = 2 and
k is not totally imaginary (the proof still remains unpublished).

THEOREM 4. I m / ! am/ I m / ί are the exact annihilators of each other
in our duality (*).• That is, the sequence

H\ks,M) -^-^ P\ks,M) -^-^ H\ks,M')*

is exact.

PROOF, a) In case M—T, the theorem was obtained by Tate [3
Theorem 3.1 (b)]. We give here an outline of the proof:

For finite S, one can prove the equality

/ -, N [H\ks,T)][H\ks,T)] _ π [H\ks,T)]
U ; lH\ka,T)] -JL

by using Theorem 2 (cf. [4]). We have two exact sequences:

0 > H\ks, T) > H H%kv, T) > H\ks, T)* > Hι(ks, T) > P\ks, T),
veS

0 < HXks, T)* < PXks, T) < H\ks, T) < HXks, T)* < Pι(ks, T)

(cf. [5]) and a null sequence:

( 2 ) HXks,T)-^PXks,T)^HXks,T)*.
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By the equality (1) we conclude the sequence (2) is exact. The passage to
infinite S is not difficult.

b) We have an exact sequence Hι(ks, F) -» H\kS9 J(F)) -• Hι(k8, C(F)\
and two isomorphisms Hι(k8, J(F)) ^ Pι(ks, F') (Lemma 2) and Hι(ks, C(F))
^ Hι(ks, F)* (cf. [5]). Hence the theorem is proved in case M= F.

c) Let Mj (resp. MG) denote the cokernel of Hι(ks, J(M)) -> Pι(ks, M)
(resp. HXks,C(M))-+Hl(ks,M)*). For any module A of torsion, we put

A(T) = 22 A(p). We get following three commutative exact diagrams:
PllT]

( 3 )
1 ( T >

0

i
•HKJ(T))

• P\T)

Tj

i
0

H'(T)*

I
o

H2(Γ')

H\T)

0

( 4 )

KA))
|?iso
(ί")

I
•H\J(M))

P»(Λf)

Mj

i
0

ί

i s o

H\C(T)) •

l( 5 ) l
H\T)* -

(
\F)*

H>(C(M))

I
H(M(

M

HKOT))-

I
(

I

H%C(F))

J is°
• H\F*

I
o
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where Hr{ ) = Hr(ks, ) and Pr( )=Pr(ks, ). In the diagram (3), Hι(C(T))

—> Hι(T)* is necessarily injective, hence Hι{C(M)) -> Hι(Al)* is also injective

by the diagram (5). Since all rows of the above diagrams are exact, we

get exact sequences :

0 >Tj >TC, 0 >Mj >Tj and 0 > MG > Tc .

A commutative diagram

^ - > Hι(T)*

^-^ Hι{M)*

induces a commutative diagram

Tj > To

ί
j > Mc.

Hence Mj —> MG is injective. Finally consider a commutative diagram :

0 0 0

I I I
M) H»(J(Af)) — > Hι(C(M))

) P » ( A Γ ) • HK

ψ ψ ψ
0 > Mj > M σ

I I
0 0

where all sequences are exact except the middle row. Hence the middle row

is also exact. Q.E.D.

REMARK 3. Combining Theorem 4 with [5; Theorem 2], we have an

exact sequence

H\ka, M) > P\ks, M) > Hι(ks, AT)* > H\ks, M) > P\ks, M).
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ADDED IN PROOF: Recently, the author has given the proof of the

Tate's assertion in Remark 2. See Proc. Japan Acad., 44(1968), 771-775.
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