Tôhoku Math. Journ . 21(1969), 84-91.

PROLONGATIONS OF PSEUDOGROUP STRUCTURES TO TANGENT BUNDLES

KOICHI OGIUE

(Received May 14; revised August 15, 1968)

1. Introduction. Recently, K.Yano and S.Kobayashi [6] defined the notion of the prolongations of tensor fields to tangent bundle and A.Morimoto [3] studied the prolongations of G-structures to tangent bundle.

The purpose of the present note is to give some remarks on the prolongations of pseudogroup structures and almost structures on a manifold to its tangent bundle.

We summarize basic notations which will be used in the present note.

T(M) : tangent bundle of M

 $T_x(M)$: tangent space of M at x

Tf : differential of a differentiable mapping f

 $F^{r}(M)$: bundle of *r*-frames of M

 $G^{r}(n)$: structure group of $F^{r}(M)$ $(n = \dim M)$.

2. Prolongations of pseudogroups to tangent bundle. Let Γ be a pseudogroup of differentiable transformations of \mathbb{R}^n .

Let $i_x: T_x(\mathbb{R}^n) \to \mathbb{R}^n$ for $x \in \mathbb{R}^n$ be the canonical identification of $T_x(\mathbb{R}^n)$ with \mathbb{R}^n . For an element φ of Γ , we set $\overline{\varphi_x} = i_x^{-1} \circ \varphi \circ i_x$. Then $\overline{\varphi_x}$ is a differentiable transformation of a neighborhood of a point of $T_x(\mathbb{R}^n)$ into $T_x(\mathbb{R}^n)$. Let U be the domain of $\varphi \in \Gamma$. We define $\overline{\varphi}: T(U) \to T(U)$ as follows: For $(x, \dot{x}) \in T(U) = U \times \mathbb{R}^n, \ \overline{\varphi}(x, \dot{x}) = (x, \overline{\varphi_x}(\dot{x}))$. Then $\overline{\varphi}$ is a differentiable transformation of a subset of T(U) into T(U).

Let $\widetilde{\Gamma} = \{T\varphi \circ \overline{\psi} \mid \varphi, \psi \in \Gamma\}$. Then $\widetilde{\Gamma}$ is a pseudogroup of differentiable transformations of $T(\mathbf{R}^n)$. It is clear that if Γ is transitive, so is $\widetilde{\Gamma}$.

Let \mathcal{L} be the sheaf of germs of all Γ -vector fields on \mathbb{R}^n and $\widetilde{\mathcal{L}}$ the sheaf of germs of all vector fields on $T(\mathbb{R}^n)$, each of which is a sum of a complete lift and a vertical lift of Γ -vector fields on \mathbb{R}^n . Then $\widetilde{\mathcal{L}}$ is the sheaf of germs of all $\widetilde{\Gamma}$ -vector fields on $T(\mathbb{R}^n)$. Let L be the stalk of \mathcal{L} at the origin $0 \in \mathbb{R}^n$ and \widetilde{L} the stalk of $\widetilde{\mathcal{L}}$ at the point $\overline{0}=(0,0) \in T(\mathbb{R}^n)$. If Γ is a transitive pseudogroup, then L and \widetilde{L} are transitive filtered Lie algebras. Let $\sum_{p=-1}^{\infty} \mathfrak{g}_p$ with $\mathfrak{g}_{-1} = \mathbf{R}^n$ and $\sum_{p=-1}^{\infty} \widetilde{\mathfrak{g}_p}$ with $\widetilde{\mathfrak{g}}_{-1} = \mathbf{R}^{2n}$ be the associated graded Lie algebras of L and \widetilde{L} , respectively. Let x^1, \dots, x^n be a coordinate system in \mathbf{R}^n and $m \to m^n$ is the conomically induced coordinate system in

 \mathbf{R}^n and x^1, \dots, x^n , $\dot{x}^1, \dots, \dot{x}^n$ the canonically induced coordinate system in $T(\mathbf{R}^n)$. Let $X \in \sum \mathfrak{g}_p$. Then X can be written as $X = \sum x^i (\partial / \partial x^i)$ with

$$X^{i}=a^{i}+\sum a^{i}_{j}x^{j}+\frac{1}{2}\sum \sum a^{i}_{jk}x^{j}x^{k}+\cdots,$$

where a^i , a^i_j , a^i_{jk} , \cdots are real numbers. It is clear that $(a^i) \in \mathbb{R}^n$, $(a^i_j) \in \mathfrak{g}_0$, $(a^i_{jk}) \in \mathfrak{g}_1$, \cdots .

Let X° (resp. X°) be the complete (resp. vertical) lift of X. Then we can easily see that

$$X^{c} = \sum \left(a^{i} + \sum a^{i}_{jk}x^{j} + \frac{1}{2}\sum a^{i}_{jk}x^{j}x^{k} + \cdots\right) \frac{\partial}{\partial x^{i}} + \sum \left(a^{i}_{j} + \sum a^{i}_{jk}x^{k} + \cdots\right)\dot{x}^{j} \frac{\partial}{\partial \dot{x}^{i}}$$

and

$$X^{v} = \sum \left(a^{i} + \sum a^{i}_{j}x^{j} + \frac{1}{2}\sum a^{i}_{jk}x^{j}x^{k} + \cdots\right) \frac{\partial}{\partial \dot{x}^{i}}.$$

On the other hand, the associated graded Lie algebra $\sum \tilde{\mathfrak{g}}_p$ of \widetilde{L} is generated by $X^c + Y^v$ for $X, Y \in \sum \mathfrak{g}_p$. Let

$$X = \sum \left(a^{i} + \sum a^{i}_{j}x^{j} + \frac{1}{2}\sum a^{i}_{jk}x^{j}x^{k} + \cdots\right) \frac{\partial}{\partial x^{i}}$$

and

$$Y = \sum \left(b^i + \sum b^i_j x^j + \frac{1}{2} \sum b^i_{jk} x^j x^k + \cdots \right) \frac{\partial}{\partial x^i}.$$

Then we have

$$\begin{aligned} X^{c} + Y^{v} &= \sum \left(a^{i} + \sum a^{i}_{j} x^{j} + \frac{1}{2} \sum a^{i}_{jk} x^{j} x^{k} + \cdots \right) \frac{\partial}{\partial x^{i}} \\ &+ \sum \left\{ \left(b^{i} + \sum b^{i}_{j} x^{j} + \frac{1}{2} \sum b^{i}_{jk} x^{j} x^{k} + \cdots \right) \right. \end{aligned}$$

K. OGIUE

$$+\sum (a_j^i+\sum a_{jk}^ix^k+\cdots)\dot{x}^j\Big\}\frac{\partial}{\partial\dot{x}^i}.$$

This implies

PROPOSITION 2.1.: Let $\sum g_p$ and $\sum \tilde{g}_p$ be the associated graded Lie algebras of L and \tilde{L} , respectively. Then we have

$$\begin{split} \widetilde{\mathfrak{g}_{0}} &= \left\{ \left(a_{\beta}^{\alpha}\right) \in \boldsymbol{R}^{2n} \otimes (\boldsymbol{R}^{2n})^{*} \middle| (a_{j}^{i}) = (a_{j+n}^{i+n}) \in \mathfrak{g}_{0}, \ (a_{j+n}^{i+n}) \in \mathfrak{g}_{0}, \ (a_{j+n}^{i}) = 0 \right\}^{1} \\ &= \left\{ \left(\begin{matrix} A & 0 \\ BA \end{matrix} \right) \in \boldsymbol{R}^{2n} \otimes (\boldsymbol{R}^{2n})^{*} \middle| A, B \in \mathfrak{g}_{0} \right\} \\ &\cong \mathfrak{g}_{0} \times \mathfrak{g}_{0} , \\ &\widetilde{\mathfrak{g}_{1}} &= \left\{ (a_{\beta\gamma}^{\alpha}) \in \boldsymbol{R}^{2n} \otimes S^{2}(\boldsymbol{R}^{2n})^{*} \middle| (a_{jk}^{i}) = (a_{j+n,k}^{i+n}) \in \mathfrak{g}_{1}, (a_{jk}^{i+n}) \in \mathfrak{g}_{1}, \\ & all \ other \ components \ are \ zero \right\} \end{split}$$

$$\cong \mathfrak{g}_1 \times \mathfrak{g}_1,$$

$$\widetilde{\mathfrak{g}}_2 = \left\{ (a_{\beta\gamma\delta}^{\alpha}) \in \mathbf{R}^{2n} \otimes S^3(\mathbf{R}^{2n})^* \middle| (a_{jkl}^i) = (a_{j+n,kl}^{i+n}) \in \mathfrak{g}_2, (a_{jkl}^{i+n}) \in \mathfrak{g}_2, \\ all \ other \ components \ are \ zero \right\}$$

$$\cong \mathfrak{g}_2 \times \mathfrak{g}_2,$$

COROLLARY 2.2. If $\sum g_p$ is a graded Lie algebra of order r and of type k, so is $\sum \widetilde{g_p}$.

COROLLARY 2.3. If $\sum g_p$ is a graded Lie algebra of order 1, then $\sum g_p$ is involutive if and only if $\sum \tilde{g}_p$ is involutive.

• • • • • .

¹⁾ $a, \beta, \gamma, \delta = 1, 2, \dots, n, n+1, \dots, 2n.$ $i, j, k, l = 1, 2, \dots, n.$

PROOF. Let e_1, \dots, e_n and $e_1, \dots, e_n, e_{n+1}, \dots, e_{2n}$ be the canonical bases for \mathbb{R}^n and \mathbb{R}^{2n} , respectively. Let

$$d_k = \dim \{t \in \mathfrak{g}_0 | [t, e_1] = \cdots = [t, e_k] = 0\}$$

and

$$\widetilde{d}_{\alpha} = \dim \{t \in \widetilde{\mathfrak{g}}_0 | [t, e_1] = \cdots = [t, e_{\alpha}] = 0\}$$

Since $\widetilde{\mathfrak{g}_0} = \left\{ \begin{pmatrix} A & 0 \\ BA \end{pmatrix} \middle| A, B \in \mathfrak{g}_0 \right\}$, we have

$$\widetilde{d}_k = 2d_k \ (1 \leq k < n)$$

and

$$\widetilde{d}_{\alpha} = 0 \ (n \leq \alpha < 2n).$$

This, together with Proposition 2.1, implies

dim
$$\widetilde{\mathfrak{g}}_1$$
-dim $\widetilde{\mathfrak{g}}_0$ - $\sum_{\alpha=1}^{2n-1} \widetilde{d}_{\alpha}=2\left\{\dim \mathfrak{g}_1-\dim \mathfrak{g}_0-\sum_{k=1}^{n-1} d_k\right\}$.

Hence $\sum \mathfrak{g}_p$ is involutive if and only if $\sum \widetilde{\mathfrak{g}}_p$ is involutive.

3. Prolongations of pseudogroup structures to tangent bundles. Let Γ be a pseudogroup of differentiable transformations of \mathbb{R}^n and let M be a differentiable manifold of dimension n. A Γ -atlas on M is a collection of local diffeomorphisms $\{\lambda_i, U_i\}$ of M into \mathbb{R}^n which satisfies $\bigcup U_i = M$ and $\lambda_i \circ \lambda_j^{-1} \in \Gamma$ for all i and j such that $U_i \cap U_j \neq \phi$. Two Γ -atlases are said to be equivalent if their union is a Γ -atlas. An equivalence class of Γ -atlases is called a Γ -structure on M.

First of all we prove the following

PROPOSITION 3.1. If $\{\lambda_i, U_i\}$ is a Γ -atlas on M, then $\{\overline{\varphi} \circ T\lambda_i, T(U_i)\}$ is a $\widetilde{\Gamma}$ -atlas on T(M).

PROOF. If $\lambda_i : U_i \to \mathbb{R}^n$ and $\varphi \in \Gamma$, then $\overline{\varphi} \circ T \lambda_i : T(U_i) \to T(\mathbb{R}^n)$. Furthermore if $U_i \cap U_j \neq \phi$, then $(\overline{\varphi} \circ T \lambda_i) \circ (\overline{\psi} \circ T \lambda_j)^{-1}$ is a differentiable transformation of $(\overline{\psi} \circ T \lambda_j)(T(U_i \cap U_j))$ into $(\overline{\varphi} \circ T \lambda_i)(T(U_i \cap U_j))$.

Since

Q.E.D.

K. OGIUE

 $(\overline{\varphi} \circ T\lambda_i) \circ (\overline{\psi} \circ T\lambda_j)^{-1} = \overline{\varphi} \circ T\lambda_i \circ (T\lambda_j)^{-1} \circ \overline{\psi}^{-1}$ $= \overline{\varphi} \circ T\lambda_i \circ T\lambda_j^{-1} \circ \overline{\psi}^{-1} = \overline{\varphi} \circ T(\lambda_i \circ \lambda_j^{-1}) \circ \overline{\psi}^{-1}$

and $\lambda_i \circ \lambda_j^{-1} \in \Gamma$, we have

$$(\overline{\varphi} \circ T\lambda_i) \circ (\overline{\psi} \circ T\lambda_j)^{-1} \in \widetilde{\Gamma}.$$

Hence $\{\overline{\varphi} \circ T\lambda_i, T(U_i)\}$ is a $\widetilde{\Gamma}$ -atlas on T(M).

THEOREM 3.2. If M has a Γ -structure, then T(M) has a $\widetilde{\Gamma}$ -structure.

PROOF. Let $\{\lambda_i, U_i\}$ and $\{\lambda'_{\alpha}, U'_{\alpha}\}$ be two Γ -atlases on M. Then $\{\overline{\varphi} \circ T\lambda_i, T(U_i)\}$ and $\{\overline{\varphi'} \circ T\lambda'_{\alpha}, T(U'_{\alpha})\}$ are $\widetilde{\Gamma}$ -atlases on T(M). It suffices to prove that if $\{\lambda_i, U_i\}$ and $\{\lambda'_{\alpha}, U'_{\alpha}\}$ are equivalent, then $\{\overline{\varphi} \circ T\lambda_i, T(U_i)\}$ and $\{\varphi' \circ T\lambda'_{\alpha}, T(U'_{\alpha})\}$ are equivalent. $\{\lambda_i, U_i\}$ and $\{\lambda'_{\alpha}, U'_{\alpha}\}$ are equivalent if and only if $\lambda'_{\alpha} \circ \lambda_i^{-1} \in \Gamma$ for all i and α such that $U_i \cap U'_{\alpha} \neq \phi$.

Suppose $\{\lambda_i, U_i\}$ and $\{\lambda'_{\alpha}, U'_{\alpha}\}$ are equivalent. Then we have

$$(\overline{\psi}' \circ T\lambda_{\alpha}')(\overline{\varphi} \circ T\lambda_{i})^{-1} = \overline{\psi}' \circ T\lambda_{\alpha}' \circ (T\lambda_{i})^{-1} \circ \overline{\varphi}^{-1}$$
$$= \overline{\psi}' \circ T\lambda_{\alpha}' \circ T\lambda_{i}^{-1} \circ \overline{\varphi}^{-1} = \overline{\psi}' \circ T(\lambda_{\alpha}' \circ \lambda_{i}^{-1}) \circ \overline{\varphi}^{-1} \in \widetilde{\Gamma}$$

for all *i* and α such that $U_i \cap U'_{\alpha} \neq \phi$. This implies that $\{\overline{\varphi} \circ T\lambda_i, T(U_i)\}$ and $\{\overline{\varphi'} \circ T\lambda'_{\alpha}, T(U'_{\alpha})\}$ are equivalent. Q.E.D.

4. Prolongations of almost Γ -structures. Following the notations of §2 let $\sum \mathfrak{g}_p$ and $\sum \widetilde{\mathfrak{g}}_p$ be the associated graded Lie algebras of L and \widetilde{L} , respectively. By Corollary 2.2 we can assume that both $\sum \mathfrak{g}_p$ and $\sum \widetilde{\mathfrak{g}}_p$ are of order r.

Let G_0 (resp. \widetilde{G}_0) be the Lie subgroup of $G^1(n)$ (resp. $G^1(2n)$) whose Lie algebra is \mathfrak{g}_0 (resp. $\widetilde{\mathfrak{g}_0}$). Let G_1 (resp. $\widetilde{G_1}$) be the semidirect product of G_0 (resp. \widetilde{G}_0) and the nilpotent Lie group generated by $\mathfrak{g}_1 + \mathfrak{g}_2 + \cdots / \mathfrak{g}_2 + \mathfrak{g}_3 + \cdots$ (resp. $\widetilde{\mathfrak{g}_1} + \widetilde{\mathfrak{g}_2} + \cdots / \widetilde{\mathfrak{g}_2} + \widetilde{\mathfrak{g}_3} + \cdots$). Then G_1 (resp. \widetilde{G}_1) is a Lie subgroup of $G^2(n)$ (resp. $G^2(2n)$). Inductively let G_{r-1} (resp. \widetilde{G}_{r-1}) be the semidirect product of G_{r-2} (resp. \widetilde{G}_{r-2}) and the nilpotent Lie group generated by $\mathfrak{g}_{r-1} + \mathfrak{g}_r + \cdots / \mathfrak{g}_r + \mathfrak{g}_{r+1} + \cdots$ (resp. $\widetilde{\mathfrak{g}_{r-1}} + \widetilde{\mathfrak{g}_r} + \cdots / \widetilde{\mathfrak{g}_r} + \widetilde{\mathfrak{g}_{r+1}} + \cdots$). Then G_{r-1} (resp. \widetilde{G}_{r-1}) is a Lie subgroup of $G^r(n)$ (resp. $G^r(2n)$) whose Lie algebra is $\mathfrak{g}_0 + \mathfrak{g}_1 + \cdots / \mathfrak{g}_r + \mathfrak{g}_{r+1} + \cdots$). It is easily seen that \widetilde{G}_{r-1} is isomorphic with $T(G_{r-1})$. Let $j_n^r : T(G^r(n)) \to G^r(2n)$ be the injective homomorphism so that

88

Q.E.D.

 $\widetilde{G}_{r-1} = j_n^r(T(G_{r-1}))$. For the sake of simplicity we denote G_{r-1} (resp. \widetilde{G}_{r-1}) by G (resp. \widetilde{G}).

Let M be a differentiable manifold of dimension n. Let P be a G-structure on M, that is, a reduction of the structure group $G^{r}(n)$ of $F^{r}(M)$ to the subgroup G.

Let $j_M^r: T(F^r(M)) \to F^r(T(M))$ be the injection determined by $j_n^r: T(G^r(n)) \to G^r(2n)$. Then $j_M^r(T(P))$ is a \widetilde{G} -structure on T(M), that is, a reduction of the structure group $G^r(2n)$ of $F^r(T(M))$ to the subgroup \widetilde{G} . We shall call the \widetilde{G} -structure the prolongation of P and denote it by \widetilde{P} .

A (local) diffeomorphism of M (resp. T(M)) is a (local) *G*-automorphism (resp. \tilde{G} -automorphism) if and only if it leaves the *G*-structure P (resp. \tilde{G} structure \tilde{P}) invariant. A \tilde{G} -automorphism f of a \tilde{G} -structure \tilde{P} is said to be fibre-preserving if f maps a fibre of $T(M) \to M$ into a fibre.

THEOREM 4.1. Let \tilde{P} be the prolongation of P. Then every (local) \tilde{G} -automorphism is fibre-preserving.

PROOF. Let $\pi^r : F^r(M) \to F^1(M)$ and $\widetilde{\pi^r} : F^r(T(M)) \to F^1(T(M))$ be the natural projections. We shall denote by the same letters the natural projections $\pi^r : G^r(n) \to G^1(n)$ and $\widetilde{\pi^r} : G^r(2n) \to G^1(2n)$ so that $\pi^r(G) = G_0$ and $\widetilde{\pi^r}(\widetilde{G}) = \widetilde{G_0}$.

Let $P_0 = \pi^r(P)$ and $\widetilde{P}_0 = \widetilde{\pi^r}(\widetilde{P})$. If f is a G-automorphism (resp. \widetilde{G} -automorphism), then it is necessarily a G_0 -automorphism (resp. \widetilde{G}_0 -automorphism).

Let f be a local diffeomorphism of T(M) and let T(U) and T(V) be open sets of T(M) such that f maps T(U) onto T(V). Let $x \in T(U)$ and $y \in T(V)$ such that f(x)=y. Let $x^1, \dots, x^n, x^{n+1}, \dots, x^{2n}$ with $x^{n+i}=x^i$ (resp. $y^1, \dots, y^n, y^{n+1}, \dots, y^{2n}$ with $y^{n+i}=y^i$) be a local coordinate system at $x \in T(U)$ (resp. $y \in T(V)$). Furthermore we assume that T(U) and T(V) are so small that they admit local cross sections $\sigma: T(U) \to \widetilde{P}_0$ and $\tau: T(V) \to \widetilde{P}_0$, respectively. If f is a (local) \widetilde{G} -automorphism, then it is a (local) \widetilde{G}_0 -automorphism and hence there is a mapping g of T(U) into \widetilde{G}_0 such that

(4.1)
$$\widetilde{f(\sigma(x))} = \tau(f(x)) \cdot g(x),$$

where \widetilde{f} denotes the prolongation of f to $F^{1}(T(M))$. The local cross sections σ and τ are expressed by

$$\sigma(x)=(x;\cdots,\sum \sigma_{\beta}^{\alpha}\left(\frac{\partial}{\partial x_{\alpha}}\right)_{x},\cdots)$$

and

K. OGIUE

$$\tau(y)=(y;\cdots,\sum \tau^{\alpha}_{\beta}\left(\frac{\partial}{\partial y_{\alpha}}\right)_{y},\cdots),$$

where σ_{β}^{α} and τ_{β}^{α} are differentiable functions on T(U) and T(V), respectively. Let $f=(f^{\alpha})$ and $g=(g_{\beta}^{\alpha})$. Then, from (4.1), we have

$$\sum \sigma_{\beta}^{\gamma}(x) \cdot \left(\frac{\partial f^{\alpha}}{\partial x^{\gamma}}\right)_{x} = \sum \tau_{\gamma}^{\alpha}(f(x)) \cdot g_{\beta}^{\gamma}(x).$$

Since (τ_{β}^{α}) is non-singular, we denote by $(\overline{\tau_{\beta}^{\alpha}})$ the inverse matrix of (τ_{β}^{α}) . Then we have

$$\sum \overline{ au_{\gamma}^{lpha}}(f(x)) \cdot \sigma_{eta}^{\lambda}(x) \cdot \left(rac{\partial f^{\gamma}}{\partial x^{\lambda}}
ight)_{x} = g_{eta}^{lpha}(x).$$

Since the matrix $((g^{\alpha}_{\beta}(x))$ belongs to \widetilde{G}_{0} , we have

$$\left(\sum \overline{\tau_{\gamma}^{\alpha}}(f(x)) \cdot \sigma_{\beta}^{\lambda}(x) \cdot \left(\frac{\partial f^{\gamma}}{\partial x^{\lambda}}\right)_{x}\right) \in \widetilde{G}_{0}.$$

Since every element of \widetilde{G}_0 is of the form $\begin{pmatrix} a & 0 \\ * & a \end{pmatrix}$ with $a \in G_0$, we have

(4.2)
$$\sum \overline{\tau_{\gamma}^{i}}(f(x)) \cdot \sigma_{j+n}^{\lambda}(x) \cdot \left(\frac{\partial f^{\gamma}}{\partial x^{\lambda}}\right)_{x} = 0 \quad (i, j=1, 2, \cdots, n).$$

We can take $\sigma: T(U) \to \widetilde{P}_0$ and $\tau: T(V) \to \widetilde{P}_0$ as follows: Let $\phi: U \to P_0$ (resp. $\psi: V \to P_0$) be local cross section and set $\sigma = j_M^1 \circ T \phi$ (resp. $\tau = j_M^1 \circ T \psi$). Then σ (resp. τ) is a local cross section of T(U) (resp. T(V)) into \widetilde{P}_0 and

$$(\boldsymbol{\sigma}_{\boldsymbol{\beta}}^{\boldsymbol{\alpha}}) = \begin{pmatrix} \boldsymbol{\phi}_{j}^{i} & 0\\ \sum \frac{\partial \boldsymbol{\phi}_{j}^{i}}{\partial x^{k}} x^{k+n} & \boldsymbol{\phi}_{j}^{i} \end{pmatrix} \left(\text{resp.} \ (\boldsymbol{\tau}_{\boldsymbol{\beta}}^{\boldsymbol{\alpha}}) = \begin{pmatrix} \boldsymbol{\psi}_{j}^{i} & 0\\ \sum \frac{\partial \boldsymbol{\psi}_{j}^{i}}{\partial y^{k}} y^{k+n} & \boldsymbol{\psi}_{j}^{i} \end{pmatrix} \right)$$

where (ϕ_j^i) (resp. (ψ_j^i)) denotes the non-singular matrix which represents the local cross section ϕ (resp. ψ) ([3]). It is clear that the matrix $(\overline{\tau_{\beta}^{\alpha}})$ is of the form

<u>9</u>0

PRÓLÓNGATIÓNS ÓF PSEUDÓGROUP STRUCTURES

where $(\bar{\psi}_{j}^{i}) = (\psi_{j}^{i})^{-1}$. If we take σ and τ as above, then, from (4.2), we have

$$\sum \overline{\tau_k^i}(f(x)) \cdot \sigma_{j+n}^{l+n}(x) \cdot \left(\frac{\partial f^k}{\partial x^{l+n}}\right)_x = 0.$$

Since $(\overline{\tau_k^i}) = (\overline{\psi_k^i})$ and $(\sigma_{j+n}^{l+n}) = (\phi_j^l)$ are non-singular, we have

$$\left(\frac{\partial f^k}{\partial x^{l+n}}\right)_x = 0.$$

This implies that f is fibre-preserving.

BIBLIOGRAPHY

- S. KOBAYASHI, Canonical forms on frame bundles of higher order contact, Proc. Symposia in Pure Math., III, Differential Geometry. Amer. Math. Soc., (1961), 186-193.
- [2] S. KOBAYASHI AND T. NAGANO, On filtered Lie algebras and geometric structures IV, J, Math. Mech., 15(1966), 163-175.
- [3] A. MORIMOTO, Prolongations of G-structures to tangent bundles, Nagoya Math. J., (1968), 67-108.
- [4] K. OGIUE, G-structures of higher order, Ködai Math. Sem. Rep., 19(1967), 488-497.
- [5] I. M. SINGER AND S. STERNBERG, The infinite groups of Lie and Cartan, J. d'Analyse Math., 15(1965), 1-114.
- [6] K. YANO AND S. KOBAYASHI, Prolongations of tensor fields and connections to tangent bundles I, J. Math. Soc. Japan, 18(1966), 194-210.

DEPARTMENT OF MATHEMATICS TOKYO INSTITUTE OF TECHNOLOGY TOKYO, JAPAN Q.E.D.