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1. Introduction. The maximum dimension of the group of isometries
of an ra-dimensional connected Riemannian manifold is m(m+ l)/2. The
maximum is attained if and only if the Riemannian manifold is of constant
curvature and one of the following spaces (cf. [3], p. 308) :

( i ) an m- dimensional sphere Sm, or a real projective space RPm,
(ii) an m-dimensional Euclidean space Em,
(iii) an ra-dimensional simply connected hyperbolic space Hm.
If M is a 2n-dimensional connected almost Hermitian manifold, then

the maximum dimension of the automorphism group of M is n(n + 2). The
maximum is attained if and only if M is a homogeneous Kaehlerian
manifold with constant holomorphic sectional curvature k and one of the
following spaces (cf. [17]):

( i ) a complex projective space CPn with a Fubini-Study metric (k > 0),
(ii) a unitary space CEn (k = 0),
(iii) an open ball CDn with a homogeneous Kaehlerian structure of

negative constant holomorphic sectional curvature (k < 0).
In this paper we consider the similar problem in almost contact Riemannian

manifolds. To state the main theorem we prepare the followings. We denote
by (φ, ξy η, g) structure tensors of an almost contact Riemannian manifold N.
An odd dimensional sphere S2n+1 (in E2n+2) has the standard Sasakian structure
(cf. [11]). An odd dimensional Euclidean space E2n+1 has also the standard
Sasakian structure ([8], [9]). By T or L we denote a circle or a line. By
(L, CD71) we denote a line bundle over a CD71 (which is a product bundle).
The space (L, CDn) has a Sasakian structure (§8). In these three spaces ξ is
an infinitesimal automorphism of the structure and generates a 1-parameter
group exptξ (—oo<£<oo) of automorphisms. Definitions of an 8-deformation
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and a Z>homothetic deformation are given by (4. 6)—(4. 7) and (7.1)—(7. 2).

THEOREM. Let N be a connected almost contact Riemannian manifold
of (2w + l)-dimension. Then the maximum dimension of the automorphism
group is (n + ϊ)2. The maximum is attained if and only if the sectional
curvature for 2-planes which contain ξ is a constant C and N is one of
the following spaces:

( i ) C > 0: a homogeneous Sasakian manifold {or its £-deformation)
with constant φ-holomorphic sectional curvature H and
(i-1) H> — 3 : a space which is D-homothetically deformable to

a unit sphere S2n+1 or its factor space S2n+1/F(t) where F(t)
denotes a finite group generated by exp tξ (2π:/t being an
integer),

(i-2) H= - 3 : a (Euclidean) space E2n+1 or its factor space
E2n+1/F(t) where F(t) is a cyclic group generated by exptξ
(t being a real number),

(i-3) H < - 3 : a space (L, CD71) or its factor space (L, CDn)/F(t)
where F(i) is a cyclic group generated by exp if (t being
a real number),

(ii) C = 0: six global Riemannian products :

T x CP1, T x CEn , T x CDn ,

L x CPn, L x CEn , L x CDn ,

(iii) C < 0 : a product space L X ctCEn whose metric is given by

gct,x> = (dt)\o + e2ctGM (cf. Lemma 4.6).

As a corollary we have

COROLLARY. Let N be a compact, connected and simply connected
almost contact Riemannian manifold. If the maximum dimension of the
automorphism group is attained, then N is a sphere with a Sasakian
structure or its deformation.

2. Preliminaries. An almost complex manifold M is denned by a
structure tensor J of type (1,1), satisfying JJX = - X for any vector field X
on M. M is almost Hermitian if, moreover, it has a Riemannian metric G
such that G(JX,JY) = G(X,Y) for any vector fields X and Y. Then we
have a 2-form W called the fundamental 2-form, which is defined by
W(X, Y) = G(X, JY). When the exterior derivative dW of W vanishes, M
is called an almost Kaehlerian manifold. If we have DJ=Q for the Riemannian
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connection D denned by G, then M i s a Kaehlerian manifold.

On the other hand, an almost contact structure on N is defined by three

tensor fields : a (1, l)-tensor φ, a vector field ξ and a 1-form η. They

satisfy (cf. [9], [10], [11])

(2.1) φξ

(2.2)

for any vector field X on N. An almost contact structure is said normal
if the torsion tensor Nb

a

c (see (3.7)) vanishes. If N has an associated Riemannian
metric g such that

(2.3)

(2.4) g{φX, φY) = g(X, Y) - η{X) η{Y)

for any vector fields X and Y on Λζ then N is called an almost contact

Riemannian manifold. Further, if dη(X, Y) — 2g(X, φY) is satisfied, then N

is called a contact Riemannian manifold. When ξ is a Killing vector field,

a contact Riemannian manifold is called a K-contact Riemannian manifold, and

then ξ is an infinitesimal automorphism. Further if the structure is normal,

then a contact Riemannian manifold N is called a Sasakian mainfold ([8], [11],

etc.). A Sasakian manifold is always a X-contact Riemannian mainfold.

By A(M) or A(N) we denote the automorphism group of M or N. By

V we denote Riemannian connection defined by g.

3. The maximum dimension of the automorphism group of N. Let

N be a (2n + l)-dimensional almost contact Riemannian manifold. Then the

necessary and sufficient conditions for X to be an infinitesimal automorphism

are

(3.1) (Lxg)bc - gcs\7bX
s + gbsS7cX

s = 0 ,

(3. 2) {Lxξ)a = Xs V s ξa - r V s Xa = 0 ,

(3. 3) (Lxη)b - X s V5 ^δ + *?sVδX
s = 0 ,

(3.4) (L^)? = X5VsΦΪ - ΦίVs X
a + φΐVb Xs = 0,

where a,b,c,s run from 1 to 2w + l. In the sequel, indices ij,k,r run from

1 to 2/2. We take a φ-basis (^ , , en, ex* = φeγ, , en* = φen9 e± = ξ) at a

point P and its dual basis. Then any infinitesimal automorphism X vanishing

at P satisfies VΔXα = 0 and V*XΔ = 0 by (3. 2) and (3. 3). Non-vanishing
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components are VjX\ and the set of all these is contained in the Lie algebra

of the unitary group U(ri) by (3.1) and (3.4). Therefore it is at most

?z2-dimensional. While the set of X non-vanishing at P is at most (2n + l)

dimensional. Thus we have (cf. [17])

LEMMA 3.1. Let N be a (2n + ΐ)-dimensional almost contact Riemannian

manifold. Then we have dim A(N) ^ (τz + 1)2.

Now we show the following

LEMMA 3.2. Let N be a (2n + l)-dimensional almost contact Riemannian

manifold which admits the automorphism group A(N) of the maximum

dimension (n-\-Vf. Assume that a tensor field (Kab'"cd...) of type (J>,q) is

invariant by any infinitesimal automorphism. Then with respect to a

φ-basis at P we have

(i) Kίj'~kl... = 0 if p + q is odd,

(ii) / / K is of type (1,1) (or (0,2)), then

K* = Cxδj 4-C2φj (or Kt^Ctfv + Ctφi,),

where Cλ and C2 are real numbers.

PROOF. If we consider the linear isotropy group of A(N) at a point P

with respect to a φ-basis, then it is U(n) x 1 since A(N) is of the maximum

dimension. So it contains a 1-parameter group eιtlxl and, in particular,

( —/) X 1 which is a map:

(3.5) Y —-> (-Y + η(Y)ξ) + η{Y)ξ ,

(3. 6) W > (-ZV + W{ξ) η) + W(ξ) η ,

where Y is a tangent vector at P and w is a tangent covector. Therefore we

have (i). On the other hand, (ii) may be known.

In an almost contact manifold N we have four torson tensors (which do
not depend on the metric, but we write them using Riemannian connection of
the associated metric):

(3.7) Nl =

(3- 8) Nbc = φ°c(V6ηs - V.ηt) -

(3.9) NS = rVsφt + φίV
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(3.10) iNΓ6

T h e r e are relations among t h e m (cf. [10]). T h e followings are required in
t h e sequel.

(3-11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

Nt.ξ +

vM -

JV?

φϊNl 4

ΦΐNl + ξ

W.φl + 1

V = N.?

• Nΐφl + ξ

cφi-Ntη,

VtVc

= 0

= 0 ,

= 0 ,

= 0 ,

LEMMA 3.3. If φ (or X) is an (infinitesimal) automorphism of an
almost contact (Riemannian) manifold, then Nbc, Nbc, N" and Nb are
invariant by φ (or X).

This is clear by (3. 7)—(3.10).

LEMMA 3.4. If an almost contact Riemannian manifold N admits the
automorphism group of the maximum dimension (n-\-l)2, then N is normal
and homogeneous.

PROOF. By Lemma 3.2 (i) we get N)k = 0 and N5 = 0. By (3.14) we
have NA = 0 and hence Nb = 0. Then by (3.13), (3.14) and (3.15) we have
AΓ£ = Nl = 0 and φΐNs

b + Nΐφl = 0. Since NS is invariant by A(N), N) is
written as iVj = <Γiδ* + c^φ\ by Lemma 3.2 (ii). Thus we get 0 = φίNj
+ Nirφr

j = 2φi

rNj. Since φ\ is non-singular we have Nr

ό = 0, and hence
Nt = 0.

Similarly by (3.16) we get Nbc = 0.
Now Nil = 0 follows from (3.11). N?c = 0 follows from (3.12). Therefore

we have Nbc = 0.

4. Classification. We assume that spaces are connected.

LEMMA 4.1. Let N be an almost contact Riemannian manifold which
admits the automorphism group of the maximum dimension. Then the
sectional curvature for 2-planes which contain ξ is equal to a constant Cx.
More precisely we have



26 S. TANNO

(4.1) Rίcdξ
d = C^agbc - ClVb$i.

PROOF. Since the tensor field ηaRicdξd is invariant by A(N), by Lemma

3.2 (ii), we have

(4.2) R£* = Cιgjk + CtφJk

with respect to a φ-basis at P. As is well known, RfkA is symmetric with

respect to j and k. Thus R>k± = Cιgjk at P. Since R^ = i?£Δ = 0, we have

(4.3) ^α&r^C^-Mc),

where CΊ may be a function on N. However, easily we see that CΊ is constant

on Λr. We consider the tensor field

(4.4) RW-C^gbc + CiVb%.

If all indices <z, b, c differ from Δ, then by Lemma 3.2 (i) (4. 4) is vanishing.

If α = Δ , then (4.4) vanishes by (4.3). After putting &=Δ, or c = A, we see

that (4. 4) vanishes.

LEMMA 4.2. Let N be an almost contact Riemannian manifold which

admits the automorphism group of the maximum dimension. Then

(4.5)

holds for some constant C3 and C4.

PROOF. The tensor \/bηc is invariant by A(N) and hence \7}ηk is, by

Lemma 3.2 (ii), of the form

VjVk — C3gjk + CAφjk

at P for some real numbers C3 and C4. By Nb = 0, \/b(vsξ
s) = 0 and V δ P

= Vδ*?Δ we have Vδ??Δ = V Δ % = 0. Then (4.5) follows. Easily we see that

C3 and C4 are constant.

LEMMA 4.3. In Lemma 4.2 z/ C4 ^ non-zero, then C3 zs ĝwαZ ίo z^ro

ξ is an infinitesimal automorphism.

PROOF. By (4.5) we have (dη)bc = 2C±φbc. On the other hand, we have

= 0 and Lξη = 0 by (3. 9) and (3.10). Therefore we have Lξdη = dLξη = 0
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and (Lξφ)bc = O. Next taking Lie derivative of φbc = gbsφ
s

c and using (Lξφ)s

c = 0
we have

0 = (Lξg)bsφ*c = 2Clgbs - ηbVs)φt.

That is, we get 2C3gbsφ
s

c = 0, which implies C 3 =0.

LEMMA 4.4. Le£ JV be an almost contact Riemannian manifold where
dη is not trivial (C4 ^ 0). If N admits the automorphism group of the
maximum dimension, then it is essentially a homogeneous Sasakian
manifold.

PROOF. By Lemma 4.3 we have \7bηc = C4φδc. We define an almost
contact structure (?φ,*ξ,*η,*g) by

(4.6) *φϊ = Sφϊ, *ξa = ξa, *ηb = m,

(4. 7) *gbe = SCigbc + (1-£C 4 ) ηbVe,

where 8 is the sign of C4. Then we have (d*η) = 2*φbc, that is, the deformed
structure is a Sasakian structure. Q.E.D.

Assume that dη = 0 at some point. Then it holds globally on N and we
have

(4. 8) Vft ηc = C3(gbc - ηb ηc) .

There are two cases: C3 = 0 (Lemma 4.5) and C 3 ^ 0 (Lemma 4.6).

LEMMA 4.5. Let N be an almost contact Riemannian manifold such
that ξ is a parallel field. N admits the automorphism group of the
maximum dimension if and only if N is a Riemannian product of one of
the three spaces CPn, CEn, CD71, and a real line or circle.

PROOF. Let P be an arbitrary point of N. Then we define the
distribution by η — 0 and we have the 2n-dimensional maximal integral
submanifold M{P) through P. M(P) is an almost Hermitain manifold by
restriction of φ and g to M{P). Since any automorphism φ of M leaves all
structure tensors invariant, it is distribution-preserving and <pM(P) = M(Q)
where φP~Q. Since ξ generates a 1-parameter group of automorphism exptξ,
we have exp tξ Qz M(P) for some t. Therefore exp tξ φ is an automorphism
of M{P). Thereby the automorphism groups A(M(JP)) and A(N) differ only
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one dimension, which is caused by ξ. Hence A(M(P)) is n(n + 2)-dimensional,
and M(P) is one of the three spaces : CPn, CEn, and CD71 ([17]). Since N
is homogeneous each trajectory of ξ is homeomorphic to a real line L or a
circle T. We show that each trajectory intersects M(P) at only one point.
Assume that exp t'ξ-P = Q <Ξ M(F) for some ί' ^ 0. Let Y* be an
infinitesimal automorphism on M{F) such that Yf Φ 0. Since a small
neighborhood U of P is a Riemannian product, Y=(Y*, 0) defines an infinitesi-
mal automorphism on U. By Lrξ = 0 we have exptξ Y=Y (for any small
t) on [/. In order that dim A(N) = (n +1)2 holds Y must be globally defined
on N so that the restriction of Y to M(P) is Y*. By this argument we
must have YQ Φ 0. On the other hand, for any points P and Q in any one
of the spaces CP71, CEn, CDn, we have some infinitesimal automorphism Y*
such that Yf Φ 0 and Yf = 0 (otherwise every geodesic starting at P goes to
Q with the same length). Therefore N is globally a Riemannian product.
The converse is clear. Q.E.D.

Now we come to the final case: C3 Φ 0 and C4 = 0. By the Ricci
identity, (4. 8) and (4.1), we have

— QiffbdVc — gbcVd) = -VaRbcd= -Cx(gbcηd — ηcgbd).

Thus Cλ = — Cl < 0. This implies that the sectional curvature for 2-planes
which contain ξ is negative. We define the distribution by η = 0, which is
also completely integrable by dη = 0. Let M{P) be the maximal integral
submanifold through P. By restriction of φ and g, M(P) is an almost
Hermitian manifold. Let X be an infinitesimal automorphism of N and denote
by exp tX the 1-parameter group of automorphisms. Since A(N) is transitive,
we can assume that we have X which is not tangent at P (then X is not
tangent at any point) to M(P). For small £, if we put expίX P = Q(t),
then expίX is an isomorphism of M(P) to M(Q(t)), since the equation η = 0
and the structure tensors are invariant by expίX. Now let s(t) be a function
of t such that exp s(t)ξ Q(t) = P. Then exp s(t)ξ o exp tX is a transformation
of M(P). Since (Lξg)bc = 2C3(gbc — ηbηc), if ί-7̂  0, exp5(£)£ is a non-isometric
homothety with respect to the distribution η = 0. Thus exp s(£)£ o exp tX is
a 1-parameter group of non-isometric homotheties of M(P). Let X be a
vector field on M(P) defined by this 1-parameter group: LΣ,G — C5G, where
C5 is a non-zero constant and G is the restriction of g to M(P). Let Y be
another infinitesimal automorphism of N which is not tangent to M(P). Then
by the same argument we have Y' such that LY>G — C6G on M(P). Put
Y* = Y'-(C 6 /C 5 )X. Then Y* is an infinitesimal isometry on M(P). On the
other hand exp s(t)ξ o exp ίX leaves φ and 77 invariant for each t. Hence Y*
is an infinitesimal automorphism of M(P). This means that any infinitesimal
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automorphism Y induces an infinitesimal automorphism Y* on M(P). So we
can consider that only X is essential among infinitesimal automorphisms which
are not tangent to M(P). Therefore A(M(P)) is ?z(?z + 2)-dimensional, and
M(P) is a homogeneous Kaehlerian manifold. Since M(P) admits an
infinitesimal non-isometric homothety, M(P) is flat and it is the unitary space.
On the other hand, exp tξ are homotheties with respect to the distribution
77 = 0, whose proportional factor is monotonically increasing as t, and hence its
trajectory is homeomorphic to a real line. Therefore we have

LEMMA 4.6. Let J\Γ be an almost contact Riemannian manifold such
that ξ is not parallel and dη is trivial. Then the maximum dimension
of the automorphism group is attained if and only if N is of the form
L x ctM where L is a real line and M = CEn is the unitary space with
(J,G) and the metrics are related by

(4.9) <7«,*) = (^) 2<o + e 2 c ί G ( x )

for some constant c.

PROOF. We prove the converse. Let N= LxctM. In this product we
see that ξ is defined by (d/dt) and φ is defined by translation of J in M by
exp tξ. Take a point P in M. Then we have a 1-parameter group of
homotheties φs such that (<p's)*G=e~2cs G and they leave invariant J and the
point P. Such φs exist, because M is the unitary space. We identify M with
(0) x M and consider J and φ\ on both M and (0) X M. By definition we have

φα, x ) = exp tξ-Jx exp(-t)ξ ,

where expί£ itself denotes the differential of exp tξ. Thus exp sξ φ = φ exp sξ
holds good. Since exτptξ ξ = ξ we have also (exp sξ)*η = η, where η = (dt).

Let Z' be an infinitesimal automorphism on M. Then by Z ( ί > x ) = expί£ Z^
we define a vector field Z on N. Since

exps£ Z α > x ) = exp sξ exp tξ Zx = Z α + S , x ) ,

we have Lzξ = [Z,ξ] = —LξZ=0. Thus exp5^ and expίZ are commutative.
Let Y be a vector field on iVsuch that η(Y) = 0. Then we get τ?(exp tZ Y) = 0.
Therefore to prove exp tZ φ = φ exp tZ, it suffices to show for Y such that

V(Y) = 0.

exp sZ φ( ί tX) Y = exp sZ exp tξ J x exp( — t)ξ Y

= exp tξ exp sZ' Jx exp(—t)ξ Y
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= exp tξ Jw exp sZ exp(—t)ξ Y (w = exp sΣ x)

Since ((exp sZ)*g){ξ, ξ) = 1 and ((exp sZ)*g)Q-, Y) = 0 (if ?(Y) = 0) are clear, we
calculate the following for 7, V such that ??(Y) = V(V) = 0

((exp sZ)*#)α>x)(Y, V) = #α>W7)(exp sZ Y, exp sZ -7) (w = exp sZ x)

= ^2c ί GM(exp(-ί)f exp sZ Y, exp(- ί) | : exp sZ y )

= e*ct Gw(expsZ' exp(-ί) | : Y, exp^Z' exp(-ί)f V)

= e*ctGx(exp(-t)ξ Y, exp(-ί)£ V)

Therefore exp5Z is an isometry for each 5, and hence Z is an infinitesimal
automorphism on N. The set of all such vector fields is τz(/z + 2)-demensional.

Next define transformations φs: JV—> N by (£,#) -> (t + s, φsx). Then (̂ ?s)
is a 1-parameter group of transformations. Clearly <ps and expί^ are
commutative. So φs leaves ξ invariant. We also have η(φsY) = 0 for any Y
such that η(Y) = 0. To show φsφ = ψ^5, it suffices to show the following for
Y such that η(Y) = 0.

<ps φ(ttX) Y = <ps exp tξ-Jx- exp(-t)ξ Y

= exp tξ -<ps- Jx exp(-ί)^ Y

= exp ££ (exp sξ ^ ) Jx exp(—ί)f Y

= exp s£ exp tξ JM φs exp( — ί)f Y (M = ^ ^ )

= exp 5 | exp tξ - Ju- (exp(—ί)f exp if) ^ exp( —ί)f Y

= exp 5^ φ(ίfM) exp tξ φ's exp( — t)ξ Y

= φ(ί+5>M) exp 5f exp tξ ?vexp(-ί)f Y

= Φa+S,u) φ s ' Y -

Finally we prove that φs is an isometry. Since (φfg)(ξ,ξ) = l and (<pfg)(ξ,Y)
= 0 (if η(Y) = 0) are clear, we show the following for Y, V such that
η(Y) = ,(10 = 0.

(Y, V) = ga+,,u)(φ,Y, <p,V) (u =
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Gu(exp(-t-s)ξ -φ, Y, exp(-ί-5)f φt>V)

= eΐM+»Gu(exp(-s)ξ Ψs exp(-ί)£ . Y, exp(-s)f <pa exp(-ί)£ V)

= β"«+ 'G,(^; exp(-ί)£ Y, # exp(-ί)£ . V)

= e""Gs(exp(-ί)f y, exp(-ί)^ V)

Therefore (φs) define an infinitesimal automorphism X which is not tangent
to M, and we have dim

LEMMA 4.7. Now we give the relation between the sectional curvature
for 2-planes which contain ξ and the constants C3, C4.

( i ) C3 = 0, C4 =* 0 «—» d = Cϊ > 0 .

(ii) C8 = 0, C4 = 0 « - » C 1 = 0.

(iii) C3 Φ 0, C4 = 0 4=4 d = - Q < 0 .

PROOF. For ( = 4 ) part, (ii) is clear, and (iii) was proved already. We
give a proof of (i) here. By VbVc — dφδ« ^ is a Killing vector field, and
so we have

We transvect the last equation with ηa and use (4.1). Then we get

- C\(gbc - ηb ηc) + dteδc - Vb Vc) = 0 .

Thus d — Q > 0 Since (i)—(iii) expire all cases, the converse ( 4 = ) is also
true.

5. Regular If-contact Riemannian manifolds. Let π : N-> M =
be the fibering of a regular i£-contact Riemannian manifold N given by
W. M. Boothby and H. C. Wang [1]. Then M is an almost Kaehlerian
manifold with structure tensors J and G such that

(5.1) g = τr*G + η ® η ,

(5.2) (JX)* = φX*,

where X* is the horizontal lift with respect to η. And the fundamental



32 S. TANNO

2-form W satisfies (cf. [2])

(5. 3) 2τt*W = dη .

LEMMA 5.1. In the fibering it: JV'—> M of a regular simply connected
K-contact Riemannian manifold N, if X is an infinitesimal automorphism
on M, then zve have some function f on N so that X* — fξ is an
infinitesimal automorphism of the K-contact Riemannian structure and f
is unique up to an additive constant.

PROOF. In the formula

(5.4) dW(X,Y,Z) = X W(Y,Z) + Y -W(Z,X) + Z-W(X,Y)

-W([X, Y], Z) - W([Z, XIY) - W([Y, Z], X)

we have dW — 0, where Y and Z are arbitrary vector fields on M. Let
X*, Y*, Z* be the horizontal lifts of X, Y, Z with respect to ηy and consider
the 1-form iχ*dη. We notice that [ξy Y*] = 0 and

(5. 5) [7* Z*] = [Y, Z}* + fβY*, Z*]) ξ

hold. We show that ix*dη is a closed form.

d(ij*dη)(Y*, Z*) = Y* dη(X*9 Z*) ~ Z* dη(X*, Y*) - dη(X*, [Y*9 Z*])

= 2[Y W(X,Z) π-Z W(X,Y) n - W(X, \Y,Z]) TΓ] ,

which is seen to vanish by (5.4), since X is an infinitesimal automorphism of
the almost Kaehlerian structure on M. Next easily we have

(5.6) d(ix.dη)(Y*,ξ) = 0.

Thus ix*dη is closed, and locally it is a derived form. Since M is simply
connected, we have some function f on N such that iχ*dη = dfi Now we
prove that X*—fξ is a Killing vector field with respect to g.

) *) - g(ίX*-fξ,Y*},Z*)

- g(Y*,[X* - fξ,Z*])

,Z) τc- G([X,Y],Z) Λ- G(Y,[X,Z]) n,

which vanishes, because X is a Killing vector field with respect to G on M.
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Easily we have

ξ) = -η([X*, Y ]) - Y*f= 0,

Thus L{x.-fξ)g=0. On the other hand, we have

= ί^dη — df = 0 .

Therefore X*—fξ is an infinitesimal automorphism on N. Let /* and f be
such two functions. Then the difference /—f is constant. Q.E.D.

Conversely, let φ be an automorphism of the X-contact Riemannian
structure on N. Since φ leaves ξ invariant, we have some transformation Φ
on M such that nφ = Φπ. We show that Φ is an automorphism of the
(</, G)-structure. Since φ*η = η and φ*g = g, we have φ*(7t*G) = π*G. For
any point P of N and for lifts Y* and Z* of Y and Z, we have

(Φ*G)πP(Y, Z) = G^TtφY*, nφZ*) = GπP(Y, Z).

That is Φ*G=G. Next by (5.2) and other relations, we have

(J(ΦY))?P = φ*.(*φY*)* = ΨI{JY)* .

Operating π we have JΦ = ΦJ. Thus

LEMMA 5.2. If π: JV—> M is the fibering of a regular K-contact
Riemannian manifold N, then φ of A(N) induces Φ of A(M). If u is an
infinitesimal automorphism on N, then u is project able and πu = X is an
infinitesimal automorphism on M. Thus dim A(N) ^ dim A(M) + 1 .

6. The relation of A(N) and A(N/ξ) of the fibering of Jϊ-contact
Riemannian manifolds. Take an arbitrary point and a neighborhood U of
the point such that U is a simply connected regular X-contact Riemannian
manifold. On U we consider the Lie algebra a(U) of all infinitesimal
automorphisms of the structure. Let π: U —> V be the fibering of U. Then
for any u € a(U), we have an infinitesimal automorphism X= πu on V. Then
by Lemma 5.1 we have

(6.1) dim a(U) = dim a(V) + 1,

where a(V) is the Lie algebra of all infinitesimal automorphism on V and the
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difference 1 is caused by ξ. Of course we have dim A(N) fg dim a(N)

g dim a(U).

LEMMA 6.1. Let N be a K-contact Riemannian manifold. And assume

that N satisfies one of the following conditions :

( i ) N is simply connected, regular and complete,

(ii) N is simply connected and homogeneous,

(iii) N is regular, compact and has vanishing first Betti number,

(iv) N is homogeneous, compact and has vanishing first Betti number,

(v) dimA(Λr) = (n + ΐ)2.

Then we have

(6.2) dim A(N) = dim A(N/ξ) + 1.

PROOF. First we note that any homogeneous contact manifold is regular

([!])• We need to prove only when N satisfies (iii). Since N is orientable

and compact, a closed form ix*dη on N must be a derived form on N, for

the first Betti number vanishes. Thus we have dim a(N) = dim a(N/ξ) + 1.

By completeness of N and N/ξ, we have (6. 2). For (v) see Lemma 5.2 and

notice dim A(N/ξ) ^ n(n + 2).

COROLLARY 6.2. In Lemma 6.1, if N has property (ii) or (iv), then

N/ξ is homogeneous. If N has property (i) or (iii), then N is homogeneous

if and only if N/ξ is homogeneous.

The unit (2n +1)-dimensional sphere S2n+1 is one of the standard Sasakian

manifolds ([11]). S2n+1 is the circle bundle over the complex n-dimensional

projective space CP11. CPn is one of the standard examples of irreducible

Hermitian symmectric spaces.

PROPOSITION 6.3. dim A(S2n+1) = (rc-t-1)2.

7. Z)-homothety class of an almost contact Riemannian manifold.
Let a be a positive number and define φ*, £*, ή* and g* by

(7.1) φ* = φ, ξ* = (l/a)ξ9 η* = aη,

(7.2) g* = ag + {a2-a) η ® η.

Then (φ*, ξ*9 η*, g*, a) is also an almost contact Riemannian structure on N.

We call this defQrmation a Z)-homothety. By a £)-homothety a X-contact



THE AUTOMORPHISM GROUPS 35

Riemaiuiian structure is deformed to another X-contact Riemannian structure,
and a Sasakian structure is deformed also to a Sasakian structure ([16]).

LEMMA 7.1. Let N be an almost contact Riemannian manifold with
(Φ> ξ> V> d) Then the automorphism groups A(N) and A*(N) with respect to
(Φ> ξ, V> 9) and (Φ*> ξ*> V*> 9*> <*) coincide.

PROOF. This follows from (7.1) and (7. 2).

REMARK 7.2. By the Lemma we see that if N is homogeneous, then
every D-homothetically deformed structure is also homogeneous. Thus S2n+1

gives an example of a homogeneous contact Riemannian (Sasakian) manifold
whose curvatures take negative and positive values (cf. [4], [16]).

A Sasakian manifold N has constant φ-holomorphic sectional curvature
H(P) at P if every φ-holomorphic section at P, that is, 2-plane determined
by YP such that η(Y) = 0 and φYP, has a common sectional curvature H(P).
If H is constant on Λζ then N is said to have constant φ-holomorphic sectional
curvature H. If 2n -+• 1 §: 5, then H is always constant on N. The necessary
and sufficient condition for a Sasakian manifold Λr to have constant
φ-holomorphic sectional curvature H is (cf. [6]).

(7. 3) ARabcd = (H+3)(gdagcb - gdbgca)

+ (H— l)(ηbηdgac + VcVagbd — VdVagbc — VbVcgda + Φdbφac — φdaφbc + Zφdcφab) -

It is known that, if H is constant > — 3, we have a positive constant cί
so that N is of constant curvature 1 with respect to the deformed structure
(φ*, P , η*9 g*) (cf [16]).

Next let π:N-^>N/ξ be the fibering of a regular Sasakian manifold with
constant φ-holomorphic sectional curvature H. Then N/ξ is a Kaehlerian
manifold with constant holomorphic sectional curvature k = H+3 (cf. [7]).

8. Proof of the main theorem. Assume that the maximum dimension
of the automorphism group is attained in N. Then by Lemma 4.1 the
sectional curvature for 2-planes which contain ξ is equal to a constant C=CX.
All possible cases are (i), (ii) and (iii) of Lemma 4.7.

( i ) Suppose that C > 0 holds. Then by Lemma 4.4 N can be considered
as a homogeneous Sasakian manifold after some deformation by (4. 6) —(4. 7).
N has constant φ-holomorphic sectional curvature H, as is seen from the
argument in proof of Lemma 3.2. Since N is regular it is a circle or line
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bundle over N/ξ. By Lemma 5.2 we have dim A(N/ξ) §r n(n + 2) and hence
N/ξ is one of the three spaces : CPn, CEn and CD71 according to H> - 3 ,
H= -3 and i / < - 3 .

(i-1) When H> — 3, iV is D-homothetically deformable to a space JV*
of constant curvature 1. Therefore N or N* is a circle bundle over CP n .
N* is 5 2 w + 1 or a factor space S27l+1/F(tι) where F(ίx) is a finite group generated
by expί^. Conversely, S2n+1/F(tι) admits the automorphism group of the
maximum dimension. In fact, any infinitesimal automorphism on S2n+1 is
either proportional to ξ or of the form X*—fξ (for notations see Lemma 5.1)
and it is invariant by expί£. So X*—fξ can be considered as an infinitesimal
automorphism on S2n+1/F(tι).

(i-2) When H=-3 N is a T- or an L-bundle over CEn. An L-bundle
is a universal covering manifold of a T-bundle, and an L-bundle is considered
as a (Euclidean) space E2n+1 with a suitable coordinates. The metric g and
other tensors are given in terms of coordinates (cf. [8], [9]). Therefore JV is
E2n+1 or its factor space by F(t), where F(t) is a cyclic group generated by
exp tξ for a real number t. Conversely, by Lemma 6.1 E2n+1 admits the
group of automorphisms of the maximum dimension (cf. [5]), and so does
E2n+1/F(t) by the same argument as in (i-1).

(i-3) When H< - 3 N is a T- or an L-bundle over CD71. We consider
the converse. Since the fundamental 2-form W (on CD71) is closed, it is locally
exact. However, since CD71 is an opsn ball W is globally an exact form, i.e.,
we have a 1-form w on CD71 such that W=dw. Let π: (L,CDn)->CDn be
an L-product bundle over CD71. Then η =2 π*w + dt is an invariant 1-form on
(L, CD71) which defines an infinitesimal connection. It defines a contact structure
on (L, CD71) which turns to a Sasakian structure by a suitable metric. Similarly
to (i-1) or (i-2), (L, CD71) or its factor space admits the automorphism group
of the maximum dimension.

(ii) For the case C = CΊ = 0, see Lemmas 4.5 and 4.7.
(iii) For the case C = CΊ < 0, see Lemmas 4.6 and 4.7.

REMARK 8.1. The scalar curvature S* in N and the scalar curvature S
in M = N/ξ are in the relation S* = S—2n ([15]). So we have

COROLLARY 8.2. Let N be a simply connected contact Riemannian
manifold which admits the automorphism group of the maximum dimension
(n +1)2 and has one of the following properties :

( i ) N is compact,
(ii) the scalar curvature S* > — 2ny

(iii) the φ-holomorphic sectional curvature > — 3.
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Then N is globally D-homothetic with the unit sphere.

REMARK 8.3. Roughly speaking, the maximum dimension of the
automorphism group of a Sasakian manifold may be half of the dimension of
the isometry group. The following fact may have some interest: Let N be
a contact Riemannian manifold which is a symmetric space with respect to g.
Then at any point P, the geodesic symmetry σP is not an automorphism, since
<rpξp = —ξp>

9. φ-preserving transformations on contact Riemannian manifolds.
We consider the group φ(N) of all φ-preserving transformations of a contact
Riemannian manifold N. It is known that ([12]).

(9.1) dim φ(N) ^ dim A(N) + 1.

If a contact Riemannian manifold is compact, we have

(9.2)

These give the difference between M and N. Namely, in a compact contact
Riemannian manifold N we have

(9. 3) I(N) D φ(N),

where /(AT) denotes the group of all isometries of N. While in a compact
almost Kaehlerian manifold we have

(9.4) Lie algebra of I(M) c Lie algebra of J(M),

where J(M) denotes the group of all /-preserving transformations of M.

THEOREM 9.1. Let N be a (2n + l)-dimensional contact Riemannian
manifold. Then we have dim φ(N)^ (n + Xf + 1.

(i) If the maximum is attained in a contact Riemannian manifold,
then N is homeomorphic with the Euclidean space.

(ii) If N is compact, then dim φ(N) :g (n + 1)2. And if the maximum
is attained in a compact and simply connected contact Riemannian manifold,
then N is globally D-homothetic to the unit sphere.

PROOF. The first follows from (9.1). (i) follows from [13] or [14], since
N with dimφ(iV) = (n + lf + 1 (dim A(N) = (n + 1)2) is homogeneous and
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Sasakian. (ii) follows from (9. 2) and Corollary 8.2. Q.E.D.

We have considered φ(N) only for a contact Riemannian manifold N. If
N is an almost contact manifold, then φ(N) is quite different from one we
have treated in this section and it is too large. In order to get results
analogous to J(M) for an almost complex manifold M (cf. [17]), it is natural
to consider the automorphism group of an almost contact structure, that is,
the set of all transformations which leave φ, ξ and η invariant.
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