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WIRTINGER TYPE INEQUALITIES AND ELLIPTIC

DIFFERENTIAL INEQUALITIES

PUI-KEI WONG*

(Received on November 7, 1970)

Riccati transformations are frequently encountered in the study of oscillatory
behavior of ordinary differential equations. The purpose of this note is to extend
such transformations to linear elliptic differential equations and inequalities and
to generate certain integral relations and identities. Such a connection between
a Riccati equation and the two-dimensional elliptic equation

uxx + uyy + ρ(x,y)u = 0

was first observed by Beesack [2]. In this paper we show how his method can
be modified and extended. In addition to generating inequalities of the Wirtinger
type, the integral relations obtained are also useful in establishing comparison
and oscillation theorems for elliptic equations. This approach provides yet another
connection between some of the methods used in ordinary differential equations
and those employed by a number of authors [3,5-8, 11-14] in the study of
Sturmian theorems for elliptic differential equations and systems.

A variable point of w-dimensional Euclidean space Rn will be denoted by
x=(xu , xn). Let G be a bounded domain of Rn with piecewise smooth

boundary 3G, and let Gλ be an open set of Rn such that GcGλ. Throughout
this paper we shall adopt the Einstein summation convention in which Latin indices
z, /, ky etc. will take values 1, 2, , m while Greek indices a and β will take
values 1,2, , n. All functions considered will be real-valued with domain
G or Gj. We consider the system of linear second order differential inequalities

( 1 ) VΆ
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where

^ = Bιf -

t, k = 1, 2, , m, a, β = 1, 2, , n .

Here P=(pίj) is a given mxm matrix of class C(Gi)9 B=Bιf is an mxmxn

third order tensor of class C(Gχ), and A = A α

i / is an nxmxmxn fourth order

tensor of class C^GJ. In addition we also suppose P to be symmetric and A to

be symmetric and positive semidefinite throughout Gl9 i. e ,

Λ i β Λ ί ce — Λ j a

Z TAZ = Z'fAJfZfa > 0,

for every Z = Z ^ . The inequality in (1) is understood to mean the resulting
mxm matrix function is negative semidefinite at each point of Gλ.

We recall that if u is a solution of the scalar ordinary differential equation

u" + p(x) u = 0

such that u{x)Φθ on some interval /, then setting v=u u"1, one finds v to be
a solution of the Riccati equation

v + v2 + />(:r) = 0 .

In Theorem 1 below we shall establish the analog of this elementary fact for
inequation (1) by means of an extended Riccati matrix transformation. Such
Riccati matrix equations have been used extensively in ordinary differential
equations, c.f. [1], [4], [9], and [10].

LEMMA A. If U is any solution of the equation in (1) such that the

nxn matrix function UTB S7~U is symmetric in Gly and if
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(3) E=UTΆVU -

then V £ΞΞΞO.

PROOF. From the symmetry of A and P, a direct calculation using (1) shows
that

V £ = X7UTA S/U + UTV (AS7U) - V (VUTΆ) U - \/UTA\7U

= 2[VUTBTU-UTB-VU] + UT{PT-P)U

= -2[UTB VC7- (t/Γ5 VC/)Γ]

Since C/^C^Gx), V E ^ C f d ) . By hypothesis UTB-VU is symmetric so that
V £ΞΞO.

When n = l, this result is well known and it implies in particular that E
is constant. In the special case where E is identically zero, the solution U is
sometimes called self-con jugate, c.f. [4]. Following this usage we shall also refer
to any solution for which £ Ξ O self-con jugate, c.f. [8] and [14].

THEOREM 1. Let U be a solution of (1) such that U(x) is nonsingular
at every xeGx. Define

Z(4) Z=

Then Z satisfies the Riccati inequation

(5) V (AZ) + 2 S - Z

where AZ*Z denotes the contracted multiplication

Suppose Z = Za) is an nxmxm third order tensor function of class
which satisfies the Riccati equation

(6) V (AZ)+2β Z-

and the compatibility conditions
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2/8 j ZJk = Za j

Then the equation

(8) V (AVE7) +2Z

Λα5 α solution U in Gx.

PROOF. The first statement of the theorem follows directly from the

definition of Z and (1). To show the second part we suppose that Z = ZJj is a
solution of (6) for which (7) holds. Consider now the system of first order
partial differential equations

(9)

or in

(9')

component form,

3
dx.

vu = zu,

)-ZJ,ufk.

According to the theorem of Frobenius [4], a necessary and sufficient condition for
(9') to be solvable is that

do ^ έ

provided Z^Cί{G^). Expanding both sides of (10) we see that (7) is indeed
sufficient for (9') to have solution («'*). A direct calculation using (6) and (9)
shows that

V (2VΪ7) = V-[(AZ)U]

= [S7 (AZ)]U + (AZ)VU

= -[2B 'Z+AZ*'Z+P]U + {ΆZ*Z)U

= -2B (ZU) - PU

= -2B (VU) -PU

so that (8) follows.
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COROLLARY 1.1. Let U be a solution of (1) such that U[x) is nonsingular
and self-conjugate at each xzGu i.e.,

(11) UTAVU = VUTAU.

If Z is defined by (4), then Z satisfies the Riccati inequation

(12) \/-{AZ) + 2 β Z + Z Γ AZ + P < 0 .

PROOF. Since U~ι exists for every xeGu (4) and (11) together imply that

AZ= ZTA

so that (12) follows from (5).

In the particular case where m=l inequality (1) reduces to

(1') V (AVw) + 2B Vu + ρ(x)u < 0 ,

where A=(Aaβ) is a symmetric nxn matrix, B=(Bι, , Bn) is an w-vector, and

p(x) and u(x) are scalar-valued functions. Furthermore, formulas (4) and (5) can

be written as

(4)

and

5') ^ - (A"*zβ) + 2BTza + AΛβzazβ + p(x) < 0

respectively. In this case we can strengthen the second half of Theorem 1 to read

as follows:

COROLLARY 1. 2. Suppose Z= (zl9 , zn) is a vector field of class Cι{Gλ)

for which (5') and the compatibility conditions

are satified. Then there exists a scalar-valued function u(x)φθ in G which

is also a solution of (I').
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To see this we merely let u(x)=expf(x) in (4') and note that / must satisfy
the conditions

In other words we must find a scalar field f whose gradient is the given smooth
vector field Z=(zu , zn). As before (7') is both necessary and sufficient for
the existence of such an /. The result follows.

THEOREM 2. Let U be a solution of (1) such that U(x) is nonsingular
for each xeGλ and that (11) holds. Denote by

(13) Ω = \Wz [C{G)nσ(G)]: f X7WTΆVWdx < +00 j .

Then for every We Ω,

(14) Q[W] > M[W] + 2 [ WT(B- Z) Wdx + f Wτ{η A Z) Wds,
C TIG

where

(15)

M[W] = j(\/W-ZW)τA(vW-ZW) dx,

and v=iv\ '''»*Γ) denotes the outward pointing unit normal at 3G.

PROOF. From (15) we have

M[W] = f [X7WTAVW+ (ZW)τΆ(ZW)]dx

To evaluate the last integral we note that

V (WTΆ^W) = VWT(AZ)W + WTV (AZ) W + WT(AZ)
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so that

(16) M[W] = [ [\7WTAVW- V (WTAZW)] dx
JG

+ [ WT[V (AZ) + ZTA% Wdx.
JG

By hypothesis U(x) is nonsingular and self-con jugate so that Cor. 1.1 and Gauss'
Theorem can be applied to (16) to yield

M[W] < [ (VWTA\7W-WTPW) dx
JG

-2 { WT(B- Z) Wdx - f Wτ(η AZ) Wds
JG JdG

which is the desired result.

COROLLARY 2.1. Suppose A is positive definite. Let U be a self-conjugate
solution of the self-adjoint equation

(17) V (AV?7)

such that U(x) is nonsingular for every x^G
x
. Then for every W £ ί2

(18) Q[W] > f Wτ[η- AΐVC/)^-1] Wds,

JQG

with equality holding if, and only if, W=UK, where K is constant matrix.

PROOF. In this case £ Ξ O and inequality (1) is an equality so that (14)
becomes

Q[W] - M[W] + Γ Wτ[η AivUjU-1] Wds.
J dG

Since A is symmetric and positive definite, M[W]^0 for all We Ω so that (18)
follows. Moreover, equality can hold in (18) if, and only if, M[W] = 0, i.e.,
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Rewriting this we get

[C7-1(VC7)t7-1]Wr - U-1 VWEE 0,

or

so that we must have U~ιW= const.

We remark that the integral relation (14) contains as a special case an identity

of Beesack ([2], p. 479, formula (1.4)) in which m = n=l and B Ξ O . Moreover,

inequality (18) is recognized as an inequality of the Wirtinger type. In order

to state this more explicitly we shall suppose a boundary condition for (17) of

the form

U = 0 on Γ.
(19)

Uσ=g(x)U on Γ 2,

where ΓΊ and Γ2 are disjoint sets whose union is 3G. Here Uσ is the conormal

derivative

Uσ = η-Ά ^

COROLLARY 2. 2. Let U be a self-conjugate solution of (17) and (19) such

that U(x) is nonsingular at every xz GϋΓ 2 . Then for every W € ί l for which

W=0 on Γj we have

(18') ί [VWτΆvW-WτPW]dx> [ Wτg{x)Wds,

with equality holding if and only if, W=UK.

When m=n=l (18') again reduces to an inequality of Beesack [2]. Moreover,

this inequality also contains an elementary proof of the extremal property of the

first eigenfunction associated with the operator defined by

V (AVC/) +PU = XU

and the boundary condition (19), providing of course such a U exists. It follows

that the comparison theorems of Kreith [5] and Swanson [12, Theorem 1] as
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well as bounds on eigenvalues may be deduced from this inequality directly. As

an illustration of this we shall prove an extension of Kreith's comparison

theorem [5] for equation (17). To this end let Aλ and A2 be two tensor functions

and Pi and P2 be two matrix functions satisfying the same assumptions as A and

P. As before let ΓΊ and Γ2 be two disjoint sets whose union is the boundary

3G. Further we assume two matrix functions gλ and g2 to be defined on Γ2.

THEOREM 3. Let U be a self-conjugate solution of

(20) V (ΛVC7)+Pif/ = 0, xzG

such that

= 0 on I\

σι = gJJ on Γ 2 .

Let W be a solution of

(21) V {Ά2VW) + P2W=0, xzG

such that

(W=0 on I\

[Wσ2 = g2W onT2.

If

(22) f [vW^At-AJ vW+Wτ(P1-Pt)W]dx> \wτ(g2-gx) Wds,
Jσ Jr, •

then either dett/(:ro)=O for some x0eGuT2 or WΞΞUK.

PROOF. Suppose the contrary and let det£/(.z)=£θ for all xz GuΓ 2 . Then by

Cor. 2. 2,

(23) Γ [VWTΆ1VW- WTP1W] dx> f Wτg1 Wds,

where equality holds if, and only if, W=UK. On the other hand, if we multiply

(21) by Wτ and integrate by parts, we get

x = fwτg2Wds.
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Combining this with (23) we arrive at

f
JG

Wτ(gι-g2)Wds

which contradicts (22) unless equality holds. However, by Cor. 2.2, this situation
occurs if, and only if, W=UK, and the result follows.

In view of Theorem 2 we can state the following

COROLLARY 3.1. Suppose V is a self-conjugate sub-solution of (20), i.e.,
a solution of

(24) V (ΛV7) +p1y<o

for which (11) and the same boundary conditions hold. Further we suppose
that strict inequality holds in (24) for at least one interior point of G. If
W is the same as above then det V(x0) — 0 for some xoz G, and W=VK only
if V is in fact a solution of (20).

We remark that by using the method of Swanson [13] one can also extend
these results to the case of unbounded domains G. For a comparison theorem
derived by means of a generalized Picone identity, c.f. [3], [6] and [8].
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