CLASS NUMBERS OF IMAGINARY ABELIAN
 NUMBER FIELDS, I

Kôjı Uchida

(Received October 12, 1970)

In this paper we give some applications of Brauer-Siegel theorem. Especially we show that there exist only a finite number of imaginary abelian number fields whose class numbers are not greater than any given integer. In the following k always denotes a normal algebraic number field of degree n. Let d, h and R be absolute value of its discriminant, class number and regulator, respectively. Then Brauer-Siegel theorem (or its proof by Brauer) ${ }^{11}$ shows :

For any given positive number ε, there exists a positive number δ (depending only on ε) such that

$$
\left|\frac{\log h R}{\log \sqrt{d}}-1\right|<\varepsilon
$$

if $n / \log d<\delta$. We apply Brauer-Siegel theorem in this form, though the usual form suffices for abelian number fields.

1. We assume that k is imaginary from now on. Let k_{0} be the maximal real subfield of k. Let d_{0}, h_{0} and R_{0} be absolute value of discriminant of k_{0}, and similarly. Then $h_{1}=h / h_{0}$ is a positive integer which is called the first factor of the class number of k. Let $d_{k / k_{0}}$ be the relative discriminant, and let d_{1} be its absolute norm. Then

$$
d=d_{1} \cdot d_{0}{ }^{2}
$$

holds.
If k_{0} is also normal, the unit group of k has a subgroup of finite index generated by the units of k_{0} and the roots of unity in k. If we put this index q, it holds

[^0]$$
q R=2^{n / 2-1} R_{0} .
$$

THEOREM 1. Let k be an imaginary normal extension of the rational number field Q of degree n. Let d be the absolute value of its discriminant. We assume that the maximal real subfield k_{0} of k is also normal over Q. Then the first factor h_{1} of the class number is arbitrarily large, if $n / \log d$ is sufficiently small.

Proof. Above remark shows

$$
h R \leqq h_{1} h_{0} \cdot 2^{n / 2} R_{0}
$$

It is known that there exists a positive constant C such that

$$
\frac{\log h_{0} R_{0}}{\log \sqrt{ } \overline{d_{0}}} \leqq C
$$

for any k_{0} [2, formula (6)] (The left hand side is $0 / 0$ for $k_{0}=Q$, but no trouble is caused in the following). If $\log d_{0} / \log d<1 / 2 C$, it holds

$$
\begin{aligned}
& \frac{\log h R}{\log \sqrt{d}} \leqq \frac{\log h_{1} h_{0} 2^{n / 2} R_{0}}{\log \sqrt{d}} \\
&=\frac{\log h_{1}+n \log 2 / 2+\log h_{0} R_{0}}{\log \sqrt{d}} \\
& \leqq \frac{\log h_{1}}{\log \sqrt{d}}+\frac{n \log 2}{\log d}+\frac{\log h_{0} R_{0}}{2 C \log \sqrt{d_{0}}} \\
& \leqq \frac{\log h_{1}}{\log \sqrt{d}}+\frac{n \log 2}{\log d}+\frac{1}{2} .
\end{aligned}
$$

The second inequality does not hold if $k_{0}=Q$ or $\log h_{0} R_{0}<0$ in the above. But the last inequality holds also in these cases.
If $n / \log d$ is sufficiently small, Brauer-Siegel theorem shows that

$$
\frac{1}{3} \leqq \frac{\log h_{1}}{\log \sqrt{d}}
$$

If $\log d_{0} / \log d \geqq 1 / 2 C$, it holds

$$
\frac{\log h R}{\log \sqrt{\bar{d}} \leqq \frac{\log h_{1}}{\log \sqrt{d}}+\frac{n \log 2}{\log d}+\frac{\log h_{0} R_{0}}{2 \log \sqrt{\overline{d_{0}}}} . \frac{r^{2}}{}}
$$

If $n / \log d$ is sufficiently small, $n / \log d_{0}$ is small enough. Then it also holds

$$
\frac{1}{3} \leqq \frac{\log h_{1}}{\log \sqrt{d}}
$$

Theferore it holds

$$
\frac{1}{3} \log \sqrt{d} \leqq \log h_{1}
$$

if $n / \log d$ is sufficiently small. Then $\log \sqrt{d}$ is large, and $\log h_{1}$ becomes large arbitrarily.

REMARK 1. Let k be a (not necessarily normal) totally imaginary algebraic number field which has a totally real subfield k_{0} such that $\left[k: k_{0}\right]=2$. If k runs over such fields with bounded degrees, h_{1} goes to infinity as shown by BrauerSiegel theorem for non-normal case and the above argument.

REMARK 2. Let $\left\{k_{1}, k_{2}, \cdots\right\}$ be a sequence of fields satisfying the conditions of Theorem 1 such that $n / \log d$ goes to zero. Then the above proof shows that $\lim \inf \log h_{1} / \log \sqrt{d} \geqq \frac{1}{2}$.
2. In this section we prove our main theorem.

THEOREM 2. For any integer N, there exist only a finite number of imaginary abelian number fields whose first factors h_{1} of class numbers are not greater than $N .{ }^{2)}$

By Theorem 1 we only need to prove the following proposition.
Proposition 1. $n / \log d$ is sufficiently small for almost all abelian number fields (not necessarily imaginary).

Proof. Let k denote an abelian number field. Let $p_{1}, p_{2}, \cdots, p_{r}$ be the prime numbers which are ramified in k. We prove the proposition in two steps.

[^1](1) If $p_{1} p_{2} \cdots p_{r}$ is sufficiently large, $n / \log d$ is small enough. Let e_{i} be the ramification index of p_{i}. Then any prime divisor \mathfrak{p}_{i} of p_{i} appears in the different of k with exponent $\geqq e_{i}-1$. Therefore
$$
d \geqq \prod_{p_{t}} \prod_{p_{l} \mid p_{k}} N_{k / Q} \mathfrak{p}_{l}^{e_{t}-1}=\prod_{p_{k}} p_{c}^{\left.n(1-1) / e_{l}\right)}
$$
holds. Hence it holds
$$
\log d \geqq n \sum_{i}\left(1-1 / e_{i}\right) \log p_{i} \geqq \frac{n}{2} \sum_{i} \log p_{i} .
$$

This proves our assertion.
(2) We fix prime numbers $p_{1}=2, p_{2}, \cdots, p_{r}$. Let k be an abelian number field in which at most above primes are ramified. If n is fixed, there exist only a finite number of such fields of degrees $\leqq n$. So it suffices to prove that $n / \log d$ is arbitrarily small if n is sufficiently large. Such a field is contained in some field of the $p_{1}{ }^{a_{1}} p_{2}{ }^{a_{2}} \cdots p_{r}{ }^{a_{r}}$-th roots of unity. So its Galois group over Q is isomorphic to a subgroup of a direct sum of cyclic groups of orders $2, p_{2}-1, \cdots, p_{r}-1$, $p_{1}^{a_{1}-2}, p_{2}^{a_{2}-1}, \cdots, p_{r}^{a_{r}-1}$. If n is sufficiently large, the Galois group has a cyclic factor group of order $p_{i}{ }^{2 f_{i}}$ for some i and some large integer f_{i}. Then k contains a cyclic subfield F^{\prime} of degree $p_{i}{ }^{2 f_{4}}$. As the p_{i}-parts of the ramification indices of p_{j} for $j \neq i$ are bounded, we can assume that they are smaller than $p_{i}{ }^{f_{i}}$. Then only a prime p_{i} can be ramified in the subfield F of F^{\prime} of degree $p_{i}{ }^{{ }^{t_{4}}}$. Therefore F is contained in the field of the $p_{i}{ }^{a_{1}}$-th roots of unity. Taking its degree into account, F is contained in the field E of the $p_{1}{ }^{f_{1}+2}$-th roots of unity if $i=1$, and it is contained in the field E of the $p_{i}{ }^{f_{i}+1}$-th roots of unity if $i \neq 1$. Then it is known [5, IV. Theorem 3] that

$$
d_{E}= \begin{cases}p_{i}{ }^{p_{i} f_{i}+1}\left(f_{t}+1\right) & \text { if } i=1 \\ p_{i}{ }^{\left.p_{t} f_{t}\left(f_{t}+1\right)\left(p_{i}-1\right)-1\right]} & \text { if } i \neq 1\end{cases}
$$

It holds

$$
d_{E}= \begin{cases}N_{F / Q} d_{E / F} \cdot d_{F}^{p_{i}} & \text { if } i=1 \\ N_{F / Q} d_{E / F} \cdot d_{F}^{p,-1} & \text { if } i \neq 1\end{cases}
$$

If $i \neq 1, p_{i}$ is tamely ramified in E / F, so $N_{F / Q} d_{E / F}=p_{i}{ }^{p_{i}-2}$. In the case $i=1$, let ζ denote a primitive $2^{f^{\prime}+2}$-th root of unity. Let ζ^{σ} be its conjugate over F. As $\zeta^{\sigma^{2}}$ $=\zeta, \zeta^{\sigma}$ is equal to one of $-\zeta, \zeta^{-1}$ and $-\zeta^{-1}$. If $\zeta^{\sigma}=-\zeta, F$ contains ζ^{2} which is a
primitive $2^{f_{1}+1}$-th root of unity. Then F is not cyclic for $f_{1} \geqq 2$. This is a contradiction. Hence ζ^{σ} is equal to ζ^{-1} or $-\zeta^{-1}$. Then the relative different of E / F is generated by $\zeta-\zeta^{-1}$ or $\zeta+\zeta^{-1}$. As $1-\zeta, 1+\zeta, 1-\sqrt{-1} \zeta$ and $1+\sqrt{-1} \zeta$ are all generators of the prime divisor of $2, N_{F / Q} d_{E / P}=2^{2}$ holds. Therefore it holds

$$
p_{i} \log d_{F}+p_{i} \log p_{i} \geqq \frac{1}{2} f_{i} p_{i}^{r_{i}+1} \log p_{i}
$$

Hence

$$
\frac{[F: Q]}{\log d_{F}}=\frac{p_{i}^{f_{i}}}{\log d_{F}} \leqq \frac{3}{f_{i} \log p_{i}}
$$

holds for large f_{i}. As k contains F, and as

$$
\log d=\log N_{F} d_{k / F}+[k: F] \log d_{F},
$$

it holds

$$
\frac{n}{\log d} \leqq \frac{[k: F][F: Q]}{[k: F] \log d_{F}} \leqq \frac{3}{f \log p_{i} .}
$$

If we take f_{i} sufficiently large, $n / \log d$ is small enough. This proves the proposition and also proves Theorem 2.

Remark. Proposition 1 can also be proved for relative abelian extensions. Step (2) in the proof is given by Hasse's conductor-discriminant formula.
3. We give some remarks relating to preceding sections. First we show the index q in section 1 is not greater than 2. This has been known for abelian case by $[3, \S 20]$.

Proposition 2. Let k be a (not necessarily normal) totally imaginary algebraic number field of finite degree. We assume that k has a totally real subfield k_{0} such that $\left[k: k_{0}\right]=2$. Let E and E_{0} be unit groups of k and k_{0} respectively. Let W be a group of the roots of unity in k. Then it holds

$$
\left(E: W E_{0}\right) \leqq 2
$$

Proof. As E and E_{0} have the same rank, $E / W E_{0}$ is a finite abelian group. Let $\varepsilon \in E$ be such that $\varepsilon^{l} \in W E_{0}$ for odd prime l. We put

$$
\varepsilon^{l}=\zeta \varepsilon_{0}, \quad \zeta \in W, \varepsilon_{0} \in E_{0} .
$$

Then it holds

$$
\left(\varepsilon \varepsilon^{\sigma}\right)^{l}=\left(\zeta \zeta^{\sigma}\right) \cdot \varepsilon_{0}{ }^{2},
$$

where ε^{σ} is the conjugate of ε over k_{0}. We note that $\zeta \zeta^{\sigma}$ is equal to 1 or -1 as k_{0} is real. If we put $\varepsilon_{1}= \pm \varepsilon \varepsilon^{\sigma}$ according as the sign of $\zeta \zeta^{\sigma}$, it holds $\varepsilon_{0}=\varepsilon_{2}{ }^{l}$ for

$$
\varepsilon_{2}=\varepsilon_{1}{ }^{(l+1) / 2} / \varepsilon_{0} .
$$

Then $\varepsilon / \varepsilon_{2}$ is a root of unity, so holds $\varepsilon \in W E_{0}$. Now let $\eta \in E$ be such that $\eta^{4} \in W E_{0}$. We put

$$
\eta^{4}=\zeta_{1} \eta_{0}, \quad \zeta_{1} \in W, \eta_{0} \in E_{0} .
$$

If $\zeta_{1} \zeta_{1}{ }^{\sigma}$ is equal to $-1,-1$ is a square in k_{0}, and a contradiction. Hence if we put $\eta_{1}=\eta \eta^{\sigma}, \eta_{1}{ }^{2}= \pm \eta_{0}$ holds and η^{2} / η_{1} is a root of unity. Then $\eta^{2} \in W E_{0}$ holds, and this proves that $E / W E_{0}$ is of type $(2,2, \cdots, 2)$. Let ε and η be elements of E not contained in $W E_{0}$. We put

$$
\varepsilon^{2}=\zeta^{i} \varepsilon_{0} \text { and } \eta^{2}=\zeta^{j} \eta_{0}
$$

where ε_{0} and η_{0} are elements of E_{0} and ζ is a generator of W. Substituting elements of same classes modulo $W E_{0}$ for ε and η, we can assume i and j are equal to 0 or 1 . If $\sqrt{-1}$ is not contained in $k,-\zeta$ is a square in k. So we can assume $i=j=0$. Then ε^{2} and η^{2} are in E_{0}, and ε / η is in E_{0} by Kummer theory. Hence $\left(E: W E_{0}\right) \leqq 2$ holds in this case. If $\sqrt{-1}$ is in k, and if i or j is equal to $0, \varepsilon / \sqrt{-1}$ or $\eta / \sqrt{-1}$ is in E_{0}. Then ε or η is contained in $W E_{0}$, which contradicts to the hypothesis. If $\sqrt{-1}$ is contained in k, and if $i=j=1, \varepsilon / \eta$ is contained in $W E_{0}$. This shows $\left(E: W E_{0}\right) \leqq 2$ holds also in this case.

Above proposition shows that

$$
2^{n / 2-2} R_{0} \leqq R \leqq 2^{n / 2-1} R_{0}
$$

holds in the situation of the proposition. Now let k be a field of the l^{f}-th roots of unity, where l is a prime number. Then it is known that $q=1$. It holds

$$
d=l^{l l^{f-1}[f(l-1)-1]}
$$

and for the norm of relative discriminant it holds

$$
d_{1}=N_{k}\left(\zeta-\zeta^{-1}\right)=\left\{\begin{array}{l}
l \text { if } l \neq 2 \\
2^{2} \text { if } l=2
\end{array}\right.
$$

where ζ is a primitive l^{ζ}-th root of unity. So $\log d_{1} / \log d_{0}$ goes to 0 when l goes to infinity or f goes to infinity. If l goes to infinity for fixed f or f goes to infinity for fixed l, it holds

$$
\begin{aligned}
\frac{\log h R}{\log \sqrt{d}}= & \frac{\log h_{1}}{\log \sqrt{d}}+\frac{(n / 2-1) \log 2}{\log \sqrt{d}}+\frac{\log h_{0} R_{0}}{\log \sqrt{d}} \\
& \rightarrow \frac{\log h_{1}}{\log \sqrt{d}}+\frac{\log h_{0} R_{0}}{2 \log \sqrt{d_{0}}} \rightarrow \frac{\log h_{1}}{\log \sqrt{d}}+\frac{1}{2} .
\end{aligned}
$$

Hence it holds

$$
\frac{\log h_{1}}{\log \sqrt{d}} \rightarrow \frac{1}{2}
$$

Let $f=1$, then $d=l^{l-2}$ and

$$
\log h_{1} \sim \frac{1}{4} \log d=\frac{l-2}{4} \log l \sim \frac{l}{4} \log l
$$

holds when l goes to infinity. This has been obtained by Ankeny-Chowla [1] and Siegel [6]. Now we fix a prime l and let f go to infinity. Then

$$
\log h_{1} \sim \frac{1}{2} \log \sqrt{d}=\frac{1}{4} l^{f-1}[f(l-1)-1] \log l
$$

holds. Iwasawa [4] has shown that the l-part h_{l} of h_{1} is of the form

$$
h_{l}=l^{e_{f}} \quad \text { with } e_{f}=\mu l^{f}+\lambda f+c,
$$

where μ, λ and c are constants. Then it holds

$$
\log h_{1}-\log h_{l} \rightarrow \infty, \text { as } f \rightarrow \infty
$$

Therefore non-l-part of h_{1} goes to infinity as f goes to infinity.

REFERENCES

[1] N. C. Ankeny-S. Chowla, The class number of the cyclotomic field, Canad. J. Math., 3(1951).
[2] R. Brauer. On the zeta-functions of algebraic number fields II, Amer. J. Math., 72(1950).
[3] H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Akademie Verlag, 1952.
[4] K. IWASAWA, On r-extensions of algebraic number fields, Bull. Amer. Math. Soc., 65(1959).
[5] S. LANG, Algebraic numbers, Addison-Wesley, 1964.
[6] C.L.Siegel, Zu zwei Bemerkungen Kummers, Nachr. Göttingen, 1964.

Mathematical Institute
TÔHOKU UNIvERSITY
Sendai, Japan

[^0]: 1) For Brauer-Siegel theorem, see [2] or [5, Chapter IX].
[^1]: 2) This theorem can also be proved by applying Landau's estimate for $L(1, \mathbf{x})$ and by Siegel's theorem for imaginary quadratic fields.
