CLASS NUMBERS OF IMAGINARY ABELIAN NUMBER FIELDS, I

Kôji Uchida

(Received October 12, 1970)

In this paper we give some applications of Brauer-Siegel theorem. Especially we show that there exist only a finite number of imaginary abelian number fields whose class numbers are not greater than any given integer. In the following k always denotes a normal algebraic number field of degree n. Let d, h and R be absolute value of its discriminant, class number and regulator, respectively. Then Brauer-Siegel theorem (or its proof by Brauer)¹⁾ shows:

For any given positive number \mathcal{E} , there exists a positive number δ (depending only on \mathcal{E}) such that

$$\left| \frac{\log hR}{\log \sqrt{d}} - 1 \right| < \varepsilon$$

if $n/\log d < \delta$. We apply Brauer-Siegel theorem in this form, though the usual form suffices for abelian number fields.

1. We assume that k is imaginary from now on. Let k_0 be the maximal real subfield of k. Let d_0 , h_0 and R_0 be absolute value of discriminant of k_0 , and similarly. Then $h_1 = h/h_0$ is a positive integer which is called the first factor of the class number of k. Let d_{k/k_0} be the relative discriminant, and let d_1 be its absolute norm. Then

$$d = d_1 \cdot d_0^2$$

holds.

If k_0 is also normal, the unit group of k has a subgroup of finite index generated by the units of k_0 and the roots of unity in k. If we put this index q, it holds

¹⁾ For Brauer-Siegel theorem, see [2] or [5, Chapter IX].

98 K. UCHIDA

$$qR = 2^{n/2-1}R_0$$
.

THEOREM 1. Let k be an imaginary normal extension of the rational number field Q of degree n. Let d be the absolute value of its discriminant. We assume that the maximal real subfield k_0 of k is also normal over Q. Then the first factor h_1 of the class number is arbitrarily large, if $n/\log d$ is sufficiently small.

PROOF. Above remark shows

$$hR \leq h_1 h_0 \cdot 2^{n/2} R_0$$
.

It is known that there exists a positive constant C such that

$$\frac{\log h_0 R_0}{\log \sqrt{d_0}} \leq C$$

for any k_0 [2, formula (6)] (The left hand side is 0/0 for $k_0 = Q$, but no trouble is caused in the following). If $\log d_0/\log d < 1/2C$, it holds

$$\frac{\log hR}{\log \sqrt{d}} \leq \frac{\log h_1 h_0 2^{n/2} R_0}{\log \sqrt{d}}$$

$$= \frac{\log h_1 + n \log 2/2 + \log h_0 R_0}{\log \sqrt{d}}$$

$$\leq \frac{\log h_1}{\log \sqrt{d}} + \frac{n \log 2}{\log d} + \frac{\log h_0 R_0}{2C \log \sqrt{d_0}}$$

$$\leq \frac{\log h_1}{\log \sqrt{d}} + \frac{n \log 2}{\log d} + \frac{1}{2}.$$

The second inequality does not hold if $k_0 = Q$ or $\log h_0 R_0 < 0$ in the above. But the last inequality holds also in these cases.

If $n/\log d$ is sufficiently small, Brauer-Siegel theorem shows that

$$\frac{1}{3} \leq \frac{\log h_1}{\log \sqrt{d}}.$$

If $\log d_0/\log d \ge 1/2C$, it holds

$$\frac{\log hR}{\log \sqrt{d}} \leq \frac{\log h_1}{\log \sqrt{d}} + \frac{n \log 2}{\log d} + \frac{\log h_0 R_0}{2 \log \sqrt{d_0}}.$$

If $n/\log d$ is sufficiently small, $n/\log d_0$ is small enough. Then it also holds

$$\frac{1}{3} \leq \frac{\log h_1}{\log \sqrt{d}}.$$

Theferore it holds

$$\frac{1}{3}\log \sqrt{d} \leq \log h_1$$
,

if $n/\log d$ is sufficiently small. Then $\log \sqrt{d}$ is large, and $\log h_1$ becomes large arbitrarily.

REMARK 1. Let k be a (not necessarily normal) totally imaginary algebraic number field which has a totally real subfield k_0 such that $[k:k_0]=2$. If k runs over such fields with bounded degrees, h_1 goes to infinity as shown by Brauer-Siegel theorem for non-normal case and the above argument.

REMARK 2. Let $\{k_1, k_2, \cdots\}$ be a sequence of fields satisfying the conditions of Theorem 1 such that $n/\log d$ goes to zero. Then the above proof shows that $\lim\inf \log h_1/\log \sqrt{d} \ge \frac{1}{2}$.

2. In this section we prove our main theorem.

THEOREM 2. For any integer N, there exist only a finite number of imaginary abelian number fields whose first factors h_1 of class numbers are not greater than $N^{(2)}$

By Theorem 1 we only need to prove the following proposition.

PROPOSITION 1. $n/\log d$ is sufficiently small for almost all abelian number fields (not necessarily imaginary).

PROOF. Let k denote an abelian number field. Let p_1, p_2, \dots, p_r be the prime numbers which are ramified in k. We prove the proposition in two steps.

²⁾ This theorem can also be proved by applying Landau's estimate for L(1, x) and by Siegel's theorem for imaginary quadratic fields.

100 K. UCHIDA

(1) If $p_1p_2\cdots p_r$ is sufficiently large, $n/\log d$ is small enough. Let e_i be the ramification index of p_i . Then any prime divisor p_i of p_i appears in the different of k with exponent $\geq e_i-1$. Therefore

$$d \geq \prod_{p_i} \prod_{\mathfrak{p}_i \mid p_i} N_{k/Q} \mathfrak{p}_i^{e_i-1} = \prod_{p_i} p_i^{n(1-1/e_i)}$$

holds. Hence it holds

$$\log d \ge n \sum_{i} (1 - 1/e_i) \log p_i \ge \frac{n}{2} \sum_{i} \log p_i.$$

This proves our assertion.

(2) We fix prime numbers $p_1 = 2$, p_2, \dots, p_r . Let k be an abelian number field in which at most above primes are ramified. If n is fixed, there exist only a finite number of such fields of degrees $\leq n$. So it suffices to prove that $n/\log d$ is arbitrarily small if n is sufficiently large. Such a field is contained in some field of the $p_1^{a_1}p_2^{a_2}\cdots p_r^{a_r}$ -th roots of unity. So its Galois group over Q is isomorphic to a subgroup of a direct sum of cyclic groups of orders $2, p_2-1, \dots, p_r-1$, $p_1^{a_1-2}, p_2^{a_2-1}, \dots, p_r^{a_r-1}$. If n is sufficiently large, the Galois group has a cyclic factor group of order $p_i^{2f_i}$ for some i and some large integer f_i . Then k contains a cyclic subfield F' of degree $p_i^{2f_i}$. As the p_i -parts of the ramification indices of p_j for $j \neq i$ are bounded, we can assume that they are smaller than $p_i^{f_i}$. Then only a prime p_i can be ramified in the subfield F of F' of degree $p_i^{f_i}$. Therefore F is contained in the field of the $p_i^{a_i}$ -th roots of unity. Taking its degree into account, F is contained in the field E of the $p_1^{f_1+2}$ -th roots of unity if i = 1, and it is contained in the field E of the $p_i^{f_i+1}$ -th roots of unity if $i \neq 1$. Then it is known [5, IV. Theorem 3] that

$$d_{E} = \begin{cases} p_{i}^{p_{i}f_{i+1}(f_{i+1})} & \text{if } i = 1 \\ p_{i}^{p_{i}f_{i}(f_{i+1})(p_{i-1})-1} & \text{if } i \neq 1 \end{cases}.$$

It holds

$$d_{\scriptscriptstyle E} = egin{cases} N_{\scriptscriptstyle F/Q} d_{\scriptscriptstyle E/F} \! \cdot \! d_{\scriptscriptstyle F}^{p_i} & ext{if } i = 1 \ N_{\scriptscriptstyle F/Q} d_{\scriptscriptstyle E/F} \! \cdot \! d_{\scriptscriptstyle F}^{p_i-1} & ext{if } i
eq 1 \, . \end{cases}$$

If $i \neq 1$, p_i is tamely ramified in E/F, so $N_{F/Q}d_{E/F} = p_i^{p_i-2}$. In the case i=1, let ζ denote a primitive 2^{f_i+2} -th root of unity. Let ζ^{σ} be its conjugate over F. As $\zeta^{\sigma^2} = \zeta$, ζ^{σ} is equal to one of $-\zeta$, ζ^{-1} and $-\zeta^{-1}$. If $\zeta^{\sigma} = -\zeta$, F contains ζ^2 which is a

primitive 2^{f_1+1} -th root of unity. Then F is not cyclic for $f_1 \ge 2$. This is a contradiction. Hence ξ^{σ} is equal to ξ^{-1} or $-\xi^{-1}$. Then the relative different of E/F is generated by $\xi - \xi^{-1}$ or $\xi + \xi^{-1}$. As $1 - \xi$, $1 + \xi$, $1 - \sqrt{-1} \xi$ and $1 + \sqrt{-1} \xi$ are all generators of the prime divisor of 2, $N_{F/Q}d_{E/F} = 2^2$ holds. Therefore it holds

$$p_i \log d_F + p_i \log p_i \ge \frac{1}{2} f_i p_i^{f_i+1} \log p_i$$
.

Hence

$$\frac{[F:Q]}{\log d_F} = \frac{p_i^{f_i}}{\log d_F} \leq \frac{3}{f_i \log p_i}.$$

holds for large f_i . As k contains F, and as

$$\log d = \log N_F d_{k/F} + [k:F] \log d_F,$$

it holds

$$\frac{n}{\log d} \leq \frac{[k:F][F:Q]}{[k:F]\log d_F} \leq \frac{3}{f \log p_i}.$$

If we take f_i sufficiently large, $n/\log d$ is small enough. This proves the proposition and also proves Theorem 2.

REMARK. Proposition 1 can also be proved for relative abelian extensions. Step (2) in the proof is given by Hasse's conductor-discriminant formula.

3. We give some remarks relating to preceding sections. First we show the index q in section 1 is not greater than 2. This has been known for abelian case by $[3, \S 20]$.

PROPOSITION 2. Let k be a (not necessarily normal) totally imaginary algebraic number field of finite degree. We assume that k has a totally real subfield k_0 such that $[k:k_0]=2$. Let E and E_0 be unit groups of k and k_0 respectively. Let W be a group of the roots of unity in k. Then it holds

$$(E:WE_0) \leq 2$$
.

PROOF. As E and E_0 have the same rank, E/WE_0 is a finite abelian group. Let $\mathcal{E} \in E$ be such that $\mathcal{E}^l \in WE_0$ for odd prime l. We put 102 K. UCHIDA

$$\mathcal{E}^l = \zeta \mathcal{E}_0$$
, $\zeta \in W$, $\mathcal{E}_0 \in E_0$.

Then it holds

$$(\mathcal{E}\mathcal{E}^{\sigma})^l = (\zeta\zeta^{\sigma}) \cdot \mathcal{E}_0^2$$
,

where \mathcal{E}^{σ} is the conjugate of \mathcal{E} over k_0 . We note that $\zeta\zeta^{\sigma}$ is equal to 1 or -1 as k_0 is real. If we put $\mathcal{E}_1 = \pm \mathcal{E}\mathcal{E}^{\sigma}$ according as the sign of $\zeta\zeta^{\sigma}$, it holds $\mathcal{E}_0 = \mathcal{E}_2^{\ t}$ for

$$\mathcal{E}_2 = \mathcal{E}_1^{(l+1)/2}/\mathcal{E}_0$$
.

Then $\mathcal{E}/\mathcal{E}_2$ is a root of unity, so holds $\mathcal{E} \in WE_0$. Now let $\eta \in E$ be such that $\eta^4 \in WE_0$. We put

$$\eta^4 = \zeta_1 \eta_0$$
, $\zeta_1 \in W$, $\eta_0 \in E_0$.

If $\zeta_1\zeta_1^{\sigma}$ is equal to -1, -1 is a square in k_0 , and a contradiction. Hence if we put $\eta_1 = \eta\eta^{\sigma}$, $\eta_1^2 = \pm \eta_0$ holds and η^2/η_1 is a root of unity. Then $\eta^2 \in WE_0$ holds, and this proves that E/WE_0 is of type $(2, 2, \dots, 2)$. Let ε and η be elements of E not contained in WE_0 . We put

$$\mathcal{E}^2 = \zeta^i \mathcal{E}_0$$
 and $\eta^2 = \zeta^j \eta_0$

where \mathcal{E}_0 and η_0 are elements of E_0 and ζ is a generator of W. Substituting elements of same classes modulo WE_0 for ε and η , we can assume i and j are equal to 0 or 1. If $\sqrt{-1}$ is not contained in k, $-\zeta$ is a square in k. So we can assume i=j=0. Then ε^2 and η^2 are in E_0 , and ε/η is in E_0 by Kummer theory. Hence $(E:WE_0) \leq 2$ holds in this case. If $\sqrt{-1}$ is in k, and if i or j is equal to 0, $\varepsilon/\sqrt{-1}$ or $\eta/\sqrt{-1}$ is in E_0 . Then ε or η is contained in WE_0 , which contradicts to the hypothesis. If $\sqrt{-1}$ is contained in k, and if i=j=1, ε/η is contained in WE_0 . This shows $(E:WE_0) \leq 2$ holds also in this case.

Above proposition shows that

$$2^{n/2-2}R_0 \le R \le 2^{n/2-1}R_0$$

holds in the situation of the proposition. Now let k be a field of the l^f -th roots of unity, where l is a prime number. Then it is known that q = 1. It holds

$$d = l^{l^{f^{-1}}[f(l-1)-1]}$$

and for the norm of relative discriminant it holds

$$d_1 = N_k(\zeta - \zeta^{-1}) = \begin{cases} l & \text{if } l \neq 2 \\ 2^2 & \text{if } l = 2 \end{cases}$$

where ζ is a primitive l^f -th root of unity. So $\log d_1/\log d_0$ goes to 0 when l goes to infinity or f goes to infinity. If l goes to infinity for fixed f or f goes to infinity for fixed l, it holds

$$\frac{\log hR}{\log \sqrt{d}} = \frac{\log h_1}{\log \sqrt{d}} + \frac{(n/2 - 1) \log 2}{\log \sqrt{d}} + \frac{\log h_0 R_0}{\log \sqrt{d}}$$

$$\rightarrow \frac{\log h_1}{\log \sqrt{d}} + \frac{\log h_0 R_0}{2 \log \sqrt{d_0}} \rightarrow \frac{\log h_1}{\log \sqrt{d}} + \frac{1}{2}.$$

Hence it holds

$$\frac{-\log h_1}{\log \sqrt{d}} \to \frac{1}{2}.$$

Let f = 1, then $d = l^{l-2}$ and

$$\log h_1 \sim \frac{1}{4} \log d = \frac{l-2}{4} \log l \sim \frac{l}{4} \log l$$

holds when l goes to infinity. This has been obtained by Ankeny-Chowla [1] and Siegel [6]. Now we fix a prime l and let f go to infinity. Then

$$\log h_1 \sim \frac{1}{2} \log \sqrt{d} = \frac{1}{4} l^{f-1} [f(l-1)-1] \log l$$

holds. Iwasawa [4] has shown that the l-part h_l of h_1 is of the form

$$h_l = l^{e_f}$$
 with $e_f = \mu l^f + \lambda f + c$,

where μ , λ and c are constants. Then it holds

$$\log h_1 - \log h_2 \to \infty$$
, as $f \to \infty$.

Therefore non-l-part of h_1 goes to infinity as f goes to infinity.

REFERENCES

- N. C. ANKENY-S. CHOWLA, The class number of the cyclotomic field, Canad. J. Math., 3(1951).
- [2] R. BRAUER. On the zeta-functions of algebraic number fields II, Amer. J. Math., 72(1950).
- [3] H. HASSE, Über die Klassenzahl abelscher Zahlkörper, Akademie Verlag, 1952.
- [4] K.IWASAWA, On r-extensions of algebraic number fields, Bull. Amer. Math. Soc., 65(1959).
- [5] S. LANG, Algebraic numbers, Addison-Wesley, 1964.
- [6] C. L. SIEGEL, Zu zwei Bemerkungen Kummers, Nachr. Göttingen, 1964.

MATHEMATICAL INSTITUTE TÔHOKU UNIVERSITY SENDAI, JAPAN