Toéhoku Math. Journ.
23(1971), 97-104.

CLASS NUMBERS OF IMAGINARY ABELIAN
NUMBER FIELDS, 1

Koj1 UcHIDA

(Received October 12, 1970)

In this paper we give some applications of Brauer-Siegel theorem. Especially
we show that there exist only a finite number of imaginary abelian number
fields whoase class numbers are not greater than any given integer. In the following
k always denotes a normal algebraic number field of degree n. Let d, A and R
be absolute value of its discriminant, class number and regulator, respectively.
Then Brauer-Siegel theorem (or its proof by Brauer)“ shows :

For any given positive number &, there exists a positive number & (depending
only on &) such that

log AR
log/d <é

if n/log d <8. We apply Brauer-Siegel theorem in this form, though the usual
form suffices for abelian number fields.

1. We assume that % is imaginary from now on. Let %, be the maximal real
subfield of k. Let d,, h, and R, be absolute value of discriminant of %, and
similarly. Then A, =h/h, is a positive integer which is called the first factor
of the class number of 2. Let d,;, be the relative discriminant, and let d; be
its absolute norm. Then

d = dl'doz

holds.

If %, is also normal, the unit group of % has a subgroup of finite index generated
by the units of £, and the roots of unity in k. If we put this index ¢, it holds

1) For Brauer-Siegel theorem, see [2] or [5, Chapter IX].
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gR = 2R, .

THEOREM 1. Let k be an imaginary normal extension of the rational
number field Q of degree n. Let d be the absolute value of its discriminant.
We assume that the maximal real subfield k, of k is also normal over Q.
Then the first factor h, of the class number is arbitrarily large, if n/log d
is sufficiently small.

PROOF. Above remark shows
hR < hih,- 2R, .

It is known that there exists a positive constant C such that

log R,

log v/dy =C

I

for any %, [2, formula (6)] (The left hand side is 0/0 for %2, = Q, but no trouble
is caused in the following). If log d,/log d <.1/2C, it holds

log AR _ log hh2"’R,
loga/d =  log A/d

_ log hy+n log2/2_;|_—log h.R,
- log A/d

log A, n log 2 log 2R,
=Togvd T logd T 2C log Nd,

log A, nlog2 1
loch7+ log d o

I\

The second inequality does not hold if 2,=Q or log 2,R,<<0 in the above. But
the last inequality holds also in these cases.
If n/log d is sufficiently small, Brauer-Siegel theorem shows that

1 _ loghy
3 log A/d.

A

If log do/log d=1/2C, it holds
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log AR _  log h1:+ n log 2 + log AR, _
log A/d = log A/d log d 2 log A/d,.

If n/log d is sufficiently small, n/log d, is small enough. Then it also holds

_log hl_
log /d.

IA

1
3
Theferore it holds
1 _
—3—Iog Vd=log h,,

if n/log d is sufficiently small. Then log A/d is large, and log h, becomes large
arbitrarily.

REMARK 1. Let % be a (not necessarily normal) totally imaginary algebraic
number field which has a totally real subfield %, such that [k:%,] =2. If & runs
over such fields with bounded degrees, A, goss to infinity as shown by Brauer-
Siegel theorem for non-normal case and the above argument.

REMARK 2. Let {k;, k,,-+} be a sequence of fields satisfying the conditions
of Theorem 1 such that n/log d goes to zero. Then the above proof shows that

lim inf log A,/log ﬁzg%.

2. In this section we prove our main theorem.

THEOREM 2. For any integer N, there exist only a finite number of
imaginary abelian number fields whose first factors h, of class numbers are
not greater than N.»

By Theorem 1 we only need to prove the following proposition.

PROPOSITION 1. n/log d is sufficiently small for almost all abelian
number fields (not necessarily imaginary).

PROOF. Let % denote an abelian number field. Let p,, ps,¢«+, p, be the prime
numbers which are ramified in 2. We prove the proposition in two steps.

2) This theorem can also be proved by applying Landau’s estimate for L(1, X) and by Siegel’s
theorem for imaginary quadratic fields.
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(1) If pyps+-p, is sufficiently large, n/log d is small enough. Let e, be the
ramification index of p;. Then any prime divisor 9, of p, appears in the different
of & with exponent =e; —1. Therefore

d ..—>; H II Nk/Qple‘_l—_— HPL"(I‘UCA)
Dy

s bilpe

holds. Hence it holds

log d=n3(1—1/e,)log py = Ylog 4, -
i i

This proves our assertion.

(2) We fix prime numbers p, =2, py,+++,p,. Let £ be an abelian number field
in which at most above primes are ramified. If n is fixed, there exist only a
finite number of such fields of degrees=n. So it suffices to prove that 7/logd
is arbitrarily small if # is sufficiently large. Such a field is contained in some
field of the p,*py*---p,*-th roots of unity. So its Galois group over Q is
isomorphic to a subgroup of a direct sum of cyclic groups of orders 2, p,—1,+++,p,—1,
2147 Pt e, p, 7L If mois sufficiently large, the Galois group has a cyclic
factor group of order p,*/* for some 7 and some large integer f;. Then % contains
a cyclic subfield F' of degree p,**. As the p,-parts of the ramification indices of
p; for j+1 are bounded, we can assume that they are smaller than p,”. Then
only a prime p; can be ramified in the subfield F' of F” of degree p,”. Therefore
F is contained in the field of the p;*-th roots of unity. Taking its degree into
account, F' is contained in the field E of the p,”***-th roots of unity if # =1, and
it is contained in the field E of the p,”**'-th roots of unity if ¢ # 1. Then it is
known [5, IV. Theorem 3] that

d {Pimf‘*'l(fc“) ifi=1
E p—y
pimf‘[(fﬁl)(p.—l)-ll ifi+1.
It holds
{dem.dpm ifi=1
E =
Nyjdgrde®™? ife#1.

If i+1, p, is tamely ramified in E/F, so Ngdgyr=p;""2. In the case i=1, let ¢
denote a primitive 2/+*’-th root of unity. Let ¢ be its conjugate over F. As &
=¢, ¢ is equal to one of —¢, ¢ 'and —¢7. If &° =—¢, F contains &* which is a
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primitive 2/*-th root of unity. Then F is not cyclic for f;=2. This is a
contradiction. Hence & is equal to ™ or —¢ ' Then the relative different of

E/F is generated by £€—¢ or £+&™% As 1-¢ 1+¢ 1—/—1¢ and 1+./—1¢
are all generators of the prime divisor of 2, Ny,dgr=2% holds. Therefore it holds

p logdr +pilogp, = %f i log p; .

Hence

[F:Q] _ p/t _ 3
log dr ~ log dr = f; log p,.

holds for large f;. As k contains F, and as

log d = log Nydyr+[k:F] log dr,
it holds

n [k:F][F:Q] 3
log d = [k:Fllog de = F log pv.

If we take f, sufficiently large, 7n/log d is small enough. This proves the
proposition and also proves Theorem 2.

REMARK. Proposition 1 can also be proved for relative abelian extensions.
Step (2) in the proof is given by Hasse’s conductor-discriminant formula.

3. We give some remarks relating to preceding sections. First we show the
index ¢ in section 1 is not greater than 2. This has been known for abelian case
by [3, § 20].

PROPOSITION 2. Let k be a (not necessarily normal) totally imaginary
algebraic number field of finite degree. We assume that k has a totally real
subfield k, such that [k:k,|=2. Let E and E, be unit groups of k and k,
respectively. Let W be a group of the roots of unity in k. Then it holds

(E:WE,)<2.

PROOF. As E and E, have the same rank, E/WE, is a finite abelian group.
Let €€ E be such that &< WE, for odd prime . We put
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& =¢tg,, teW,&¢cE,.

Then it holds
(&&) = (8L°)- &7,

where & is the conjugate of & over k,. We note that ££” is equal to 1 or —1
as k, is real. If we put & = +&E according as the sign of £¢°, it holds & =&’
for

& = §MI2/g, .

Then &/&, is a root of unity, so holds €€ WE,. Now let ¢ E be such that
n*e WE,. We put

nt =&, e W,noe E,.

If ¢,8,° is equal to —1, —1 is a square in k,, and a contradiction. Hence if we
put 7, = 9m°, m? = *+7n, holds and #*/n, is a root of unity. Then g’ WE, holds,
and this proves that E/WE, is of type (2,2,--+,2). Let & and n be elements of
E not contained in WE,. We put

& =%, and 7* = &y,

where & and 7, are elements of E, and ¢ is a generator of W. Substituting
elements of same classes modulo WE, for & and 7, we can assume ¢ and j are

equal to 0 or 1. If o/—1 is not contained in %, —¢ is a square in . So we can
assume i=j=0. Then & and 7 are in E,, and &/7 is in E, by Kummer theory.

Hence (E:WE,) =2 holds in this case. If ~/—1 isin 4, and if  or j is equal
to 0, &/~/—1 or 7/a/—1 is in E,. Then & or 7 is contained in WE,, which
contradicts to the hypothesis. If /—1 is contained in %, and if i =7=1, &7 is
contained in WE,. This shows (E:WE,) =2 holds also in this case.

Above proposition shows that

2R, = R= 2R,

holds in the situation of the proposition. Now let 2 be a field of the I”-th roots
of unity, where / is a prime number. Then it is known that ¢ =1. It holds

_ JSra-n-1
d = [V re-n-n
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and for the norm of relative discriminant it holds

Lif l+2

dy = Ne(6—¢7) ={
22ifl=2,

where § is a primitive //-th root of unity. So log d,/log d, goes to 0 when [

goes to infinity or f goes to infinity. If [ goss to infinity for fixed f or f goes

to infinity for fixed [, it holds

loghR _ log hy  (n/2—1) log 2  log ARy
log ~/d = log A/d log A/d log A/d
&g‘lh;_ log hoRo_ N log hl_ +L.

- log &/d T3 log A/d, log A/d 2
Hence it holds

log By 1

log A/d 2

Let f=1, then d =1""? and

-2
4

log hy~—+-log d =% log I~-t-log 1

holds when [ goes to infinity. This has been obtained by Ankeny-Chowla [1]
and Siegel [6]. Now we fix a prime [ and let f go to infinity. Then

log h1~—§~log /\/3=711—lf" [f(l—1)—1] log

holds. Iwasawa [ 4] has shown that the [/-part &, of A, is of the form
h, =17  with e, = pl” +0f+c,
where p, N and ¢ are constants. Then it holds
log Ay —log h,—> o0, as f—oo.

Therefore non-/-part of h; goes to infinity as f goes to infinity.
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