HOMOGENEOUS HYPERSURFACES IN A SPHERE
 WITH THE TYPE NUMBER 2

Ryoichi Takagi

(Received July 22, 1970)
O. Introduction. There is a problem of giving a complete classification of homogeneous hypersurfaces M^{n} in a sphere S^{n+1} of dimension $n+1(n \geqq 2)$. This problem can be naturally divided into three cases :
(i) The rank of the second fundamental form (which is called the type number) is not smaller than 3 at some point.
(ii) The type number is equal to 2 at some point.
(iii) The type number is equal to 0 or 1 at some point.

In the case (i), it is known by a theorem of Ryan [9] that the full isometry group of every homogeneous hypersurface M^{n} can be considered as a subgroup of the orthogonal group $O(n+2)$, in other words, M^{n} is an orbit of a suitable subgroup of $O(n+2)$. Hsiang and Lawson [5] gave a complete list of compact minimal hypersurfaces in S^{n+1} each of which is an orbit of a subgroup of $O(n+2)$.

The condition "minimal" is not essential because among all homogeneous hypersurfaces obtained as orbits of a compact subgroup of $O(n+2)$ there is a minimal one ([5]). Thus our problem is solved in the case (i) if the hypersurfaces are compact.

The purpose of this paper is to determine all hypersurfaces in S^{n+1} in the case (ii). To describe our results, we begin with an example of homogeneous hypersurface in S^{4}. Let $S^{n}(c)$ denote an n-dimensional sphere in Euclidean $(n+1)$-space R^{n+1} with curvature c. We consider the hypersurface in $S^{4}=S^{4}(1)$ defined by the equations

$$
\left\{\begin{array}{c}
2 x_{2}{ }^{3}+3\left(x_{1}{ }^{2}+x_{2}{ }^{2}\right) x_{5}-6\left(x_{3}{ }^{2}+x_{4}{ }^{2}\right) x_{5}+3 \sqrt{3}\left(x_{1}{ }^{2}-x_{2}{ }^{2}\right) x_{4} \tag{1}\\
\\
+3 \sqrt{3} x_{1} x_{2} x_{3}=2 \\
x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}+x_{4}{ }^{2}+x_{5}{ }^{2}=1 .
\end{array}\right.
$$

E. Cartan [2] proved that this space is a homogeneous Riemannian manifold $S O(3) /\left(\mathbf{Z}_{2} \times \mathbf{Z}_{2}\right)$ and its principal curvatures are equal to $\sqrt{3,} 0$, and $-\sqrt{3}$
everywhere. We shall denote this hypersurface by $C M^{3}$.
Our main results are the following
THEOREM 1. The manifold $C M^{3}$ is the only connected homogeneous hypersurface in S^{4} whose type number is equal to 2 at some point.

Theorem 2. Let M be a 2-dimensional connected complete Riemannian manifold of constant curvature $c(\neq 1)$. If M admits an isometric immersion in S^{3}, then either $c>1$ and M is isometric to $S^{2}(c)$, or $c=0$, that is, M is flat.

A theorem of Takahashi [11] asserts that there are no homogeneous hypersurfaces in $S^{n}(n \geqq 5)$ whose type number is equal to 2 at some point. Therefore Theorem 1 and 2 give a solution to the case (ii), which will be proved in $\S 1$ and $\S 2$. Finally, the case (iii) is solved by a theorem of O'Neill [8], which will be stated in § 3 .

The author wishes to express his hearty thanks to Professor T. Takahashi for helpful discussions.

1. A proof of Theorem 1. In this section, we shall adopt the notations of Takahashi [11] and refer to it for detail. For a moment, for later use we suppose M is an n-dimensional Riemannian submanifold of S^{n+1}. Let $F\left(S^{n+1}\right)$ denote the bundle of orthonormal frames of S^{n+1} and $\theta_{i}, \theta_{i j}(i, j=1, \cdots, n)$ denote the canonical 1 -forms, the connection 1 -forms respectively. Then the structure equations for $F\left(S^{n+1}\right)$ is given by

$$
\begin{align*}
d \theta_{i} & =-\sum_{j} \theta_{i j} \wedge \theta_{j}, \theta_{i j}+\theta_{j i}=0 \tag{2}\\
d \theta_{i j} & =-\sum_{k} \theta_{i k} \wedge \theta_{k j}+\theta_{i} \wedge \theta_{j}, \quad i, j, k=1, \cdots, n+1 \tag{3}
\end{align*}
$$

The bundle $F(M)$ of orthonormal frames of M can be considered as a subbundle of $F\left(S^{n+1}\right)$ such that the restriction $\theta_{n+1} \mid F(M)$ of θ_{n+1} to $F(M)$ vanishes. Then putting $\omega_{i}=\theta_{i} \mid F(M)$ and $\omega_{i j}=\theta_{i j} \mid F(M)$ we have the following structure equations for $F(M)$:

$$
\begin{align*}
& d \omega_{i}=-\sum_{j} \omega_{i j} \wedge \omega_{j}, \omega_{i j}+\omega_{j i}=0 \tag{4}\\
& d \omega_{i j}=-\sum_{k} \omega_{i k} \wedge \omega_{k j}+\Omega_{i j}, \quad i, j=1, \cdots, n \tag{5}
\end{align*}
$$

where $\Omega_{i j}$ are the curvature forms of M. The equation $\omega_{n+1}=0$ implies that $\phi_{i}=\omega_{n+1 i}(i=1, \cdots, n)$ is written as

$$
\begin{equation*}
\phi_{i}=\sum_{j} H_{i j} \omega_{j}, \quad H_{i j}=H_{j i} . \tag{6}
\end{equation*}
$$

Then it follows from (2) and (3) that

$$
\begin{gather*}
d \phi_{i}=-\sum_{j} \omega_{i j} \wedge \phi_{j} \tag{7}\\
\Omega_{i j}=\omega_{i} \wedge \omega_{j}+\phi_{i} \wedge \phi_{j} . \tag{8}
\end{gather*}
$$

Let G be the full isometry group of M and H be the isotropy subgroup at a fixed point $O \in M$. If M is homogeneous, the orbit $G\left(u_{0}\right)$ of a frame u_{0} at O under the natural action of G on $F(M)$ is a principal fibre bundle over M with structure group H. The restriction of the differential forms $\omega_{i}, \omega_{i j}$, and $\Omega_{i j}(i, j$ $=1, \cdots, n)$ are invariant under the action of G on $G\left(u_{0}\right)$.

Now in order to prove Theorem 1, we assume that M is a connected homogeneous hypersurface in S^{4}. By means of Lemma 3.1 and 3.5 in [11] we may set

$$
\begin{gather*}
\phi_{1}=H_{11} \omega_{1}+H_{12} \omega_{2}, \tag{9}\\
\phi_{2}=H_{21} \omega_{1}+H_{22} \omega_{2}, \tag{10}\\
\phi_{3}=0, \tag{11}\\
\omega_{31}=b \omega_{2}, \tag{12}\\
\omega_{32}=c \omega_{1}, \tag{13}
\end{gather*}
$$

where $H_{11} H_{22}-H_{12}^{2}$ is a non zero constant and b, c are also constant on $G\left(u_{0}\right)$. Taking the exterior differentiation of (12) and (13), we have

$$
\begin{aligned}
& \left\{(b+c) \omega_{12}-(1+b c) \omega_{3}\right\} \wedge \omega_{1}=0, \\
& \left\{(b+c) \omega_{12}+(1+b c) \omega_{3}\right\} \wedge \omega_{2}=0,
\end{aligned}
$$

from which we find that (A) $1+b c=0, b+c=0$ or (B) $1+b c=0, \omega_{12}=0$. In the case (A), taking exterior differentiation of (11), we have

$$
\left(c H_{22}-b H_{11}\right) \omega_{1} \wedge \omega_{2}=0
$$

and hence

$$
H_{11}+H_{22}=0 .
$$

Denoting then by λ any principal curvature, we see that λ is equal to one of 0 , $\sqrt{H_{11}^{2}+H_{12}^{2}}$, and $-\sqrt{H_{11}^{2}+H_{12}^{2}}$. Therefore λ is constant on $G\left(u_{0}\right)$. However, E. Cartan [2] proved that the manifold $C M^{3}$ is the only complete minimal hypersurface in S^{4} with three distinct constant principal curvatures up to congruences in S^{4}.

In the sequel we want to show that the case (B) can not occur, and for it assume the contrary. Then $\omega_{1}, \omega_{2}, \omega_{3}$ form a basis for $G\left(u_{0}\right)$. Taking exterior differentiation of (9) and (10), we have

$$
\begin{align*}
& d H_{11} \wedge \omega_{1}+b H_{11} \omega_{2} \wedge \omega_{3}+d H_{12} \wedge \omega_{2}+c H_{12} \omega_{1} \wedge \omega_{3}=0 \tag{14}\\
& d H_{12} \wedge \omega_{1}+b H_{12} \omega_{2} \wedge \omega_{3}+d H_{22} \wedge \omega_{2}+c H_{22} \omega_{1} \wedge \omega_{3}=0 \tag{15}
\end{align*}
$$

Put $d H_{11}=\sum_{i} \alpha_{i} \omega_{i}, d H_{12}=\sum_{i} \gamma_{i} \omega_{i}$ and $d H_{22}=\sum_{i} \beta_{i} \omega_{i}$ on $G\left(u_{0}\right)$. Then (14) and (15) amount to

$$
\left\{\begin{array}{rl}
\alpha_{2} & =\gamma_{1} \tag{16}\\
\alpha_{3} & =c H_{12} \\
b H_{11} & =\gamma_{3}
\end{array} \quad, \quad\left\{\begin{aligned}
\beta_{1} & =\gamma_{2} \\
\beta_{3} & =b H_{12} \\
c H_{22} & =\gamma_{3}
\end{aligned}\right.\right.
$$

Taking exterior differentiation of $\omega_{12}=0$, we find

$$
\begin{equation*}
H_{11} H_{22}-H_{12}^{2}-b c+1=0 \tag{17}
\end{equation*}
$$

Substituting $H_{11}=\gamma_{3} / b, H_{22}=\gamma_{3} / c$ obtained from (16) into (17), we have the following differential equation

$$
\left(\partial H_{12} / \partial x_{3}\right)^{2}+H_{12}^{2}-2=0
$$

where $\left(x_{1}, x_{2}, x_{3}\right)$ be a local coordinate system on a neighbourhood U of $G\left(u_{0}\right)$ such that $d x_{3}=\omega_{3}$. Then the above equation has the solution $H_{12}=\sqrt{2} \sin f$, where f is a function on U of the form $f\left(x_{1}, x_{2}, x_{3}\right)=x_{3}+a\left(x_{1}, x_{2}\right)$. Thus from (16) we get on U

$$
\begin{aligned}
& H_{11}=-\sqrt{2} c \cos f \\
& H_{22}=-\sqrt{2} b \cos f
\end{aligned}
$$

Then putting $d f=\omega_{3}+f_{1} \omega_{1}+f_{2} \omega_{2}$ we have from (14) and (15)

$$
f_{1} b \sin f-f_{2} \cos f=0
$$

$$
f_{1} \cos f-f_{2} c \sin f=0
$$

which imply that $f_{1} \equiv 0$ and $f_{2} \equiv 0$ on U, namely, $d f=\omega_{3}$. Thus we see

$$
0=d(d f)=d \omega_{3}=(b-c) \omega_{1} \wedge \omega_{2}
$$

and so $b-c=0$, which contradicts the fact that $1+b c=0$. This completes the proof of Theorem 1. q.e.d.

Remark. The manifold $C M^{3}$ appears in the list due to Hsiang and Lawson (table II, [6]) since it is a minimal orbit of a suitable compact subgroup of $O(5)$ which is isometric to $S O(3)$.
2. A proof of Theorem 2. We shall prove the following theorems containing Theorem 2 as a special case.

THEOREM 3. Let $M^{n}(c)$ denote an n-dimensional connected complete Riemannian manifold of constant sectional curvature c. If $c_{1}<c_{2}$ and $c_{1} \neq 0$, then $M^{2}\left(c_{1}\right)$ can not be isometrically immersed in $M^{3}\left(c_{2}\right)$.

THEOREM 4. Let $c_{1}>c_{2}$ and $c_{1}>0$. If $M^{2}\left(c_{1}\right)$ is a surface isometrically immersed in $M^{3}\left(c_{2}\right)$, then $M^{2}\left(c_{1}\right)$ is totally umbilic, i.e., it is a standard sphere $S^{2}\left(c_{1}\right)$ in $M^{3}\left(c_{2}\right)$.

The case $c_{1}<0$ and $c_{2}=0$ in Theorem 3 is the well-known Hilbert's theorem [4]. Theorem 3 can be proved by the method similar to Hilbert's one. In the following we shall check that the formulas he employed remain valid for our situation. Assume $M^{2}\left(c_{1}\right)$ is isometrically immersed in $M^{3}\left(c_{2}\right)$ with the property $c_{1}<c_{2}$. For a local coordinate system (x_{1}, x_{2}) of $M^{2}\left(c_{1}\right)$ we denote the first fundamental form I and the second fundamental form II of $M^{2}\left(c_{1}\right)$ by

$$
\begin{aligned}
\mathrm{I} & =E d x_{1}^{2}+2 F d x_{1} d x_{2}+G d x_{2}{ }^{2} \\
\mathrm{II} & =L d x_{1}{ }^{2}+2 M d x_{1} d x_{2}+N d x_{2}{ }^{2}
\end{aligned}
$$

From the Gauss equation, we have

$$
\begin{equation*}
c_{1}=c_{2}+\left(L N-M^{2}\right) / g \tag{18}
\end{equation*}
$$

where we put $g=E G-F^{2}$. Our assumption implies that

$$
L N-M^{2}<0 .
$$

It follows that in each tangent plane of $M^{2}\left(c_{1}\right)$ there are two real asymptotic directions which are defined by the differential equation

$$
\mathrm{II}=L d x_{1}^{2}+2 M d x_{1} d x_{2}+N d x_{2}^{2}=0
$$

A curve is called asymptotic if it is a differentiable curve each of whose velocity vector belongs to one of asymptotic directions. Choose here as $\left(x_{1}, x_{2}\right)$ the following special one. First draw an asymptotic curve a through a fixed point 0 on $M^{2}\left(c_{1}\right)$ and denote by p the point on a with parameter x_{1} after parametrizing a by arc length from 0 . Next draw another asymptotic curve b through p and denote by q the point on b with parameter x_{2} after parametrizing b by arc length from p. Then the obtained mapping $\left(x_{1}, x_{2}\right) \rightarrow q$ is a local diffeomorphism. About such local coordinate system (x_{1}, x_{2}) we find

Lemma 5. Two curves $x_{1}=$ const. and $x_{2}=$ const. are asymptotic, that is, $L \equiv 0, N \equiv 0$, and $M \neq 0$.

Proof. By definition, it is evident that $x_{1}=$ const. is asymptotic. Thus II must have $d x_{1}$ as a factor and so we have $N=0$. Then the Codazzi's formula amounts to

$$
\left\{\begin{array}{r}
\partial M / \partial x_{1}+\left\{\begin{array}{c}
1 \\
12
\end{array}\right\} L+\left\{\begin{array}{c}
2 \\
12
\end{array}\right\} M=\partial L / \partial x_{2}+\left\{\begin{array}{c}
1 \\
11
\end{array}\right\} M \tag{19}\\
\left\{\begin{array}{c}
1 \\
22
\end{array}\right\} L+\left\{\begin{array}{c}
2 \\
22
\end{array}\right\} M=\partial M / \partial x_{2}+\left\{\begin{array}{c}
1 \\
21
\end{array}\right\} M
\end{array}\right.
$$

where $\left\{\begin{array}{c}i \\ j k\end{array}\right\}$ denote the Christoffel's symols*). Now substituting $g=M^{2} /\left(c_{2}-c_{1}\right)$ obtained from (18) into the formula

$$
\frac{\partial \log \sqrt{g}}{\partial x_{i}}=\sum_{j}\left\{\begin{array}{l}
j \\
i j
\end{array}\right\}
$$

we have

$$
\frac{\partial M}{\partial x_{i}}=\sum_{j}\left\{\begin{array}{l}
j \tag{20}\\
i j
\end{array}\right\} M .
$$

Noting that $G \equiv 1$, we can easily see by (19) and (20) that

[^0]\[

$$
\begin{gather*}
\partial L / \partial x_{2}=\left(c_{2}-c_{1}\right)(L-2 M F)\left(\partial E / \partial x_{2}\right) / 2 M^{2} \tag{21}\\
\partial E / \partial x_{2}=L\left(\partial F / \partial x_{2}\right) / M \tag{22}
\end{gather*}
$$
\]

from which we have the differential equation on L

$$
\begin{equation*}
\partial L / \partial x_{2}=\left(c_{2}-c_{1}\right)(L-2 M F) L\left(\partial F / \partial x_{2}\right) / 2 M^{3} \tag{23}
\end{equation*}
$$

For any fixed x_{1}, this equation has a special solution $L\left(x_{1}, x_{2}\right) \equiv 0$. But $L\left(x_{1}, 0\right)=0$ holds along the asymptotic curve $x_{2}=0$. Thus by uniqueness we see $L\left(x_{1}, x_{2}\right) \equiv 0$ whenever $\left(x_{1}, x_{2}\right)$ is defined, which implies that $x_{2}=$ const. is asymptotic. q. e.d,

From (22) it turned out that $\frac{\partial E}{\partial x_{2}}=0$, that is, $E \equiv 1$. Now the first and second fundamental forms can be written as

$$
\begin{aligned}
\mathrm{I} & =d x_{1}^{2}+2 F d x_{1} d x_{2}+d x_{2}^{2}, \\
\mathrm{II} & =2 M d x_{1} d x_{2} .
\end{aligned}
$$

Then the egregium theorem says

$$
\begin{equation*}
c_{1} g^{2}=\frac{\partial^{2} F}{\partial x_{1} \partial x_{2}} g+F \frac{\partial F}{\partial x_{1}} \frac{\partial F}{\partial x_{2}} . \tag{24}
\end{equation*}
$$

We denote by φ the angle between two vectors $\partial / \partial x_{1}$ and $\partial / \partial x_{2}$. Then (24) means

$$
\begin{equation*}
\frac{\partial^{2} \varphi}{\partial x_{1} \partial x_{2}}=-c_{1} \sin \varphi . \tag{25}
\end{equation*}
$$

If $c_{1} \neq 0$, from (25) we have a generalization of a classical result :
THEOREM 6. Let Γ be a quadrilateral on $M^{2}\left(c_{1}\right)$ whose edges consist of asymptotic curves. Let S denote the area of Γ and $\alpha, \beta, \gamma, \delta$ denote the four interior angles of Γ. Then

$$
S=-(\alpha+\beta+\gamma+\delta-2 \pi) / c_{1} .
$$

Making use of Lemma 5 and Theorem 6 essentially, Hilbert [4] proved
THEOREM 7. With respect to the above coordinate system $\left(x_{1}, x_{2}\right), M^{2}\left(c_{1}\right)$
is diffeomorphic to 2-plane.
From this theorem we may conclude that $M^{2}\left(c_{1}\right)$ can not be isometrically immersed in $M^{3}\left(c_{2}\right)$ if $c_{1}>0$. In the case $c_{1}<0$ the same argument as Hilbert's one induces a contradiction. Thus Theorem 3 is proved. q.e.d.

Proof of Theorem 4. Let λ, μ denote the principal curvatures of $M^{2}\left(c_{1}\right)$. Whether $M^{2}\left(c_{1}\right)$ is orientable or not, we may assume that λ^{2}, μ^{2} are both continuous function on $M^{2}\left(c_{1}\right)$ with $\lambda^{2} \geqq \mu^{2}$. Then an analogous argument to one in [4] implies that λ^{2} can not attain a maximum at a point such that $\lambda^{2}>\mu^{2}$. Thus we have $\lambda \equiv \mu$ since $\lambda \mu>0$ by the relation $c_{1}=c_{2}+\lambda \mu$. q. e. d

REmARK. In Theorem 2 the author could not clarify the manner of the isometric immersion of a flat Riemannian manifold in S^{3}. It seems that a flat hypersurface in S^{3} is congruent to a Clifford torus $S^{1}(r) \times S^{1}(s)$ with $1 / r+1 / s$ $=1$.
3. The case (iii). In this section we shall give another proof of the following theorem due to O'Neill [8]. From this proof we obtain new results as a by-product.

THEOREM 8. If $M^{n}(c)(c>0)$ is a hypersurface isometrically immersed in $S^{n+1}(c)$, then $M^{n}(c)$ is isometric to a great sphere $M^{n}(c)$.

First we shall establish
Proposition 9. Let M^{n} be an n-dimensional compact Riemannian manifold such that there exists a tangent 2-plane at each point of M whose sectional curvature is not greater than $c>0$. Then M can not be isometrically immersed in any open hemisphere in $S^{n+1}(c)$.

Proof of Proposition 9. Suppose M is isometrically immersed in $S^{n+1}(c)$. Let σ be a local cross section of M to the bundle $F(M)$ defined in $\S 1$. We denote the l-forms $\sigma^{*} \omega_{i}, \sigma^{*} \omega_{\iota g}$ and $\sigma^{*} \phi_{i}$ pulled back to M by σ by the same letters $\omega_{i}, \omega_{i j}$ and ϕ_{i} respectively*). We can consider σ as a locally defined orthonormal frame field $\left(x, e_{1}, \cdots, e_{n+1}\right), x \in M^{n}$, with e_{n+1} normal to M and $\omega_{1}, \cdots, \omega_{n}$ as a locally defined coframe field dual to e_{1}, \cdots, e_{n}. Then we have the vectorial equations

$$
\begin{gathered}
d_{e_{1}} x=e_{i}, \\
d_{e_{i}} e_{j}=\sum_{k} \omega_{k j}\left(e_{i}\right) e_{k}+\phi_{j}\left(e_{i}\right) e_{n+1}-\omega_{j}\left(e_{i}\right) x,
\end{gathered}
$$

[^1]where $d_{e_{1}}$ denotes the derivative in the direction of e_{l}. For any point p of $S^{n+1}(c)$ consider the mapping $f_{p}=f: M \rightarrow R$ which sends $x \in M$ to $f(x)=\langle p, x\rangle$, where $<,>$ is the canonical inner product of R^{n+2}. Since M is compact, f attains a minimum at some point of M, say x_{0}. If $x_{0}=-p$, there is nothing to prove. Thus we assume that $x_{0} \neq-p$. For each i we obtain at x_{0}
\[

$$
\begin{equation*}
d_{e_{1}} f=<p, d_{e_{1}} x>=<p, e_{i}>=0 \tag{26}
\end{equation*}
$$

\]

and

$$
\begin{aligned}
d_{e_{\mathrm{t}}}^{2} f & =<p, d_{e_{i}} e_{i}> \\
& =<p, \sum_{j} \omega_{j i}\left(e_{i}\right) e_{j}+\phi_{i}\left(e_{i}\right) e_{n+1}-x_{0}> \\
& =<p, H_{i i} e_{n+1}-x_{0}>\geqq 0 .
\end{aligned}
$$

Hence

$$
\begin{equation*}
<p, x_{0}>\leqq H_{i i}<p, e_{n+1}>, i=1, \cdots, n \tag{27}
\end{equation*}
$$

Now retake a cross section σ so that $\lambda_{i}=H_{i i}, i=1, \cdots, n$ are all eigenvalues of the second fundamental form at x_{0}. Let $u=\sum_{i} a_{i} e_{i}, v=\sum_{i} b_{i} e_{i}$ be an orthonormal basis for a tangent 2 -plane whose sectional curvature $K(u, v)$ is not greater than c. Then it is easily seen from the Gauss equation that

$$
K(u, v)=c+\sum_{u<j}\left(a_{i} b_{j}-a_{j} b_{i}\right)^{2} \lambda_{i} \lambda_{j} .
$$

Since $K(u, v) \leqq c$ and $a_{i} b_{j}-a_{j} b_{i}(i<j)$ don't all vanish, there exist indices i and j with $\lambda_{i} \lambda_{j} \leqq 0$. Thus one of $\lambda_{i}<p, e_{n+1}>$ and $\lambda_{j}<p, e_{n+1}>$ is non-positive, and hence from (27) we have

$$
\begin{equation*}
<p, x_{0}>\leqq 0 \tag{28}
\end{equation*}
$$

which shows that M is not contained in the hemisphere with pole p. Since p is arbitrary, Proposition 9 is proved. q.e.d.

Corollary 10. Let M be as in Proposition 9. If M admits an isometric immersion $\iota: M \rightarrow S^{n+1}(c)$, then the diameter ρ of M is greater than $\pi / 2 \sqrt{c}$.

Proof of Corollary 10. Let d denote the distance function on M. Choose two point x_{1}, x_{2} in M with $d\left(x_{1}, x_{2}\right)=\rho$. Let p_{0} be a point of $\iota\left(M^{n}\right)$ where $f_{\iota\left(x_{1}\right)}$ attains a minimum and $x_{0} \in \iota^{-1}\left(p_{0}\right)$. If γ denotes a shortest geodesic
segment from x_{1} to x_{0}, we have from (28)

$$
\begin{aligned}
\rho= & d\left(x_{1}, x_{2}\right) \geqq d\left(x_{1}, x_{0}\right)=\text { length of } \gamma=\text { length of } \iota \gamma \text { in } \iota(M) \\
& \geqq \text { distance between } \iota\left(x_{1}\right) \text { and } \iota\left(x_{0}\right) \text { in } S^{n+1}(c) \geqq \pi / 2 \sqrt{c} .
\end{aligned}
$$

But all equalities don't hold simultaneously. In fact, if not so, then $\iota(\gamma)$ must be a geodesic segment of $S^{n+1}(c)$ contained in $\iota(M)$, which contradicts (26). q. e.d.

Proof of Theorem 8. The diameter of M is greater than $\pi / 2 \sqrt{c}$ since M satisfies the condition of Corollary 10. Theorem 8 now follows from the following theorem of Shiohama [10].

Theorem 11. Let M be a complete Riemnanian manifold whose sectional curvature K satisfies

$$
0<\delta c \leqq K \leqq c
$$

If the diameter of M is greater than $\pi / 2 \sqrt{c}$, then M is symply connected.
Remark. Proposition 8 is a slight generalization of a theorem of Myers (Theorem 4, [7]).

References

[1] E. CARTAN, La déformations des hypersurfaces dans l'espaces euclidean réel à n dimensions, Oeuvres completes, Part. III, vol. 1, 185-219.
[2] E. Cartan, Familles de surfaces isoparamétriques dans les espaces à curbure constante, ibid. vol. 2, 1431-1445.
[3] S. S. Chern, Som new characterization of the Euclidean sphere, Duke Math. J., 12(1945), 279-290.
[4] D. Hilbert, Ueber Flächen von konstanter Gausscher Krümmung, Trans. Amer. Math. Soc., 2(1901), 87-99.
[5] W. Y. Hsiang, On the compact homogeneous minimal submanifolds, Proc. Nat. Acad. Sci. U. S. A., 56(1966), 5-6.
[6] W. Y. Hsiang and H. B. Lawson, Jr., Minimal submanifolds of low cohomogeneity, to appear.
[7] S. B. MYERs, Curvature of closed hypersurfaces and non-existence of closed minimal hypersurfaces, Trans. Amer. Math. Soc., 71(1951), 211-217.
[8] B. O'Neill, Isometric immersions which preserve curvature operators, Proc. Amer. Math. Soc., 13(1962), 759-763.
[9] P. J. Ryan, Homogeneity and some curvature conditions for hypersurfaces, Tôhoku Math. J., 21(1969), 363-388.
[10] K. Shiohama, On the diameter of δ-pinched manifolds, to appear.
[11] T. Takahashi, Homogeneous hypersurfaces in spaces of constant curvature, J. Math. Soc. Japan, 22(1970).

[^0]: *) In the remainder of this section the indices i, j, k stand for 1 or 2.

[^1]: *) In the following the indices i, j, k run from 1 to n.

