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1. Introduction. The Riemannian curvature tensor R of a locally symmetric
Riemannian manifold (M, g) satisfies

(*) R(X> Y)-R = 0 for any tangent vectors X and Y,

where the endomorphism R{X, Y) operates on i? as a derivation of the tensor
algebra at each point of M.

Let i?j be the Ricci tensor of (M, g). Then (*) implies in particular

(**) R{X, Y) 2?i = 0 for any tangent vectors X and Y.

In the present paper we shall prove

THEOREM A. Let Mm (m^3) be an m-dimensional connected complete
conformally flat space satisfying the condition (**). Then Mm is one of the
following manifolds:

( I ) A space of constant curvature.

( I I ) A locally product space of a space of constant curvature K
and a space of constant curvature —K.

(III) A locally product space of a space of constant curvature K
and a 1-dimensional space.

The authors wish to express their sincere thanks to Prof. S. Tanno who gave
them many valuable suggestions and guidances, and also thanks to Prof. S. Sawaki
who gave the authors many guidances.

2. Conformally flat cases of dimension m > 3 . Let Mm (m>3) be a
connected conformally flat spaces, then the curvature tensor R of Mm is given by
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(2.1) R{X,Y) = {l/{m-2)){AXAY+XAAY)-{tmceA/{m-l)(rn-2))XAY,

for any tangent vectors X and Y of Mm, where A denotes a field of symmetric

endomorphism which corresponds to the Ricci tensorRί9 that is, Rx{X,Y) = g{AX,Y),

and XAY denotes the endomorphism which maps Z upon g(Y, Z)X— g(X, Z)Y.

At a point of Mm, let {eu e2, , em} be an orthonormal basis of the tangent

space such that Aei = Xieu lfgzfgra. Then the equation (2.1) implies

es) = ((m -l){m- 2))

Now by the equation (**) and

[R{ei,e5)-Rλ]{ek,eh) = - Rx{R{eue^ek,e^ - i ? ^ , R{eue5)eh),

we have

(2.2) (λi-λ^Um-lJUί+λ^-E^^O, for f>j.

In this paper, the indices z, /, k,h, run from 1 to m.

LEMMA 2.1. At each point of tM
m, the rank of R1 is m, m — 1, or 0.

PROOF. If there exists an integer r ( l < r < m ) such that λ i = ==λr

m

λr+i^O, , XmΦθ, and if we put Λ = 2Z λA, then (2. 2) implies
A : = l

(m — l )λ r +i — Λ = 0 ,

Hence λ r + i = — =λ m =λ=^0. Again (2.2) implies (m — l)λ— [m—r)χ={r — l )λ=0,

that is, λ = 0 which is a contradiction. Q. E. D.

LEMMA 2. 2. / / <z// ί/̂  λi'5 have the same sign at a point of Mm, then

λi = λ2 = λm = λ, at the point.

PROOF. If there exists an integer r (l^r<m) such that λ i = — = λ r = λ,

, λ m ^ λ , then (2.2) implies
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Heace λ r + i = — =Xm = μΦ0. Again (2.2) implies (m — l)(\ + μ)— r λ — (m—r)/i=0,

that is,

(2.3) (ra-r-l)λ= (l-r)/i.

Then, as ra>3, from (2. 3) we have rΦl, ra —1. But from (2. 3) we have also λ/*<0.
This is a contradiction. Q. E. D.

Now we have

PROPOSITION 2. 3. Let Mm {m > 3) be a connected conformally flat
space satisfying the condition (**). If the Ricci form Rλ is definite at least
at one point of M m , then Mm is a space of constant curvature.

PROOF. If the Ricci form i?χ is positive (resp. negative) definite at some point
x0 € Mm, then, by the continuity argument for the characteristic polynomial of A,
i?x is positive (resp. negative) definite near x0 in M m. Thus, let W= [x € Mm Ri
is positive (resp. negative) definite at x}, which is an open set. Let Wo be a
connected component of x0 in W. Then by lemma 2. 2, λ i = = λ m = λ, on Wo

and \(x) is a differentiable function on Wo, since X(x) = trace A/m. Now, the
open submanifold WQ becomes a conformally flat space by the Riemannian metric
which is the restriction of g to Wo. Thus Wo becomes an Einstein space by the
induced metric from Mm. As m > 3, X{x) is a constant function on Wo. Hence,
(2.1) implies that Wo is a space of constant curvature λ/(m — 1). Therefore, by
the connectivity of Mm and the continuity argument for the characteristic polynomial
of A, it follows that W0=Mm. Q.E.D.

Next, we assume that the Ricci form Rx is non-degenerate and indefinite at
some point x0 € Mm. Then, from the proof of lemma 2. 2, there exists an integer
r (l<r<m — 1) such that λ i = •*• = λ r = λ > 0 , and λ r + i = ••• =λ7 Λ=At<0, at x0. By
the continuity argument for the characteristic polynomial of A, let W = [x € Mm;
R is non-degenerate and indefinite at x}, which is an open set. Let Wo be a
connected component of x0 in W.

Then it follows that r is constant on Wo and non-zero eigenvalues, \(x) >0>
and μ(x) < 0 are different iable functions on Wo, since, if mΦ2r, then λ(:r)=F(.r),
/ι»(x) = G(x), or λ(x) = G(α:), μ(x)=F(x) xz Wo, where
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F[x) = ((1 - r)/(m - l)(m - 2r)) trace A,

G(.z) = ((ra-r- l)/(ra- l)(ra-2r)) trace A,

and if m = 2r, then λ( r) = 2 V ( - l ) r d e t A, /*(*) = - 2 V ( - l ) r d e t A,
We define two distributions on Wo as follows :

Tx(x) = {Xz MZ;AX= x(x)X}9

T2(x) = {Xe MZ; AX= μ{x)X}.

LEMMA 2.4. Tx(x) and Tt[x) are differentiable on Wo.

Proof is given by the slight modifications of the arguments in [3].

By lemma 2.4, for any x e Wo we may choose a differentiable field of
orthonormal basis [Xl9 X2> > Xm} n e a ^ Λ: in Wo in such a way that [Xl9 , Xr}
and [Xr+i> * * *, Xm} are bases near x in Wo for TΊ and T 2, respectively.

By making use of (2.1) and (2. 3), we have

LEMMA 2. 5. Wίίλ respect to the basis {Xu X2, , Xm}, we have

R(Xa, Xb) — KXa Λ Xb>
(2.4)

and otherwise zero, where K = (λ — μ)/(m — 2) αw<ί 1 ̂  α, δ, ί:, ^ r , r + 1
^ w, t;, w, ^ m.

Now, in general, for a differentiable local field of orthonormal basis {Xi, X2,
• , Xm} in a Riemannian manifold (M, ^), we may put

(2.5)

where Vx denotes covariant differentiation for the Riemannian connection constructed
by g, and yiJk= — yt kj.

PROPOSITION 2.6. Let Mm (m>3) be a connected conformally flat
space satisfying the condition (**). If the Ricci form Rλ is non-degenerate
and indefinite of signature 2r — m at least at one point of Mm, then Mm is a
locally product space of an r-dimensional space of constant curvature K and
an (m — r)-dimensional space of constant curvature —K, where 1 < r <Cm — 1.
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PROOF. Taking account of (2.4) and (2.5), we have

m

(VΣui?)(Xn,Xt) = XuKXa ΛXt

a AYt- KΣΎuacXc A
c=l

= XuKXa AXb + KΣ, yuavXυ AXb + KΣ, yuiΏXa A Xv,
v=r+i v=r+l

m r

(VXαi?) (X», X.) = K Σ. Tα »v Xv A Xu ~ K Σ, Ίa no Xb A Xe,
v=r+l c=l

(Vχ.i?) (X., X«) = - K Σ, Ίb uc Xc A Xa + K E % « Xu A X,.
v=r+l

By the second Bianchi identity, we have Xu K = 0, and γM υα = 0. Similarly we
have XaK = 0, and γα δM = 0. Where a, b — 1, , r; w, u = r + 1, , m.
Thus Wo is a locally product space of an r-dimensional space of constant curvature
K and an (m — r)-dimensional space of constant curvature — K. Therefore, by the
connectivity of Mm and the continuity argument for the characteristic polynomial
of A, it follows that Wo = Mm Q. E. D.

Lastly, we assume that the rank of the Ricci form Rt is m — 1 at some point
x0 € Mm, and furthermore Mm is complete. Then, from the proofs of lemma 2.1
and lemma 2. 2, and the continuity argument for the characteristic polynomial of A,
the rank of i?j is m — 1 near x0 in Mm. Thus let W = {x € Mm the rank of
i?j is m — 1 at x}9 which is an open set. Let Wo be a connected component of
x0 in W. From the proof of lemma 2.1, we see that all the non-zero eigenvalues
of A at each point of Wo are equal to each other, say, λ, and the non-zero
eigenvalue X(x) is a differentiable function on Wo, since X(x) = trace A/(m — 1).

We define two distributions on Wo as follows :

Tx(x) = {Xz MZ; AX=

T0(χ)= {X^M?

Corresponding to lemma 2. 4, we have
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LEMMA 2.7. Tx{x) and T0(x) are differentiable on Wo.

Thus, for any x € Wo, we may choose a differentiable field of orthonormal basis
{Xu X2, , Xm} near x in Wo in such a way that {Xu — , Xm-λ} and {Xm}
are bases near x in Wo for 7\ and To, respectively. Corresponding to lemma
2. 5, we have

LEMMA 2. 8. With respect to the basis {X19 X2, , Xm}, we have

(2.6) R(Xa,Xb) = KXaΛX>,

and otherwise zero, where K = \/(m — 2), and l^a,b,c, "t==m — l.

LEMMA 2. 9. Tλ is involutive.

PROOF. Taking account of (2. 5) and (2. 6), we have

X») = Xc^Xα ΛX» + KycamXM ΛX4 + KycbmXa Λ Xm>

,,X.) = XaKXb Λ Xc + KΊahmXn ΛX e + K γ o c m X 6 Λ X,,

X.) = X4^Xo ΛXO + ^ % c m X m AXa + KybamXc AXm.

By the second Bianchi identity, we have

(2.7) XeK=09 c = l,- .,m-l.

(2.8) Ίabm-Ίbam = 0, for α ̂  £, α, 6 = 1, , m - 1.

By (2.8), Tx is involutive. Q. E. D.

For each xz Wo, we denote by Mi(x) the maximal integral manifold through
x of 7V Then, by (2.7), i^ is constant on each Λfi(.z).

LEMMA 2.10. Eύ^Λ trajectory of Xm is a geodesic.

PROOF. From (2.5) and lemma 2.8, we have

m-l

»Xm) = — KΣVamcXb Λ XC,
c=l

m-l

5 me Xc Λ -Xo
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By the second Bianchi identity, we have

(2.9) 7 m m α = 0,

(2.10) Ύαmδ = 0,

(2.11) XmK + K(yama+ybmb) = 0, for aΦb, α, b = 1,. . , m- 1.

Thus, from (2.9), it follows that VXmXm = 0. Q. E. D.

From (2.11) we have

(2.12) 7χ m l = γ2 m 2 = = ym-! mm-x.

Thus, from lemma 2. 8, taking account of (2. 9), (2.10) and (2.12), we have

R(Xa9 Xm)Xm = Vxβ VX mXm - Vχm VX βXm - Vtχβ,χm] Xm

m-1

Λ m i a, ma -^α / r lamatmacΛ-c

m-l m-1

^ Ύα maJamcXc + ^ Ύm αc Ύc me Xc
c=l c=l

-̂ *-m /α mα ^ α ^Vα m α ) -Λα U,

that is

(2.13) XmΎαmα + (7αmα)2 = 0, for α = 1, , TΠ - 1.

LEMMA 2.11. Any geodesic whose tangent belongs to To at each x € Wo

is infinitely extendϊble in Wo.

PROOF. For any xz Wo, let L{s) be a geodesic with arc length s, whose
initial point is x and initial direction at x belongs to To. Then, by lemma 2.10,
for sufficiently small s each tangent vector at 5 of L(ί) belongs to T o.

Thus, from (2.11) and (2.12), we have

d2K o dK

that is,
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(2.14) 2K^

If K>0, then (2.14) implies

(2.15) ^

If K<0, then (2.14) implies

(2.16) d%

Therefore, from (2.15) and (2.16), we have

(2.17) K = l/[as + b)\ and -l/[as + 6)2, respectively,

where a and & are certain constants. As a geodesic in Mm

9 L(s) is infinitely
extendible. If this geodesic does not lie in Wo, let s0 be a point such that
L(s) £ Wo for s <s0 but L(s) ί TV0. The characteristic polynomial of Λ at L(s),
s<s0, is (ί — λfa))*11-1*. That of A at L(s0) is therefore the limit as s —>s0, namely,
(t- \(so))m-1t. But λ(s0) = limλ(s) = lim±{m-2)/(as + b)2 = ±(m-2)/(aso+b)2

can not be 0. This is a contradiction. It follows that L(s0) e Wo. Q. E. D.

PROPOSITION 2.12. Let Mm (m > 3) be a connected complete conformally
flat space satisfying the condition (**). If the rank of the Ricci form R is
m — 1 at least at one point of Mm, then Mm is a locally product space of an
(m — 1)-dimensional space of constant curvature K and a 1-dimensional space.

PROOF. From lemma 2.11, K[s) must to be defined for any s along L(s).
But, if a Φ 0 in (2.17), then 1/λ will be 0 for s = — b/a which is a contradiction.
We have thus shown that K is equal to a constant on each L(s). Therefore, K
is constant on Wo. Then, from (2.11) and (2.12), we have Ίama — 0, for α = l,
•• , m - l . Thus, from (2.9) and (2.10), Tx and T o are parallel. Therefore,
Mm is a locally product space of an [m — 1)-dimensional space of constant curvature
K and a 1-dimensional space. Q. E. D.

3. 3-dimensional cases. Let M be a 3-dimensional connected Riemannian
manifold with the metric tensor g. Then the curvature tensor R of M is given by

(3.1) R[X, Y) = AX AY + X Λ AY - (trace A/2)X Λ Y,
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for any tangent vectors X and Y of M, where A is a symmetric endomorphism
satisfying R,(X9 Y) = g{AX, Y). Then (3.1) is obtained by putting m = 3 in (2.1).
This suggests that we may apply the similar ones as the arguments in § 2 in this
section.

At a point of M, let {eue2,e3} be an orthonormal basis of the tangent space
such that Λ^ί = λί^ί, z = l, 2, 3. Then the condition (**) is equivalent to

(3. 2) (λi - Xj) (2(λf + λ,) - Σ λ*) = 0, for i Φ j .
k=l

From (3. 2), we can easily show that the following cases are possible:

( i ) λi = λ2 = λ3 = λ Φ 0,

( ii) λi = λ2 = λ Φ 0, λ3 = 0,

(iii) λ = λ2 = λ3 = 0.

Thus we have

PROPOSITION 3.1. Let M be a 3-dimensίonal connected Riemannίan
manifold satisfying the condition (**). If the rank of R is 3 at least at one
point of M, then M is a space of constant curvature.

REMARK. In general, if a Riemannian manifold (M, g) satisfies the condition
(**), then we can see that multiplicity of any non-zero eigenvalue of A is greater
than 1.

Next, we assume that the rank of the Ricci form i?i is 2 at some point
x0 € M. Then we can define two differentiate distributions, T\ and To corresponding
to the eigenvalues, X and 0 of A respectively on W'0, and furthermore we may
choose a differentiable field of orthonormal basis {X\, X2, X^} near x in Wo, for
any x € Wo> in such a way that [Xu X2} and [Xz] are bases for T\ and T
respectively, where Wo is the connected component of xQ in W= [xz M; the
rank of i?x is 2 at ^ } .

With respect to the basis {Xl9X29X3}9 we have

o

(3. 3) R(Xl9 X2) = λX! Λ Xi9 and otherwise zero.

(3. 4) Ri(Xu Xι) = i?i(X2> X2) = λ, and otherwise zero.

Now, we assume that M is conformally flat and complete. Then the following
equation holds good :
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(3. 5) (Vzi?x)(X, Y) - (Vri?i)(X, Z)

= (l/4)(Z(trace A)g(X, Y) - Y(trace A)g(X, Z)),

for any tangent vectors X, Y and Z of M.
We shall prove

PROPOSITION 3.2. Let M be a ^-dimensional connected complete con-
formally flat space satisfying the condition (**). If the rank of the Ricci
form Rλ is 2, then M is a locally product space of a 2~dimensional space of
constant curvature and 1-dimensional space,

PROOF. From (2.5) and (3.3), by the second Bianchi identity, we have

(3.6) 73 31 = 73 32 = 0.

By putting X = Xί9 Y = X2, Z = X3 in (3.5) and using (2.5) and (3.4), we have

(3. 7) 72 is = 0, similarly, 7i 23 = 0.

By putting X = X3, Y = Xl9 Z = X3

(3.8) Xjλ = 0, similarly, X2λ = 0.

By putting X = XU Y = Xu Z = Xz

(3. 9) X3λ + 2λ7i si = 0, similarly, X3λ + 2λ72 32 = 0.

By (3. 9), we have

(3.10) 7 31 = 7 2 32-

From the equation R[Xl9 X3)X3 = 0, by making use of (3.6), (3.7) and (3.10),
we have

Therefore, from the above discussions, the rest of proof is given by the slight
modifications of the arguments in the last case in 2. Q. E. D.
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