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Since the crossed products of operator algebras were first defined
and investigated explicitly by T. Turumaru [14] in 1958, most of theories
on them have been restricted to the crossed products by discrete groups
(for the literature, see [11] and [5]). It was 1966 that the crossed pro-
ducts of C*-algebras by continuous groups were first proposed by S.
Doplicher, D. Kastler and D. Robinson [4] under the terminology
"covariance algebra". (They discussed the case of abelian groups. For
the non abelian case, see [13]). The definition of the crossed product of
a von Neumann algebra by a locally compact group has been given
recently by M. Takesaki [11]. Applying the Tomita-Takesaki theory
[10], he proved a duality theorem for the crossed products and succeeded
to show a remarkable structure theorem for von Neumann algebras of
type III.

Now, though the presentation of the general theory of continuous
crossed products is desirable, it is not such an easy task to analyze
them mainly because we have no explicit description of elements in the
crossed product contrary to the discrete case. Up to this time, little is
known about continuous crossed products of von Neumann algebras
except the fundamental results in [11]. In the present paper, we restrict
our interest to the simple case where automorphism groups are compact,
and we investigate the structure of the crossed products of von Neu-
mann algebras.

Let j y be a von Neumann algebra on a Hubert space Sίf, equipped
with a continuous action of a compact group G. The crossed product

, G) is defined on the Hubert space L\£έf, G), the space of all
square-integrable functions on G, as given in [11]. In addi-

tion, we define in § 1 another crossed product ^? ' (J^, G) on the same
space L\£ίf, G) which is spatially isomorphic to ^ ( J ^ , G). In § 2,
making use of the Fourier expansion of vector-valued functions in
L\3ίf, G), we decompose the Hubert space L\3ίf, G) into a family of
mutually orthogonal subspaces. Then, considering the second crossed
product ^? ' (J^, G) connected with this decomposition of the space, we
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get a structure theorem which asserts that we essentially need not
extend the original Hubert space Sίf to L\3ίf, (?) so far as we concern
with the crossed products by compact groups (Theorem 2.2). Subse-
quently in § 3, we consider the first crossed product &(J^, G) connected
with the same decomposition of the space, and we have another struc-
ture theorem (Theorem 3.1) which, we have heard, is essentially a result
proven by A. Connes.

The conditions sufficient for the conclusions of our theorems are
conceived to be related deeply to the free action of the automorphisms.
We discuss them to some extent. It seems difficult but of interest to
make further investigation into the property of the free action of con-
tinuous automorphism groups.

The author would like to express his appreciation to Prof. Z. Takeda
for many suggestions and constant encouragement.

1. Crossed products. We treat only compact groups which satisfy
the second axiom of countability and separable Hubert spaces. Hence,
omitting the adjectives for simplicity, a compact group means always
such one that satisfies the second axiom of countability, and a Hubert
space means a separable one throughout this paper. Under these situa-
tions, we first quote the definition of the crossed product given in [11;
§ 3] in a simplified form. Given a compact group G and a Hubert space
Sίf, we denote by JίT{^f, G) the vector space of all ^-valued conti-
nuous functions on G. Consider the inner product in 3ίΓ(3ίf, G) defined
by

where ζ — ξ(g) and η — η(g) are arbitrary functions in J%Γ(£$f, G) and
dg denotes the normalized Haar measure on G. The completion of
3ίΓ(έ%f, G) with respect to this inner product is denoted by L\£έf, G)
which is also a separable Hubert space. Therefore, each element ξ in
L\3ίf, G) is an ^g^-valued measurable function, i.e. (ξ(g) \ η) is measura-
ble for each r)Q.£ίf and

= \ l l f ( < 7 ) l l 2 ώ < / < + o o .
G

Let όzf be a von Neumann algebra acting on £lf, and G a compact
group. A continuous action of G on Szf means a homomorphism of
into the group of all automorphisms of Jzf such that for each A e
the map geG—>g(A)e s^ is σ-strongly* continuous. For simplicity,
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no notational distinction will be made between group element g and the
corresponding automorphism A —• g(A). On the Hubert space L\£{fy G),
we define representations π of J^f and λ of G as follows:

(π(A)ζ)(g) = g-^AMg) , A e j / ;

(X(h)ξ)(g) = f(Λ-1 )̂ heG,ξe L2(^T, G) .

Then π is a normal faithful representation and

X(h)π(A)X(h)* = π(h(A)) , Aej*?,heG.

Obviously, λ(e) = π(I) is the identity operator on L\£ίf, G), where e
denotes the unity of G and I the identity operator on <%*'. The crossed
product of J / by G is defined as the von Neumann algebra on L\£έf, G)
generated by π(j*f) and λ(G), and denoted by ^?(J^ , G).

We resume the fundamental results in [11; § 5] which are available
without the assumption of the commutativity of G. In [11], the relative
invariance of faithful normal semi-finite weight φ on Jάf under a locally
compact group G plays an important role for the structure theorems.
We note here, however, that under a compact group G the relative
invariance coincides with the invariance. In fact, if φ is relatively
invariant under G, i.e., if there exists a continuous positive character
χ of G such that φog = χ(g)φ for any g e G, then φog* = (χ(g))nφ for
n = 1, 2, •••. Let g0 be an accumulating point of the set {flr*}ws=i,2....
By the continuity of the action of G with respect to g, we have
φog0(A) = χ(go)φ(A) = 0 or oo for all A ^ 0, i e j / if χ(g) Φ 1. But it
is impossible since φ is faithful normal and semi-finite. Hence χ(g) — 1
for all g e G. This shows our assertion. Now, the algebraic structure
of the crossed product ^ ( J ^ , G) is independent of the particular
representation space £ίf of A to construct it ([11; Prop. 3.4]). Therefore,
under the assumption of the existence of a faithful semi-finite normal
weight φ which is invariant under G, we may and do assume that there
exists a maximal Tomita algebra 91 such that Szf is spatially isomorphic
to the left von Neumann algebra ^f^Ά) of Sί, that there exists a conti-
nuous representation Ug of G such that g(A) — UgAU%, and that there
exists a unitary involution J in £ίf such that JjzfJ = Stf" and Js*/'J —
Stf. We denote by <5Γ(% G) the vector space of all continuous δί-valued
functions A(g) on G and define the inner product of A = A(g) and
B = £(#) in J3Γ(SΪ, G) by

(A\B)=\ (A(g) I £((7))rf<7 .

The completion of JT"(8l, G) is nothing but L\3if, G). We consider the
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algebraic structure in J^(δϊ, G) defined by the following:

(AB)(g) = \ h-\A{gh-ι))B{h)dk ,
JG

A\g) = g^Aig-y .

Then the involution algebra SΓ(% G) is a Tomita algebra and its left
von Neumann algebra J*f(J%"(% G)) coincides with the crossed product
^P(J^, G) ([11; Th. 5.11 and 5.12]).

The commutant ^?(J^, G)' of ^ ( j y , G) is generated by the opera-
tors π'(A), A 6 jy" and λ'(Λ), feeG which are defined as follows:

(π>(A)ξ)(g) = Aξ(g);

(X'(h)ξ)(g) = Uhξ(gh), ξ e L \ ^ , G ) , g e G { { 1 )

([11; Cor. 5.13]). The unitary involution J in L\^f\ G) given by

(</(ί))(<7) = UtJξig'1)

satisfies

J ^ ( J^, G)J = έPiJ*, GY and J^(^ff G)'J = έe(J*, G) .

Suggested by this expression of the commutant, we define another crossed
product ^? ' (J^, G) as the von Neumann algebra generated by the
operators π'(A) and λ'(Λ) defined as (1), but A e ό>/ this time. Hence,

^ ( J ^ , G)' = ̂ ' ( j * " , G) .

Thus we have defined two crossed products ^?(J^ , G) and ^ ' ( J ^ , G).
But direct calculations show the following lemma.

LEMMA 1.1. The crossed products &(<Ssf, G) and &\*S*f, G) are
spatially isomorphic by the unitary involution W defined by

(Wξ)(g) = Utξig-1) .

The automorphisms g e G of szf are extended to the automorphisms
of £f(£ίf), the algebra of all bounded operators on £{f, induced by the
unitary representation Ug of G which in turn define the automorphisms
of j&f denoted also by g. Then we have

W&(J*f G)W= &'{J*, G) = έe(j#", GY

and

W^(J^\ G)W= &?'{&", G) = ̂ ?(J^, GY .

Finally, if j y is a von Neumann algebra with faithful semi-finite

normal trace τ, then the trace τG defined by τG(A) = \ τ(g(A))dg, A e
)G
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is invariant under G, and the discussion in § 5 of [11] is reduced to such
a trivial case that the modular operator with respect to τG is the identity.
In this case, SΓ(% G) is a (unimodular) Hubert algebra and its left von
Neumann algebra coincides with the crossed product ^?( jy, G). Hence
we have;

LEMMA 1.2. // G is compact and Szf has a faithful semi-finite
normal trace, then the crossed product &(jzf, G) is also semi-finite.

The canonical trace f on ^?( Ĵ < G) associated with the Hubert algebra
^ ( 9 Ϊ , G) is said to be dual to the original trace τ on J ^ . Denoting by
TΓj the left regular representation with respect to τ, the dual trace τ is
given by

(Ί| ξ ||2 if A = πι(ξ)*πι(ξ) for a bounded

τ(A) = j element ζ e L\^f, G) ,

( + oo otherwise

([11; Def. 5.14] and [3; I. 6.2]).

2. Decomposition of the Hubert space L\^f, G). The main tool
we use is the fundamental Fourier analysis. We quote from [7; § 27]
what we need. See also [12]. Let Γ be the dual object of a compact
group G, i.e. the set of all equivalence classes of continuous irreducible
unitary representations of G. The identity representation of G is
denoted by c. Let U{

g

a) be a representation in the class aeΓ, da the
finite dimension of the representation space Ha of U(a)ecc, and {d, ζ2,
•••, ζdj an arbitrary but fixed orthogonal basis in Ha. For m, ne{l, 2,
•••, da), let u{£l be the function on G defined by

Since U{a) is a unitary representation, we have
da

ulZKgh) = d~m Σ ̂ ml{g)u^(
r=i

and

The function on (? defined by

is called the character of the equivalence class <%.
The well-known Peter-Weyl theorem states that the set {u^ \ a e Γ;

m, n = 1, 2, , ώα} is an orthonormal basis for L2(G). Thus, we have
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JG

and, for xeL2(G), we have

x = Σ Σ (χ\ tf)tfi,
aeΓ m,n=l

where

(x I ul«l) = \ x(h)^m~dh .
JG

Furthermore, a generalization of the Plancherel theorem holds as follows.
If {αiΰ I a e Γ; m, n = 1, 2, , dβ} is any set of complex numbers such
that

Σ Σ \aΆ\2< oo ,
aeΓ m,n=l

there is a unique function # in L\G) such that (y|w»») = αiΰ for all ct,
m and w, and for which accordingly

Now, we begin with a decomposition of the Hubert space L\3ίf, G).
Analogously to the Peter-Weyl theorem, we may consider the formal
expansion of any function ζ = ξ(g) e L\3ίf, G):

ς — 2-ι 2-ι wmn//mn ,
aeΓ m,n=l

where

For any fixed ζ e Sίf, we denote by u\ίίξ the function defined by (ul&ξ)
(g) = u\2l(g)ξ. In particular, f denotes the constant function ξ(g) = ξ.
The set of (α, m, ̂ -components of all ζeU(^G) is denoted by ^

^ ς ^ - W i l l ί e ^ T } , aeΓ and m, w = 1, 2, ., da.

Then, the set of all ^ίf^ is a family of mutually orthogonal Hubert
subspaces of L\3ίf, G) each of which is isometrically isomorphic to
In fact,
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The projection onto each 3(f™ is not in ^ ( j y , G), since Sίf^V is not
invariant by ^ ( J ^ , <?)'. However, the subspaces Sίfa defined for each
aeΓ by

da
7 X 1 (T\ <=&?{a)

vt,n=l

= { Σ ttίfilίSί I £ £ 6 J T for m,n = l,2," , da}

are invariant by &{Sa?', G)'. In fact, the generators of &(j*f, G)' act
on each 3(?a as follows:

{π\A') Σ <"&(g) = Σ ttϊϊίflr)A'ξS

Σ Λ.(α)/^J —1/2 ^C1

 Λ .

m,r n

Hence the projection onto each έ%fa belongs to ^ ( J ^ , G). Explicitly,
the projection onto §ίfa is given by

Pa = d\ χa(h)X(h)dh , a e Γ ,

where the integration is taken in the strong operator topology. Further-
more, Σiaer ®<%1t = Li\3ίf, G). To show this, suppose that η = η{g) is
an element of L\^f, G) which satisfies (η \ u%&) = 0 for all ζ e 3ί? and
(a, m, n). Then

Hence all of the Fourier coefficients of the numerical function (η(g)\ξ)
are zero, and hence (η(g) \ ξ) = 0 for almost all g e G. Since ξ e £ίf is
arbitrary, rj(g) = 0 for almost all g e G, which means η — 0. This proves
our assertion.

Summarizing these facts, we get the following lemma.

LEMMA 2.1. In the crossed product &(J^,G), {Pa\aeΓ} is a
family of mutually orthogonal non zero projections of L\§ίf, G) onto

with sum π(I).

Now, we consider the action of the crossed product ^? ' (J^, G) on
From direct computations follows that
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(C7,ί)~, heG.

That is, π'(A) and X'(h) act on Jgt just like the operators A and Uh on
^g^ respectively. Hence, ^? '(J^, G)^, is isomorphic to the von Neumann
algebra ^?( jy , ^G) on the original space £tf generated by Szf and ^ G ,
the set of all unitaries Ug, geG.

Since Pc belongs to the commutant of ^ ' ( J ^ , G) as well as to &(*£/, G),
we have by [3; I. 2.1. Prop. 2]

, G) = ^

provided that the central support C'{P) of P, in ^? ' (J^, G) coincides
with the identity π(I). Therefore, we have the following theorem.

THEOREM 2.2. Let J ^ be a von Neumann algebra on 3ίf and G a
compact group of automorphisms of S$f. Suppose that the central
support C\PL) in &'(S*/,G) coincides with π(I). Then, the crossed
product &{Sfy G) on L\3ίf, G) is isomorphic to the von Neumann
algebra &(J^, G) on the original space ££* generated by J ^ and ΉfG.

In other words, we essentially need not extend the space J%f to
, G) so far as we concern with the crossed product by a compact

group.

COROLLARY 2.3. If the crossed product &{Ssf, G) by a compact
group G is a factor, it is isomorphic to the factor ^ ? ( J ^ , ^G) on the
original space St.

Next we investigate the condition C\P) — π(I) of Theorem 2.2. If
G is a countable discrete freely acting group of automorphisms of J ^ ,
the center of ^(J^, G) is %Q, the fixed point subalgebra of the center
3£ of sf ([6; Cor. to Lemma 4]). In case of continuous group G,
however, we do not know the analogous result, chiefly because we have
no explicit description of the elements of ^ ( J ^ , G). We give here a
converse of [6; Lemma 4].

LEMMA 2.4. "Let G be a group of automorphisms of a von Neumann
algebra J>/. If

&{J^, G) Π π(j*7. c π(jy) ,

then each geG except the unity e is freely acting on
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PROOF. If an automorphism g in G is not freely acting on
there exists a non zero central projection C such that g is inner on
([8; Theorem 1.11]). That is, there exists a unitary operator U in
which implements the automorphism g on C<s$f. Then, we have

(X(g)π( U*C))π(A) - X(g)π( U*AC) ,

and

π(A)(X(g)π(U*C)) = X{g)π{g-\A)U*C)
= X(g)π(U*AC).

Hence X(g)π(U*C) is an element of ^?(J^, G) which commutes with every
element of π(jzf) while it is not in π(j^) if g Φ e. This completes the
proof.

THEOREM 2.5. If G is compact and

&{£/, G) n π(j#Ύ aπ(j^) ,

then we have

C'(PC) = π(I) .

PROOF. The center of &\*Stf', G) is included in

^ ' ( J ^ , G) n π'(j*)' = W(έ?(J^, G) n π(

c Wπ( J O T7 = π'(

Hence, C\P) has the form π'(C), Ce%r. It acts on ̂  as follows:

= Cξ = (Cξ)~(g) .
On the other hand, as an extension of the projection Pe, π'(C) leaves
any vector of Sίft invariant; π\C)ξ = ξ. Hence we have Cξ = ξ for all
ξe£^. Then, as easily seen, π\C) leaves any vector of £έfάV invariant
for all a e Γ and m, n = 1, 2, , dα. Hence we have C'(P) = π\C) =
π(I).

3. Fixed algebra and crossed product. Let s$f and G be as in the
preceding sections. We consider in this section the crossed product

, G) connected with the decomposition of the space L\£{f, G) =
Let J*fG denote the fixed point subalgebra of Szf under G;

= A for all geG} ,

and £^(L\G)) the algebra of all bounded linear operators on L2(G).

THEOREM 3.1. Let J^f be a von Neumann algebra on £έf and G
a compact group. Suppose that each projection Pa onto £ίfa, aeΓ is
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decomposed into d\ number of mutually orthogonal projections each of
which is equivalent to Pc. Then the crossed product &(J^, (?) is
spatially isomorphic to the tensor product Jt/G

PROOF. By [3; I. 2.4. Prop. 5] and the assumption on Pα, ^ ( J ^ , G)
is spatially isomorphic to the tensor product ^ ( j ^ , G)^c (x) =Sf (L2(X)),
where X = {(a, m,ri)\aeΓ and m, n — 1, 2, , da). By the Peter-Weyl
theorem, >£f(L\X)) is spatially isomorphic to Sf (L*(G)). Therefore, it
suffices to show that &(J*f, G)^c is spatially isomorphic to SzfG on Sίf'.
For any heG,

t = ί X(g)dgX(h) [ X(k)dk
JG JG

= \\ Mghlήdgdk
J JGxG

= I Hg)dg\ dk
JG JG

= Pc e π(j^G)^c ,

and, for any A e Jtf, we have

Pcπ{A)Pc = ( X(g)dgπ(A)[ X(k)dk

= (( X{gk)π(k-ι(A))dgdk
J JGxG

= ί X(g)dg\ π(k~ι(A))dk e π
JG JG

That is, all of the generators of ^ ? ( J ^ , G) restricted to the subspace
Sίft are in π{j^G)^r Hence, we have ^ ? ( J ^ , G ) ^ c τ τ ( j ^ σ ) ^ . Since
the inverse inclusion is obvious, we have &(j*f, G)W( = TriJ^0)^. Fur-
ther, since (π(A)ζ)(g) = flf^e = Aί for A e J ^ β and 'ξ e Sίf, π(J*fG) ^ is
spatially isomorphic to J ^ G by the mapping f e £ίfc-+ξ e £ίf. Therefore,
&(J&9 G)W( is spatially isomorphic to S^G. This completes the proof.

REMARK 3.2. The conclusions of Theorems 2.2 and 3.1 are in a dual
relation. Explicitly speaking, if the conclusion of Theorem 3.1 holds,
then we have

", G) -

Y ® ^ ( L 2 ( G ) ) ' ([10; Th. 12.3])

n ^' c
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which shows the validity of the conclusion of Theorem 2.2 for the crossed
product &\s/', G).

THEOREM 3.3. Let Jzf be semi-finite and G compact. Suppose
that the crossed product &(j%f, G) is a factor. Then,

f G) =

PROOF. By Lemma 1.2, &(j*f, G) is a semi-finite factor. For any
element A = A(g) in J?Γ(% G), we have

P A(g) = da\ χa(h)X(h)dhA(g)
JG

= da\
JG

= da\
1G

= (πt(daχa)A)(g)

Hence, Pa = P*Pa coincides with 7rz(ώαχα(A))*7rz(dαχα(A)). Accordingly, we
have

τ{Pa) = τ(P*aPa) = \\daχa(hWτ(I) = dlτ(I)

for any aeΓ. Hence Pa(aeΓ) can be decomposed into subprojections
in such a way as they satisfy the assumption of Theorem 3.1.

REMARK 3.4. In a factor of type III, all projections are equivalent
to each other. Hence Theorem 3.3 remains valid if ^ ? ( J ^ , G) is a
factor of type III. The case that Szf is of type III and ^ ( J ^ , G) a
semi-finite factor is remained unsolved. We do not know whether this
case, i.e., a converse of Lemma 1.2 occurs or not.

H. Choda [1] has given a proof for the case of finite groups. We
remark in addition that the compactness of G is not a necessary condi-
tion for the theorem as shown in [2].

EXAMPLE 3.5. Let G be a compact abelian group and
the multiplication algebra on the Hubert space L\G). Define the action
of G on J ^ by

(h(x))(t) = xih-'t) for x e L°°(G) .

For each aeΓ, χa(t) is a function in L\G) and

Define the isometry Va in ^ ( j y , G) by
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)G

Then we have V*aVa = Pt and VaV* = Pβ, i.e. Pα - P, for any α e ί
and hence we may apply Theorem 3.1. Since G acts ergodically on j&9

= C/ and hence the crossed product ^ ( J ^ , G) is isomorphic to
This is a factor of type /«> if the order of G is infinite.

Hence the crossed product of a finite von Neumann algebra by a com-
pact group G need not be finite, contrary to the case of discrete groups.

This example is obtained also as a direct consequence of the Mackey-
Stone-von Neumann theorem ([9]).
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