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NORMAL DERIVATIONS IN OPERATOR ALGEBRAS

S. K. BERBERIAN

(Received June 24, 1977)

Let A be a ring with involution (briefly, a *-ring), δ: A-+ A a
derivation of A, that is, δ(x + y) — δx + δy and δ(xy) = (δx)y + x{δy)
for all x, y in A. When A is a *-algebra (over the complex field) one
requires also that δ be a linear mapping. For each α e A w e write δa for
the inner derivation implemented by a: δax = [a, x] = ax — scα. For a
derivation <5 of A, the adjoint δ* of δ is the derivation of A defined by
the formula δ*x = — (<5(a?*))*; the purpose of the minus sign is to validate
the formula («.)* = δα*. Note also that ker(δ*) = (kerδ)*.

In the first part of the paper we explore the relationships between
several plausible definitions of normality for a derivation δ of a *-ring,
with particular attention to C*-algebras and von Neumann algebras; in
the second part, we discuss derivations of certain algebras of "unbounded
operators" affiliated with AT7*-algebras.

Here are some natural candidates for the definition of "normal deri-
vation" (there seems to be no compelling reason for making a definitive
choice):

(Nx) kerδ = ker(S*);
(N2) δ*δ = δδ*;

(N3) there exist a *-ring B containing A as a *-subring, and an
element beB, such that 6 is normal (6*6 = 66*) and δ = δb\A (that is,
δx = [6, x] for all xeA);

(NJ there exist a *-ring B containing A as a *-subring, and an
element beB, such that δ = δb\A and A Π {6}' is a *-subring of A, where
{6}' denotes the commutant of 6 in B;

(N5) there exist a *-ring B containing A as a *-subring, and an
element beB, such that δ — δb\A and {6}' is a *-subring of B.

The most natural condition is (N2), which mimics the definition of
normality for an element of a *-ring. The remaining conditions are
motivated by the well-known theorem of B. Fuglede: if δ = δa, a e A,
then (NJ means that xa = ax if and only if #α* = α*#; thus, when A
is a *-algebra of operators in a Hubert space, δa satisfies (NJ if and
only if a is normal (Fuglede's theorem [13, Prob. 152]). Here are some
elementary relations between these conditions:
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THEOREM 1. (N5) ==> (N4) => (NJ and (N5) =- (N3) => (N2).

PROOF. Let δ be a derivation of the *-ring A. It is obvious that
(N5) implies (N.) and (N4). (N4) implies (NJ because ker δ = A n {δ}'.

Assume (N3): Then (δ6)*|A - £*, therefore δ*δ - δδ* = [(δ6)*, δb]\A =
δίb*M\A = 0, whence (N2). (Incidentally, it suffices that 6*6 — 66* commute
with every element of A.) •

When A is a C*-algebra, we shall see that all but one of the impli-
cations in Theorem 1 can be reversed. A device in the proof is the
following result of C. R. Putnam (we offer an alternative proof, for
imitation in Theorem 7):

LEMMA [15, p. 5]. If x is an operator in a Hubert space H, such
that x commutes with x*x — xx*, then x*x = xx*.

PROOF. Let z = x*x — xx* and let B = {z}' be the set of all operators
in H that commute with z; then B is a von Neumann algebra containing
x, and z is a self-ad joint element of the center of B. The assertion is
that z = 0. Assume to the contrary that z Φ 0; then there exists a
projection h in the center of B such that zh is invertible in Bh and such
that either zh ^ 0 or zh <̂  0. Interchanging x and x* if necessary, we
can suppose that zh ^ 0; then zh — r2 with r in the center of B, r* =
r, r invertible in Bh. If s is the inverse of r in Bh, then h = rV —
(zh)s2 = (xs)*(xs) — (xs)(xs)*; since xs belongs to the Banach algebra Bh,
this contradicts a theorem of A. Wintner (the unity element of a Banach
algebra is never a commutator [cf. 13, Prob. 182]). •

THEOREM 2. If A is a C*-algebra, then

PROOF. It will suffice to show that (NJ => (N4) and (N2) => (N5). Let
δ be a derivation of A.

View A as a C*-algebra of operators in a Hubert space and let B
be the closure of A for the weak operator topology. By a theorem of
R. V. Kadison and S. Sakai [cf. 11, Ch. Ill, §9, n° 3, Cor. of Th. 1],
there exists beB such that δb\A = δ.

Assume (NJ: Then A Π {6}' = ker δ is a *-ring by hypothesis, whence
(N4).

Assume (N2): Then the element 6*6 — 66* of B commutes with every
element of A, hence with every element of B, hence with 6; therefore
6 is normal by the lemma, and {6}' is a *-ring by Fuglede's theorem,
whence (N5). •
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The unilateral implication in Theorem 2 cannot be reversed; a coun-
terexample is provided by the unilateral shift [cf. 2, p. 82]:

EXAMPLE 1. Let H be the Hubert space of square-integrable functions
on the unit circle that are analytic in the sense that their Fourier coef-
ficients with negative index vanish [9], Let A be the C*-algebra of all
compact operators in H, B the algebra of all operators in H. Let ueB
be the unilateral shift operator defined via the canonical orthonormal basis
of H and define a derivation δ in the ideal A of B by the formula δx —
ux — xu. One has ker δ = A Π {u}'; but {u}f is the set of all analytic
Toeplitz operators [9, Th. 7] and the only compact Toeplitz operator is
0 [9, Cor. of Th. 4]; thus kerδ = {0} and (N4) holds trivially. However,
(N2) does not hold, since it would imply that the operator u*u — uu* e
A! = A'" — Bf is a scalar multiple of the identity, which it is not. It
follows (see Theorem 2) that, even for a C*-algebra, (N4) ̂ > (N5), (NJ ^
(N2), etc. For a von Neumann algebra, all five conditions coalesce:

THEOREM 3. If A is a C*-algebra all of whose derivations are inner,
then the conditions (NJ-CNβ) are equivalent.

PROOF. It will suffice to show that (Nx) => (N5). Say δ = δa, a e A.
If δ satisfies (NJ, then from δa — 0 we infer that S(α*) = 0, thus a is
normal, therefore the commutant of a in A is a *-subring of A (Fuglede's
theorem); thus (N5) holds with B = A. •

Examples of C*-algebras all of whose derivations are inner: any von
Neumann algebra [11, Ch. Ill, §9, n° 3, Th. 1]; more generally, any
AW^-algebra [14]; any simple C*-algebra with unity [20, Th. 4.1.11].

C*-algebras are algebras of bounded operators in Hubert space; one
avenue for further exploration is to move to algebras of unbounded
operators. The next results make a slight incursion into the problem.
If A is a finite AΐF*-algebra, we write C for the regular ring of A
([4], [8, Ch. 8]). {Theorems 4 and 6 appear to hold for A an arbitrary
AT7*-algebra, with C the ring of "measurable operators" ([18], [19], [7]),
but I have not checked every detail. At any rate, C is regular if and
only if A is finite [18, Th. 6.2]; the special interest of the finite case is
that C is then the maximal ring of right quotients of A ([12, p. 158,
Th. 2 and p. 160, Th. 2], [16]).}

LEMMA. Let A be a finite AW*-algebra, C its regular ring. If δ
is a derivation of C such that δ\A = 0, then δ — 0.

PROOF. Let xeC and let en be a sequence of projections in A, with
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supremum 1, such that xeneA for all n [8, §48, Prop. 1]; then 0 =
δ(χen) = (δx)en + x(δen) = (δx)en for all n, therefore δx = 0. •

THEOREM 4. Lei A δβ α ./mite AT7*-αZ0e&rα, C its regular ring.
The derivations δ of C such that δ(A) c A are the inner derivations
δ — δa with aeA.

PROOF. Suppose δ is a derivation of C with δ(A) c A. Then δ \ A is
a derivation of A, hence is inner by an element aeA [14]: <5# = ax — ccα
for all x e A. Then δ — δa vanishes on A, hence is identically zero by
the Lemma. •

PROBLEM. IS every derivation of C inner? At any rate, it is easy
to exhibit inner derivations δ of C such that δ(A) φ A:

EXAMPLE 2. With A and C as in Theorem 4, write Zip) = C n C
for the center of C. Suppose ceC. In order that δc(A) c A, it is neces-
sary and sufficient that ceA + Zip). {Proof: If <5c(A)cA then by
Theorem 4, δc = δa for some a e A; thus δ ^ = 0 , c - d e Z(C).} One can
identify Z(C) with the regular ring of the center Z(A) of A [4, Th. 9.2];
thus if A is factorial (i.e., has scalar center) then so is C, in which case
A + Zip) = A. In particular, if A is a factor of type Πx, then A +
Zip) = AΦG\ thus for c e C one has δc(A)cA if and only if ceA.
Here is a characterization of the finite ATF*-algebras A (necessarily of
type I) such that every inner derivation of C is implemented by an
element of A:

THEOREM 5. Let Abe a finite AW*-algebra, C its regular ring, Zip)
the center of C. The following conditions on A are equivalent:

(a) A is a Lie ideal of C (that is, [C, A] c A);
(b) A + Zip) = C;
(c) A = F @ K with F finite-dimensional and K abelian.

PROOF. (a)=>(b): Let ceC. By (a), δc(A) c A, therefore c e A + Zip)
as remarked in Example 2.

(b) => (a): Obvious.
For any finite ATT^-algebra B, let us write CB for its regular ring;

it is easy to see that B = CB if and only if B is finite-dimensional. For
any ring B, write Ziβ) for the center of B.

(c)=>(b): Suppose that the algebra A is a direct sum A = F@K
with F a finite-dimensional algebra and K an abelian algebra. Then [6,
p. 177, Lemma] CA = CF@CK = F®CK, where Cκ is abelian, therefore
Z(CA) = Z(F) 0 Cκ; thus A + Z(CA) = (F 0 K) + (Z(F) 0 Cκ) = F 0
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(b)=>(c): For a finite Aΐΐ^-algebra B, consider the condition

( * ) B + Z(CB) Φ CB .

REMARK 1. If e is a projection of A such that the "corner" eAe of
A satisfies (*), then A satisfies (*). For, writing C = CA, we have CeΛe =
eCe [4, Th. 9.4] and Z{eCe) = eZ(C)e. {Proof: One has Z(eCe) = Z(CeAe) =
Cz{eAe) = CeZU)e = eCZU)e = eZ{C)e by [4, Ths. 9.2 and 9.4] and [8, §6,
Cor. 2 of Prop. 4].} If one had A + Zip) = C, it would follow that
eAe + eZ(C)e = eCe, thus eAe + Z(eCe) = eCe, that is, eAe + Z(CeAe) =
CeAe, contrary to supposition.

In particular, if some direct summand of A satisfies (*), then so
does A.

REMARK 2. If A is infinite-dimensional (in other words, if A Φ C)
and n is an integer ^ 2, then the algebra An of n x n matrices over A
satisfies (*). For, writing C = CA, Cn is the regular ring of An (cf. [5,
p. 43, Remark 2], [4, Section 11], [8, §52, Prop. 3]); since the elements of
Z(Cn) are diagonal matrices, An + Z(Cn) consists of matrices whose off-
diagonal elements are in A, hence it cannot exhaust Cn.

Suppose now that A + Z{C) = C. Write A as the sum of a type I
algebra and a type II algebra [8, §15, Th. 2]. The type II summand
must be zero; otherwise, it could be written as a 2 x 2 matrix algebra
over a type II algebra [8, §19, Cor. of Th. 1], it would satisfy (* ) by
Remark 2, hence A would satisfy (*) by Remark 1, contrary to supposition.
Thus A is of type I. Decompose A into homogeneous summands, each
of which is a full matrix algebra over an abelian AT7*-algebra:

where Kl is the algebra of n x n matrices over an abelian algebra Kn

[8, §18, Th. 2]. Since A does not satisfy (*), no summand of A can
satisfy (*) (Remark 1); therefore Kn is finite-dimensional for all n ^ 2
(Remark 2). It will suffice to show that the number of summands is
finite. Every nonzero summand for n ^ 2 contains a pair of nonzero,
orthogonal equivalent projections; if there were infinitely many nonzero
summands, there would exist in A a pair of orthogonal equivalent pro-
jections /, g with fAf infinite-dimensional; then, for the projection e =
f + g, the corner eAe = (fAf)t of A would satisfy (*) (Remark 2),
therefore A would satisfy (*). (Remark 1), contrary to supposition. •

REMARK 1. One can regard C as an algebra of "unbounded operators"
affiliated with A [4, Section 2]. We remark that E. Christensen has
considered the derivations of a concretely represented C*-algebra that are
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implemented by unbounded operators "affiliated" with the C*-algebra
[10, Prop. 2.1].

REMARK 2. If B is a C*-algebra with unity and A is a C*-subalgebra
of B such that uAu* = A for every unitary element u of B, then A is
a Lie ideal of B, that is, ab — ba e A for all α e A and 6 61? (in other
words, A is invariant under every inner derivation of B) [1, Prop. 5.2].
The situation is quite different for a finite AW*-algebra A and its regular
overring C: every unitary element u of C belongs to A [4, Th. 5.2],
hence satisfies uAu* = A; but A is a Lie ideal of C only under the
conditions of Theorem 5.

To explore the conditions (N1)-(N5) for derivations of C, one wants
to know whether Fuglede's theorem holds in C. Here is a fragmentary
result (an improvement on [6, Ths. 5 and 7]):

THEOREM 6. Let A be a finite AW*-algebra, C its regular ring. If
az — za, where zeC is normal and a e A, then az* = z*a.

PROOF. The proof is inspired by an argument of M. Rosenblum [17].
Write z = (zn, en) with zn9 en lying in a commutative AWr*-subalgebra
of A, (en) being a sequence of projections with en]l and znem — zmem for
m<n [4, Cor. 4.1]. {For the case of an arbitrary AYP*-algebra, see
[18, Th. 5.2].} Replacing zn by znen, we can suppose that znen = zn. Then
zen = zn [8, §48, Prop. 1], therefore

(enaen)zn = en(az)en == en(za)en = zn(enaen)

by Fuglede's theorem (in A), (enaen)z* = z*(enaen), thus en{az*)en = en(z*a)en

for all nt whence az* = z*a. •

COROLLARY. Let A be a finite AW*-algebra, C its regular ring. If
z19 z2 are normal elements of C and if be A satisfies bz1 = z2b, then
bzf = ztb.

PROOF. The algebra C2 of 2 x 2 matrices over C is the regular ring
of A2 [5]; apply Theorem 6 to the elements aeA2,zeC2 given by the
matrices

0

[cf. 6, Th. 2]. •

° °
o j .

(Zl

PROBLEM. In Theorem 6, need one assume that a e A? {In other
words, in the jargon of [6], is C an FT-ring (hence a PT-ring)? It would
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suffice, by the argument in the proof of Theorem 6, to show that xz =
zx implies xz* = z*x when z e A is normal and xeC.} A possibly more
tractable special case: if y and z are normal elements of C such that
yz = zy, does it follow that yz* = z*yt

Our final theorem pertains to the normality of inner derivations of C.

LEMMA. Let A be a finite AW*-algebra, C its regular ring. The
equation x*x — xx* = 1 has no solution in C.

PROOF. Assume to the contrary that xeC satisfies x*x — xx* = 1.
Then x*x = 1 + xx* shows that the right projection of x is 1, therefore
x is invertible in C. Write x = ur with ueA unitary and r ^ 0 [4, Cor.
7.4]. Then r2 = 1 + ur2u*, thus ur2u* — r2 — 1; transforming again by
u, one has u2r\u2)* — ur2u* — 1 = r2 — 2. Inductively, unr\un)* = r2 — w,
therefore r2 + n is unitarily equivalent to r2, therefore (r2 + w)"1 is
unitarily equivalent to (r2)"1; but r2 + n ^ n, whence (r2 + n)~ι ^ 1/w-
[6, Th. 6]; thus (r2 + n)~ι and (r2)"1 are in A [4, Lemma 5.1] and
HOT1 II = ll(^2 + ^)~ΊI ^ 1/tt for all w, which is absurd. •

PROBLEM. IS the equation yx — xy = 1 solvable in C? {If A is a
finite A T7*-algebra of type I, then C has a center-valued trace [6, Th. 5]
and the answer is obviously negative. The equation yx — xy = 1 is not
solvable in a Banach algebra (Wintner's theorem [13, Prob. 182]).}

Analogous to Putnam's theorem (lemma to Theorem 2), we have:

THEOREM 7. Let A be a finite AW*-algebra, C its regular ring,
xeC. If x commutes with x*x — xx*, then x is normal.

PROOF. Write z — x*x — xx* and let D = {z}' be the commutant of
z in C; then D is a *-subalgebra of C containing x, D = D", and z is a
self-adjoint element of the center of D. Let B = D Π A; then B is an
AT7*-subalgebra of A, whose regular ring may be identified with D [4,
Th. 9.3]. Thus, dropping down to B, D and changing notation, we can
suppose that the element z = x*x — xx* belongs to the center of C.

One then has z = (zn, en) for suitable elements zn, en in the center
of A, the en being projections such that en 11 and znen = zn [4, Th. 4.2].
It will suffice to show that zn = 0 for all n. Assume to the contrary
that znφQ for some n. Then (xen)*(xen) — (xen)(xen)* = ze% — znφQ. Let ft
be a central projection such that znh is invertible in Ah and such that
either znh ^ 0 or znh ^ 0. Interchanging x and #* if necessary, we can
suppose znh ^ 0. Since znen = zΛ, necessarily ft 5j βn. Then (xh)*(xh) —
(xh)(xh)* = znh; dropping down to Ah and changing notation, we can
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suppose that zeA and that z is positive, central and invertible. Write
z .= r2 with r self-adjoint, central and invertible and let s be the inverse
of r; then (xs)*(xs) — (xs)(xs)* = zs2 — rV = 1, contradicting the lemma. •

COROLLARY. Let A be a finite AW*-algebra, C its regular ring,
xeC, and δ = δx the inner derivation of C implemented by x. Then
δ*§ = δδ* if and only if x is normal.

PROOF. If x is normal, then δ*δ - δδ* = δίx.,x] = 0. Conversely, if
δ*δ - δδ* = 0, that is, if δ[β fβ] = 0, then [a?*, x] belongs to the center of
C, therefore x is normal by Theorem 7. •
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