
Tόhoku Math. Journ.
30(1978), 543-551.

tf-HYPERSURFACES IN A LOCALLY SYMMETRIC
ALMOST HERMITIAN MANIFOLD

SUMIO SAWAKI AND KOUEI SEKIGAWA

(Received April 25, 1977, revised June 3, 1977)

0. Introduction. Let Mn+P be an n + p-dimensional C°° Riemann-
ian manifold with metric tensor g and Levi-Civita connection V. Then
the curvature tensor R of Mn+P is given by R(X, Y) = [Fx, Vγ\ — F [ X j F ]

for any X, YeX(M) where 3L(M) is the Lie algebra of C°° vector fields
in Mn+P.

Moreover, let Mn be an ^-dimensional submanifold immersed in
Mn+P. Then we have

(0.1) VXY = VXY + σ(X, Y) for any X, Yel(M)

where VXY and o denote the component of VXY tangent to Mn and the
second fundamental form of Mn in Mn+P, respectively. It is well known
that V is the covariant differentiation of Mn and α is a symmetric
covariant tensor field of degree 2 with values in the normal bundle
T(M)1 of Mn where T{M) denotes the tangent bundle of Mn.

We have further

(0.2) Fxξa = - AaX + Σ saβ(X)ξβ (α = 1, 2, , p)

where {ξa} is a local orthonormal frame field for T(M) and — AaX is
the tangential component of Fxζa.

Let V be the covariant differentiation with respect to the connec-
tion in T(M) 0 T(M)1. Then we have

(0.3) {V'xσ){Y, Z) = (Fzσ(Yf Z)Y - σ(VxY, Z) - σ(Y, VXZ)

for any X, Y, Zeϊ(M).
If v'xo = 0 for any Xe%(M), then the second fundamental form is

said to be parallel. Mn is said to be curvature invariant if R{X, Y)Z
belongs to 3E(AΓ) for any X, Y, ZeX(M).

Next, let M2m+2q be a 2m + 2g-dimensional almost Hermitian mani-
fold with an almost Hermitian structure (J, g). Then a 2m-dimensional
invariant submanifold M2m of M2m+2q is said to be a σ-submanifold if
the second fundamental form σ is complex bilinear, i.e.,
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(0.4) σ(JX, Y) = σ(X, JY) = Jσ(X, Y) for any X, Ye%(M) ,

where J is the induced almost complex structure on M2m. In particular,
if M2m is a tf-hypersurface of M2m+2, then the condition (0.4) is equiv-
alent to B — JA and AJ = — JA, where A and B are the second
fundamental tensors with respect to any unit normal vectors ζ and Jζ
to M2m, respectively.

An almost Hermitian manifold M is called an *O-space (or quasi-
Kahler manifold) [2] if

(0.5) φj) Y + (?jXj)jγ = o

for any X, YeX(ifiT) and M is called a iΓ-space (or Tachibana space or
nearly Kahler manifold) if

(0.6) ΨχJ)Y + {FYJ)X = 0 (or equivalents (FXJ)X = 0)

for any X, Ye%(M).
It is well known that a Kahler manifold is a ίΓ-space and a i£-space

is an *O-space. It is also well known that an invariant hypersurface of
a i£-space or an *O-space is a if-space or an *O-space respectively. More-
over, we know that an invariant hypersurface of a Kahler manifold or
a if-space is a σ-hypersurface (see for example [3]).

The following theorem is well known.

THEOREM A (B. Smyth [4], T. Takahashi [5]). Let M2m be an
invariant hyper surface of a Kahler manifold M2m+2 of constant holo-
morphic sectional curvature. If M2m is an Einstein (or Ricci parallel)
manifold, then M2m is locally symmetric.

A Kahler manifold M2m+2 of constant holomorphic sectional curva-
ture is locally symmetric and its invariant hypersurface M2m is curvature
invariant (see for example [4]). What will become of this theorem if
we replace the assumption of being of constant holomorphic sectional
curvature by being locally symmetric? Our main result is

THEOREM. Let M2m be a σ-hypersurface of a locally symmetric *O-
space M2m+2. If M2m is Ricci parallel and curvature invariant, then
M2m is locally symmetric.

COROLLARY. Let M2m be an invariant hypersurface of a locally
symmetric Kahler manifold M2m+2. If M2m is Ricci parallel and cur-
vature invariant, then M2m is locally symmetric.

This generalizes Theorem A.
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1. Submanifolds of a Riemannian manifold. Let Mn be a submani-
fold immersed in a Riemannian manifold Mn+P and put

P

(1.1) σ(X, Y)=Σ,K(X, Y)ξa.
α=l

Then we have

(1.2) g(σ(X, Y), ξa) = g(AaX, Y) = g(X, AaY) = ha(X, Y)

for any X, YeX(M) and ξae?ί(M)± where g denotes the induced metric
tensor on Mn.

The following two lemmas are well known (see for example [1]).

LEMMA 1.1. Let R and R be the curvature tensors of Mn+P and
Mn respectively. Then we have

(1.3) ϊt(X, Y)W = R(X, Y)W - Σ K(Y, W)AaX + Σ K(X, W)AaY

+ Σ (FzKXY, W) - {VYK){X, W) + Σ h,(Y, W)sβa(X)
α = l L β=l

-±hβ(X, W)sβa(Y)\,
β=l J

(1.4) 8aβ(X) + sβa(X) - 0 (α, 0 = 1, 2, , p)

/or any X, Γ, T7eX(M).

LEMMA 1.2. Vxσ = 0 is equivalent to VxAa = Σ?=i Sα̂ Ĉ OAs
(α = 1,2, « ,p).

The following lemma which plays an important role in proving the
main theorem is also easily verified (see for example [6], p. 99, where
Fxσ = 0 means Vdh

x

cb = 0).

LEMMA 1.3. Let Mn be a submanifold immersed in a locally sym-
metric Riemannian manifold Mn+P. If the second fundamental form
is parallel, then Mn is locally symmetric.

2. Invariant hypersurfaces of an almost Hermitian manifold. Let
M2m be an invariant hypersurface of an almost Hermitian manifold
M2m+\ Then putting

(2.1) A = Al9 B = Λ, ξ = fi, e/ί - ί2, h(X, Y) = K(Xf Γ),

&(X, Y) = h2(X, Y), s(X) = s12(X), t(X) = s21(X)

for any X, YeTl(M)

and rewriting (0.1), (0.2) and (1.4), we have

(2.2) FXY - VXY + h(X, Y)ζ + k(X, Y)Jζ ,



546 S. SAWAKI AND K. SEKIGAWA

(2.3) Fxζ = -AX + s(X)Jξ , Fx{Jξ) = -BX + t(X)ξ ,

(2.4) s{X) + t(X) = 0 ,

respectively. Here A and B are symmetric tensors with respect to g
and from (1.2), we have

(2.5) h(X, Y) = g(AX, Y) , k(X, Y) = g(BX, Y) .

Moreover, the equation (1.3) becomes

(2.6) R(X, Y)W = R(X, Y)W - [h(Y, W)AX - h(X, W)AY]

- [k(Y, W)BX - k(X, W)BY] + [(Fxh)(Y, W) - (Fγh)(X, W)
+ k(Y, W)t(X) - k(X, W)t(Y)]ζ + [{Vxk){Y, W)

- (Pγk)(X, W) + h(Y, W)s(X) - h(X, W)s(Y)]Jξ .

From (2.6) the following well known lemma follows.

LEMMA 2.1. Let M2m be an invariant hypersurface of an almost
Hermitian manifold jβf2w+2. // M*m is curvature invariant, then we
have

(2.7) R(X, Y)W = R{X, Y)W - [g(AY, W)AX - g(AX, W)AY]

- [g{BY, W)BX - g(BX, W)BY] ,

(2.8) (FXA)Y - (FYA)X - s(X)BY + s( Y)BX = 0 ,

(2.9) (FXB) Y - (FyB)X + s(X)A Y - s( Y)AX = 0 (Codazzi equation)

for any X, Y, WeX(M).

For an almost Hermitian manifold M2m+\ the Ricci tensor S(Y, W)
is given by

(2.10) S(Y, W) = ± g{R{eit Y)W, β4) + Σ 9(B(Jet, Y)W, Jed + L(Y, W)
i

for any Γ, WeX(M), where L{Y, W) = g(R(ξ, Y)W, ξ) + g(R(Jζ, Y)W,
•Jξ) and {eu , βm, Jelf , Jem) is an orthonormal frame field defined on
an open set U of M2m. It is easily seen that L(Y, W) is a symmetric
tensor field of type (0, 2) on M2m.

LEMMA 2.2. Let M2m be an invariant hypersurface of a locally
symmetric almost Hermitian manifold M2m+2. If M2m is curvature
invariant, then we have

(2.11) (FXL)(Y, W) = k(X, Y)S(Jξ, W) + k(X, W)S(Jζ, Y)

+ h(X, Y)S(ξ, W) + h(X, W)S(ξ, Y)

for any X, Y, Weϊ(M).
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PROOF. We have

(2.12) {VXL)(Y, W) = X(L(Y, W)) - L(FxYf W) - L(Y, VXW) .

For the first term of the right hand side of (2.12), we have

(2.13) X(L(Y, W)) = X(g(R(ξ, Y)W, £)) + X(g(R(Jζ, Y)W, Jξ)) .

Since Mim is curvature invariant, we have

g(R(AX, Y)W,ξ) = 0, g(R(ξ, Y)W, AX) = - g(R(W, AX)Y, ξ) = 0 .

Hence, making use of (2.2) and (2.3), we have

(2.14) X(g(R(ζ, Y)W, ξ))

- s(X)g(R(Jξ, Y)W, ζ) + g(R(ξ, VXY)W, ξ)
+ k(X, Y)g(R(ζ, Jζ)W, I) + g(R(ξ, Y)VXW, ξ)
+ k(X, W)g(R(ζ, Y)Jξ, ξ) + s(X)g(R(ξ, Y)W, Jζ) .

For the third term of the right hand side of (2.14), making use of
g(R(e{, Jζ)W, ef) = 0 and 9(&(Jeu Jξ)W, Jef) = 0, we have

k(X, Y)g{R(ξ, Jξ)W, ξ) = k(X, Y)\ Σ g{R{e» Jξ)W, et)
L « = 1

+ Σ §{R(Jet, Jξ)W, Jet) + g(R(ξ, Jξ)W, ξ) + g{R{Jξ, Jζ)W, Jξ)]
ί = l J

= k(X, Y)S(Jξ, W) .

Similarly, for the fifth term, we have

k(X, W)g(R(ζ, Y)Jξ, ζ) = k(X, W)S(Jξ, Y) .

Thus, (2.14) turns out to be

(2.15) X(g(R(ξ, Y)W,ξ))

= s(X)[g(R(Jξ, Y)W, ξ) + g{R{ξ, Y)W, Jξ)] + g(R(ξ, FXY)W, ξ)

+ g(S(ξ, Y)VXW, ξ) + k(X, Y)S(Jζ, W) + k(X, W)S(Jζ, Y) .

Similarly, for the second term of the right hand side of (2.13), we have

(2.16) X(g(R(Jξ, Y)W, Jξ))

= -s(X)[g(R(ξ, Y)W, Jξ) + g(R(Jξ, Y)W, ξ)]

+ g(R(Jζ, VXY)W, Jξ) + g(R(Jξ, Y)VXW, Jξ)

+ h(X, Y)S(ξ, W) + h(X, W)S(ξ, Y) .

Consequently, by (2.15) and (2.16), (2.12) turns out to be

(PXL)(Y, W) = g(R(ξ, FXY)W, ξ) + g(R(ξ, Y)FXW, ξ)

+ g(R(Jξ, VXY)W, Jξ) + g(R(Jξ, Y)VXW, Jξ) - L(FXY, W)
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- UY, FXW) + k(X, Y)S(Jζ, W) + k(X, W)S(Jζ, Y)

+ h(X, Y)S(ζ, W) + h(X, W)S(ξ, Y) = k(X, Y)S(Jξ, W)

+ k(X, W)S(Jξ, Y) + h(X, Y)S(ζ, W) + h(X, W)S(ζ, Y),

because of the definition of L(Y, W).

LEMMA 2.3. Let Mίm be a curvature invariant o-hypersurface of
an *O-space M2m+2. Then we have

(2.17) (FxJ)A Y = 0 , A{VXJ) Y - 0 ,

(2.18) {VXA)JY = - J(VXA)Y

for any X, YzTί{M).

PROOF. Substituting B — JA into (2.9), we have

J(FXA)Y + (FXJ)AY - J(FYA)X - (FYJ)AX + s(X)AY - s(Y)AX = 0 .

Applying — J, we have

(2.19) (FXA)Y - (FrA)X - s(X)JAY + s(Y)JAX

- J[(FXJ)AY - (FyJ)AX] = 0 .

Comparing (2.8) with (2.19), we have

(2.20) (FXJ)AY = (FyJ)AX .

Replacing Y by JY, we have

(2.21) (FXJ)AJY = (FJYJ)AX .

Then, using J 2 = —/, we have

(FXJ)JAJY = (FjrJ)JAX

or by JA = —AJ

(2.22) (FXJ)A Y = (FJrJ)JAX .

Thus, forming the sum (2.20) + (2.22), by (0.5) we have

(2.23) (FXJ)AY = Q for any X, Ye*(M) .

Since A and J are symmetric and skew-symmetric respectively, the
other formula of (2.17) follows immediately from (2.23). For (2.18), by
(2.17) and JA = —AJ, we have

(FXA)JY = FAAJY) - AFX(JY) = - FX(JAY) - AFX(JY)

= -(FXJ)AY - J(FXA)Y - JA(FXY) - A(FXJ)Y - AJ{FXY)

= -J(FxA)Y.
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3. Proof of Theorem. By Lemma 1.3, it is sufficient to show that
Fxσ = 0 or by Lemma 1.2,

(3.1) VXA = s(X)JA , VX(JA) = -s(X)A .

From (2.7) it follows that the linear endomorphism of Ty(M)(y e M2m)
determined by IH>R(X, Y)W has the trace

(3.2) trace (X M> R(X, Y) W) = S{ Y, W) + 2g(A2 Y, W)

for any X, Y, We Ty{M), where S(Y, W) is the Ricci tensor of M2m.
Thus, by (2.10), we have

(3.3) S(Y, W) = S(Γ, TΓ) + 2g(A2Y, W) + L(Γ, TΓ) .

On the other hand, taking account of the fact that the Ricci tensor
S of the locally symmetric manifold M2m+2 is parallel, we have

XS(Y, W)

= S(VXY + h(X, Y)ξ + k{X, Y)Jζ, W) + S(Y, VXW + h(X, W)ξ

+ k(X, W)Jξ)

- S(ΓXY, W) + S(Y, FxΐF) + fe(X, Γ)S(f, T7) + k(X, Y)S(Jζ, W)

+ h(X, W)S(Y, ί) + fc(X, W)S(Y, Jξ) .

Consequently, operating Vx on both sides of (3.3) and making use
of Lemma 2.2 and VXS = 0, we have

(3.4) VXA
2 = 0 .

Then, let us consider the distributions Da(a = 1, 2, , I) on a neighbor-
hood U(x) of each point x e M2m defined by

D«{y) ={Xe Ty(M); A2X = KX} ,

where λα are nonnegative constant with Xa Φ \β(a Φ β) and y e U(x).
By (3.4), Da(a = 1, 2, , i) is parallel and

on U(x). Furthermore, Da(a = 1, 2, ••, Z) are invariant under J by
virtue of JA = — AJ and therefore JA2 = A2/.

Hence, we can take the distributions D%, D%a = 1, 2, , Z) on
given by

i?ί(y) = {Xe Ty(M); AX = XaX} ,

Dϊ(y) - { I G Γ,(AΓ); AX = -XaX} .

Then we have
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D%y) = Dΐ(y) 0 D°(y), Dϋ{y) = JD&y), Dΐ(y) =

By (3.4), we have

0 = (FX{AA))Y = A(FXA)Y + (FXA)AY ,

from which it follows that if YeD+(y)f then

A(FXA)Y = -Xa(FxA)Y

which means that (FzA)YeDfί(y). Similarly, if YeDϊ(y), then (FxA)Ye
Dϊ(y). Moreover, as is easily seen, if YeD^(y) or YeD"(y), then
(JA)YeD«(y) or (JA)YeD&y), respectively.

Consequently, if XeD«(y) and YeDi(y)(β = 1, 2, •••, I), then from

t h e Codazzi equation

(FXA)Y- (FYA)X - s(X)JAY + s(Y)JAX = 0 ,

we have

(3.5) (FxA)Y = s(X)JAY.

Similarly, when XeD"(y) and YeDl(y), we also have (3.5).
Next, we consider the case where XeD"(y) and YeDl(y). Dβ

+(y) =
JDl{y) means that if YeDl(y), then JYeDβ

+{y). Therefore since Xe
D«(y) and JYeDi(y), by (3.5) we have

(FXA)JY - s(X)JA(JY) = s(X)AF

or by (2.18)

-J(FXA)Y = 8(X)AY,

from which we have (3.5).
Similarly, when XeD"(y) and YeD{(y), we also have (3.5). For

the other formula of (3.1), making use of (2.17) and (3.5), we have

FX{JA)Y = (FXJ)AY + J(FXA)Y

= J(FXA)Y = Js(X)JAY = -s(X)AY .

Thus, we have Fxσ = 0. Consequently, the proof of Theorem is
complete.
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