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0. Introduction. Let M ™'* be an = + p-dimensional C* Riemann-
ian manifold with metric tensor § and Levi-Civita connection /. Then
the curvature tensor R of M"** is given by R(X, Y) = [Fx, Fy] — Vixn:
for any X, Y e %(M) where ((Jf) is the Lie algebra of C= vector fields
in Mnte,

Moreover, let M"™ be an n-dimensional submanifold immersed in
Mm*, Then we have

(0.1) Y =0, Y +0(X,Y) forany X, YeX(M)

where 7,Y and o denote the component of 7,Y tangent to M™ and the
second fundamental form of M* in M"*?, respectively. It is well known
that 7 is the covariant differentiation of M"™ and ¢ is a symmetric
covariant tensor field of degree 2 with values in the normal bundle
T(M)* of M™ where T(M) denotes the tangent bundle of M*.

We have further

(0'2) 7}(5“ == A“X + ,é S«ﬁ(X)Eﬂ (a = 17 2’ ] p)

where {&,} is a local orthonormal frame field for 7(M) and —A4.X is
the tangential component of 7&,.

Let /' be the covariant differentiation with respect to the connec-
tion in T(M) & T(M)*. Then we have

(0.3) (7o)Y, Z) = (Px0(Y, Z))* — o(+Y, Z) — o(Y, V+Z)

for any X, Y, Zc€X(M).

If V0 =0 for any Xe¥(M), then the second fundamental form is
said to be parallel. M" is said to be curvature invariant if R(X, Y)Z
belongs to X¥(M) for any X, Y, Z e X(M).

Next, let /™ be a 2m + 2¢-dimensional almost Hermitian mani-
fold with an almost Hermitian structure (J, §). Then a 2m-dimensional
invariant submanifold M®" of I7*™** is said to be a o-submanifold if
the second fundamental form o is complex bilinear, i.e.,
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(0.4) 0JX,Y)=0X,JY)=JoX,Y) for any X, YeX(M),

where J is the induced almost complex structure on M*". In particular,
if M*™ is a o-hypersurface of i7*™**, then the condition (0.4) is equiv-
alent to B=JA and AJ = —JA, where A and B are the second
fundamental tensors with respect to any unit normal vectors & and J¢
to M*™, respectively.

An almost Hermitian manifold 7 is called an *O-space (or quasi-
Kahler manifold) [2] if

(0.5) Fr)Y + (FP3: )Y =0

for any X, YeX(M) and M is called a K-space (or Tachibana space or
nearly Kahler manifold) if

(0.6) Fr)Y + (FyJJ)X =0 (or equivalently (FyJ)X = 0)

for any X, Y e ¥(J).

It is well known that a Kahler manifold is a K-space and a K-space
is an *O-space. It is also well known that an invariant hypersurface of
a K-space or an *O-gpace is a K-space or an *O-space respectively. More-
over, we know that an invariant hypersurface of a Kahler manifold or
a K-space is a o-hypersurface (see for example [3]).

The following theorem is well known.

THEOREM A (B. Smyth [4], T. Takahashi [5]). Let M*™ be an
invariant hypersurface of a Kdahler manifold M*™2 of comstant holo-
morphic sectional curvature. If M*™ is an Einstein (or Ricei parallel)
manifold, then M*™™ is locally symmetric.

A Kiahler manifold M®>™** of constant holomorphic sectional curva-
ture is locally symmetric and its invariant hypersurface M®" is curvature
invariant (see for example [4]). What will become of this theorem if
we replace the assumption of being of constant holomorphic sectional
curvature by being locally symmetric? Our main result is

THEOREM. Let M*™ be a o-hypersurface of a locally symmetric *O-
space M. If M®™ is Ricci parallel and curvature invariant, then
M*™ 48 locally symmetric.

COROLLARY. Let M®™ be an invariant hypersurface of a locally
symmetric Kahler manifold M*™**. If M®*™ is Ricci parallel and cur-
vature invariant, then M*™ 1s locally symmetric.

This generalizes Theorem A.
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1. Submanifolds of a Riemannian manifold. Let M" be a submani-
fold immersed in a Riemannian manifold M"** and put

(L.1) o(X, ¥) = 3 hlX, Ve -
Then we have
L2) (X, ), £) = 94X, ¥) = g(X, 4.Y) = h(X, Y)

for any X, YeX(M) and &,€X(M)* where g denotes the induced metrie
tensor on M™".
The following two lemmas are well known (see for example [1]).

LEMMA 1.1. Let R and R be the curvature temsors of M"™* and
M™ respectively. Then we have

(13) BX, V)W = RX, V)W — S h(Y, WAX + 3 h(X, W)AY
+ S [T, W) = @)X, W) + 5 (Y, Wsi(X)

— 51X, Wsi(D) Jee,

(1'4) saﬁ(X) + Spa(X) =0 (a, B = 1, 2, oo, p)
for any X, Y, We¥(M).

LEMMA 1.2. Fio =0 s equivalent to FVxA, = D31 8.,5(X)A,
(a = 1, 2, cesy, p)_

The following lemma which plays an important role in proving the
main theorem is also easily verified (see for example [6], p. 99, where
Vvo = 0 means V;h%, = 0).

LEMMA 1.8. Let M” be a submanifold tmmersed in a locally sym-
metric Riemannian manifold M™**. If the second fundamental form
18 parallel, then M™ is locally symmetric.

2. Invariant hypersurfaces of an almost Hermitian manifold. Let
M* be an invariant hypersurface of an almost Hermitian manifold
M+, Then putting

2.1) A=A,B=A4,¢:=¢,Ji=§, MX,Y) =hn(X,Y),
EX,Y)=hm(X,7Y), s(X) = 8,X), t(X) = 8,(X)
for any X, Ye%(M)
and rewriting (0.1), (0.2) and (1.4), we have
(2.2) P.Y =7, Y + h(X, Y)¢ + kX, Y)JE,
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(2.3) Poe=—AX + s(X)Je, Fy(JE) = —BX + t(X)&,
(2.4) s(X) +tX)=0,

respectively. Here A and B are symmetric tensors with respect to ¢
and from (1.2), we have

(2.5) MX,Y)=9g(AX,Y), KX, Y)=9BX,Y).
Moreover, the equation (1.3) becomes
(2.6) RX, YW = R(X, Y)W — [MY, W)AX — WX, W)AY]
— [k(Y, W)BX — k(X, W)BY] + [(Fxh)(Y, W) — (Fyh)(X, W)
+ (Y, WH(X) — kX, WHt(Y)]E + [(FxEXY, W)
— Vo)X, W) + WY, W)s(X) — (X, W)s(Y)]JE .
From (2.6) the following well known lemma follows.

LEMMA 2.1. Let M™ be an invariant hypersurface of an almost
Hermitian manifold M*™*:. If M*™ is curvature invariant, then we
have

2.1 RX, Y)W =RX, Y)W — [g(AY, W)AX — g(AX, W)AY]
— [¢(BY, W)BX — g(BX, W)BY],
(2.8) FzA)Y — F,A)X — s(X)BY + s(Y)BX =0,
2.9) PxB)Y — (FyB)X + s(X)AY — s(Y)AX =0 (Codazzt equation)
for any X, Y, WeX(M).
For an almost Hermitian manifold A7°™*?, the Ricci tensor S(Y, W)
is given by

210) 8(Y, W) = 3 §(Riew YIW, o) + 3, §(BJe, VYW, Jo) + L(Y, W)

for any Y, We%(M), where L(Y, W) = g(R(, Y)W, &) + g(RJ& Y)W,
J&) and {e, -, e, Je, -+, Je,} is an orthonormal frame field defined on
an open set U of M*™. It is easily seen that L(Y, W) is a symmetric
tensor field of type (0, 2) on M*",

LEMMA 2.2. Let M™ be an invariant hypersurface of a locally
symmetric almost Hermitian manifold M., If M*™ is curvature
wnvariant, then we have
(2.11) L)Y, W) = KX, Y)S(J¢, W) + k(X, W)S(J¢, Y)

+ X, YIS W) + kX, W)S(E, Y)
Jor any X, Y, WeX(M).
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ProOOF. We have
(2.12) LY, W) = X(I(Y, W)) — LI yY, W) — L(Y,V ;W) .
For the first term of the right hand side of (2.12), we have
(2.13) XY, W) = X(g(R(@& Y)W, ) + XGR(JTE, Y)W, J8)) .
Since M*®*™ is curvature invariant, we have
FRAX, )W,&) =0, gRE Y)W, AX) = — §(R(W, AX)Y, & =0.
Hence, making use of (2.2) and (2.3), we have
(2.14)  X@RE Y)W, 9)
= s(X)§(RUJE, Y)W, &) + gRE VY)W, €)
+ k(X, Y)GER(E, JOW, &) + g(RE, YW W, &)
+ KX, W)G(R(E, Y)JE &) + s(X)F(R(E, Y)W, J¢) .

For the third term of the right hand side of (2.14), making use of
G(R(e,, JOW, e) =0 and g(R(Je,, JE)W, Je,) = 0, we have

>, §(R(e, JOW, ¢,)

KX, V)R, JOW, &) = kX, Y)| ;
+ 3 (R, JOW, Je) + R JOW, ) + g(BJE, TOW, T¢) |
=KX, Y)S(Je, W) .
Similarly, for the fifth term, we have
(X, W)§(R(E, Y)JE, &) = kX, W)S(JE, Y) .
Thus, (2.14) turns out to be
(2.15) X(g(R&, Y)W, &)
= s(X)FERJE, Y)W, &) + g(B(& Y)W, JO] + §RE T Y)W, §)
+ GBE YW W, &) + k(X, Y)SJE W) + k(X, W)S(JE, Y) .
Similarly, for the second term of the right hand side of (2.13), we have
2.16)  X(@ERJE Y)W, Jo)
= —s(X)[g(R(&, Y)W, J&) + g(BUJE, Y)W, &)
+ gRJE, 7 Y)W, J&) + GRJE, YW, W, J)
+ WX, Y)SE W) + h(X, W)SE, Y).
Consequently, by (2.15) and (2.16), (2.12) turns out to be
ZxLXY, W) = G(RE VY)W, &) + §R(E YW W, )
+ GRJIE, 7 Y)W, J&) + GR(JE, YW W, J&) — L(7:Y, W)
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— (Y, VW) + kX, Y)SJe, W) + k(X, W)S(Jg, Y)

+ WX, Y)SE, W) + kX, WIS, Y) = kX, Y)S(JE, W)

+ k(X, W)S(Je, Y) + (X, Y)SE W) + (X, W)S(, V),
because of the definition of L(Y, W).

LEMMA 2.3. Let M*™ be a curvature invariant o-hypersurface of
an *O-space M*™*2, Then we have

(2.17) Fx)AY =0, AV )Y =0,
(2.18) FzAJY = — JFzA)Y
for any X, YeX(M).
ProoOF. Substituting B = JA into (2.9), we have
JWxA)Y + Pz J)AY — JF A)X — (VyJ)AX + s(X)AY — s(Y)AX =0.
Applying —J, we have
(2.19) FxA)Y — FyA)X — s(X)JAY + s(Y)JAX
— JPx)AY — (FyJ)AX] =0.
Comparing (2.8) with (2.19), we have

(2.20) Px)AY = (FyJJ)AX .
Replacing Y by JY, we have

(2.21) Fx)AJY = (VJJ)AX .
Then, using J? = —1I, we have

W )JAJY = (Vv ) JAX
or by JA = —AJ

(2.22) FxJ)AY = (F;pJ)JAX .
Thus, forming the sum (2.20) + (2.22), by (0.5) we have
(2.23) FxJ)AY =0 for any X, YeX(M).

Since A and J are symmetric and skew-symmetric respectively, the
other formula of (2.17) follows immediately from (2.23). For (2.18), by
(2.17) and JA = —AJ, we have
FrA)Y =V (AJY) — AV 3(JY) = —Vx(JAY) — AV 4(JY)
= —WxJJ)AY — JU LAY — JAFY) — AWxJ)Y — AJ(V;Y)
= —-JFzA)Y .
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3. Proof of Theorem. By Lemma 1.3, it is sufficient to show that
Vv =0 or by Lemma 1.2,

(3.1) VyA = s(X)JA , Vy(JA) = —s(X)A .

From (2.7) it follows that the linear endomorphism of T,(M)(ye M*™)
determined by X +— R(X, Y)W has the trace

(3.2) trace (X — R(X, Y)W) = S(Y, W) + 29(A*Y, W)
for any X, Y, We T,(M), where S(Y, W) is the Ricci tensor of M.
Thus, by (2.10), we have
(3.3) S(y, W) = S(Y, W) + 29(4*Y, W) + L(Y, W) .
~ On the other hand, taking account of the fact that the Ricei tensor
S of the locally symmetric manifold A*™** is parallel, we have
xSy, w)
=8(:Y + MX, Y)§ + KX, Y)J& W) + S(Y, 7x W + KX, W)E
+ KX, W)JE)
=S, Y, W) + 8(Y, 7xW) + WX, Y)S¢ W) + k(X, Y)S(Je, W)
+ WX, W)S(Y, &) + kX, W)S(Y, J¢) .
Consequently, operating /'y on both sides of (8.3) and making use
of Lemma 2.2 and VS =0, we have
(3.4) VyA*=0.
Then, let us consider the distributions D*(@ =1, 2, ---, ) on a neighbor-
hood U(x) of each point z € M*™ defined by
D(y) ={XeT,(M); A*X =\ X},
where A, are nonnegative constant with A\, # M(a #= 8) and ye U(x).
By (3.4), D*(a¢ =1,2, ---, 1) is parallel and
T(M) =D y)D --- & D'(y)
on U(x). Furthermore, D*a =1,2, ---,1) are invariant under J by
virtue of JA = —AJ and therefore JA® = A%J.
Hence, we can take the distributions D¢, D¥(a =1, 2, ---, 1) on U(x)
given by
Diy) ={XeT,M); AX = \X},
D¥y) ={XeT,(M); AX = -7\ X}.

Then we have
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D(y) = Di(y) @ D:(y), D(y) = JD(y), Di(y) = JDX(y) .
By (3.4), we have
0 =Fx(AA)Y = Al A)Y + (F A)AY ,
from which it follows that if Y e D#(y), then
AV A)Y = =NV xA)Y

which means that (";A)Y € D%(y). Similarly, if Y € D%(y), then (V;A)Y €
D2(y). Moreover, as is easily seen, if YeD%y) or YeDXy), then
(JA)Y € DX(y) or (JA)Y € D¥(y), respectively.

Consequently, if XeD4y) and YeD{y)XBe =1,2,---,1), then from
the Codazzi equation

FzA)Y — V,AX — s(X)JAY + s(Y)JAX =0,

we have
(8.5) FrA)Y = s(X)JAY .

Similarly, when X e DX(y) and Y e D#(y), we also have (3.5).

Next, we consider the case where X e D%y) and Y e D/(y). Di(y)=
JD2(y) means that if YeDf(y), then JY e Df(y). Therefore since X e
D2(y) and JY € D(y), by (3.5) we have

LAY = s(X)JAJY) = s(X)AY
or by (2.18)
—J(FyA)Y = s(X)AY ,

from which we have (3.5).
Similarly, when Xe D¥y) and Y e D‘(y), we also have (3.5). For
the other formula of (3.1), making use of (2.17) and (3.5), we have

Vo(JAY = Py )AY + JI LAY
= JULA)Y = Js(X)JAY = —s(X)AY .

Thus, we have /yo = 0. Consequently, the proof of Theorem is
complete.
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