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1. Introduction. Let m be a bounded measurable function on R:.
Define a linear operator T, by

(Tuf) & M) = m& 0iE ),  felXR)n LR,

where f is the Fourier transform of f, and 1= p < . We say that
m is a multiplier for L?(R? if T, < L°(R?, and there exists a constant A,
independent of f, such that

I Tuf ll, = Allf N, feLXR) N LR .

Carleson and Sjolin [1] have proved that (1 — (&2 + 7?))4, 0 <\ < 1/2,
is a multiplier for L? if and only if 4/(8 + 2\) < p < 4/(1 — 2\). Here we
have used the notation », = max (r, 0); e R. Recently Cordoba [2] has
proved this two dimensional result by using the Kakeya maximal funec-
tion and a g-function (see also [3]). On the other hand, the above
multiplier theorem has been extended to one for the following more
general functions m by Sjolin [5].

THEOREM 1. Let I’ be a simple and closed C= curve with mon-zero
curvature in R and 2 be the inside of I'. For (& n)eR? let 6(¢, 1)
denote the distance from (&, 7) to I' and let x> 0. We assume that m
18 a bounded function on R* which has the following properties:

(A) The restriction to 2 of m belongs to C*Q2).

(B) There exists a meighborhood 2’ of I' such that

m(&, 1) = 0§, N for (& Me(@N2).
©) m,n) =0, for (§7)e¢Q.
Then:
(a) m s a multiplier for L*(R?) for 1 < p < o if M >1/2.
(b) If 0<N=1/2, m is a multiplier for LP(R? if and only if
4/(8 4+ 2\) < p < 4/ — 2n).
Actually Sjolin [5] has proved Theorem 1 for a C~ curve I” which

is simple and closed and has a tangent at each point. In this note we
shall show that Cordoba’s techniques in [2] is applicable to more general
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cases and we shall give a simpler proof of Theorem 1.

2. A lemma. We begin with the following geometrical observation.

LEMMA 2. Let I =[—a, a] (a > 0) be a compact interval on R and
let e C>(I) be a real valued function such that "' >0, 4 < —2 on I
Furthermore, we assume that |y'(a)| and |4'(—a)| are less than 1/2.
For 6 > 0, and for each integer j, we define a set E; ; by

By ={¢&mMeRc,0=<7 — () =9,
—7tan (j ~ 1/2)9") = ¢ = —7tan (( + 1/2)5") .

Then, for each small 6 no point of R* belongs to more than N of the
sets K, ; + E; ;, where N is independent of 0.

Proor. By changing coordinates, it is sufficient to show that the
number of the sets E;; + E;; that intersect the fixed E,; + E; _;
(jo = 1) is less than N, assuming +'(0) = 0. Let (&, 7;) be the point of
intersection of the line & = —ntan (j6¥*) with the curve » = (£). Then,
there exist constants ¢, and ¢, not depending on 7 or 6 such that ¢,0"* <
Ej1 — & = c,0"". Now let k> 0. By the mean value theorem there exist
E, &, E,el and b, b, such that ¢, b, < ¢, (i =1, 2),

Dire — Nig = ¥(0:500"* + b:k0"*) — 4r(b,7,0"7)
= b.koy" (E){bigo + bk (51)/(24"(€0))}
= AkQ2jg, + k)o
for some constant A not depending on %, j,, or o.
Let L} be the length of the projection of E;; on the %»-axis. Then,
using +'(0) = 0, we have
L}o é BJOB ’ 3’0+k é B(jo + k)a ’
for some B > 0 not depending on j, k, or 6. The same argument is
also valid for the part of E; _;, E; _+wn. Therefore if (E;; + E;_;)N
(E; 541 + B _y+w) is not empty, we have
Ak(2j, + k)o =< B2j, + k)o, so k= B/A.
The case & < 0 can be treated similarly.

Next let L} be the length of the projection of E; ; on the &-axis. Then
L; < ¢0”. I (E5,50+[B/A] + Eﬁ,—(j0+[B/A]+k)) n (Ea,jo + Ej,_;) is not empty for
k > 0, we have

([B/A] + k)c,6** — | B/Ale,0'* = 4¢,0"*
thus k< (c,/c,)(4+[B/A])—[B/A]. After the same argument for E; ; :is/4+:+
E; _Gyrtzans Bajg-tzrnt Es, _y-t/a1-1, a0d B 51501+ Fs o _1s/41, it follows
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that (B ;o+;, + Bs_jpe) O (Es;, + Es, ;) is not empty only if |j;| =<
(co/e)4 + [B/A)), 1 =1, 2. Thus the lemma is proved.

3. Proof of Theorem 1. Let eC~(I) be a function given in
Lemma 2. It is sufficient to show that a(s, 7)(¥ — 4(£))% is a multiplier,
where a(g, ) is a C>-function in I X R with compact support.

Let my(&, 1) = a(g, ) — ¥(&)2. Now we make the first decomposi-
tion of m;(&, 7). Let ¢ be a C~-function in R suchthat 0<¢=<1,96=1
on [1/2, 1], and ¢ = 0 outside [1/4, 2]. Let

5,1 = p@n)[Se@n),  §=1,23 .

Decompose m;(&, ) into

mis, ) = (1= 26,00 — 9O )male, M) + 2 8507 — w(@)mae, 7) -

Then since the first term is a C=-function with compact support, it
suffices to estimate the second term.

Set m;(&, 1) = 6,0 — v(@)mi(&, 1), and define T; by (T,/)°(, 1) =
mi&, PFE M, 5=1,2,8, ---. We shall prove

(1) I Tif lo = C27#5 || e s

with C independent of j.

For this purpose we make the following decomposition. Let @ be
a C~-function such that 0 <0 <1, o =1 on [—1/2, 1/2], and @ = 0 out-
side [—2/3, 2/3]. Let

D,(0) = B(2(0 — k27 /l 2 02770 — 1/277)

for each integer k. Decompose m;(, 7)) into
mi&, ) = 3 mi& NPiare tan (—¢/n) = ZmiE, 1) ,

1=c27

and define T¢ by (Tf)(&, 1) = mi&, PFE, 7). Notice T; = X, T%. By
Lemma 2 we have

(2) IT5f le= CNCSITI B M

with C independent of j (see [2], [3]).

Next let (&, 7,) be the point of intersection of the line & =
—n tan (k/2*) with the curve 7 = (&), and let 6, be the angle that the
tangent of the curve n = (&) at (¢, 9,) makes with the ¢-axis. Then
define rectangles R by

R, = nek||lz| =272 |yl =22} n=0,12 -,
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and let R be the rectangle obtained by rotating R) by 6,. Let K} be
the kernel of T}. We shall show

(3) | KX, 9)| < 27 32X (a, )| BS |

with a constant C independent of j and k%, where |R%| denotes the
Lebesgue measure of R:. To prove (3), define u, v by
E=mwucosf, —wvsind,, 7 =wusinb, + vcosé,,

and write m%(u, v) = mi¢&, ). Then
27— () = sin by — (@) eos 0, = (&) — 4'(8) cos
so that
l %(77 - «/f"(E))‘ = C27*, for (¢ 7)esupp (mf).

Therefore we have
Py
ou*ov*
Then integration by parts gives
[(W5) (@, y)| S C, 2797275912328 | |~ |y |~# .

mh(u, 'v)’ = C, (279205002988 a=z0, g=0.

This implies easily
| ()" (2, ¥)|C277 3, 27" (@, y)/| Ra| -

Since the Fourier transform commutes with rotations, we have (3).

Having proved (2) and (3), we can now apply the g-function and the
maximal theorem in [3] to prove (1), since the ratios of the lengths of
the projections of {supp (m!)}, on the g-axis are uniformly bounded. Let
K; be the kernel of T;. From (3) we have

IK;], = C2-2ie .

Therefore if » > 1/2, the Fourier transform of m,; is integrable and this
proves (a) of Theorem 1. If 0 <\ = 1/2, the sufficiency of the condition
on p in Theorem 1 follows from interpolation between (1) and the obvi-
ous estimate

[ Tif le = C277272| f [|an

For the part of necessity, see [5].
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Finally we remark that if " has zeros of finite order in I, the

method in [4, p. 8] also applies in our case to improve Theorem 1.
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