A NOTE ON A FOURIER MULTIPLIER OF TWO VARIABLES

SHUICHI SATO

(Received July 14, 1980)

1. Introduction. Let m be a bounded measurable function on \mathbb{R}^2 . Define a linear operator T_m by

$$(T_m f)^{\widehat{\xi}}(\xi, \eta) = m(\xi, \eta) \widehat{f}(\xi, \eta) , \qquad f \in L^2(\mathbf{R}^2) \cap L^p(\mathbf{R}^2) ,$$

where \hat{f} is the Fourier transform of f, and $1 \leq p \leq \infty$. We say that m is a multiplier for $L^{p}(\mathbf{R}^{2})$ if $T_{m} \in L^{p}(\mathbf{R}^{2})$, and there exists a constant A, independent of f, such that

$$\| T_{m} f \|_{p} \leq A \| f \|_{p} \,, \qquad f \in L^{2}({oldsymbol{R}}^{2}) \cap L^{p}({oldsymbol{R}}^{2}) \,.$$

Carleson and Sjölin [1] have proved that $(1 - (\xi^2 + \eta^2))^2_+$, $0 < \lambda \leq 1/2$, is a multiplier for L^p if and only if $4/(3 + 2\lambda) . Here we$ $have used the notation <math>r_+ = \max(r, 0)$; $r \in \mathbf{R}$. Recently Cordoba [2] has proved this two dimensional result by using the Kakeya maximal function and a g-function (see also [3]). On the other hand, the above multiplier theorem has been extended to one for the following more general functions m by Sjölin [5].

THEOREM 1. Let Γ be a simple and closed C^{∞} curve with non-zero curvature in \mathbf{R}^2 and Ω be the inside of Γ . For $(\xi, \eta) \in \mathbf{R}^2$, let $\delta(\xi, \eta)$ denote the distance from (ξ, η) to Γ and let $\lambda > 0$. We assume that m is a bounded function on \mathbf{R}^2 which has the following properties:

- (A) The restriction to Ω of m belongs to $C^2(\Omega)$.
- (B) There exists a neighborhood Ω' of Γ such that

$$m(\xi, \eta) = \delta(\xi, \eta)^{\lambda}$$
 for $(\xi, \eta) \in (\Omega \cap \Omega')$.

(C)
$$m(\xi, \eta) = 0$$
, for $(\xi, \eta) \notin \Omega$.

Then:

(a) *m* is a multiplier for $L^{p}(\mathbf{R}^{2})$ for $1 \leq p \leq \infty$ if $\lambda > 1/2$.

(b) If $0 < \lambda \leq 1/2$, m is a multiplier for $L^p(\mathbf{R}^2)$ if and only if $4/(3+2\lambda) .$

Actually Sjölin [5] has proved Theorem 1 for a C^{∞} curve Γ which is simple and closed and has a tangent at each point. In this note we shall show that Cordoba's techniques in [2] is applicable to more general cases and we shall give a simpler proof of Theorem 1.

2. A lemma. We begin with the following geometrical observation.

LEMMA 2. Let I = [-a, a] (a > 0) be a compact interval on R and let $\psi \in C^{\infty}(I)$ be a real valued function such that $\psi'' > 0$, $\psi < -2$ on I. Furthermore, we assume that $|\psi'(a)|$ and $|\psi'(-a)|$ are less than 1/2.

For $\delta > 0$, and for each integer j, we define a set $E_{\delta,j}$ by

$$egin{aligned} E_{\delta,j} &= \{(\xi,\,\eta)\in oldsymbol{R}^2 \,|\, \xi\in I,\, 0\leq \eta-\psi(\xi)\leq \delta,\ &-\eta an((j\,-1/2)\delta^{1/2})\leq \xi\leq -\eta an((j\,+1/2)\delta^{1/2})\} \;. \end{aligned}$$

Then, for each small δ no point of \mathbf{R}^2 belongs to more than N of the sets $E_{s,j} + E_{s,j'}$, where N is independent of δ .

PROOF. By changing coordinates, it is sufficient to show that the number of the sets $E_{\delta,j} + E_{\delta,j'}$ that intersect the fixed $E_{\delta,j_0} + E_{\delta,-j_0}$ $(j_0 \ge 1)$ is less than N, assuming $\psi'(0) = 0$. Let (ξ_j, η_j) be the point of intersection of the line $\xi = -\eta \tan(j\delta^{1/2})$ with the curve $\eta = \psi(\xi)$. Then, there exist constants c_1 and c_2 not depending on j or δ such that $c_1\delta^{1/2} \le \xi_{j+1} - \xi_j \le c_2\delta^{1/2}$. Now let k > 0. By the mean value theorem there exist $\xi_1, \xi_2, \xi_3 \in I$ and b_1, b_2 such that $c_1 \le b_i \le c_2$ (i = 1, 2),

$$egin{aligned} \eta_{j_0+k} &-\eta_{j_0} &= \psi(b_1 j_0 \delta^{1/2} + b_2 k \delta^{1/2}) - \psi(b_1 j_0 \delta^{1/2}) \ &= b_2 k \delta \psi''(ilde{\xi}_1) \{b_1 j_0 + b_2 k \psi''(ilde{\xi}_2) / (2 \psi''(ilde{\xi}_3)) \} \ &\geq A k (2 j_0 + k) \delta \end{aligned}$$

for some constant A not depending on k, j_0 , or δ .

Let L_j^i be the length of the projection of $E_{\delta,j}$ on the η -axis. Then, using $\psi'(0) = 0$, we have

$$L^{\scriptscriptstyle 1}_{j_0} \leqq B j_{\scriptscriptstyle 0} \delta$$
 , $L^{\scriptscriptstyle 2}_{j_0+k} \leqq B (j_{\scriptscriptstyle 0}+k) \delta$,

for some B > 0 not depending on j_0 , k, or δ . The same argument is also valid for the part of $E_{\delta,-j_0}$, $E_{\delta,-(j_0+k)}$. Therefore if $(E_{\delta,j_0} + E_{\delta,-j_0}) \cap (E_{\delta,j_0+k} + E_{\delta,-(j_0+k)})$ is not empty, we have

$$Ak(2j_{\scriptscriptstyle 0}+k)\delta \leq B(2j_{\scriptscriptstyle 0}+k)\delta$$
 , so $k \leq B/A$.

The case k < 0 can be treated similarly.

Next let L_j^2 be the length of the projection of $E_{\delta,j}$ on the ξ -axis. Then $L_j^2 \leq c_2 \delta^{1/2}$. If $(E_{\delta,j_0+\lfloor B/A \rfloor} + E_{\delta,-(j_0+\lfloor B/A \rfloor+k)}) \cap (E_{\delta,j_0} + E_{\delta,-j_0})$ is not empty for k > 0, we have

$$([B/A] + k)c_1\delta^{_{1/2}} - [B/A]c_2\delta^{_{1/2}} \leq 4c_2\delta^{_{1/2}}$$
 ,

thus $k \leq (c_1/c_2)(4 + [B/A]) - [B/A]$. After the same argument for $E_{\delta, j_0 + [B/A] + k} + E_{\delta, -(j_0 + [B/A])}, E_{\delta, j_0 - [B/A]} + E_{\delta, -(j_0 - [B/A] - k})$, and $E_{\delta, j_0 - [B/A] - k} + E_{\delta, -(j_0 - [B/A])}$, it follows

140

that $(E_{\delta,j_0+j_i}+E_{\delta,-j_0+j_2})\cap (E_{\delta,j_0}+E_{\delta,-j_0})$ is not empty only if $|j_i| \leq (c_2/c_1)(4+[B/A])$, i=1, 2. Thus the lemma is proved.

3. Proof of Theorem 1. Let $\psi \in C^{\infty}(I)$ be a function given in Lemma 2. It is sufficient to show that $a(\xi, \eta)(\eta - \psi(\xi))^{\lambda}_{+}$ is a multiplier, where $a(\xi, \eta)$ is a C^{∞} -function in $I \times \mathbf{R}$ with compact support.

Let $m_{\lambda}(\xi, \eta) = a(\xi, \eta)(\eta - \psi(\xi))_{+}^{\lambda}$. Now we make the first decomposition of $m_{\lambda}(\xi, \eta)$. Let ϕ be a C^{∞} -function in \mathbf{R} such that $0 \leq \phi \leq 1, \phi \equiv 1$ on [1/2, 1], and $\phi \equiv 0$ outside [1/4, 2]. Let

$$\phi_j(r)=\phi(2^jr)\Bigl/{\displaystyle\sum_{k=0}^{\infty}\phi(2^kr)}$$
 , $j=1,\,2,\,3,\,\cdots$.

Decompose $m_{\lambda}(\xi, \eta)$ into

$$m_\lambda(\xi,\eta) = \Big(1-\sum_{j=1}^\infty \phi_j(\eta-\psi(\xi))\Big)m_\lambda(\xi,\eta) + \sum_{j=1}^\infty \phi_j(\eta-\psi(\xi))m_\lambda(\xi,\eta) \;.$$

Then since the first term is a C^{∞} -function with compact support, it suffices to estimate the second term.

Set $m_j(\xi, \eta) = \phi_j(\eta - \psi(\xi))m_\lambda(\xi, \eta)$, and define T_j by $(T_jf)^{\hat{}}(\xi, \eta) = m_j(\xi, \eta)\hat{f}(\xi, \eta)$, $j = 1, 2, 3, \cdots$. We shall prove

$$(\ 1 \) \qquad \qquad \parallel T_{j}f \parallel_{\scriptscriptstyle 4} \leq C 2^{-j\lambda} j^{\scriptscriptstyle 1/4} \parallel f \parallel_{\scriptscriptstyle 4}$$
 ,

with C independent of j.

For this purpose we make the following decomposition. Let Φ be a C^{∞} -function such that $0 \leq \Phi \leq 1$, $\Phi \equiv 1$ on [-1/2, 1/2], and $\Phi \equiv 0$ outside [-2/3, 2/3]. Let

$$arPsi_k(heta) = arPsi(2^{j/2}(heta - k/2^{j/2})) \Big/ \sum_{l=-\infty}^{\infty} arPsi(2^{j/2}(heta - l/2^{j/2}))$$

for each integer k. Decompose $m_j(\xi, \eta)$ into

$$m_j(\xi, \eta) = \sum_{|k| \leq C2^{j/2}} m_j(\xi, \eta) \varPhi_k(rc \tan{(-\xi/\eta)}) \equiv \sum_k m_j^k(\xi, \eta)$$
 ,

and define T_j^k by $(T_j^k f)^{\hat{}}(\xi, \eta) = m_j^k(\xi, \eta) \hat{f}(\xi, \eta)$. Notice $T_j = \sum_k T_j^k$. By Lemma 2 we have

$$(\ 2\) \qquad \qquad \ \|\ T_jf\|_{{}_4} \leq C \, \|\, (\sum\limits_k |\ T_j^kf|^2)^{1/2}\|_{{}_4}$$
 ,

with C independent of j (see [2], [3]).

Next let (ξ_k, η_k) be the point of intersection of the line $\xi = -\eta \tan(k/2^{j/2})$ with the curve $\eta = \psi(\xi)$, and let θ_k be the angle that the tangent of the curve $\eta = \psi(\xi)$ at (ξ_k, η_k) makes with the ξ -axis. Then define rectangles R_n^0 by

$$R^{\scriptscriptstyle 0}_{\scriptscriptstyle n} = \{(x,\,y)\in {\pmb R}^{\scriptscriptstyle 2} |\, |\, x| \leq 2^{j/2} 2^{\scriptscriptstyle n},\, |\, y\,| \leq 2^j 2^n\} \qquad n=0,\,1,\,2,\,\cdots,$$

and let R_n^k be the rectangle obtained by rotating R_n^0 by θ_k . Let K_j^k be the kernel of T_j^k . We shall show

$$(3) |K_{j}^{k}(x, y)| \leq C 2^{-j\lambda} \sum_{n=0}^{\infty} 2^{-n} \chi_{R_{n}^{k}}(x, y) / |R_{n}^{k}|$$

with a constant C independent of j and k, where $|R_n^k|$ denotes the Lebesgue measure of R_n^k . To prove (3), define u, v by

$$arsigma = u \cos heta_k - v \sin heta_k$$
 , $\eta = u \sin heta_k + v \cos heta_k$,

and write $\widetilde{m}_{j}^{k}(u, v) = m_{j}^{k}(\xi, \eta)$. Then

$$rac{\partial}{\partial u}(\eta-\psi(\xi))=\sin heta_k-\psi'(\xi)\cos heta_k=(\psi'(\xi_k)-\psi'(\xi))\cos heta_k$$

so that

$$\left|rac{\partial}{\partial u}(\eta-\psi(\hat{\xi}))
ight| \leq C2^{-j/2}$$
, for $(\hat{\xi},\eta)\in \mathrm{supp}\,(m_j^k)$.

Therefore we have

$$\left|rac{\partial^{lpha+eta}}{\partial u^{lpha}\partial v^{eta}}\widetilde{m}_{j}^{k}\!(u,\,v)
ight| \leq C_{lpha,eta}2^{-j\lambda}2^{jlpha/2}2^{jeta}\,,\qquad lpha\geq 0\;,\quad eta\geq 0\;.$$

Then integration by parts gives

$$|(\widetilde{m}_{j}^{k})^{(x, y)}| \leq C_{lpha, eta} 2^{-j\lambda} 2^{-3j/2} 2^{jlpha/2} 2^{jeta} |x|^{-lpha} |y|^{-eta}$$
 .

This implies easily

$$|(\widetilde{m}_{j}^{k})^{\hat{}}(x, y)|C2^{-j\lambda}\sum_{n=0}^{\infty}2^{-n}\chi_{R_{n}^{0}}(x, y)/|R_{n}^{0}|$$
 .

Since the Fourier transform commutes with rotations, we have (3).

Having proved (2) and (3), we can now apply the g-function and the maximal theorem in [3] to prove (1), since the ratios of the lengths of the projections of $\{\operatorname{supp}(m_j^k)\}_k$ on the ξ -axis are uniformly bounded. Let K_j be the kernel of T_j . From (3) we have

$$\|K_j\|_1 \leq C 2^{-j\lambda} 2^{j/2}$$
 .

Therefore if $\lambda > 1/2$, the Fourier transform of m_{λ} is integrable and this proves (a) of Theorem 1. If $0 < \lambda \leq 1/2$, the sufficiency of the condition on p in Theorem 1 follows from interpolation between (1) and the obvious estimate

$$\|T_j f\|_{\infty} \leq C 2^{-j\lambda} 2^{j/2} \|f\|_{\infty}$$

For the part of necessity, see [5].

FOURIER MULTIPLIER

Finally we remark that if ψ'' has zeros of finite order in *I*, the method in [4, p. 8] also applies in our case to improve Theorem 1.

References

- L. CARLESON AND P. SJÖLIN, Oscillatory integrals and a multiplier problem for the disc, Studia Math. 44 (1972), 287-299.
- [2] A. CORDOBA, A note on Bochner-Riesz operators, Duke Math. J. 46 (1979), 505-511.
- [3] C. FEFFERMAN, A note on spherical summation multipliers, Israel J. Math. 15 (1973), 44-52.
- [4] L. HÖRMANDER, Oscillatory integrals and multipliers on FL^p , Ark. Mat. 11 (1973), 1-11.
- [5] P. SJÖLIN, Fourier multipliers and estimates of the Fourier transform of measures carried by smooth curves in \mathbb{R}^2 , Studia Math. 51 (1974), 169-182.

Mathematical Institute Tôhoku University Sendai, 980 Japan