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1. Introduction. Let m be a bounded measurable function on R2.
Define a linear operator Tm by

f, V) = m(f, y)f(ξ, η), f e L\R2) Π LP{R2) ,

where / is the Fourier transform of /, and 1 ^ p ^ oo. We say that
m is a multiplier for LP(R2) if Tm e LP(R2), and there exists a constant A,
independent of /, such that

|| TJII, ^ A || / II, , fe L\R2) n

Carleson and Sjδlin [1] have proved that (1 - (ζ2 + Ύ)2))\, 0 < λ <; 1/2,
is a multiplier for L p if and only if 4/(3 + 2λ) < p < 4/(1 - 2λ). Here we
have used the notation r + = max (r, 0); reR. Recently Cordoba [2] has
proved this two dimensional result by using the Kakeya maximal func-
tion and a g-ΐunction (see also [3]). On the other hand, the above
multiplier theorem has been extended to one for the following more
general functions m by Sjδlin [5].

THEOREM 1. Let Γ be a simple and closed C°° curve with non-zero
curvature in R2 and Ω be the inside of Γ. For (ξ, rf) 6 i22, let d(ζ, Ύj)
denote the distance from (£, η) to Γ and let λ > 0. We assume that m
is a bounded function on R2 which has the following properties:

(A) The restriction to Ω of m belongs to C2(Ω).
(B) There exists a neighborhood Ωr of Γ such that

m(ξ, V) = δ(ξ, V)λ for (ξ, V) 6 (Ω n Ω') .

(C) m(f,?) = 0, for {ξ,η)$Ω.

Then:

(a) m is a multiplier for LP(R2) for l ^ p ^ ° ° if λ > 1/2.
(b) If 0 < λ ^ 1/2, m is a multiplier for LP{R2) if and only if

4/(3 + 2 λ ) < p < 4/(1 - 2λ).

Actually Sjolin [5] has proved Theorem 1 for a C°° curve Γ which
is simple and closed and has a tangent at each point. In this note we
shall show that Cordoba's techniques in [2] is applicable to more general
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cases and we shall give a simpler proof of Theorem 1.

2. A lemma. We begin with the following geometrical observation.

LEMMA 2. Let I = [ — a, a] (α > 0) be a compact interval on R and
let ψeC°°(I) be a real valued function such that ψ" > 0, ψ < —2 on /.
Furthermore, we assume that \ψ'(a)\ and \ψr( — a)\ are less than 1/2.

For δ > 0, and for each integer j , we define a set Eδt3> by

E*.i = {(£, V) e R2\ ξ e /, 0 ^ -η - ψ(ξ) ^ δ,

- η tan ((j - 1/2)S1/2) ^ ξ ^ -)7 tan ((i + l/2)δ1/2)} .

Then, for each small δ no point of R2 belongs to more than N of the
sets Eδ)j + Eδ>r, where N is independent of δ.

PROOF. By changing coordinates, it is sufficient to show that the
number of the sets Eδtj + Eitjf that intersect the fixed Eδ>JQ + Eδ)_JQ

(io ^ 1) is less than N, assuming ψ'(0) = 0. Let (ξj9 ηs) be the point of
intersection of the line ξ = — η tan (jδ1/2) with the curve ΎJ — ψ(ξ). Then,
there exist constants cλ and c2 not depending on j or δ such that c^172 ^
ξj+i — ξj ^ o2δ

m. Now let k > 0. By the mean value theorem there exist
?i, ?2, Is e I and bu b2 such that cx ^ bt ^ c2 (i = 1, 2),

for some constant A not depending on /c, j 0 , or δ.
Let LJ be the length of the projection of Eδtj on the >?-axis. Then,

using ψ'(0) = 0, we have

L)o ^ Bioδ , L2

 0+fc g J5(io + k)δ ,

for some B > 0 not depending on ;?Ό> &> or δ. The same argument is
also valid for the part of Eδ,_jo, Eδ,_{JQ+k). Therefore if (Eδ,, 0 + Eδ>_jo)f]
(Eδ,h+k + Eδ,_Uo+k)) is not empty, we have

Ak(2j0 + k)δ ^ B(2j0 + k)δ , so Λ ^ £/A .

The case & < 0 can be treated similarly.
Next let L) be the length of the projection of Eitj on the f-axis. Then

L) ^ c2δ
1/2. If (Eδlίo+ίB/Λl + Eδ,_{JQ+ίB/Al+k)) n (^, i o + i ί f _ i 0 ) is not empty for

k > 0, we have

k)c,δ1/2 - [5/A]c 2 δ 1 / 2 ^ Ac2δ
1/2 ,

thus fc^(c1/c2)(4 + [B/A]) —[JB/A]. After the same argument for Eδ,J0+ίB/Ank +
it follows
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t h a t ( E δ , j o + h + E δ , _ h + h ) n (Eδfjo + Eδ,_JQ) i s n o t e m p t y o n l y i f \ j t \ £
(c2/Ci)(4 + [B/A]), i = 1, 2. Thus the lemma is proved.

3. Proof of Theorem 1. Let ψ e C°°(I) be a function given in
Lemma 2. It is sufficient to show that a(ζ, Ύ]){Ύ] — ψ{ξ)Y+ is a multiplier,
where α(f, rj) is a C°°-function in / x R with compact support.

Let mλ(ξ, rj) — a(ζ9 rj)(η — ψ(ζ))+. Now we make the first decomposi-
tion of mλ(ξ, rj). Let φ be a C°°-function in R such that 0 ^ ^ 1, # Ξ 1
on [1/2, 1], and φ Ξ 0 outside [1/4, 2]. Let

/ i = 1, 2, 3, - .

Decompose mλ(ζ, 7]) into

W ξ, V)

Then since the first term is a C°°-function with compact support, it
suffices to estimate the second term.

Set mj(ζ, η) = φά{η - ψ(ξ))mλ(ξ9 η)9 and define T3 by (TJΓ(ξ, η) =
*%(£, V)f(£f V)f i = 1, 2, 3, -. We shall prove

with C independent of j .
For this purpose we make the following decomposition. Let Φ be

a C°°-function such that O ^ Φ ^ l , Φ = l o n [ — 1/2, 1/2], and N O out-
side [-2/3, 2/3]. Let

φk(θ) - Φ(2j/2(θ -

for each integer k. Decompose m, (£, rj) into

: tan ( —

and define T) by (Γ^/)Λ(f, 7) = m}(£, 7)/(f, ?)• Notice Γ3 = Σ * Γί By
Lemma 2 we have

(2) H Γ J / | | 4 ^ C | | ( Σ | 2 ? / | ι ) v t | | 4 ,
k

with C independent of j (see [2], [3]).
Next let (ζk, ηk) be the point of intersection of the line ξ =

-)ytan(fc/2i/2) with the curve η = ^(f), and let f̂c be the angle that the
tangent of the curve rj = ψ(ζ) at (fΛ, ^fc) makes with the £-axis. Then
define rectangles R°n by

R°n = {(x,y)eR2\\x\ ^ 2>/22 , |y| ^ 2'2 } n = 0, 1, 2, ,
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and let R\ be the rectangle obtained by rotating R°n by Θk. Let K) be
the kernel of T*. We shall show

( 3 ) I Kί(x, y) I £ C2"" ± 2~nXRΪ(xf y)/\ R\ \

with a constant C independent of j and k, where \Rk

n\ denotes the
Lebesgue measure of R\. To prove (3), define u, v by

ζ = u cos θk — v sin θk , η — u sin θk + v cos θk ,

and write m%u9 v) = m)(ξ, τj)m Then

4(V Ψ(ζ)) = sin tft - ψ'(ξ) cos ^, = (ψ\ξk) - φ'(ξ)) cos

so that

(v - ^ C2~j/2 , for (£, gy) e supp (mj) .

Therefore we have

pjcc+β

a ^ 0 , /S ̂  0 .

Then integration by parts gives

|(mJΓ(α,

This implies easily

\{m)T{x, y)\C2~»±2-«XRo(x, y)l\Rl\ .

Since the Fourier transform commutes with rotations, we have (3).
Having proved (2) and (3), we can now apply the g-ίunction and the

maximal theorem in [3] to prove (1), since the ratios of the lengths of
the projections of {supp {m))}k on the <J-axis are uniformly bounded. Let
Kj be the kernel of Td. From (3) we have

Therefore if λ > 1/2, the Fourier transform of mλ is integrable and this
proves (a) of Theorem 1. If 0 < λ ^ 1/2, the sufficiency of the condition
on p in Theorem 1 follows from interpolation between (1) and the obvi-
ous estimate

For the part of necessity, see [5].
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Finally we remark that if ψ" has zeros of finite order in /, the
method in [4, p. 8] also applies in our case to improve Theorem 1.
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