A NOTE ON A FOURIER MULTIPLIER OF TWO VARIABLES

Shuichi Sato

(Received July 14, 1980)

1. Introduction. Let m be a bounded measurable function on \boldsymbol{R}^{2}. Define a linear operator T_{m} by

$$
\left(T_{m} f\right)^{\wedge}(\xi, \eta)=m(\xi, \eta) \hat{f}(\xi, \eta), \quad f \in L^{2}\left(\boldsymbol{R}^{2}\right) \cap L^{p}\left(\boldsymbol{R}^{2}\right)
$$

where \hat{f} is the Fourier transform of f, and $1 \leqq p \leqq \infty$. We say that m is a multiplier for $L^{p}\left(\boldsymbol{R}^{2}\right)$ if $T_{m} \in L^{p}\left(\boldsymbol{R}^{2}\right)$, and there exists a constant A, independent of f, such that

$$
\left\|T_{m} f\right\|_{p} \leqq A\|f\|_{p}, \quad f \in L^{2}\left(\boldsymbol{R}^{2}\right) \cap L^{p}\left(\boldsymbol{R}^{2}\right)
$$

Carleson and Sjölin [1] have proved that $\left(1-\left(\xi^{2}+\eta^{2}\right)\right)_{+}^{2}, 0<\lambda \leqq 1 / 2$, is a multiplier for L^{p} if and only if $4 /(3+2 \lambda)<p<4 /(1-2 \lambda)$. Here we have used the notation $r_{+}=\max (r, 0) ; r \in \boldsymbol{R}$. Recently Cordoba [2] has proved this two dimensional result by using the Kakeya maximal function and a g-function (see also [3]). On the other hand, the above multiplier theorem has been extended to one for the following more general functions m by Sjölin [5].

Theorem 1. Let Γ be a simple and closed C^{∞} curve with non-zero curvature in \boldsymbol{R}^{2} and Ω be the inside of Γ. For $(\xi, \eta) \in \boldsymbol{R}^{2}$, let $\delta(\xi, \eta)$ denote the distance from (ξ, η) to Γ and let $\lambda>0$. We assume that m is a bounded function on \boldsymbol{R}^{2} which has the following properties:
(A) The restriction to Ω of m belongs to $C^{2}(\Omega)$.
(B) There exists a neighborhood Ω^{\prime} of Γ such that
(C)

$$
m(\xi, \eta)=\delta(\xi, \eta)^{\lambda} \quad \text { for } \quad(\xi, \eta) \in\left(\Omega \cap \Omega^{\prime}\right)
$$

$$
m(\xi, \eta)=0, \quad \text { for } \quad(\xi, \eta) \notin \Omega
$$

Then:
(a) m is a multiplier for $L^{p}\left(\boldsymbol{R}^{2}\right)$ for $1 \leqq p \leqq \infty$ if $\lambda>1 / 2$.
(b) If $0<\lambda \leqq 1 / 2, m$ is a multiplier for $L^{p}\left(\boldsymbol{R}^{2}\right)$ if and only if $4 /(3+2 \lambda)<p<4 /(1-2 \lambda)$.

Actually Sjölin [5] has proved Theorem 1 for a C^{∞} curve Γ which is simple and closed and has a tangent at each point. In this note we shall show that Cordoba's techniques in [2] is applicable to more general
cases and we shall give a simpler proof of Theorem 1.
2. A lemma. We begin with the following geometrical observation.

Lemma 2. Let $I=[-a, a](a>0)$ be a compact interval on \boldsymbol{R} and let $\psi \in C^{\infty}(I)$ be a real valued function such that $\psi^{\prime \prime}>0$, $\psi<-2$ on I. Furthermore, we assume that $\left|\psi^{\prime}(a)\right|$ and $\left|\psi^{\prime}(-a)\right|$ are less than $1 / 2$.

For $\delta>0$, and for each integer j, we define a set $E_{\dot{\partial}, j}$ by

$$
\begin{aligned}
E_{\delta, j}= & \left\{(\xi, \eta) \in \boldsymbol{R}^{2} \mid \xi \in I, 0 \leqq \eta-\psi(\xi) \leqq \delta,\right. \\
& \left.-\eta \tan \left((j-1 / 2) \delta^{1 / 2}\right) \leqq \xi \leqq-\eta \tan \left((j+1 / 2) \delta^{1 / 2}\right)\right\}
\end{aligned}
$$

Then, for each small δ no point of \boldsymbol{R}^{2} belongs to more than N of the sets $E_{\dot{\delta}, j}+E_{\partial, j^{\prime}}$, where N is independent of δ.

Proof. By changing coordinates, it is sufficient to show that the number of the sets $E_{\hat{\delta}, j}+E_{\hat{\delta}, j^{\prime}}$ that intersect the fixed $E_{\hat{j}, j_{0}}+E_{\dot{\delta},-j_{0}}$ ($j_{0} \geqq 1$) is less than N, assuming $\psi^{\prime}(0)=0$. Let $\left(\xi_{j}, \eta_{j}\right)$ be the point of intersection of the line $\xi=-\eta \tan \left(j \delta^{1 / 2}\right)$ with the curve $\eta=\psi(\xi)$. Then, there exist constants c_{1} and c_{2} not depending on j or δ such that $c_{1} \delta^{1^{1 / 2}} \leqq$ $\xi_{j+1}-\xi_{j} \leqq c_{2} \delta^{1 / 2}$. Now let $k>0$. By the mean value theorem there exist $\tilde{\xi}_{1}, \tilde{\xi}_{2}, \tilde{\xi}_{3} \in I$ and b_{1}, b_{2} such that $c_{1} \leqq b_{i} \leqq c_{2}(i=1,2)$,

$$
\begin{aligned}
\eta_{j_{0}+k}-\eta_{j_{0}} & =\psi\left(b_{1} j_{0} \delta^{1 / 2}+b_{2} k \delta^{1 / 2}\right)-\psi\left(b_{1} j_{0} \delta^{1 / 2}\right) \\
& =b_{2} k \delta \psi^{\prime \prime}\left(\tilde{\xi}_{1}\right)\left\{b_{1} j_{0}+b_{2} k \psi^{\prime \prime \prime}\left(\widetilde{\xi}_{2}\right) /\left(2 \psi^{\prime \prime \prime}\left(\tilde{\xi}_{3}\right)\right)\right\} \\
& \geqq A k\left(2 j_{0}+k\right) \delta
\end{aligned}
$$

for some constant A not depending on k, j_{0}, or δ.
Let L_{j}^{1} be the length of the projection of $E_{\partial, j}$ on the η-axis. Then, using $\psi^{\prime}(0)=0$, we have

$$
L_{j_{0}}^{1} \leqq B j_{0} \delta, \quad L_{j_{0}+k}^{2} \leqq B\left(j_{0}+k\right) \delta,
$$

for some $B>0$ not depending on j_{0}, k, or δ. The same argument is also valid for the part of $E_{i,-j_{0}}, E_{\hat{j},-\left(j_{0}+k\right)}$. Therefore if $\left(E_{\hat{j}, j_{0}}+E_{\hat{j},-j_{0}}\right) \cap$ $\left(E_{\hat{o}, j_{0}+k}+E_{\bar{\delta},-\left(j_{0}+k\right)}\right)$ is not empty, we have

$$
A k\left(2 j_{0}+k\right) \delta \leqq B\left(2 j_{0}+k\right) \delta, \quad \text { so } \quad k \leqq B / A
$$

The case $k<0$ can be treated similarly.
Next let L_{j}^{2} be the length of the projection of $E_{\delta, j}$ on the ξ-axis. Then $L_{j}^{2} \leqq c_{2} \delta^{1 / 2}$. If $\left(E_{\hat{\delta}, j_{0}+[B / A]}+E_{\hat{\delta},-\left(j_{0}+[B / A]+k\right)}\right) \cap\left(E_{\hat{0}, j_{0}}+E_{\hat{0},-j_{0}}\right)$ is not empty for $k>0$, we have

$$
([B / A]+k) c_{1} \delta^{1 / 2}-[B / A] c_{2} \delta^{1^{1 / 2}} \leqq 4 c_{2} \delta^{1 / 2},
$$

thus $k \leqq\left(c_{1} / c_{2}\right)(4+[B / A])-[B / A]$. After the same argument for $E_{\hat{j}, j_{0}+[B / A]+k}+$ $E_{\dot{\partial},-\left(j_{0}+[B / A]\right)}, E_{\dot{\partial}, j_{0}-[B / A]}+E_{\tilde{\partial},-\left(j_{0}-[B / A]-k\right)}$, and $E_{\dot{\partial}, j_{0}-[B / A]-k}+E_{\dot{\partial},-\left(j_{0}-[B / A]\right)}$, it follows
that $\left(E_{\dot{\delta}, j_{0}+j_{i}}+E_{\dot{\delta},-j_{0}+j_{2}}\right) \cap\left(E_{\delta, j_{0}}+E_{\bar{\delta},-j_{0}}\right)$ is not empty only if $\left|j_{i}\right| \leqq$ $\left(c_{2} / c_{1}\right)(4+[B / A]), i=1,2$. Thus the lemma is proved.
3. Proof of Theorem 1. Let $\psi \in C^{\infty}(I)$ be a function given in Lemma 2. It is sufficient to show that $a(\xi, \eta)(\eta-\psi(\xi))_{+}^{\lambda}$ is a multiplier, where $a(\xi, \eta)$ is a C^{∞}-function in $I \times \boldsymbol{R}$ with compact support.

Let $m_{\lambda}(\xi, \eta)=a(\xi, \eta)(\eta-\psi(\xi))_{+}^{2}$. Now we make the first decomposition of $m_{\lambda}(\xi, \eta)$. Let ϕ be a C^{∞}-function in \boldsymbol{R} such that $0 \leqq \phi \leqq 1, \phi \equiv 1$ on $[1 / 2,1]$, and $\phi \equiv 0$ outside $[1 / 4,2]$. Let

$$
\phi_{j}(r)=\phi\left(2^{j} r\right) / \sum_{k=0}^{\infty} \phi\left(2^{k} r\right), \quad j=1,2,3, \cdots
$$

Decompose $m_{\lambda}(\xi, \eta)$ into

$$
m_{\lambda}(\xi, \eta)=\left(1-\sum_{j=1}^{\infty} \phi_{j}(\eta-\psi(\xi))\right) m_{\lambda}(\xi, \eta)+\sum_{j=1}^{\infty} \phi_{j}(\eta-\psi(\xi)) m_{\lambda}(\xi, \eta)
$$

Then since the first term is a C^{∞}-function with compact support, it suffices to estimate the second term.

Set $m_{j}(\xi, \eta)=\phi_{j}(\eta-\psi(\xi)) m_{\lambda}(\xi, \eta)$, and define T_{j} by $\left(T_{j} f\right)^{\wedge}(\xi, \eta)=$ $m_{j}(\xi, \eta) \hat{f}(\xi, \eta), j=1,2,3, \cdots$. We shall prove

$$
\begin{equation*}
\left\|T_{j} f\right\|_{4} \leqq C 2^{-j \lambda} j^{1 / 4}\|f\|_{4}, \tag{1}
\end{equation*}
$$

with C independent of j.
For this purpose we make the following decomposition. Let Φ be a C^{∞}-function such that $0 \leqq \Phi \leqq 1, \Phi \equiv 1$ on $[-1 / 2,1 / 2]$, and $\Phi \equiv 0$ outside $[-2 / 3,2 / 3]$. Let

$$
\Phi_{k}(\theta)=\Phi\left(2^{j / 2}\left(\theta-k / 2^{j / 2}\right)\right) / \sum_{l=-\infty}^{\infty} \Phi\left(2^{j / 2}\left(\theta-l / 2^{j / 2}\right)\right)
$$

for each integer k. Decompose $m_{j}(\xi, \eta)$ into

$$
m_{j}(\xi, \eta)=\sum_{|k| \leq c_{2} j / 2} m_{j}(\xi, \eta) \Phi_{k}(\arctan (-\xi / \eta)) \equiv \sum_{k} m_{j}^{k}(\xi, \eta)
$$

and define T_{j}^{k} by $\left(T_{j}^{k} f\right)^{\wedge}(\xi, \eta)=m_{j}^{k}(\xi, \eta) \hat{f}(\xi, \eta)$. Notice $T_{j}=\sum_{k} T_{j}^{k}$. By Lemma 2 we have

$$
\begin{equation*}
\left\|T_{j} f\right\|_{4} \leqq C\left\|\left(\sum_{k}\left|T_{j}^{k} f\right|^{2}\right)^{1 / 2}\right\|_{4} \tag{2}
\end{equation*}
$$

with C independent of j (see [2], [3]).
Next let $\left(\xi_{k}, \eta_{k}\right)$ be the point of intersection of the line $\xi=$ $-\eta \tan \left(k / 2^{j / 2}\right)$ with the curve $\eta=\psi(\xi)$, and let θ_{k} be the angle that the tangent of the curve $\eta=\psi(\xi)$ at $\left(\xi_{k}, \eta_{k}\right)$ makes with the ξ-axis. Then define rectangles R_{n}^{0} by

$$
R_{n}^{0}=\left\{(x, y) \in R^{2}| | x\left|\leqq 2^{j / 2} 2^{n},|y| \leqq 2^{j} 2^{n}\right\} \quad n=0,1,2, \cdots,\right.
$$

and let R_{n}^{k} be the rectangle obtained by rotating R_{n}^{o} by θ_{k}. Let K_{j}^{k} be the kernel of T_{j}^{k}. We shall show

$$
\begin{equation*}
\left|K_{j}^{k}(x, y)\right| \leqq C 2^{-j \lambda} \sum_{n=0}^{\infty} 2^{-n} \chi_{R_{n}^{k}}(x, y) /\left|R_{n}^{k}\right| \tag{3}
\end{equation*}
$$

with a constant C independent of j and k, where $\left|R_{n}^{k}\right|$ denotes the Lebesgue measure of R_{n}^{k}. To prove (3), define u, v by

$$
\xi=u \cos \theta_{k}-v \sin \theta_{k}, \quad \eta=u \sin \theta_{k}+v \cos \theta_{k},
$$

and write $\widetilde{m}_{j}^{k}(u, v)=m_{j}^{k}(\xi, \eta)$. Then

$$
\frac{\partial}{\partial u}\left(\eta-\psi^{\prime}(\xi)\right)=\sin \theta_{k}-\psi^{\prime}(\xi) \cos \theta_{k}=\left(\psi^{\prime}\left(\xi_{k}\right)-\psi^{\prime}(\xi)\right) \cos \theta_{k}
$$

so that

$$
\left|\frac{\partial}{\partial u}(\eta-\psi(\xi))\right| \leqq C 2^{-j / 2}, \quad \text { for } \quad(\xi, \eta) \in \operatorname{supp}\left(m_{j}^{k}\right)
$$

Therefore we have

$$
\left|\frac{\partial^{\alpha+\beta}}{\partial u^{\alpha} \partial v^{\beta}} \widetilde{m}_{j}^{k}(u, v)\right| \leqq C_{\alpha, \beta} 2^{-j \lambda} 2^{j \alpha / 2} 2^{j \beta}, \quad \alpha \geqq 0, \quad \beta \geqq 0 .
$$

Then integration by parts gives

$$
\left|\left(\widetilde{m}_{j}^{k}\right)^{\wedge}(x, y)\right| \leqq C_{\alpha, \beta} 2^{-j \lambda} 2^{-3 j / 2} 2^{j \alpha / 2} 2^{j \beta}|x|^{-\alpha}|y|^{-\beta}
$$

This implies easily

$$
\left|\left(\widetilde{m}_{j}^{k}\right)^{\wedge}(x, y)\right| C 2^{-j \lambda} \sum_{n=0}^{\infty} 2^{-n} \chi_{R_{n}^{0}}(x, y) /\left|R_{n}^{0}\right|
$$

Since the Fourier transform commutes with rotations, we have (3).
Having proved (2) and (3), we can now apply the g-function and the maximal theorem in [3] to prove (1), since the ratios of the lengths of the projections of $\left\{\operatorname{supp}\left(m_{j}^{k}\right)\right\}_{k}$ on the ξ-axis are uniformly bounded. Let K_{j} be the kernel of T_{j}. From (3) we have

$$
\left\|K_{j}\right\|_{1} \leqq C 2^{-j \lambda} 2^{j / 2}
$$

Therefore if $\lambda>1 / 2$, the Fourier transform of m_{λ} is integrable and this proves (a) of Theorem 1. If $0<\lambda \leqq 1 / 2$, the sufficiency of the condition on p in Theorem 1 follows from interpolation between (1) and the obvious estimate

$$
\left\|T_{j} f\right\|_{\infty} \leqq C 2^{-j \lambda} 2^{j / 2}\|f\|_{\infty}
$$

For the part of necessity, see [5].

Finally we remark that if $\psi^{\prime \prime}$ has zeros of finite order in I, the method in [4, p. 8] also applies in our case to improve Theorem 1.

References

[1] L. Carleson and P. Sjölin, Oscillatory integrals and a multiplier problem for the disc, Studia Math. 44 (1972), 287-299.
[2] A. Cordoba, A note on Bochner-Riesz operators, Duke Math. J. 46 (1979), 505-511.
[3] C. Fefferman, A note on spherical summation multipliers, Israel J. Math. 15 (1973), 44-52.
[4] L. Hörmander, Oscillatory integrals and multipliers on $F L^{p}$, Ark. Mat. 11 (1973), 1-11.
[5] P. Suölin, Fourier multipliers and estimates of the Fourier transform of measures carried by smooth curves in \boldsymbol{R}^{2}, Studia Math. 51 (1974), 169-182.
Mathematical Institute
Tôhoku University
Sendai, 980
Japan

