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0. The purpose of this note is to represent helices of a Gaussian
automorphism by the multiple Wiener integrals and to calculate the
multiplicity of helices.

1. Let (R, &, P) be a complete separable probability space and
(T, #,) a system on 2, that is, a pair of an automorphism of £ and a
complete sub-o-field of .# such that

@ VioT"F, =,

) TF,D . F,.
Let H = L¥Q) denote the Hilbert space of all squarely integrable real
random variables with zero-expectations and H, the subspace of H con-
sisting of all elements measurable with respect to 7", for each =.

DEFINITION 1. A process X = (x,) is called a helix for a system
(T, &,) if the following conditions are satisfied:

(a) = =0,

b)) z,—z.,€H,® H, for all m and n with m < =,

(¢) (@, — Xp)oT™" = Xy4y — Tty for all m and n.

By the condition (b), (., T".%#,).= can be regarded as a square-
integrable martingale and further by the condition (c), all z, can be
written as

”
70 = 3yme -0
k=1

for some x€ H,© H,.

DEFINITION 2. For helices X = (x,) and X’ = (x}), f4x.x» denotes the
signed measure on (2, ;) such that

d#<x,x'> = E[xlx;. | ﬁ;]dP .

If ptx.z» is a null measure, we say that X and X’ are strictly orthog-
onal. If X = X', then ft; ,, is denoted simply by .

By the martingale property of helices, we can define the following
which is similar to the martingale-transform:
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DEFINITION 3. For a helix X = (x,) and a squarely integrable random
variable v on (2, #,, t&,), the helix Y = (y,) given by

n
Y = kg vo I (g, — x,_,)

is called the helix-transform of X by v and denoted by vxX.

Now we state a repesentation theorem of helices for a system, which
was proved in [3].

THEOREM 1. For any system (T, ,), there exists a finite or count-
able sequence of strictly orthogonal helices 77 = (X'®) such that

(a) Mw+vy 18 absolutely continuous with respect to Ui w, for all p,

(b) every helix X has the the representation

X = E PP X
P

for some v'P € LR, F,, Lxo).
If 27 = (Y'”) is another such sequence, then Mywm, 18 equivalent to

#(X(p)) fO’r‘ all P.
We call such a sequence a base of helices for the system. By Theorem

1, we see that the length of a base of helices is determined uniquely by
the system.

DEFINITION 4. The length of a base of helices is called the multiplicity
of helices for the system (T, .&#,) and denoted by M(T, #,).

If T is assumed to be a Bernoulli automorphism, then the following
can be said (cf. [3]).

DEFINITION 5. For a sub-o-field .o of &, the pair (T, .&) is called
a B-system if

(a) (T".) is an independent sequence of sub-o-fields,

b)) Vi_.Tror = .7

If we put .77 = V., T".5%7 then (T, .%%7) is clearly a system, which
is indeed a pair of a K-automorphism and a K-field.

THEOREM 2. Let (T, ) be a B-system. If (') is a complete
orthonormal system of Li(.97), then X = (x’) given by

n
P =0, af =XNaWe T (n>0), af = —aBeT™ (n<0)

18 the helix for the system (T, .%%4~) and 2 = (X*) 1s a base of helices
for (T, &%~). Thus we have M(T, .&%~) = dim Li(.&) and further
Lz = P on .S~ for all p.
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2. Let (2,.#, P, (&,)) be a real Gaussian stationary sequence with
the coordinate representation and let m be the non-atomic spectral
measure. We can assume that E[s,] = 0 for all » without loss of gen-
erality. The shift T of 2 defined by

&(Tw) = &,_,(w) for all =

is called a Gaussian automorphism with the spectral measure m. By
Kolmogorov’s decomposition theorem, we get

o = Sle‘z’”’””dM (u)

where dM(u) is the complex normal random measure on I =[-1/2, 1/2)
and dm(u) = ||dM(u)||>. Then the following results are well-known (cf.
[1]).

Let L*(I*, m*) be the class of all complex squarely integrable functions
on the p-fold direct product measure space of (I, m). Then for every
f e L¥I?, m*), the p-th complex multiple Wiener integral

)=, ey u)dMw) - dM(w,)

I»

is defined and has the following properties:

(a) % is linear on L*(I?, m?).

(b) A =._},}(f) for fe L*I?, m*), where ~ indicates the sym-
metrization of f.

() E[A()] =0 for p =1 and f e L*I?, m”).

@ (A0, Alg) =0 for feL¥I?, m*) and g € LX(I*, m) with p + q.

When p = 0, we let _#(c) = ¢ for every complex constant ec.

For use in the next section, we recall here the following recurrence

formula of multiple Wiener integrals ([1]).
FNHA9) = Fn(f A9+ 5(FV 9),
where
FAGy -y Uy, i) = F(Uyy -y Up)9 (i)
YV gy -, upy) = kZ:,l Sf(ul, ey Uy, Wy Uy <y Up_)g(—w)dmM(u) .
3. In this section, we set up a system of a Gaussian automorphism

and construct the helices for the system by the multiple Wiener integrals.
We deal only with a class of Gaussian automorphisms such that

dm(u) = vy(u)du , ~v(w) >0 a.e.

Under this assumption, it is known that the sequence of random variables
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defined by

_ e—-21r1‘.nu
7, = | L dMw)

is an innovation of (&,), that is,
(@) %Mu, —o0 < m < oo, are independent and the shift T of (¢,) is also

that of (7,).

(b) If &, denotes the o-field generated by &, k < %, and &, the
o-field generated by #,, k¥ < n, then 7, = &, for all «.

Thus, if .o, denotes the o-field generated by 72, for each =, then
(T, .57%) is clearly a B-system.

LEMMA 1. For every positive integer p,

P 2~qp! p—2¢
77n Z'Ié.‘;’ q!(p _ 2q)!'fp~2q(en ) ’

where
en = 7Tttt U [y (gy) - - v (uy) .
Proor. If p =1, the formula is just the definition of 7, for all .
If it is valid for some p, then

P+l — P, — 2—qp! P—-2qY,
vn 77% 77% 2qz§ap q'(p _ 2q)!'-fp;-2q(e'n ) '-jl-(e‘n) .

By the recurrence formula,
SN Aln) = Fpriag(@nt ) + (0 — 20)Fi1 s (eI
Therefore the coefficient of %, ,,(e2'7%) is as follows.

2'—4p! 2—(q—1)p! . 2—Q(p _I_ 1) !
————+ (@ —2(¢-1) = .
q!(» — 29)! (@—D!(p—2(g —1))! ql(p +1 —29)!

This completes the induction.

By this lemma, we know that _%(el) can also be expressed as a linear
combination of 72-%, 2q < p, for each p. Therefore, %), »=1,2, ---,
are measurable with respect to .97, for all » and since T is the shift of

(72),
Hen) e T = Alens) -

LEMMA 2. The sequence (_%(eb)), =12, ---, is a complete ortho-
normal system of Li(.%7,) for each n.

PrOOF. The orthogonality is an immediate consequence of the prop-
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erty (d) of multiple Wiener integrals and the completeness is clear by
the preceding lemma.

By Lemma 2 and Theorem 2 in Section 1, we can state the following
about helices for our system (T, .97).
For each positive integer p, define a helix X® = (2{?) for (T, #,) by

W =0, o =3 6D = 5D T (1> 0),
=1 k=1
T, = —X_,oT™ (n<O0).
The sequence (X'?’) is denoted by 2%

THEOREM 3. If T is the Gaussian automorphism with the above-
mentioned spectral measure, then the sequence 2° s a base of helices
for the system (T, ;) and for all p,

Uxwy = P.
Hence the multiplicity of helices is infinite.

Furthermore we have the following interesting relationship between
the multiplicities and Wiener integrals.

Let W, denote the totality of all real p-th multiple Wiener integrals.
The space W, is invariant under T by definition.

THEOREM 4. The finite sequence (X9), (¢ =1,2, ---, p), is a base
of helices for the system (T, F,) in W,.

Proor. It is obvious, because the sequence (_%(el), (¢ =1, 2, ---, D),
is a complete orthonormal system of W, N L{(.87,).
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