ON HELICES AND MULTIPLE WIENER INTEGRALS OF A GAUSSIAN AUTOMORPHISM

TAKASHI SHIMANO

(Received November 26, 1979)

- 0. The purpose of this note is to represent helices of a Gaussian automorphism by the multiple Wiener integrals and to calculate the multiplicity of helices.
- 1. Let (Ω, \mathcal{F}, P) be a complete separable probability space and (T, \mathcal{F}_0) a system on Ω , that is, a pair of an automorphism of Ω and a complete sub- σ -field of \mathcal{F} such that
 - (a) $\bigvee_{n=-\infty}^{\infty} T^n \mathcal{F}_0 = \mathcal{F}_{\bullet}$
 - (b) $T\mathcal{F}_0 \supset \mathcal{F}_0$.

Let $H = L_0^2(\Omega)$ denote the Hilbert space of all squarely integrable real random variables with zero-expectations and H_n the subspace of H consisting of all elements measurable with respect to $T^n \mathscr{I}_0$ for each n.

DEFINITION 1. A process $X = (x_n)$ is called a helix for a system (T, \mathcal{F}_0) if the following conditions are satisfied:

- (a) $x_0 = 0$,
- (b) $x_n x_m \in H_n \ominus H_m$ for all m and n with m < n,
- (c) $(x_n x_m) \circ T^{-1} = x_{n+1} x_{m+1}$ for all m and n.

By the condition (b), $(x_n, T^n \mathscr{F}_0)_{n\geq 0}$ can be regarded as a square-integrable martingale and further by the condition (c), all x_n can be written as

$$x_n = \sum_{k=1}^n x \circ T^{-(k-1)}$$

for some $x \in H_1 \bigoplus H_0$.

DEFINITION 2. For helices $X=(x_n)$ and $X'=(x'_n)$, $\mu_{\langle X,X'\rangle}$ denotes the signed measure on (Ω, \mathscr{F}_0) such that

$$d\mu_{\langle x,x'
angle}=E[x_{\scriptscriptstyle 1}\!x'_{\scriptscriptstyle 1}\!\mid\!\mathscr{F}_{\scriptscriptstyle 0}]dP$$
 .

If $\mu_{\langle X,X'\rangle}$ is a null measure, we say that X and X' are strictly orthogonal. If X=X', then $\mu_{\langle X,X\rangle}$ is denoted simply by $\mu_{\langle X\rangle}$.

By the martingale property of helices, we can define the following which is similar to the martingale-transform:

104 T. SHIMANO

DEFINITION 3. For a helix $X = (x_n)$ and a squarely integrable random variable ν on $(\Omega, \mathscr{F}_0, \mu_{(X)})$, the helix $Y = (y_n)$ given by

$$y_n = \sum_{k=1}^n
u \circ T^{-(k-1)}(x_k - x_{k-1})$$

is called the helix-transform of X by ν and denoted by $\nu * X$.

Now we state a repesentation theorem of helices for a system, which was proved in [3].

THEOREM 1. For any system (T, \mathcal{F}_0) , there exists a finite or countable sequence of strictly orthogonal helices $\mathcal{X} = (X^{(p)})$ such that

- (a) $\mu_{\langle X^{(p+1)} \rangle}$ is absolutely continuous with respect to $\mu_{\langle X^{(p)} \rangle}$ for all p,
- (b) every helix X has the the representation

$$X = \sum_{p} \nu^{(p)} * X^{(p)}$$

for some $\nu^{(p)} \in L^2(\Omega, \mathscr{F}_0, \mu_{\langle X^{(p)} \rangle})$.

If $\mathscr{Y}=(Y^{(p)})$ is another such sequence, then $\mu_{\langle Y^{(p)}\rangle}$ is equivalent to $\mu_{\langle X^{(p)}\rangle}$ for all p.

We call such a sequence a base of helices for the system. By Theorem 1, we see that the length of a base of helices is determined uniquely by the system.

DEFINITION 4. The length of a base of helices is called the multiplicity of helices for the system (T, \mathcal{F}_0) and denoted by $M(T, \mathcal{F}_0)$.

If T is assumed to be a Bernoulli automorphism, then the following can be said (cf. [3]).

DEFINITION 5. For a sub- σ -field $\mathscr A$ of $\mathscr F$, the pair $(T,\mathscr A)$ is called a B-system if

- (a) $(T^n \mathcal{M})$ is an independent sequence of sub- σ -fields,
- (b) $V_{n=-\infty}^{\infty} T^n \mathcal{A} = \mathcal{F}$.

If we put $\mathcal{N}_0 = \bigvee_{n<0} T^n \mathcal{N}$, then (T, \mathcal{N}_0) is clearly a system, which is indeed a pair of a K-automorphism and a K-field.

THEOREM 2. Let (T, \mathcal{A}) be a B-system. If $(x^{(p)})$ is a complete orthonormal system of $L^2_0(\mathcal{A})$, then $X = (x_n^{(p)})$ given by

$$x_{\scriptscriptstyle 0}^{\scriptscriptstyle (p)}=0$$
 , $x_{\scriptscriptstyle n}^{\scriptscriptstyle (p)}=\sum\limits_{k=1}^{n}x^{\scriptscriptstyle (p)}\circ T^{\scriptscriptstyle -(k-1)}$ $(n>0)$, $x_{\scriptscriptstyle n}^{\scriptscriptstyle (p)}=-x_{\scriptscriptstyle -n}^{\scriptscriptstyle (p)}\circ T^{\scriptscriptstyle -n}$ $(n<0)$

is the helix for the system (T, \mathcal{N}_0^-) and $\mathscr{X} = (X^{(p)})$ is a base of helices for (T, \mathcal{N}_0^-) . Thus we have $M(T, \mathcal{N}_0^-) = \dim L_0^2(\mathcal{N})$ and further $\mu_{\langle X^{(p)} \rangle} = P$ on \mathcal{N}_0^- for all p.

2. Let $(\Omega, \mathcal{I}, P, (\xi_n))$ be a real Gaussian stationary sequence with the coordinate representation and let m be the non-atomic spectral measure. We can assume that $E[\xi_n] = 0$ for all n without loss of generality. The shift T of Ω defined by

$$\xi_n(T\omega) = \xi_{n-1}(\omega)$$
 for all n

is called a Gaussian automorphism with the spectral measure m. By Kolmogorov's decomposition theorem, we get

$$\xi_n = \int_I e^{-2\pi i n u} dM(u)$$

where dM(u) is the complex normal random measure on I = [-1/2, 1/2) and $dm(u) = ||dM(u)||^2$. Then the following results are well-known (cf. [1]).

Let $L^2(I^p, m^p)$ be the class of all complex squarely integrable functions on the p-fold direct product measure space of (I, m). Then for every $f \in L^2(I^p, m^p)$, the p-th complex multiple Wiener integral

$$\mathscr{I}_p(f) \equiv \int_{I^p} f(u_1, \, \cdots, \, u_p) dM(u_1) \, \cdots \, dM(u_p)$$

is defined and has the following properties:

- (a) \mathscr{I}_p is linear on $L^2(I^p, m^p)$.
- (b) $\mathscr{I}_p(f)=\mathscr{I}_p(\widetilde{f})$ for $f\in L^2(I^p,\,m^p)$, where \sim indicates the symmetrization of f.
 - (c) $E[\mathscr{I}_p(f)] = 0$ for $p \ge 1$ and $f \in L^2(I^p, m^p)$.
 - (d) $(\mathscr{I}_p(f), \mathscr{I}_q(g)) = 0$ for $f \in L^2(I^p, m^p)$ and $g \in L^2(I^q, m^q)$ with $p \neq q$. When p = 0, we let $\mathscr{I}_0(c) = c$ for every complex constant c.

For use in the next section, we recall here the following recurrence formula of multiple Wiener integrals ([1]).

$$\mathscr{I}_{\scriptscriptstyle p}(f)\mathscr{I}_{\scriptscriptstyle 1}(g)=\mathscr{I}_{\scriptscriptstyle p+1}(f\bigtriangleup g)+\mathscr{I}_{\scriptscriptstyle p-1}(f\bigtriangledown g)$$
 ,

where

$$f \triangle g(u_1, \dots, u_p, u_{p+1}) = f(u_1, \dots, u_p)g(u_{p+1})$$

 $f \nabla g(u_1, \dots, u_{p-1}) = \sum_{k=1}^p \int f(u_1, \dots, u_{k-1}, u, u_k, \dots, u_{p-1})g(-u)dm(u)$.

3. In this section, we set up a system of a Gaussian automorphism and construct the helices for the system by the multiple Wiener integrals. We deal only with a class of Gaussian automorphisms such that

$$dm(u) = \gamma(u)^2 du$$
, $\gamma(u) > 0$ a.e.

Under this assumption, it is known that the sequence of random variables

defined by

$$\eta_n = \int_I \frac{e^{-2\pi i n u}}{\gamma(u)} dM(u)$$

is an innovation of (ξ_n) , that is,

- (a) η_n , $-\infty < n < \infty$, are independent and the shift T of (ξ_n) is also that of (η_n) .
- (b) If \mathscr{F}_n denotes the σ -field generated by ξ_k , $k \leq n$, and \mathscr{G}_n the σ -field generated by η_k , $k \leq n$, then $\mathscr{F}_n = \mathscr{G}_n$ for all n.

Thus, if \mathcal{A}_n denotes the σ -field generated by η_n for each n, then (T, \mathcal{A}_1) is clearly a B-system.

LEMMA 1. For every positive integer p,

$$\eta_n^p = \sum\limits_{2q \leq p} rac{2^{-q} p!}{q! (p-2q)!} \mathscr{I}_{p-2q}(e_n^{p-2q})$$
 ,

where

$$e_n^p = e^{-2\pi i n(u_1 + \cdots + u_p)}/\gamma(u_1) \cdot \cdot \cdot \gamma(u_p)$$
.

PROOF. If p=1, the formula is just the definition of η_n for all n. If it is valid for some p, then

$$\eta_{n}^{\scriptscriptstyle p+1} = \eta_{n}^{\scriptscriptstyle p}\!\cdot\!\eta_{n} = \sum\limits_{\scriptscriptstyle 2q \, \leq p} rac{2^{-q}p\,!}{q\,!\,(p-2q)\,!} \mathscr{I}_{\scriptscriptstyle p-2q}(e_{n}^{\scriptscriptstyle p-2q})\!\cdot\!\mathscr{J}_{\scriptscriptstyle 1}\!(e_{n})\;.$$

By the recurrence formula,

$$\mathscr{I}_{p-2q}(e_n^{p-2q})\mathscr{I}_1(e_n)=\mathscr{I}_{p+1-2q}(e_n^{p+1-2q})+(p-2q)\mathscr{I}_{p+1-2(q+1)}(e_n^{p+1-2(q+1)})\;.$$

Therefore the coefficient of $\mathscr{I}_{p+1-2q}(e_n^{p+1-2q})$ is as follows.

$$\frac{2^{-q}p!}{q!(p-2q)!} + (p-2(q-1))\frac{2^{-(q-1)}p!}{(q-1)!(p-2(q-1))!} = \frac{2^{-q}(p+1)!}{q!(p+1-2q)!}.$$

This completes the induction.

By this lemma, we know that $\mathscr{I}_p(e_n^p)$ can also be expressed as a linear combination of η_n^{p-2q} , $2q \leq p$, for each p. Therefore, $\mathscr{I}_p(e_n^p)$, $p=1,2,\cdots$, are measurable with respect to \mathscr{A}_n for all n and since T is the shift of (η_n) ,

$$\mathscr{I}_p(e^p_n)\circ T^{-1}=\mathscr{I}_p(e^p_{n+1})$$
 .

LEMMA 2. The sequence $(\mathscr{I}_p(e_n^p))$, $p=1, 2, \dots$, is a complete orthonormal system of $L^2_0(\mathscr{A}_n)$ for each n.

PROOF. The orthogonality is an immediate consequence of the prop-

erty (d) of multiple Wiener integrals and the completeness is clear by the preceding lemma.

By Lemma 2 and Theorem 2 in Section 1, we can state the following about helices for our system (T, \mathcal{A}_1) .

For each positive integer p, define a helix $X^{(p)} = (x_n^{(p)})$ for (T, \mathcal{F}_0) by

$$x_{\scriptscriptstyle 0}^{\scriptscriptstyle (p)}=0$$
 , $x_{\scriptscriptstyle n}^{\scriptscriptstyle (p)}=\sum\limits_{k=1}^{n}\mathscr{I}_{\scriptscriptstyle p}(e_{\scriptscriptstyle k}^{\scriptscriptstyle p})=\sum\limits_{k=1}^{n}\mathscr{I}_{\scriptscriptstyle p}(e_{\scriptscriptstyle 1}^{\scriptscriptstyle p})\circ T^{-\scriptscriptstyle (k-1)}$ $(n>0)$, $x_{\scriptscriptstyle n}=-x_{\scriptscriptstyle -n}\circ T^{\scriptscriptstyle -n}$ $(n<0)$.

The sequence $(X^{(p)})$ is denoted by \mathcal{X} .

THEOREM 3. If T is the Gaussian automorphism with the abovementioned spectral measure, then the sequence $\mathscr X$ is a base of helices for the system $(T, \mathscr F_0)$ and for all p,

$$\mu_{\langle X^{(p)}\rangle} = P$$
.

Hence the multiplicity of helices is infinite.

Furthermore we have the following interesting relationship between the multiplicities and Wiener integrals.

Let W_p denote the totality of all real p-th multiple Wiener integrals. The space W_p is invariant under T by definition.

THEOREM 4. The finite sequence $(X^{(q)})$, $(q = 1, 2, \dots, p)$, is a base of helices for the system (T, \mathcal{F}_0) in W_p .

PROOF. It is obvious, because the sequence $(\mathscr{I}_q(e_n^q))$, $(q=1, 2, \dots, p)$, is a complete orthonormal system of $W_p \cap L^2_0(\mathscr{A}_n)$.

REFERENCES

- [1] H. Totoki, Ergodic theory, Arhus University Lecture Notes Series No. 14, (1969).
- [2] J. DE SAM LAZARO AND P. A. MEYER, Méthodes de martingales et théorie de flots, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 18 (1971), 116-140.
- [3] T. SHIMANO, An invariant of systems in the ergodic theory, Tôhoku Math. J. 30 (1978), 337-350.

DEPARTMENT OF MATHEMATICS COLLEGE OF HUMANITIES AND SOCIAL SCIENCES IWATE UNIVERSITY MORIOKA, 020 JAPAN