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0. The purpose of this note is to represent helices of a Gaussian
automorphism by the multiple Wiener integrals and to calculate the
multiplicity of helices.

1. Let (Ω, &] P) be a complete separable probability space and
(T, ^) a system on Ω, that is, a pair of an automorphism of Ω and a
complete sub-σ-field of ^ such that

(a)

(b)
Let H = Ll(Ω) denote the Hubert space of all squarely integrable real
random variables with zero-expectations and Hn the subspace of H con-
sisting of all elements measurable with respect to Tn^Q for each n.

DEFINITION 1. A process X = (xn) is called a helix for a system
(T, J?l) if the following conditions are satisfied:

(a) x0 = 0,
(b) xn — xm e Hn θ Hm for all m and n with m < n,
(c) (xn — xm)° T~ι = xn+1 — xm+ί for all m and n.

By the condition (b), (xn, TnJ^l)n^0 can be regarded as a square-
integrable martingale and further by the condition (c), all xn can be
written as

α?Λ = Σ α o Γ " ( * " 1 }

for some xeH.Q HQ.

DEFINITION 2. For helices X = (ajj and Xf = « ) , ^<2r,x') denotes the
signed measure on (Ω, ̂ ) such that

If i"<x,x'> is a null measure, we say that JXΓ and Xf are strictly orthog-
onal. If X = X', then ^<x>x> is denoted simply by μ<x>.

By the martingale property of helices, we can define the following
which is similar to the martingale-transform:
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DEFINITION 3. For a helix X — (xn) and a squarely integrable random
variable v on (Ω, ̂ , μ<x>), the helix Y = {yn) given by

is called the helix-transform of X by v and denoted by

Now we state a repesentation theorem of helices for a system, which
was proved in [3].

THEOREM 1. For any system (Γ, J^l), there exists a finite or count-
able sequence of strictly orthogonal helices Jgf = (X{p)) such that

(a) μ<x(P+V) is absolutely continuous with respect to μ<xwy for all p,
(b) every helix X has the the representation

for some v{p) e L\Ω, j ^ , μ<x(P)}).

If ^/ — (Y{p)) is another such sequence, then μ<γ(P)y is equivalent to

f*<χw> for all P-

We call such a sequence a base of helices for the system. By Theorem
1, we see that the length of a base of helices is determined uniquely by
the system.

DEFINITION 4. The length of a base of helices is called the multiplicity
of helices for the system (T, ^) and denoted by M(T, *β^).

If T is assumed to be a Bernoulli automorphism, then the following
can be said (cf. [3]).

DEFINITION 5. For a sub-α-field ^f of ^ the pair (Γ, J ^ ) is called
a 2?-system if

(a) (T\J^O is an independent sequence of sub-σ-fields,
(b) V^-oo Tn^f = ^ .

If we put J^Y = V*«) Tn^f, then (Γ, J^~) is clearly a system, which
is indeed a pair of a ίΓ-automorphism and a ϋΓ-field.

THEOREM 2. Let (T, J^f) be a B-system. If (x{p)) is a complete
orthonormal system of Ll(jzf), then X = {x{p)) given by

x{op) - 0 , x{p) = Σ %{P) ° Γ-(fe-υ (n > 0) , x{

n

p) = -x{p)

noT-« in < 0)
fcl

is ίfeβ /̂ eiiίc for the system (T, J^J~) and <%f — (X{p)) is a base of helices
for (T, J^~). Thus we have M(T, J^~) = dim Ll(s^) and further
μ<x(P)> — P on J ^ ~ for all p.
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2. Let (Ω, e-̂ 7 P, (ζn)) be a real Gaussian stationary sequence with
the coordinate representation and let m be the non-atomic spectral
measure. We can assume that E[ξn] = 0 for all n without loss of gen-
erality. The shift T of Ω defined by

ξn{Tω) - ζn_,{ω) for all n

is called a Gaussian automorphism with the spectral measure m. By
Kolmogorov's decomposition theorem, we get

where dM(u) is the complex normal random measure on I = [ — 1/2, 1/2)
and dm(u) = ||c£ikf(w)||2. Then the following results are well-known (cf.

Let L2(P, mp) be the class of all complex squarely integrable functions
on the p-fold direct product measure space of (/, m). Then for every
/ e L\P, mp), the p-th complex multiple Wiener integral

J
= \ f(ulf

is defined and has the following properties:
(a) ^ is linear on L\IP, mp).
(b) ^p(f) = -^(/) for feL2(Ip,mp), where — indicates the sym-

metrization of /.
(c) E[J?~p(f)] = 0 for p ^ 1 and / 6 L2(P, mp).
(d) ( ^ ( / ) , Λ(fif)) = 0 f or / 6 L\Ip, mp) and ^ 6 L\I\ m«) with p ^ q.
When p = 0, we let w^(c) = c for every complex constant c.
For use in the next section, we recall here the following recurrence

formula of multiple Wiener integrals ([1]).

^C/V%7) = ^ + i ( / Δ g) + ^_x(/ V g),

where

/ Δ g(ulf "'9uPf up+1) =

/ V g(ulf , ^_!) = Σ

3. In this section, we set up a system of a Gaussian automorphism
and construct the helices for the system by the multiple Wiener integrals.
We deal only with a class of Gaussian automorphisms such that

dm(u) — y(u)2du , y(u) > 0 a.e.

Under this assumption, it is known that the sequence of random variables
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defined by

±—dM(μ)

is an innovation of (fw), that is,
(a) Ύ)n, — oo < n < oo t are independent and the shift T of (ξn) is also

that of (ηn).
(b) If iβ\ denotes the tf-field generated by ξk9 k ^ n, and Sfn the

(7-field generated by ηkf k ^ n9 then ^ = &% for all w.
Thus, if J K denotes the σ-field generated by ηn for each n, then

(Γ, J^ί) is clearly a jB-system.

LEMMA 1. For every positive integer p,

'Jn — 2-k

PROOF. If p — 1, the formula is just the definition of Ύ]n for all n.
If it is valid for some p, then

2-X
q\(p — 2q)l

By the recurrence formula,

^ - 2 g « - 2 9 ) ^ T ( O = ^+ 1- l f(β2+ 1-*) + (p -

Therefore the coefficient of ^+i_ 2 g (^ + 1 " 2 g ) is as follows.

Ql(p-2q)l ^ (ff - l)!(p - 2(q - 1))!

This completes the induction.

By this lemma, we know that <J%(eζ) can also be expressed as a linear

combination of ηζ~2q, 2q ^ p, for each p. Therefore, ^(eζ)9 p = 1, 2, ,
are measurable with respect to J < for all n and since T is the shift of

LEMMA 2. 27&e sequence (<J%(eζ)), p = 1, 2, , ΐs α complete ortho-
normal system of L2

0(^O for each n.

PROOF. The orthogonality is an immediate consequence of the prop-
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erty (d) of multiple Wiener integrals and the completeness is clear by
the preceding lemma.

By Lemma 2 and Theorem 2 in Section 1, we can state the following
about helices for our system (T, J ^ ) .

For each positive integer p, define a helix X{p) = (x{

n

p)) for (Γ, <β^) by

xi»> = 0 , x? - Σ ~W) = Σ ~W) ° T~{k-ι) (n > 0) ,
fel fcl

The sequence (X(p)) is denoted by

THEOREM 3. If T is the Gaussian automorphism with the above-
mentioned spectral measure, then the sequence <%f is a base of helices
for the system (T, ̂ ~l) and for all p,

μ<χ(p)> = P .

Hence the multiplicity of helices is infinite.

Furthermore we have the following interesting relationship between
the multiplicities and Wiener integrals.

Let Wp denote the totality of all real p-th multiple Wiener integrals.
The space Wp is invariant under T by definition.

T H E O R E M 4. The finite sequence (X{q)), (q = 1, 2, •••,#), is a base

of helices for the system (Γ, J^l) in Wp.

PROOF. It is obvious, because the sequence (κJ^(el)), (q = 1, 2, , p),
is a complete orthonormal system of Wp Π Ll(j^n).
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