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A NOTE ON IMAGES OF REDUCTION OPERATORS

MOSES GLASNER AND MITSURU NAKAI

(Received October 9, 1979)

Consider a nonnegative locally Holder continuous 2-form P on a
hyperbolic Riemann surface R. We denote by P(R) the space of solutions
of the equation d*du = uP on R. By PB(R), PD{R) and PBD{R) we
denote the subspaces of bounded, Dirichlet-finite and bounded Dirichlet-
finite solutions. The reduction operator T is a linear order preserving
mapping of a subspace of P{R) into H(R) defined by

(1) Tu = u + -±-\ gR(.,ζ)u(ζ)P(ζ),

where gR( , ζ) is harmonic Green's function for R. In case uePY(R),
Y= B, D or BD, it is known that Tu exists and TueHY(R) (cf. [3]).
We denote by Tγ the restriction T\PY(R). Since Tγ is an injection (cf.
[3]) it can be used to reduce questions concerning PY(R) to questions
concerning a subspace of HY(R), Y — B, D or BD.

Denote by Xξ the image of PY{R) under Tγ, T = BD or D. The
problem of characterizing Xζ is central to the study of PD(R). Singer
[6]> [7] gave the first substantial results in this direction. In [2] we
extended his technique to give a complete characterization of Xζ.
Although this result has significant practical applications, it is nonetheless
cumbersome to apply. The motivation of the present note is to give a
more efficient characterization of Xζ. However, we will not make use
of any result of [2] here.

To each function h e HD+(R) we associate a sequence {hk} c HBD+(R),
called the standard HBD-approximatίon to h, as follows. Set ψk =
(hf}k)Ό k~x and hk = Πψk — k'1, k — 1, 2, , where Πψk is the harmonic
projection of ψk and Π (resp. U) denotes the pointwise minimum (resp.
maximum). Later we shall elaborate on the useful properties of {hk}.
Consider the family

3f - {uePD(R)\0 ^ u ^ 1} .

Define a function δ = supw 6^^. Our main result can be stated as
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follows:

THEOREM. Let heHD+(R). Then heX% if and only if {hk}(zXζD

and DR(δh) < + oo.

1. In order to simplify our arguments we use the Roy den ideal
boundary theory adapted to the equation d*du = uP. We begin by
reviewing some facts here but refer to [5] and [1] for more details. Let
M(R) be the space of continuous Tonelli functions on R with finite
Dirichlet integrals over R and let M(R) be the space of bounded func-
tions in M(R), i.e., M(R) is the Hoyden algebra associated to R. Denote
by ϋ?* the Royden compactification of R and by A the harmonic boundary.
The set ΔP of Green's energy nondensity points is the set of points
(?* e Δ such that g* has a neighborhood 17* in i2* with <1, V)u^R < +°°.
Here,

<<P <P> i

for an open set Ω <zR and a suitable function φ on fl. The following
alternative description of AP is useful:

ΔP = {?* eJ\u(q*) Φ 0, for some uePD(R)} .

Moreover, ΔP serves for a maximum principle for PD(R): For an open
set ΩdR and a function uePD(Ω), \u\ ^ M holds whenever
lim sup5_g* \u(q) \ ̂  M f or each g* e dΩ U (β Π ^ P ) .

The modified Royden decomposition theorem may be formulated as
follows: Let W be an open subset of R with a C1 relative boundary
and let feM(R). Then there is a unique function h e HD{ W) Π M(R)
such that (/— h)\Δ U (i2\ W) — 0. Moreover, the Dirichlet principle
holds: DR(h — /, h) — 0. The notation h — 77^γψ/ is used. Concerning
the existence of solutions of d*du — uP we have the following: Let
feM(R) and assume either that / is a nonnegative subsolution of
d*du = uP on J? or that / is bounded and Supp(/|J) c J P . Then there
is a unique function uePD(R) with (w — /)|z/ = 0. Here, we use the
symbol Πpf to denote u.

For uePD+(R), the function TDu — u is a potential on i? and
belongs to M(R). Thus it vanishes on A. On the other hand, we also
have (Πu — u) \ A = 0 and we conclude by the maximum principle that
TDu = 77u. By the Dirichlet principle DR{n) = DR(TDu) + ί)Λ(% - TDu).
Since
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(cf. [3]), we have the formula

( 2) DR(u) = DR{TDu) + <u, uYR .

2. Let W be an open subset of R with dW being C1. We denote
by HD(W dW) the functions in HD{W) Π C(R) which vanish on R\ W.
It is easily seen that HD( W; d W) is generated by its nonnegative
functions. The extremization μD: HD{W\ dW) —> HD(R) is defined to
be the linear mapping such that μDu — u is a potential for each
ueHD+(W; dW). Since (^-coordinate lines are removable sets for
Tonelli functions we see that HD(W; dW) cM(R). Consequently,
Π{μDn - u) = 0 for each usHD+(W; dW). We see that μDu = Πu for
each ueHD(W; dW). For a function to be in the image of μD we have
the following test (cf. [4]).

LEMMA. Let έ7 be an open subset of A and W an open subset of R
with C1 relative boundary such that & aW. Let w be a bounded non-
negative Tonelli function on R which is continuous on R Ό έ? and
w\έ? = l, w\R\W-=0. If heHD+(R) such that h\Δ\0> = 0 and
Dw(wh) < +00, then h is in the image of μD.

Since wheM(R) and wh\R\W = 0, the function v — Π-^w{wh) has
the properties v \ Δ = wh | Δ and v e HD{ W dW). Clearly, wh\έ? = h\^.
For any q*eΔ\έ^ take a net {qλ}dR with g* = lim^. Then 0 ^
lim wh(qλ) ^ lim sup w(qλ) lim h(qλ) = 0 because w is bounded and h(q*) — 0.
Therefore, h\Δ — wh\Δ — v\Δ. We conclude that h = Πv = μDv.

3. For an heHD+(R), let {hk} be the standard iJI?D-approximation
to h. Set Fk = {̂ * e 2/|λ(p*) ^ &-1}, a compact subset of A, k = 1, 2,
The properties of {̂ } that we shall use are contained in the

LEMMA. ( i ) Supp (hk \Δ)aFk;
(ii) lim(hk\Δ) = h\Δ;
(iii) {hk}dXBD if and only if h\Δ\ΔP = 0;
(iv) DM£DΛ(h);
(v) h = CD-limhk.

Note that hk\A = (((h\Δ) f)k)U k~ι) - k~\ This implies (i) and (ii).
For the proof of (iii) assume that {hk} c XBD. Fix k and choose uk e
PBD(R) such that TBDuk = fcfc. Since wΛ| A\ ΔP = 0 and / 7 ^ = ^ , we have
Λfc| J \ / / P = 0. By (ii) we conclude that h\Δ\ΔP — 0. Conversely, assume
that h\Δ\ΔP = 0. For any fixed k, we have FkaΔP and hence by (i),
Supp (hk IJ) c/ίp. Therefore we may consider uk = Πphk. By the
maximum principle we conclude that TBDuk — hk, and the proof of (iii)
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is complete. Clearly DR(ψk) <; DR(h) and thus (iv) follows from the
Dirichlet principle.

By comparing boundary values we see that hk ^ hk+1 ^ h. Thus
h = C-lim hk exists on R and h ^ h. By (iv) and Fatou's lemma we
conclude that heHD(R). In view of h\Δ^>hk\Δ and (ii) we see that
h ^ h on R. We conclude that h = C-lim fofc. Since h — hk =
Π(h — ψk + Ar1), the Dirichlet principle implies that DR(h — hk) ^
£*(A -γk + k~ι) = Z^fc), where Afc = {pei2|/ι(p) < fc"1 or h(p) > Jή.
This shows that also h = D-lim hk.

4. If ue PD+(R), then in a natural way we may define a sequence
{uk} called the standard PBD-approximatίon to u. In fact, set h = TRu.
Then fo|zf\Jp = u\Δ\ΔP — 0 and hence Lemma 3 (iii) implies that {hk}, the
standard iίRD-appoximation to h, is contained in XiΏ. Set uk — TBl

Dhk.

LEMMA. ( i ) Supp (uk \Δ)aFk(z AP;
(ii) lim (uk \Δ) — u\Δ;
(iii) DR{uk) ^ DR(u);
(iv) u = CJ9-lim uk.

The facts h\Δ = u\Δ, hk\Δ = uk\Δ together with Lemma 3 (i) and 3
(ii) imply that (i) and (ii) hold. By comparing the boundary values we
see that uk ^ uk+1 ^ u. From (2) we see that DR(u) = DB(h) + {u, u)R

and DR(uk) = DR(hk) + (uk, uk)R. Thus (iii) follows from Lemma 3 (iii).
By an argument analogous to that used in proving Lemma 3 (v) we see
that u = C-lim uk. Again by (2) DR(u — uk) = DR(h — hk) + (u — uk, u — uk)R.
By Lemma 3 (v) and the monotone convergence theorem we conclude
that u = D-lim uk, which completes the proof.

It is worthwhile to point out here that although for he HD+(R)
the assumption h e XI implies {hk} a X£D, the converse is not true even
if h is bounded. Indeed in [1] we constructed 2-forms P and Q on a
Riemann surface T°° such that ΔP — ΔQ yet there is a function v e
QBD{T°°) such that v\Δ Φ u\Δ for every usPBD(T~). Thus if we set
h = TBDv, then h\Δ\ΔP = v\Δ\ΔQ = 0, i.e., {hk}aX%D but hgXED.

5, Consider the family £^ and the function δ defined in the
beginning of this paper. For each p* e ΔP there is a function fp* e M(R)
with 0 ^ fp* ^ 1, fp*(p*) = 1 and Suppί/p*!Δ)aΔP. Thus we may consider
%p, = 77p/p* Note that ^p* e 3f and hence û * ^ δ. We conclude that
1 = lim inf p^p*up*(p) ̂  lim inf p_p*δ(p) ^ lim supp^p*δ(p) ^ 1. We extend the
function δ to z/P by setting δ\ΔP = 1. Then we have shown that δ is
continuous on ϋ? U ΔP.
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It is easily seen that ^ is a Perron family with respect to d*du =
uP. Clearly 0 6 £&. If ulf u2 e <&, then ux U u2 is a nonnegative subsolu-
tion in M{R). Thus Πp{u1 (J u2) exists, is the least solution majorant of
ux and u2 and belongs to 3f. Since 3f is a Perron family we have that
δ e PB+(R) and that there is an increasing sequence {δk} c 3f such that
<5 = JS-lim δk.

LEMMA. Let he HD+(R). Under the assumption that {hk}czXBD

there exists a sequence {δk} c Ξf such that
( i ) δ * | F A = l ;

( i i ) Supp (δfc I ^) c z/P;

(iii) δ — J5-lim δk.

We shall call the sequence {δk} the PBD-approximation to δ deter-
mined by h. Although {δk}aPBD{R)y δ need not be in PBD(R). We
begin the proof by replacing {δk} by a sequence {δk} c S& with the
property that Supp (δΛ | J) c J P as well as δ = B-\imδk. To accomplish
this we consider the standard PED-approximation {δkn}n=i to δk and note
that the diagonal sequence δk = <5&fc has the required properties. Now
consider the functions

gk = (fc2 + k)[(h n &-1) U (fc + I)" 1 - (fc + I)"1] , k - 1, 2, - .

Clearly, gkeM(R), 0<^gk<*l, gk\Fk = l and since { fe jc l j f l we also
have Supp (flrt 14)cî fc+iC^/p. Since Supp^UflrJMJcJp, we may define
δfc = 77̂ (1̂  U gk). It is easily seen that δke & and satisfies (i) and (ii).
By the maximum principle δk ^ δk and since δ = ί?-lim δk we conclude
that (iii) holds.

6. In [2] we characterized Xζ as follows. If heHD+(R), then
he XI if and only if {hk}aX£D and DB(δkhk) = έ?(ΐ), where {hk} is the
standard ifRD-approximation to h and {δk} is the PRD-approximation to
δ determined by h. The condition DB{δkhk) = ^(1) is difficult to verify
in practice. By Fatou's lemma it implies that DR{δh) < + <χ> and this
gives the hope that DB(δkhk) = ^(1) and DB(δh) < + oo are equivalent.
On the other hand, Singer [6] showed that with a slightly different δ
the two conditions are not equivalent. In spite of this doubt our main
theorem shows that indeed the two conditions are equivalent. For the
sake of completeness we present here the proof of the necessity of the
condition of our main theorem.

Let h e HD+(R) and assume that h e XL Let u e PD(R) such that
TDu = h. Choose the standard ίfJ5J9-approximation {hk} to ht the standard
PBjD-approximation {uk} to u and the PRD-approximation {δk} to δ
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determined by h. The function ^ ( 1 — δk) e M+(R) and hence by Lemmas
4 (i) and 5 (i) we have uk(l — δk) | Δ = 0. In view of the duality between
Δ and MΔ(Έt) (cf. [5]) we may choose a sequence {fn} c Mi{R) with
wfc(l — δk) — BD-\imfn. By this and Green's formula we obtain

( 3 ) DB(uk(l- δ)) = lim DB(fn, uk(l - δk)) = lim ( - ί fnd*d(uk(l - δk)))
n n \ JR /

= lim(-( fnuk(l-δk)P+\ fnuh8kP + U f*dukΛ*dδh)
n \ JR JR JR /

£ - l i m inf ( fnuk(l - dk)P + lim sup ( fnukδkP
n JR n JR

+ 2 lim sup \ fnduk Λ * dδk .
n JR

In view of uk(l — δk)^0 and Λ^O, the first term on the right hand side
of (3) is nonpositive. We estimate the second term:

(4 ) lim sup \ fnuk3kP ^ lim sup \ fnukP = - l i m DR(fn, uk)
n J R n J R n

= -DR(uk(l - δk), uk) .

By the Schwarz inequality ( \duk A *dδk\ ^ DR

!2(uk)DB

t2(δk) < + °o and
JR

since {fn} is uniformly bounded, we conclude by the Lebesgue dominated
convergence theorem that

( 5 ) lim \ fnduk A * dδk = \ uk(l — δk)duk A * dδk .
n JR JR

Substituting (4) and (5) into (3) and applying the Schwarz inequality
repeatedly, we get

DM1 - δk)) ̂  -DM1 ~ δk\ Uk) + 2\ uh(X - δk)duk A *dδk

JR

= -DM1 ~ δk), nk) - 2 \ (1 - δk)duk A *d(uk(l - δk))
JR

+ 2 \ (1 - δk)
2duk A *duk

JR

^ 3 2 % ' W l - h))DR

ι\nk) + 2DR(uk) .

This implies that DR

l2(uk(l - δk)) ̂  42?i/2(wJfe) and by the triangle inequality
we obtain

( 6 ) DH\δkuk) ^ 5Dϋ\uk) .

7. Set φk — hk — uk. In this section we give an estimate on DR{δkφk)
which together with (6) will give the desired bound on DR

l2(δkhk). Note
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that φk\J = 0 and φk ^ 0. Thus δkφkeM+(R) and δkφk\Δ = 0. Conse-
quently we may choose a sequence {/J c Mt(R) with δλα>fc = J3D-lim/w.
We estimate DR(δkφk) as follows:

#*(«*?>*) = lim DR(fΛ, δkφk) = lim ( - ϊ /nd * d(δkφk))

^ -lim inf ( fJkφkP + lim sup ( fJkukP
n JB n JB

- 2 lim inf \ fndδk A*dφk^- DR(δkφk, uk) - 2 ( δkφkdδk A * *P*
% JB JB

= -DR(δkφk, uk) - 2 \ δkd(δkφk) A*dφk + 2\ δ\dφk A *dφk
JB JB

^ Dψ(δkφk)DR

!\uk) + 2DU\δkφk)DR'\φk) + 2DR(φk) .

In view of the Dirichlet principle, DR{φk) ^ DR(uk) which implies that
DR{δkφk) ^ ZDnδkφk)m\uk) + 2DB(uk). Hence,

From this and (6) we see that DR

ι\δkhk) ^ QDR

!2(uk) and by Lemma 4 (iii)
we arrive at DB{δkhk) = ^(1). Finally by Fatou's lemma we conclude
that DR(δh) < +°o. This establishes the necessity of our condition.

8. We shall establish the sufficiency in Sections 8-13. We begin
with two simple inequalities. Assume Ω is an open subset of R and
<P,φeM(Ω). Then

( 7 ) DΩ(φψ) = ί ψ2dφ A * dφ + 2 ( φψdφ Λ *dψ + \ φ2df A * dψ
JΩ JΩ JΩ

^ 2 ( α/r2d̂  Λ *dφ + 2¥DΩ(ψ) ,

where sup^ | φ | = δ. Also,

( 8 ) \ α/r2dφ Λ * dφ ^ DΩ(φψ) — 2 \ φψdφ A *dψ
JΩ JΩ

= DΩ(φψ) — 2 1 φd(φψ) A *dψ + 2\ φ2dψ A *dψ
JΩ JΩ

2bDΩ

!2(φψ)D1

Ω'\ψ) + 2¥DΩ(ψ) .

We shall use (7) and (8) in case φ9 ψ are merely continuous Tonelli
functions on Ω. To see the validity of (7) and (8) in this case, note
that φ, ψ 6 M(Ωf), where Ω' is a relatively compact open set in Ω. Apply
(7) and (8) with Ω replaced by Ω\ Then let Ω' -> Ω on the right hand
sides and then on the left hand sides. Of course, the right hand sides
or both sides may be + °o. The application of (7) and (8) that we intend
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to make is in the case where φ is a bounded continuous Tonelli function

on Ω and ψ is in M(Ω). In this case we see from (7) that 1 ψ2dφ A
JΩ

* dφ < +™ implies that DΩ(φψ) < + oo and from (8) that DΩ{φψ) < + «>

implies that I ψ2dφ A * dφ < + oo.
JΩ

9. Let h e HD+(R) and assume that {hk} c XξD and DB(δh) < + oo.
By Sard's theorem we may choose an ae (0, 1) such that W —
{peR\δ(p) > a} has a C1 relative boundary. Let δ* be the lower semi-
continuous extension of δ to R*. Then W* = {p* eR*\δ*(p*) > a) is
open in R* and since δ is continuous on R\J AP with δ| J P = 1 we have
ApdW*. Since W* Γ) R = W, the denseness of W* Π # in T7* gives
J P c TΓ* c FT.

Set w = (1 — a)~\δ — a) U 0 and note that the hypotheses of Lemma
2 with ΔP playing the role of # are met. Thus there is a function
v 6 HD( W; dW) such that μDv = h. The proof will be complete when we
demonstrate a function uePD(R) with u\J = v\J.

Note that by (8) we have

( 9 ) ( h2dδ A *dδ < +

and in view of 0 ^ v tS* h this implies that

(10) ( v2dδ A *dδ < +

By (7) we conclude that

(11) Dw(δv) < + oo .

10. Set r = T5 > T Fδ; i.e.,

(12) r = δ + J ^
2ττ

Let {T7Λ} be a regular exhaustion of W; specifically, WndWnd Wn+1 a W,
Wn is compact, W = U«=i ^ a n ( i 3ΐFΛ consists of analytic curves. Define
a sequence {rj of functions on W by rΛ | W \ Wn = δ and rΛ | PΓΛ = TB>Wnδ,
i.e.,

= δ ITΓ. + ^ - ( fir^C , ζ)δ(ζ)P(ζ) .
2ττ JTFΛ

The following can easily be verified: rn is a continuous Tonelli function
on W; rn \ Wn is harmonic; δ <; rn ^ rw+1 ^ r and r = jB-lim rn on W. We
further claim that



REDUCTION OPERATORS 99

(13) DWn{rnv) = ^ ( 1 ) .

Using Green's formula, we get

(14) Dw(rnv) = 1 r%v*d(rnv) - 2 1 rnvdrn A *dv

— \ δv* d(rnv) — 2 \ rnd(rnv) A * dv + 2 I r^dt; A *dv

and by another application we obtain

(15) [ δv*d(rnv) = ί d(δι ) Λ *d(rnv) + 2 ί δvdrn A *dv

= ί d(5v) Λ *d(rnv) + 2 ( δd(rΛv) Λ *dv

— 2 I δrndv A *dv .

We substitute (15) into (14) and apply the Schwarz inequality to obtain

DwJχnv) ^ D^n(rnv)(DU\δv) + ADU2(v)) + 2Dw(v) .

In view of (11) we conclude that (13) holds.

11. In this section we establish

(16) \ v\rn - δ)δP = ^(1) .

We begin by applying Green's formula:

(17) ( v\rn - δ)δP = -DWn(v\rn - δ), δ)

= - 2 ( v(rn - δ)dv A *cZ<5 - \ v2d(rn -δ)A*dδ.

By the Schwarz inequality we obtain

^\ v\dv A *dδ\
J

(18) |( v(rn - δ)dv A *dδ
IJWn JWn

^DU\v)([ v2dδ A

as well as,

(19) I \ v2d(rn -δ)A*dδ ^\ v2\drn A *dδ\ + \ v2dδ A *dδ

v2drn A * ^ ) 1 2 ( ί v"dS Λ *dδY/2 + ( v2dδ A *dδ .

We apply (8):
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\ v*drn A*drn^ Dw%(rΛv) + 2DpΛ(r.υ)DUKv) + 2Dw(v) .

This in view of (13) implies that I v2drn A *drn = ^(1). Substituting

this into (19) and then combining (18) and (19) with (17), we get (16).

12. From (16) and the monotone convergence theorem we deduce
that

( v\r - δ)δP < + oo .
W

We substitute the expression for r — δ from (12) into this and apply
Fubini's theorem to obtain

\ v\z)gw{z, Qδ{z)δ{ζ)P{z)P{ζ) < + < * , .

By the Schwarz inequality we see that

(δv, δv)w < + °° .

Since δ\W > a > 0, we conclude that

(20) (v, v)fv < + - .

13. We arrive at the final stage of the proof of our theorem. Let
{Rn} be an exhaustion of R by regular regions. Let sn e M{R) such that
sn\R\(Rn Π W) = v and d*dsn = snP on Rn Π W. Then 0 ^ sn ^ v and
hence sn+1 ^ β». By the Harnack principle s = C-lim sn exists on W.
Since v\R\W — 0, it is easily seen that actually s = C-lim sn on R and
S|JR\ W = 0. We estimate A ^ s J using (2) and that the fact that sn ^ v:

Dw(sn) = 2?Λnnτr(O + ^\(Λnnir)(v)

= ΰ ^ W + <βw sn)fVf]Bn ^ Dw(v) + <v, vyw .

In view of (20) and Fatou's lemma we obtain Dw(s) < +°°, i.e., se
PD(W dW).

We shall now show that also s = D-lim sn. To this end note that

DwnRn(sn - s, sn) = - I (s n - s )s w P ^ 0 .
J w n iϋ%

Consequently,

0 ^ Dwf]Rn(s - s j ^ DwnBn(8) - Dwf]Rn(sn) .

Thus by Fatou's lemma we arrive at

(21) 0 ^ lim sup Dwΐ]Rn(s - sn) ^ Dw(s) - lim inf DWΓιRn(sn)

£ Dw(s) - Dw(s) = 0 .
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Furthermore,

0 ^ lim inf Dw(s — sn) ^ lim sup Dw(s — sn)

£ lim Dw\{wf]Rn)(s - v) + lim sup DwnRn(s - sj .

The first term on the right is 0 because Dw(s — v) < + ̂  and by (21)
also the second term is 0. We have established s = CD-lim sn.

Note that also v — s — CD-lim (v — sn) and v — sn e M0(R). Thus

v — s IA = 0. The function s is a nonnegat ive subsolution in M(J?) and

hence w = Πps exists . We have established t h a t u\Δ — s\Δ — v\Δ — }ι\Δ

and t h e proof of t h e sufficiency is complete.
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