A NOTE ON IMAGES OF REDUCTION OPERATORS

Moses Glasner and Mitsuru Nakai

(Received October 9, 1979)

Consider a nonnegative locally Hölder continuous 2 -form P on a hyperbolic Riemann surface R. We denote by $P(R)$ the space of solutions of the equation $d * d u=u P$ on R. By $P B(R), P D(R)$ and $P B D(R)$ we denote the subspaces of bounded, Dirichlet-finite and bounded Dirichletfinite solutions. The reduction operator T is a linear order preserving mapping of a subspace of $P(R)$ into $H(R)$ defined by

$$
\begin{equation*}
T u=u+\frac{1}{2 \pi} \int_{R} g_{R}(\cdot, \zeta) u(\zeta) P(\zeta) \tag{1}
\end{equation*}
$$

where $g_{R}(\cdot, \zeta)$ is harmonic Green's function for R. In case $u \in P Y(R)$, $Y=B, D$ or $B D$, it is known that $T u$ exists and $T u \in H Y(R)$ (cf. [3]). We denote by T_{Y} the restriction $T \mid P Y(R)$. Since T_{Y} is an injection (cf. [3]) it can be used to reduce questions concerning $P Y(R)$ to questions concerning a subspace of $H Y(R), Y=B, D$ or $B D$.

Denote by X_{Y}^{P} the image of $P Y(R)$ under $T_{Y}, T=B D$ or D. The problem of characterizing X_{D}^{P} is central to the study of $P D(R)$. Singer [6], [7] gave the first substantial results in this direction. In [2] we extended his technique to give a complete characterization of X_{D}^{P}. Although this result has significant practical applications, it is nonetheless cumbersome to apply. The motivation of the present note is to give a more efficient characterization of X_{D}^{P}. However, we will not make use of any result of [2] here.

To each function $h \in H D^{+}(R)$ we associate a sequence $\left\{h_{k}\right\} \subset H B D^{+}(R)$, called the standard HBD-approximation to h, as follows. Set $\psi_{k}=$ $(h \cap k) \cup k^{-1}$ and $h_{k}=\Pi \psi_{k}-k^{-1}, k=1,2, \cdots$, where $\Pi \psi_{k}$ is the harmonic projection of ψ_{k} and \cap (resp. U) denotes the pointwise minimum (resp. maximum). Later we shall elaborate on the useful properties of $\left\{h_{k}\right\}$. Consider the family

$$
\mathscr{D}=\{u \in P D(R) \mid 0 \leqq u \leqq 1\} .
$$

Define a function $\delta=\sup _{u \in \mathscr{g}} u$. Our main result can be stated as
follows:
Theorem. Let $h \in H D^{+}(R)$. Then $h \in X_{D}^{P}$ if and only if $\left\{h_{k}\right\} \subset X_{B D}^{P}$ and $D_{R}(\delta h)<+\infty$.

1. In order to simplify our arguments we use the Royden ideal boundary theory adapted to the equation $d * d u=u P$. We begin by reviewing some facts here but refer to [5] and [1] for more details. Let $\tilde{M}(R)$ be the space of continuous Tonelli functions on R with finite Dirichlet integrals over R and let $M(R)$ be the space of bounded functions in $\widetilde{M}(R)$, i.e., $M(R)$ is the Royden algebra associated to R. Denote by R^{*} the Royden compactification of R and by Δ the harmonic boundary. The set Δ_{P} of Green's energy nondensity points is the set of points $q^{*} \in \Delta$ such that q^{*} has a neighborhood U^{*} in R^{*} with $\langle 1,1\rangle_{U^{*} \cap R}^{P}<+\infty$. Here,

$$
\langle\varphi, \varphi\rangle_{\Omega}^{P}=\frac{1}{2 \pi} \int_{\Omega \times \Omega} g_{\Omega}(z, \zeta) \varphi(z) P(z) \varphi(\zeta) P(\zeta),
$$

for an open set $\Omega \subset R$ and a suitable function φ on Ω. The following alternative description of Δ_{P} is useful:

$$
\Delta_{P}=\left\{q^{*} \in \Delta \mid u\left(q^{*}\right) \neq 0, \text { for some } u \in P D(R)\right\}
$$

Moreover, Δ_{P} serves for a maximum principle for $P D(R)$: For an open set $\Omega \subset R \quad$ and \quad a function $u \in P D(\Omega), \quad|u| \leqq M$ holds whenever $\lim \sup _{q \rightarrow q^{*}}|u(q)| \leqq M$ for each $q^{*} \in \partial \Omega \cup\left(\bar{\Omega} \cap \Delta_{P}\right)$.

The modified Royden decomposition theorem may be formulated as follows: Let W be an open subset of R with a C^{1} relative boundary and let $f \in \widetilde{M}(R)$. Then there is a unique function $h \in H D(W) \cap \widetilde{M}(R)$ such that $(f-h) \mid \Delta \cup(\overline{R \backslash W})=0$. Moreover, the Dirichlet principle holds: $\quad D_{R}(h-f, h)=0$. The notation $h=\Pi_{\overline{R \backslash w}} f$ is used. Concerning the existence of solutions of $d * d u=u P$ we have the following: Let $f \in \tilde{M}(R)$ and assume either that f is a nonnegative subsolution of $d * d u=u P$ on R or that f is bounded and $\operatorname{Supp}(f \mid \Delta) \subset \Delta_{P}$. Then there is a unique function $u \in P D(R)$ with $(u-f) \mid \Delta=0$. Here, we use the symbol $\Pi^{P} f$ to denote u.

For $u \in P D^{+}(R)$, the function $T_{D} u-u$ is a potential on R and belongs to $M(R)$. Thus it vanishes on Δ. On the other hand, we also have $(\Pi u-u) \mid \Delta=0$ and we conclude by the maximum principle that $T_{D} u=\Pi u$. By the Dirichlet principle $D_{R}(u)=D_{R}\left(T_{D} u\right)+D_{R}\left(u-T_{D} u\right)$. Since

$$
D_{R}\left(\frac{1}{2 \pi} \int_{R} g_{R}(\cdot, \zeta) u(\zeta) P(\zeta)\right)=\langle u, u\rangle_{R}^{P}
$$

(cf. [3]), we have the formula

$$
\begin{equation*}
D_{R}(u)=D_{R}\left(T_{D} u\right)+\langle u, u\rangle_{R}^{P} . \tag{2}
\end{equation*}
$$

2. Let W be an open subset of R with ∂W being C^{1}. We denote by $H D(W ; \partial W)$ the functions in $H D(W) \cap C(R)$ which vanish on $R \backslash W$. It is easily seen that $H D(W ; \partial W)$ is generated by its nonnegative functions. The extremization $\mu_{p}: H D(W ; \partial W) \rightarrow H D(R)$ is defined to be the linear mapping such that $\mu_{D} u-u$ is a potential for each $u \in H D^{+}(W ; \partial W)$. Since C^{1}-coordinate lines are removable sets for Tonelli functions we see that $H D(W ; \partial W) \subset \tilde{M}(R)$. Consequently, $\Pi\left(\mu_{D} u-u\right)=0$ for each $u \in H D^{+}(W ; \partial W)$. We see that $\mu_{D} u=\Pi u$ for each $u \in H D(W ; \partial W)$. For a function to be in the image of μ_{D} we have the following test (cf. [4]).

Lemma. Let \mathcal{O} be an open subset of \triangle and W an open subset of R with C^{1} relative boundary such that $\mathcal{O}^{\circ} \subset \bar{W}$. Let w be a bounded nonnegative Tonelli function on R which is continuous on $R \cup \mathcal{O}$ and $w|\mathcal{O}=1, \quad w| R \backslash W=0$. If $h \in H D^{+}(R)$ such that $h \mid \Delta \backslash \mathcal{O}=0$ and $D_{W}(w h)<+\infty$, then h is in the image of μ_{D}.

Since $w h \in \tilde{M}(R)$ and $w h \overline{R \backslash W}=0$, the function $v=\Pi_{\overline{R \backslash W}}(w h)$ has the properties $v|\Delta=w h| \Delta$ and $v \in H D(W ; \partial W)$. Clearly, wh|O $=h \mid O$. For any $q^{*} \in \Delta \backslash \mathcal{O}$ take a net $\left\{q_{\lambda}\right\} \subset R$ with $q^{*}=\lim q_{\lambda}$. Then $0 \leqq$ $\lim w h\left(q_{\lambda}\right) \leqq \lim \sup w\left(q_{\lambda}\right) \lim h\left(q_{\lambda}\right)=0$ because w is bounded and $h\left(q^{*}\right)=0$. Therefore, $h|\Delta=w h| \Delta=v \mid \Delta$. We conclude that $h=\Pi v=\mu_{D} v$.
3. For an $h \in H D^{+}(R)$, let $\left\{h_{k}\right\}$ be the standard $H B D$-approximation to h. Set $F_{k}=\left\{p^{*} \in \Delta \mid h\left(p^{*}\right) \geqq k^{-1}\right\}$, a compact subset of $\Delta, k=1,2, \cdots$. The properties of $\left\{h_{k}\right\}$ that we shall use are contained in the

Lemma. (i) $\operatorname{Supp}\left(h_{k} \mid \Delta\right) \subset F_{k}$;
(ii) $\lim \left(h_{k} \mid \Delta\right)=h \mid \Delta$;
(iii) $\left\{h_{k}\right\} \subset X_{B D}$ if and only if $h \mid \Delta \backslash \Delta_{P}=0$;
(iv) $D_{R}\left(h_{k}\right) \leqq D_{R}(h)$;
(v) $h=C D-\lim h_{k}$.

Note that $h_{k} \mid \Delta=\left(((h \mid \Delta) \cap k) \cup k^{-1}\right)-k^{-1}$. This implies (i) and (ii). For the proof of (iii) assume that $\left\{h_{k}\right\} \subset X_{B D}$. Fix k and choose $u_{k} \in$ $P B D(R)$ such that $T_{B D} u_{k}=h_{k}$. Since $u_{k} \mid \Delta \backslash \Delta_{P}=0$ and $\Pi u_{k}=h_{k}$, we have $h_{k} \mid \Delta \backslash \Delta_{P}=0$. By (ii) we conclude that $h \mid \Delta \backslash \Delta_{P}=0$. Conversely, assume that $h \mid \Delta \backslash \Delta_{P}=0$. For any fixed k, we have $F_{k} \subset \Delta_{P}$ and hence by (i), Supp $\left(h_{k} \mid \Delta\right) \subset \Delta_{P}$. Therefore we may consider $u_{k}=\Pi^{P} h_{k}$. By the maximum principle we conclude that $T_{B D} u_{k}=h_{k}$, and the proof of (iii)
is complete. Clearly $D_{R}\left(\psi_{k}\right) \leqq D_{R}(h)$ and thus (iv) follows from the Dirichlet principle.

By comparing boundary values we see that $h_{k} \leqq h_{k+1} \leqq h$. Thus $\hat{h}=C$-lim h_{k} exists on R and $\hat{h} \leqq h$. By (iv) and Fatou's lemma we conclude that $\hat{h} \in H D(R)$. In view of $\hat{h}\left|\Delta \geqq h_{k}\right| \Delta$ and (ii) we see that $\hat{h} \geqq h \quad$ on $\quad R$. We conclude that $h=C-\lim h_{k}$. Since $h-h_{k}=$ $\Pi\left(h-\psi_{k}+k^{-1}\right)$, the Dirichlet principle implies that $D_{R}\left(h-h_{k}\right) \leqq$ $D_{R}\left(h-\psi_{k}+k^{-1}\right)=D_{A_{k}}(h)$, where $A_{k}=\left\{p \in R \mid h(p)<k^{-1}\right.$ or $\left.h(p)>k\right\}$. This shows that also $h=D$-lim h_{k}.
4. If $u \in P D^{+}(R)$, then in a natural way we may define a sequence $\left\{u_{k}\right\}$ called the standard PBD-approximation to u. In fact, set $h=T_{R} u$. Then $h\left|\Delta \backslash \Delta_{P}=u\right| \Delta \backslash \Delta_{P}=0$ and hence Lemma 3 (iii) implies that $\left\{h_{k}\right\}$, the standard $H B D$-appoximation to h, is contained in $X_{B D}^{P}$. Set $u_{k}=T_{B D}^{-1} h_{k}$.

Lemma. (i) $\operatorname{Supp}\left(u_{k} \mid \Delta\right) \subset F_{k} \subset \Delta_{P}$;
(ii) $\lim \left(u_{k} \mid \Delta\right)=u \mid \Delta$;
(iii) $D_{R}\left(u_{k}\right) \leqq D_{R}(u)$;
(iv) $u=C D-\lim u_{k}$.

The facts $h|\Delta=u| \Delta, h_{k}\left|\Delta=u_{k}\right| \Delta$ together with Lemma 3 (i) and 3 (ii) imply that (i) and (ii) hold. By comparing the boundary values we see that $u_{k} \leqq u_{k+1} \leqq u$. From (2) we see that $D_{R}(u)=D_{R}(h)+\langle u, u\rangle_{R}^{P}$ and $D_{R}\left(u_{k}\right)=D_{R}\left(h_{k}\right)+\left\langle u_{k}, u_{k}\right\rangle_{R}^{P}$. Thus (iii) follows from Lemma 3 (iii). By an argument analogous to that used in proving Lemma 3 (v) we see that $u=C-\lim u_{k}$. Again by (2) $D_{R}\left(u-u_{k}\right)=D_{R}\left(h-h_{k}\right)+\left\langle u-u_{k}, u-u_{k}\right\rangle_{R}^{P}$. By Lemma 3 (v) and the monotone convergence theorem we conclude that $u=D$-lim u_{k}, which completes the proof.

It is worthwhile to point out here that although for $h \in H D^{+}(R)$ the assumption $h \in X_{D}^{P}$ implies $\left\{h_{k}\right\} \subset X_{B D}^{P}$, the converse is not true even if h is bounded. Indeed in [1] we constructed 2 -forms P and Q on a Riemann surface T^{∞} such that $\Delta_{P}=\Delta_{Q}$ yet there is a function $v \in$ $Q B D\left(T^{\infty}\right)$ such that $v|\Delta \neq u| \Delta$ for every $u \in \operatorname{PBD}\left(T^{\infty}\right)$. Thus if we set $h=T_{B D} v$, then $h\left|\Delta \backslash \Delta_{P}=v\right| \Delta \backslash \Delta_{Q}=0$, i.e., $\left\{h_{k}\right\} \subset X_{B D}^{P}$ but $h \notin X_{B D}^{P}$.
5. Consider the family \mathscr{D} and the function δ defined in the beginning of this paper. For each $p^{*} \in \Delta_{P}$ there is a function $f_{p^{*}} \in M(R)$ with $0 \leqq f_{p^{*}} \leqq 1, f_{p^{*}}\left(p^{*}\right)=1$ and $\operatorname{Supp}\left(f_{p^{*}} \mid \Delta\right) \subset \Delta_{P}$. Thus we may consider $u_{p^{*}}=\Pi^{P} f_{p^{*}}$. Note that $u_{p^{*}} \in \mathscr{D}$ and hence $u_{p^{*}} \leqq \delta$. We conclude that $1=\lim \inf _{p \rightarrow p^{*}} u_{p^{*}}(p) \leqq \lim \inf _{p \rightarrow p^{*}} \delta(p) \leqq \lim \sup _{p \rightarrow p^{*}} \delta(p) \leqq 1$. We extend the function δ to Δ_{P} by setting $\delta \mid \Delta_{P}=1$. Then we have shown that δ is continuous on $R \cup \Delta_{P}$.

It is easily seen that \mathscr{D} is a Perron family with respect to $d * d u=$ $u P$. Clearly $0 \in \mathscr{D}$. If $u_{1}, u_{2} \in \mathscr{D}$, then $u_{1} \cup u_{2}$ is a nonnegative subsolution in $M(R)$. Thus $\Pi^{P}\left(u_{1} \cup u_{2}\right)$ exists, is the least solution majorant of u_{1} and u_{2} and belongs to \mathscr{D}. Since \mathscr{D} is a Perron family we have that $\delta \in P B^{+}(R)$ and that there is an increasing sequence $\left\{\tilde{\delta}_{k}\right\} \subset \mathscr{D}$ such that $\delta=B-\lim \tilde{\delta}_{k}$.

Lemma. Let $h \in H D^{+}(R)$. Under the assumption that $\left\{h_{k}\right\} \subset X_{B D}^{P}$ there exists a sequence $\left\{\delta_{k}\right\} \subset \mathscr{D}$ such that
(i) $\delta_{k} \mid F_{k}=1$;
(ii) $\operatorname{Supp}\left(\delta_{k} \mid \Delta\right) \subset \Delta_{P}$;
(iii) $\delta=B$-lim δ_{k}.

We shall call the sequence $\left\{\delta_{k}\right\}$ the $P B D$-approximation to δ determined by h. Although $\left\{\delta_{k}\right\} \subset P B D(R), \delta$ need not be in $\operatorname{PBD}(R)$. We begin the proof by replacing $\left\{\tilde{\delta}_{k}\right\}$ by a sequence $\left\{\hat{\delta}_{k}\right\} \subset \mathscr{D}$ with the property that $\operatorname{Supp}\left(\hat{\delta}_{k} \mid \Delta\right) \subset \Delta_{P}$ as well as $\delta=B$-lim $\hat{\delta}_{k}$. To accomplish this we consider the standard $P B D$-approximation $\left\{\hat{\delta}_{k n}\right\}_{n=1}^{\infty}$ to $\tilde{\delta}_{k c}$ and note that the diagonal sequence $\hat{\delta}_{k}=\hat{\delta}_{k k}$ has the required properties. Now consider the functions

$$
g_{k}=\left(k^{2}+k\right)\left[\left(h \cap k^{-1}\right) \cup(k+1)^{-1}-(k+1)^{-1}\right], \quad k=1,2, \cdots
$$

Clearly, $g_{k} \in M(R), \quad 0 \leqq g_{k} \leqq 1, g_{k} \mid F_{k}=1$ and since $\left\{h_{k}\right\} \subset X_{B D}^{P}$ we also have $\operatorname{Supp}\left(g_{k} \mid \Delta\right) \subset F_{k+1} \subset \Delta_{P}$. Since $\operatorname{Supp}\left(\left(\widehat{\delta}_{k} \cup g_{k}\right) \mid \Delta\right) \subset \Delta_{P}$, we may define $\delta_{k}=\Pi^{P}\left(\widehat{\delta}_{k} \cup g_{k}\right)$. It is easily seen that $\delta_{k} \in \mathscr{D}$ and satisfies (i) and (ii). By the maximum principle $\widehat{\delta}_{k} \leqq \delta_{k}$ and since $\delta=B$-lim $\widehat{\delta}_{k}$ we conclude that (iii) holds.
6. In [2] we characterized X_{D}^{P} as follows. If $h \in H D^{+}(R)$, then $h \in X_{D}^{P}$ if and only if $\left\{h_{k}\right\} \subset X_{B D}^{P}$ and $D_{R}\left(\delta_{k} h_{k}\right)=\mathscr{O}(1)$, where $\left\{h_{k}\right\}$ is the standard $H B D$-approximation to h and $\left\{\delta_{k}\right\}$ is the $P B D$-approximation to δ determined by h. The condition $D_{R}\left(\delta_{k} h_{k}\right)=\mathcal{O}(1)$ is difficult to verify in practice. By Fatou's lemma it implies that $D_{R}(\delta h)<+\infty$ and this gives the hope that $D_{R}\left(\delta_{k} h_{k}\right)=\mathcal{O}(1)$ and $D_{R}(\delta h)<+\infty$ are equivalent. On the other hand, Singer [6] showed that with a slightly different δ the two conditions are not equivalent. In spite of this doubt our main theorem shows that indeed the two conditions are equivalent. For the sake of completeness we present here the proof of the necessity of the condition of our main theorem.

Let $h \in H D^{+}(R)$ and assume that $h \in X_{D}^{P}$. Let $u \in P D(R)$ such that $T_{D} u=h$. Choose the standard $H B D$-approximation $\left\{h_{k}\right\}$ to h, the standard $P B D$-approximation $\left\{u_{k}\right\}$ to u and the $P B D$-approximation $\left\{\delta_{k}\right\}$ to δ
determined by h. The function $u_{k}\left(1-\delta_{k}\right) \in M^{+}(R)$ and hence by Lemmas 4 (i) and 5 (i) we have $u_{k}\left(1-\delta_{k}\right) \mid \Delta=0$. In view of the duality between Δ and $M_{\Delta}(R)$ (cf. [5]) we may choose a sequence $\left\{f_{n}\right\} \subset M_{0}^{+}(R)$ with $u_{k}\left(1-\delta_{k}\right)=B D-\lim f_{n}$. By this and Green's formula we obtain
(3) $D_{R}\left(u_{k}(1-\delta)\right)=\lim _{n} D_{R}\left(f_{n}, u_{k}\left(1-\delta_{k}\right)\right)=\lim _{n}\left(-\int_{R} f_{n} d * d\left(u_{k}\left(1-\delta_{k}\right)\right)\right)$

$$
\begin{aligned}
&=\lim _{n}\left(-\int_{R} f_{n} u_{k}\left(1-\delta_{k}\right) P+\int_{R} f_{n} u_{k} \delta_{k} P+2 \int_{R} f_{n} d u_{k} \wedge * d \delta_{k}\right) \\
& \leqq-\liminf _{n} \int_{R} f_{n} u_{k}\left(1-\delta_{k}\right) P+\lim _{n} \sup \int_{R} f_{n} u_{k} \delta_{k} P \\
&+2 \lim _{n} \sup \int_{R} f_{n} d u_{k} \wedge * d \delta_{k} .
\end{aligned}
$$

In view of $u_{k}\left(1-\delta_{k}\right) \geqq 0$ and $f_{n} \geqq 0$, the first term on the right hand side of (3) is nonpositive. We estimate the second term:

$$
\begin{align*}
\lim \sup _{n} \int_{R} f_{n} u_{k} \delta_{k} P & \leqq \lim _{n} \sup _{n} \int_{R} f_{n} u_{k} P=-\lim _{n} D_{R}\left(f_{n}, u_{k}\right) \tag{4}\\
& =-D_{R}\left(u_{k}\left(1-\delta_{k}\right), u_{k}\right)
\end{align*}
$$

By the Schwarz inequality $\int_{R}\left|d u_{k} \wedge * d \delta_{k}\right| \leqq D_{R}^{1 / 2}\left(u_{k}\right) D_{R}^{1 / 2}\left(\delta_{k}\right)<+\infty$ and since $\left\{f_{n}\right\}$ is uniformly bounded, we conclude by the Lebesgue dominated convergence theorem that

$$
\begin{equation*}
\lim _{n} \int_{R} f_{n} d u_{k} \wedge * d \delta_{k}=\int_{R} u_{k}\left(1-\delta_{k}\right) d u_{k} \wedge * d \delta_{k} \tag{5}
\end{equation*}
$$

Substituting (4) and (5) into (3) and applying the Schwarz inequality repeatedly, we get

$$
\begin{aligned}
& D_{R}\left(u_{k}\left(1-\delta_{k}\right)\right) \leqq-D_{R}\left(u_{k}\left(1-\delta_{k}\right), u_{k}\right)+2 \int_{R} u_{k}\left(1-\delta_{k}\right) d u_{k} \wedge * d \delta_{k} \\
&=-D_{R}\left(u_{k}\left(1-\delta_{k}\right), u_{k}\right)-2 \int_{R}\left(1-\delta_{k}\right) d u_{k} \wedge * d\left(u_{k}\left(1-\delta_{k}\right)\right) \\
& \quad+2 \int_{R}\left(1-\delta_{k}\right)^{2} d u_{k} \wedge * d u_{k} \\
& \leqq 3 D_{R}^{1 / 2}\left(u_{k}\left(1-\delta_{k}\right)\right) D_{R}^{1 / 2}\left(u_{k}\right)+2 D_{R}\left(u_{k}\right)
\end{aligned}
$$

This implies that $D_{R}^{1 / 2}\left(u_{k}\left(1-\delta_{k}\right)\right) \leqq 4 D_{R}^{1 / 2}\left(u_{k}\right)$ and by the triangle inequality we obtain

$$
\begin{equation*}
D_{R}^{1 / 2}\left(\delta_{k} u_{k}\right) \leqq 5 D_{R}^{1 / 2}\left(u_{k}\right) . \tag{6}
\end{equation*}
$$

7. Set $\varphi_{k}=h_{k}-u_{k}$. In this section we give an estimate on $D_{R}\left(\delta_{k} \varphi_{k}\right)$ which together with (6) will give the desired bound on $D_{R}^{1 / 2}\left(\delta_{k} h_{k}\right)$. Note
that $\varphi_{k} \mid \Delta=0$ and $\varphi_{k} \geqq 0$. Thus $\delta_{k} \varphi_{k} \in M^{+}(R)$ and $\delta_{k} \varphi_{k} \mid \Delta=0$. Consequently we may choose a sequence $\left\{f_{n}\right\} \subset M_{0}^{+}(R)$ with $\delta_{k} \varphi_{k}=B D-\lim f_{n}$. We estimate $D_{R}\left(\delta_{k} \varphi_{k}\right)$ as follows:

$$
\begin{aligned}
D_{R}\left(\delta_{k} \varphi_{k}\right)= & \lim _{n} D_{R}\left(f_{n}, \delta_{k} \varphi_{k}\right)=\lim _{n}\left(-\int_{R} f_{n} d * d\left(\delta_{k} \varphi_{k}\right)\right) \\
\leqq & -\underset{n}{\lim \inf } \int_{R} f_{n} \delta_{k} \varphi_{k} P+\lim _{n} \sup \int_{R} f_{n} \delta_{k} u_{k} P \\
& -2 \liminf _{n} \int_{R} f_{n} d \delta_{k} \wedge * d \varphi_{k} \leqq-D_{R}\left(\delta_{k} \varphi_{k}, u_{k}\right)-2 \int_{R} \delta_{k} \varphi_{k} d \delta_{k} \wedge * d \varphi_{k} \\
= & -D_{R}\left(\delta_{k} \varphi_{k}, u_{k}\right)-2 \int_{R} \delta_{k} d\left(\delta_{k} \varphi_{k}\right) \wedge * d \varphi_{k}+2 \int_{R} \delta_{k}^{2} d \varphi_{k} \wedge * d \varphi_{k} \\
\leqq & D_{R}^{1,2}\left(\delta_{k} \varphi_{k}\right) D_{R}^{1 / 2}\left(u_{k}\right)+2 D_{R}^{1 / 2}\left(\delta_{k} \varphi_{k}\right) D_{R}^{1 / 2}\left(\varphi_{k}\right)+2 D_{R}\left(\varphi_{k}\right) .
\end{aligned}
$$

In view of the Dirichlet principle, $D_{R}\left(\varphi_{k}\right) \leqq D_{R}\left(u_{k}\right)$ which implies that $D_{R}\left(\delta_{k} \varphi_{k}\right) \leqq 3 D_{R}^{1 / 2}\left(\delta_{k} \varphi_{k}\right) D_{R}^{1 / 2}\left(u_{k}\right)+2 D_{R}\left(u_{k}\right)$. Hence,

$$
D_{R}^{1 / 2}\left(\delta_{k} \varphi_{k}\right) \leqq 4 D_{R}^{1 / 2}\left(u_{k}\right) .
$$

From this and (6) we see that $D_{R}^{1 / 2}\left(\delta_{k} h_{k}\right) \leqq 9 D_{R}^{1 / 2}\left(u_{k}\right)$ and by Lemma 4 (iii) we arrive at $D_{R}\left(\delta_{k} h_{k}\right)=\mathcal{O}(1)$. Finally by Fatou's lemma we conclude that $D_{R}(\delta h)<+\infty$. This establishes the necessity of our condition.
8. We shall establish the sufficiency in Sections 8-13. We begin with two simple inequalities. Assume Ω is an open subset of R and $\varphi, \psi \in M(\Omega)$. Then

$$
\begin{align*}
D_{\Omega}(\varphi \psi) & =\int_{\Omega} \psi^{2} d \varphi \wedge * d \varphi+2 \int_{\Omega} \varphi_{\psi} d \varphi \wedge * d \dot{\psi}+\int_{\Omega} \varphi^{2} d \psi \wedge * d \psi \tag{7}\\
& \leqq 2 \int_{\Omega} \psi^{2} d \varphi \wedge * d \varphi+2 b^{2} D_{\Omega}(\dot{\psi})
\end{align*}
$$

where $\sup _{\Omega}|\varphi|=b$. Also,

$$
\begin{align*}
\int_{\Omega} \psi^{2} d \varphi \wedge * d \varphi & \leqq D_{\Omega}(\varphi \psi)-2 \int_{\Omega} \varphi \psi d \varphi \wedge * d \psi \tag{8}\\
& =D_{\Omega}(\varphi \psi)-2 \int_{\Omega} \varphi d(\varphi \psi) \wedge * d \psi+2 \int_{\Omega} \varphi^{2} d \psi \wedge * d \psi \\
& \leqq D_{\Omega}(\varphi \psi)+2 b D_{\Omega}^{1 / 2}(\varphi \psi) D_{\Omega}^{1 / 2}(\psi)+2 b^{2} D_{\Omega}(\psi)
\end{align*}
$$

We shall use (7) and (8) in case φ, ψ are merely continuous Tonelli functions on Ω. To see the validity of (7) and (8) in this case, note that $\varphi, \psi \in M\left(\Omega^{\prime}\right)$, where Ω^{\prime} is a relatively compact open set in Ω. Apply (7) and (8) with Ω replaced by Ω^{\prime}. Then let $\Omega^{\prime} \rightarrow \Omega$ on the right hand sides and then on the left hand sides. Of course, the right hand sides or both sides may be $+\infty$. The application of (7) and (8) that we intend
to make is in the case where φ is a bounded continuous Tonelli function on Ω and ψ is in $\tilde{M}(\Omega)$. In this case we see from (7) that $\int_{\Omega} \psi^{2} d \varphi \wedge$ $* d \varphi<+\infty$ implies that $D_{\Omega}(\varphi \psi)<+\infty$ and from (8) that $D_{\Omega}(\varphi \psi)<+\infty$ implies that $\int_{\Omega} \psi^{2} d \varphi \wedge * d \varphi<+\infty$.
9. Let $h \in H D^{+}(R)$ and assume that $\left\{h_{k}\right\} \subset X_{B D}^{P}$ and $D_{R}(\delta h)<+\infty$. By Sard's theorem we may choose an $\alpha \in(0,1)$ such that $W=$ $\{p \in R \mid \delta(p)>\alpha\}$ has a C^{1} relative boundary. Let δ^{*} be the lower semicontinuous extension of δ to R^{*}. Then $W^{*}=\left\{p^{*} \in R^{*} \mid \delta^{*}\left(p^{*}\right)>\alpha\right\}$ is open in R^{*} and since δ is continuous on $R \cup \Delta_{P}$ with $\delta \mid \Delta_{P}=1$ we have $\Delta_{P} \subset W^{*}$. Since $W^{*} \cap R=W$, the denseness of $W^{*} \cap R$ in W^{*} gives $\Delta_{P} \subset W^{*} \subset \bar{W}$.

Set $w=(1-\alpha)^{-1}(\delta-\alpha) \cup 0$ and note that the hypotheses of Lemma 2 with Δ_{P} playing the role of \mathcal{O} are met. Thus there is a function $v \in H D(W ; \partial W)$ such that $\mu_{D} v=h$. The proof will be complete when we demonstrate a function $u \in P D(R)$ with $u|\Delta=v| \Delta$.

Note that by (8) we have

$$
\begin{equation*}
\int_{R} h^{2} d \delta \wedge * d \delta<+\infty \tag{9}
\end{equation*}
$$

and in view of $0 \leqq v \leqq h$ this implies that

$$
\begin{equation*}
\int_{W} v^{2} d \delta \wedge * d \delta<+\infty \tag{10}
\end{equation*}
$$

By (7) we conclude that

$$
\begin{equation*}
D_{W}(\delta v)<+\infty . \tag{11}
\end{equation*}
$$

10. Set $r=T_{B, W} \delta$; i.e.,

$$
\begin{equation*}
r=\delta+\frac{1}{2 \pi} \int_{W} g_{W}(\cdot, \zeta) \delta(\zeta) P(\zeta) \tag{12}
\end{equation*}
$$

Let $\left\{W_{n}\right\}$ be a regular exhaustion of W; specifically, $W_{n} \subset \bar{W}_{n} \subset W_{n+1} \subset W$, \bar{W}_{n} is compact, $W=\bigcup_{n=1}^{\infty} W_{n}$ and ∂W_{n} consists of analytic curves. Define a sequence $\left\{r_{n}\right\}$ of functions on W by $r_{n} \mid W \backslash W_{n}=\delta$ and $r_{n} \mid W_{n}=T_{B, W_{n}} \delta$, i.e.,

$$
r_{n}\left|W_{n}=\delta\right| W_{n}+\frac{1}{2 \pi} \int_{W_{n}} g_{W_{n}}(\cdot, \zeta) \delta(\zeta) P(\zeta)
$$

The following can easily be verified: r_{n} is a continuous Tonelli function on $W ; r_{n} \mid W_{n}$ is harmonic; $\delta \leqq r_{n} \leqq r_{n+1} \leqq r$ and $r=B-\lim r_{n}$ on W. We further claim that

$$
\begin{equation*}
D_{W_{n}}\left(r_{n} v\right)=\mathscr{O}(1) . \tag{13}
\end{equation*}
$$

Using Green's formula, we get

$$
\begin{align*}
D_{W_{n}}\left(r_{n} v\right) & =\int_{\partial W_{n}} r_{n} v * d\left(r_{n} v\right)-2 \int_{W_{n}} r_{n} v d r_{n} \wedge * d v \tag{14}\\
& =\int_{\partial W_{n}} \delta v * d\left(r_{n} v\right)-2 \int_{W_{n}} r_{n} d\left(r_{n} v\right) \wedge * d v+2 \int_{W_{n}} r_{n}^{2} d v \wedge * d v
\end{align*}
$$

and by another application we obtain

$$
\begin{align*}
& \int_{\partial W_{n}} \delta v * d\left(r_{n} v\right)= \int_{W_{n}} d(\delta v) \wedge * d\left(r_{n} v\right) \tag{15}\\
&=2 \int_{W_{n}} \delta v d r_{n} \wedge * d v \\
&-2 \int_{W_{n}} \delta r_{n} d v \wedge * d v
\end{align*}
$$

We substitute (15) into (14) and apply the Schwarz inequality to obtain

$$
D_{W_{n}}\left(r_{n} v\right) \leqq D_{W_{n}}^{1 / 2}\left(r_{n} v\right)\left(D_{W}^{1 / 2}(\delta v)+4 D_{W}^{1 / 2}(v)\right)+2 D_{W}(v) .
$$

In view of (11) we conclude that (13) holds.
11. In this section we establish

$$
\begin{equation*}
\int_{W_{n}} v^{2}\left(r_{n}-\delta\right) \delta P=\mathscr{O}(1) \tag{16}
\end{equation*}
$$

We begin by applying Green's formula:

$$
\begin{align*}
\int_{W_{n}} v^{2}\left(r_{n}-\delta\right) \delta P & =-D_{W_{n}}\left(v^{2}\left(r_{n}-\delta\right), \delta\right) \tag{17}\\
& =-2 \int_{W_{n}} v\left(r_{n}-\delta\right) d v \wedge * d \delta-\int_{W_{n}} v^{2} d\left(r_{n}-\delta\right) \wedge * d \delta
\end{align*}
$$

By the Schwarz inequality we obtain

$$
\begin{align*}
\left|\int_{W_{n}} v\left(r_{n}-\delta\right) d v \wedge * d \delta\right| & \leqq \int_{W_{n}} v|d v \wedge * d \delta| \tag{18}\\
& \leqq D_{W}^{122}(v)\left(\int_{W} v^{2} d \delta \wedge * d \delta\right)^{1 / 2}
\end{align*}
$$

as well as,

$$
\begin{align*}
& \left|\int_{W_{n}} v^{2} d\left(r_{n}-\delta\right) \wedge * d \delta\right| \leqq \int_{W_{n}} v^{2}\left|d r_{n} \wedge * d \delta\right|+\int_{W_{n}} v^{2} d \delta \wedge * d \delta \tag{19}\\
& \quad \leqq\left(\int_{W_{n}} v^{2} d r_{n} \wedge * d r_{n}\right)^{1 / 2}\left(\int_{W} v^{2} d \delta \wedge * d \delta\right)^{1 / 2}+\int_{W} v^{2} d \delta \wedge * d \delta
\end{align*}
$$

We apply (8):

$$
\int_{W_{n}} v^{2} d r_{n} \wedge * d r_{n} \leqq D_{W_{n}}\left(r_{n} v\right)+2 D_{W_{n}}^{1 / 2}\left(r_{n} v\right) D_{W}^{1 / 2}(v)+2 D_{W}(v)
$$

This in view of (13) implies that $\int_{W_{n}} v^{2} d r_{n} \wedge * d r_{n}=\mathcal{O}(1)$. Substituting this into (19) and then combining (18) and (19) with (17), we get (16).
12. From (16) and the monotone convergence theorem we deduce that

$$
\int_{W} v^{2}(r-\delta) \delta P<+\infty
$$

We substitute the expression for $r-\delta$ from (12) into this and apply Fubini's theorem to obtain

$$
\int_{W \times W} v^{2}(z) g_{W}(z, \zeta) \delta(z) \delta(\zeta) P(z) P(\zeta)<+\infty
$$

By the Schwarz inequality we see that

$$
\langle\delta v, \delta v\rangle_{W}^{P}<+\infty .
$$

Since $\delta \mid W>\alpha>0$, we conclude that

$$
\begin{equation*}
\langle v, v\rangle_{W}^{P}<+\infty . \tag{20}
\end{equation*}
$$

13. We arrive at the final stage of the proof of our theorem. Let $\left\{R_{n}\right\}$ be an exhaustion of R by regular regions. Let $s_{n} \in \widetilde{M}(R)$ such that $s_{n} \mid R \backslash\left(R_{n} \cap W\right)=v$ and $d * d s_{n}=s_{n} P$ on $R_{n} \cap W$. Then $0 \leqq s_{n} \leqq v$ and hence $s_{n+1} \leqq s_{n}$. By the Harnack principle $s=C-\lim s_{n}$ exists on W. Since $v \mid R \backslash W=0$, it is easily seen that actually $s=C-\lim s_{n}$ on R and $s \mid R \backslash W=0$. We estimate $D_{W}\left(s_{n}\right)$ using (2) and that the fact that $s_{n} \leqq v$:

$$
\begin{aligned}
D_{W}\left(s_{n}\right) & =D_{R_{n} \cap W}\left(s_{n}\right)+D_{W \backslash\left(R_{n} \cap W\right)}(v) \\
& =D_{W}(v)+\left\langle s_{n}, s_{n}\right\rangle_{W \cap R_{n}}^{P} \leqq D_{W}(v)+\langle v, v\rangle_{W}^{P} .
\end{aligned}
$$

In view of (20) and Fatou's lemma we obtain $D_{W}(s)<+\infty$, i.e., $s \in$ $P D(W ; \partial W)$.

We shall now show that also $s=D$ - $\lim s_{n}$. To this end note that

$$
D_{W \cap R_{n}}\left(s_{n}-s, s_{n}\right)=-\int_{W \cap R_{n}}\left(s_{n}-s\right) s_{n} P \leqq 0
$$

Consequently,

$$
0 \leqq D_{W \cap R_{n}}\left(s-s_{n}\right) \leqq D_{W \cap R_{n}}(s)-D_{W \cap R_{n}}\left(s_{n}\right)
$$

Thus by Fatou's lemma we arrive at

$$
\begin{align*}
0 \leqq \lim \sup D_{W \cap R_{n}}\left(s-s_{n}\right) & \leqq D_{W}(s)-\lim \inf D_{W \cap R_{n}}\left(s_{n}\right) \tag{21}\\
& \leqq D_{W}(s)-D_{W}(s)=0
\end{align*}
$$

Furthermore,

$$
\begin{aligned}
0 & \leqq \lim \inf D_{W}\left(s-s_{n}\right) \leqq \lim \sup D_{W}\left(s-s_{n}\right) \\
& \leqq \lim D_{W \backslash\left(W \cap R_{n}\right)}(s-v)+\lim \sup D_{W \cap R_{n}}\left(s-s_{n}\right)
\end{aligned}
$$

The first term on the right is 0 because $D_{W}(s-v)<+\infty$ and by (21) also the second term is 0 . We have established $s=C D-\lim s_{n}$.

Note that also $v-s=C D-\lim \left(v-s_{n}\right)$ and $v-s_{n} \in M_{0}(R)$. Thus $v-s \mid \Delta=0$. The function s is a nonnegative subsolution in $\tilde{M}(R)$ and hence $u=\Pi^{P}$ s exists. We have established that $u|\Delta=s| \Delta=v|\Delta=h| \Delta$ and the proof of the sufficiency is complete.

References

[1] M. Glasnear and M. Nakai, The roles of nondensity points, Duke Math. J. 43 (1976), 579-595.
[2] M. Glasner and M. Nakai, Images of reduction operators, Arch. Rational Mech. Anal. 76 (1980).
[3] M. Nakai, Order comparisons on canonical isomorphisms, Nagoya Math. J. 50 (1973), 67-87.
[4] M. Nakai, Extremizations and Dirichlet integrals on Riemann surfaces, J. Math. Soc. Japan 28 (1976), 581-603.
[5] L. Sario and M. Nakal, Classification theory of Riemann surfaces, Springer-Verlag, 1970.
[6] I. Singer, Dirichlet finite solutions of $\Delta u=P u$, Proc. Amer. Math. Soc. 32 (1972), 464-468.
[7] I. Singer, Boundary isomorphism between Dirichlet finite solutions of $\Delta u=P u$ and harmonic functions, Nagoya Math. J. 50 (1973), 7-20.

Department of Mathematics
Pennsylvania State University
University Park, Pennsylvania 16802
U.S.A.

and	Department of Mathematics
	Nagoya Institute of Technology
	Nagoya, 466
	Japan

and Department of Mathematics
Nagoya Institute of Technology
Japan

