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Introduction. The problem of the lifting of modular cusp forms has
been discussed by several authors (cf. [3] and [12]).

Recently Oda [10] constructed, from modular cusp forms of one vari-
able, modular cusp forms associated with indefinite quadratic forms with
signature (2, n — 2).

In this paper, we shall consider the case n =5 and we shall treat
the relations between the Hecke operators of the space of modular
forms of one variable and those of the space of Siegel modular forms
of degree two. The preparatory section is §1. In §2, by using trans-
formation formulas of theta series obtained by Shintani [13], we show
the existence of a linear mapping ¥ of &,,_.(/,(4)) into S,(I"?(2)), where
Sopi(Io(4)) (resp. S,(I'P(2))) denotes the space of cusp forms of weight
2k — 1)/2 (resp. of weight & with respect to I'®2)). In §3, by a
method similar to that of Niwa [8], we determine explicitly Fourier
coefficients of Z'(f) at infinity, where fe&,,_,(I"((4)). In the last section,
applying the results in §3, we show that ¥(f) is a common eigen-funec-
tion of Hecke operators on S,(I"*(2)), if f is a common eigen-function
of Hecke operators on &,,_,(I"((4)). Furthermore, we give a relation be-
tween Andrianov’s zeta function associated with ¥'(f) and Shimura’s
one associated with f.

We note that our results are closely related with Maag-Andrianov’s
results (cf. [2], [4], [5] and [6]).

The author is indebted to the referee suggesting some revisions of
the original version of this paper.

1. Notations and preliminaries. We denote, as usual, by Z, Q, R
and C the ring of rational integers, the rational number field, the real
number field and the complex number field. For a ring A, we denote
by Ar the set of all nXm matrices with entries in A4, and denote
A? (resp. A?) by A" (resp. M,(A)). For zeC, we put e[z] = exp(2riz)
with ¢ = V'—1 and define V"2 = 2"* so that —x/2 < arg(z"?) < n/2. Fur-
ther we put 2** = (V' z)* for every ke Z. This section is devoted to
summarizing several fundamental facts which we need later.
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Let Sp(n, R) be the real symplectic group of degree =, i.e.,
0 E,
—E, 0)
and ‘M denotes the transpose of M. Let £, be the complex Siegel

upper half plane of degree =, ie., $,={Z=X+:1Y|X, Ye M,(R),
‘Z = Z and Y > 0}. Define an action of Sp(n, R) on $, by

Sp(n, R) = {Me M,,(R) |'MJ,M = J,}, where J,= <

Z—> M{Z) = (AZ + B)(CZ + D)* for all M= <g f;) € Sp(n, R)
and for all Z¢ $,. Denote by K, the group of stabilizers at 1K, € 9.,
i.e., K,={MeSp(n, R)|M(iE,) = iFE,}. It is well-known that K, =
Sp(n, R)N O(2n), where O(2n) denotes the orthogonal group. Clearly
Sp(n, Z) = Sp(n, R) N M,,(Z) is an arithmetic discrete subgroup of
Sp(n, R). For each positive integer N, put

M(N) = {(2‘1 ﬁ) eSp(n, Z)|C =0 (mod N); and I'(N)=I{"(N).

We call a holomorphic function F on §, a Siegel modular cusp form of
weight k& with respect to I'{"(NN), if the following conditions (i) and (ii)
are satisfied:

(i) For all M:(é g)efé"’(N) and all Ze$,, F(M(ZY)=det(CZ+
D)F(Z).

(ii) |F(Z)|(det(Im(Z)))** is bounded on 9,.

We denote by S,(I'§™(N)) the space of Siegel modular cusp forms of
weight & with respect to I'{"(N). Every Fe S,(I'{™(N)) has the Fourier
expansion F(Z) = >y a(T)e[tr(TZ)] at infinity, where T runs over the
semi-integral positive definite matrices.

Let @ be a non-degenerate symmetric » xn matrix. We denote by
0(Q) (resp. O(Q),) the real orthogonal group (resp. the connected com-
ponent of the unity O(Q)) for @, i.e., O(Q) = {g € GL,(R)|'9Q9 = Q}. Now
we treat

0-1 0 0 0
-1 0 0 0 0
Q= 0 0 0-1 0
0O 0-1 o0 O

0O 0 0 0-1
with signature (2,3). It is well-known that O(Q), is isomorphic to
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Sp(2, R)/{x+E,) as a Lie group. We shall explicitly construct an iso-
morphism of Sp(2, R)/{xE,} onto O(Q),.

First we summarize the fundamental facts on tensor algebras. Let
(RY* be the dual space of R*. Let {¢, ¢, ¢, ¢} be the dual base of {e,,
e, ¢, e}, where ¢, =%0,---,0,1,0,---,0) 1 =7=4). Put @R =
{f|f is a bilinear mapping of R*XR* into R} and A*(RY)* = {f € @(R")*|
fX,Y)=—f(Y,X) for all X, YeR'}. We define a mapping @ of
SL,(R) into Endz(A*(B9)*) by (@(¢9)f)(X, Y) = f(9X, gY) for all g e SL(R),
all fe A(RY* and all X, Ye R*. We note that @(gg’) = @(¢")®(g) for all
g, g€ SL,(R). It can be easily seen that

(*)  Sp@2, R) ={geSL(R)|D(9)(é:Né + &:/\6) = é,N\és + ENE} .

Define an inner product <(a, B (a, Be A*(R)H*) by aAp=
lae, BY'é,Ne; NEsNE,. Set V={ae A*(R)*|{a, &, Né5+ é,Né,) =0}. We see
that V = R(fu <o I where fi= élAé4!f2 = é‘z/\é‘s’ Ji = élAé2’ Jo= éa/\é4
and f, = (6,Aé — é;A6)V'2. Through the mapping of V onto R’ given
by a =S¢ x.f; > x = Y, ©, T, &, ;), We can identify V with R®*. From
(*) and the above identification we get a mapping @' = @|Sp(2, R) of
S»(2, R) into GLy(R), where @|Sp(2, R) denotes the restriction of @ to
S»(2, R). Here it should be noted that {a, B)' = ‘2(—Q)y. Now we de-
fine (4:;(9))iss,iss Y @'(9)fi = 2i-16,:(9)f; (1 = 1 = b) for every g € Sp(2, R).
The following lemma can be easily checked.

LEMMA 1.1. Let g = (g9:;) be an element of Sp(2, R). Then it holds
that

(1) ¢.;(9) belongs to Z[g;jlicii<s for all i and j such that 1<
1, J =4,

(2) 65;(9) belongs to V' 2 Z[g:;]i<i.i<s for all j such that 1 < j < 4,

(38) ¢i(9) belongs to V' 2 Z[g;;li<i.i<s for all i such that 1 < i < 4,

(4) 9555(9) belongs to Z[gij]léi,iésy
where Z[g,;lisi,;ss denotes the polymomial ring over Z. Moreover 4;;(g)
satisfy the relations that ¢,;(g) = 0 (mod N) for all j=1,2 and 4 and
1/29535(9) =0 (mod N) if gs, 9u, 9u and g, belong to NZ and $s5(9) =
9192 — 91290-

Set o(g) = @'(9)~'. Then we get the following lemma easily.

LEMMA 1.2. Under the above motations, o gives am isomorphism of
the Lie group Sp(2, R)[{+E} onto O(Q),; moreover, it satisfies the prop-
erty p(K,) C O(E,).

2. Weil representation and theta series. In the following, we as-
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sume that & is even. In this section, we shall construet Siegel modular
cusp forms of degree two from modular cusp forms of half integral
weight. For this purpose, we need to derive transformation formulas
of certain theta series (cf. [138]). Let @ be as in §1. The Weil repre-
sentation v(x, @) of SL.,(R) is defined by

o] det( @), el(@(@, ©) — 2w, ¥) + <y, )20 f W)y
(7(0, Q) = - if ¢+0,

|a|"*e[ablx, x)[2]f (ax) if ¢=0
for every fe L*R" and for every

abd
o= <c d> e SL,(R) ,

where {z, ¥> = ‘wQy. The group GL,R) acts on LR’ as follows:
Tf(x) = |det(T)|~"2f(T'x) for all TeGL,R) and for all fe L*(R%). Put
filx) = (=, W(—1, 1, 1, —1, 0)kexp(—7m >i_, %) for all xe R*. Then f,
satisfies the equalities

(2.1) oK) f, = (det(A — Br))*f, for all « = < 4B ) e K,
—B A
and
. cosf siné
e(k(0))v(k(0), Q)f, = exp(—1i0)~**V"2f, , where k(0) = ( . >
—sind coséd

and &(k(6)) is the symbol in [13]. Set L, = {!(x, 2, V' 2,)|x;€ Z} and
L(N) = {x,, 4, Ny, ¢, V' 21;) |2, € Z}. We put

0—-1 0
Q1=('—1 0 0).
0 0 -1

Let X, be the trivial character modulo 2. We can check that p satisfies
the relations
(2.2) p(M)L(1)=L(1), p(M)L2)= L@) and p(M)x =2z (mod L(2))
for all MeI'®@2) and for all zeL().
Define a theta series 0,(z, g) on £, xXS»2, R) by
Vv u/ vt
Oz, 9)=v" " 2, Xo(ha)(0(9) (02, Q)Sfi(h) ,  Where oz=< 0 1/7;'—1> ,
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z=u+iv and h = *(---, hy, ---) runs over L(1). By virtue of (2.1) and
[18, Prop. 1.6], we have the following.

LEMMA 2.1. The function 0,2, g) satisfies the following properties:

(1) O o®), 9) = j(o, 2)*'0,(z, g) for all o= (g 3) el'(4) and for
it0,2) = x*( < J(ea + ),

(i1) O.(z, vgk) = det(A — Bt)*0,(z, 9) for all veI'P(2) and for all

K= (__g ﬁ)eKm where &; and <%) are the symbols in [12].

Let &,,_,(I',(4)) be the space of modular cusp forms of weight
2k — 1)/2 with respeet to I'((4) (cf. [12]). The property (i) of Lemma
2.1 shows that, for a function fe &,,_,(I",(4)), the integral

S )v<2k—1)/2f$[z-4]2k_1(z)@k(z, g)v dudv
D4

is well-defined with z = w + v, where D,(4) denotes the fundamental
domain for I'y(4), f|[rdu-1(2) = (—2i2)~**V2f(—1/4z) and O,(z, g) means
the complex conjugate of ©,(z, g). Now we define a function Z'(f) on
9. by
V(f)Z) = J(g, iE,)"* S ( VEEf [ (2)8u(z, )y~ dudy
Dy(4

0

with Z = g{iE,y, where

A B
J(g, iE,) = det(Ci + D) with ¢ = ( o D) eSp, R) .

By virtue of Lemma 2.1 (ii), we have

A B
V(N MZY) = (det(CZ + D)W (f)(Z) for every M= <C D) el'®?) .
Since ¥ (f) is holomorphic on 9,, we see that ¥'(f) is a Siegel modular
form with respect to I"{®(2) (ef. [10] and [11]).

3. Explicit calculation of the Fourier coefficients of Z'(f). For a
positive matrix Y e My(R), set ¢ = ¢g(Y) and Y = yY, with det(Y,) =1
and ¥ > 0, where

VY 0 > Y Y.
g = — and Y, = ( ) .
< 0 1/Y—1 Y, Y,
For a non-negative integer ¢, we define three theta series by
3.1 6,,(z; Yo) = v 3 H(V 200 (3, —9s, =V 20)0)

x e[(ulQl + wIR(Y)D/2] ,
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3.1 Oli(z; Y1) = v+ 3 H(V 200 (U, — s, =V 29)0)
X e[(wl'Ql + i lR(Y)I)/2]

and
(8.2) 0,.(z;y) = v\ _f‘, _Zw‘, Xom)exp(—2wimnu — wv(y*m® + y—*n?)

X H(V 2zv (my — ny™)) ,

where 2 =u + v, L¥={yecR*|'yQxecZ for all xe L}, H.(x) = (—1)
X exp(x?/2)(d°/dx*)(exp(—2?/2)),

Uh - =V 2y,
R(Y,) —< — v} i V2yy, |,
vV 2yy, V2wy 1+ 2
and [ (resp. ') runs over L, (resp. 2Ly). By the definition of ~(x, Q),
we have
(v(o, QF(0(g)7'l) = v, @'(g) " r e[(ull, 1) + w'10'(g")1)/2] ,

where 7, =%—1,1,1, —1,0). On the other _h_and, a direct calculation
yields @'(9)'r, = ¥~ (—ywsi, Y¥ii, 1, —9°, —V 2 yy,i) and

y? — 0 0 —V2yw

—yt v 0 0 V' 2y,
0'(g*) = 0 0 v 0 0
0 0 0 y 0

—V2yy. V2yy 0 0 1+ 22
Noting that (x — )" = 3%, ,.C(—1)°H,_.(x)H.(y), we obtain

(3.3) 6.2, 9) = VET 3, ,C—i)6,.(5 Y0Bs (5 0) ,

The Poisson summation formula gives a different expression of 0,. (cf.
[8, p.152]):

6,.(z;9) = V2 ity ﬁ] ﬁ‘, L(m)(mZ + n)exp(—nyv~|lmz + nl|?) ,
which shows

(B.4) 6.(~1/dz;v) = 20/ Ziyav™)y 3, Umn* 5, TG, 2)k(1(@), m, 9)

where J ((g 3), z) = (cz + d), k(z, n, y) = exp(—7ry*n*/4v) and v runs over
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\T(4).
Next we derive several transformation formulas of O, .(z; Y,). For
every z € R? put

9.(x) = H(V2x(y,, —¥s, —V 2 y;)x)exp(—n'zR(Y,)x) .
Here we note that V' R(Y,) belongs to 0(Q,). By a direct computation,
we obtain
9.V R(Y)'x) = H(V 2r(x, — x,))exp(—x(a} + #} + 7))
with z = *(x,, x,, «;). This equality shows that
e(k(@)(k(0), Q)g. = exp(—1i0)~*Vg,
where v(*, @,) is the Weil representation associated with @,. Therefore,
by virtue of [13, Prop. 1.6], we obtain the following lemma.
LEMMA 3.1. Let o be an element of I'y(4). Then
6.,.(0(2); Y)) = j(0, 2)*7'0,,(2; Y))
and
(42)=12@, (—1/4z; Y,) = V/i]2 270F.(2; Vo) .
Every fe®,,_,(I'(4)) has the Fourier expansion f(z) = >, a(n)e[nz]
at c. For every semi-integral matrix 7 = (tt/12 tz/ 2) > 0 with integers
2 3
t, t, and t,, we set T(t, &, t,) = T, e(T) = g.c.m. (t, &, &) and N(T) =
4det(T). Define CHT) by CAT) = >, X(m)m*a(N(T)/m?) (T>0), where
m runs over all positive integers with m|e(T).

THEOREM 1. Let f be an element of S,_,(I"((4)). Suppose k > 5 is
even. Then ¥(f) has the Fourier expansion

V(f)Z) = ¢ 3. CAT)e[tr(TZ)]

at infinity, where ¢ + 0 s a constant mot depending upon f and T
runs over semi-integral matrices T = T(t,, t,, t,) > 0.

ProOF. Since ¥'(f) is a Siegel modular form with respect to I'§*(2),
we see that ¥ (f) has the Fourier expansion ¥'(f)(Z) = D=0 C(T)e[tr(TZ)]
at infinity. Set Z =41Y with Y > 0. Then

(%) v(f)Y) = %C(T)exp(—%rtr(TY)) .

On the other hand, we have
_ VT 0
V(YY) = (det(Y) ™ Spomfl [a]zk_l(z)@k<z, ( 0o VT ))v‘”"””v”dudv-
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The formulas (3.3), (3.4) and Lemma 3.1 imply that

() TEEY) =y VIR 5.0~ FIebn 6155 ¥0Buei 1)
X -V 292 dydv
= V2T 30— flledun( 1408, (~ 14z )
X O, 1 —(—1/42; y)(v/4] 2 D) 29 *dudw
¢ 3.0y | o S myme 5 0, 2

o0(4

X k(7(2), m, ¥)OF.(z; Y)f(2)v~*dudv
= c”g}l Xo('m)m"‘lg,) a(N(T))exp(—2rmtr(TY)|)
= ¢" 3, C/(T)exp(—2nltr(TY)))
= cur% Cy(T)exp(—2r7 tr(TY))

where v runs over I'.\I,(4). Note that 7>0 and Y >0, hence
tr(TY)| = tr(TY). Put T = T(n, n, m,) and t, = exp(—2ryy,) for i =
1,2 and 3. We have
>, C(T(n,, Ny M) )EE32E5 = ' D Cf(T('"q, Ny Ng))brE52858

for ¢, ¢, and ¢, with 0 < ¢, < exp(—n), exp(—7) <t, <1 and 0< ¢t <
exp(—mx), where the summation is taken over all (n,, n,, m,) € Z; under
the condition T(n, m,, n,) =0. Here we note that both sides of the
above equality are absolutely uniformly convergent in the cube consider-
ed above. Comparing the coefficients of Laurent expansions, we have

¢"C/(T) if T>0,
0 if not ,

which completes our proof of Theorem 1. By the same arguments as
those in [10, § 6], we can show that ¥(f) is a cusp form.

I

c(T) =

4. An application to Andrianov’s zeta functions. Let n (resp. »)
be a positive integer (resp. a prime number). We denote by Ti(n;2)
(resp. Tip-np(p% 4)) the Hecke operator on S,(I'(2)) (resp. &y—,(14(4)))
(see [7] and [12]).

Denote by U the set of all complex-valued functions + on the set
{T = T(n,, n,, n,)|n, n, and n,eZ, T > 0} with the property (vT*v) =
4 (T) for all ye SLy(Z). For all »c U, we define

10 )
T. <SL2(Z )(0 m> SL,(Z )) ¥(T) = 2¥(0.T'0) ,
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where SL,(Z )<‘1) WS)SLZ(Z ) = U=, SLy(Z)o, (a disjoint union). For every

positive integer m, we also define operators 4+(m), 4-(m) and II(m) by
M)y )T) = y(mT) and A~ (m)y)T) = yp(m—T) or 0 according as
mle(T) or mte(T) and

II'm) =T, <SL2(Z )(é :)SLAZ))A’(m) .

The following theorem was proved by Andrianov [1] and Matsuda [7].
THEOREM A. Let F(Z) = 3, a(T)e[tr(TZ)] € S(P(2)) and let p be a
prime number. Then (T¥p"; 2)F(Z) = 3a(p™ Te[tr(TZ)]. The coef-
JSicient a(p™: T') has the following property:
. a(p"T) of p=2,
a(p™: T) = k—2)p4(2k—3 - :

2 pE PRI~ (pN T (pP) 4H (p*)a)(T) if p+2,
where the summation >, is taken over all (o, 8, v)€ Zi with a, B, Y =0
and a + B+ v = n.

Now we recall some results in the theory of lattices in quadratic
fields. Let T be a semi-integral positive definite matrix. We denote by
d the discriminant of the imaginary quadratic field Q' —N(T)). Clearly
—N(T) = df* with a positive integer f.

For a prime number p, we set

10 p+1
SM@QpFM@=QSM@m(MMMMmmm.
A slight modification of Shintani’s arguments in [13] yields the follow-
ing (cf. [18, Lemma 2.2, 2.8 and the proof of Lemma 2.8]).

LeEMMA 4.1. Suppose that T is primitive (e(T) = 1). Then among
(p + 1) matrices {o,T'c,}?L, there are p — —> matrices (resp. p) with

vy

e(o;T'0,) =1 and 1 + (i> matrices (resp. 1) with e(o,T'c;) = p (resp.
VY
e(o,T'0,;) = 9, if f is prime to (resp. divisible by) p.
By using Theorem 1, we prove the following.

THEOREM 2. Suppose that f € &S,,—,(I"(4)) satisfies T -1 (0% f = @, f
for all primes ». Then T(f) is a common eigen-function of Ti(n;2)
for all integers n, i.e., T¥n;2)V(f) = M) (f). Furthermore,

L(2s — 2k + 4, %) S n(n)n—"
n=1
=L —k+1,X)Ls —k+ 2, %) A — o,p~° + Xi(p)p***)",
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where L(s, Xy) = Dy Xo(n)n".

ProoF. By Theorem 1, Theorem A, Lemma 4.1 and [12, Cor. 1.8],
we can verify Ti(2;2)0(f) = o7 (f), Ti(p; 2)¥(f) = (0, + p*=* + 2" ¥ (f)
and Tip% 2)7(f) = (@ + (p** + p*Dw, + p*)¥(F) for all odd primes
p. Since the proof of these is routine and long, we omit the details.
For every positive integer n, Ti(n;2) belongs to the algebra generated
by Ti2;2), T¥p;2) and Ti(p* 2) for all odd primes. From those we ob-
tain the desired results (cf. [1] and [7]).

Let S be the Shimura mapping of &,,_,([",(4)) to S,,—,(I",(2)) in [12]
given by S(f)z) = 3o, A(n)e[nz], where f(z) = 37, a(n)e[nz] and
Se  Amn~ = i a(r)nL(s — k + 2, ( — By means of the trace
formula, Niwa [9] showed that S is an isomorphic mapping between

S,pi(I'(4)) and S,,—,(I'(2)). Let Tj_y(n;2) be the n-th Hecke operator
on S,—.(I'y(2)). As a consequence of Theorem 2, we obtain the following

corollary.

COROLLARY. If fe€8,-.(I«(2)) satisfies Ts_o(n;2)f = w,f for all n,
then oS~ (f) 18 a common eigen-function of Ti(n;2) for all m, t.e.,
Tin; 2)ToS™Hf)) = Mn)TS~(f)). Furthermore,

L(2s — 2k + 4, X)) ii‘,l)\,(n)n"’
=Ls—k+ 1, X)Ls —k + 2, %) I1 1 — @,p~° + X(p)*p*~>*)7" .

REFERENCES

[1] A. N. AxpriaNov, Euler products corresponding to Siegel modular forms of genus 2,
Russian Math. Surveys 29 (1974), 45-116.

[2] A. N. AnpriaNov, Modular descent or on Saito-Kurokawa conjecture, Inv. Math. 53
(1979), 267-280.

[8] K. Dor AND H. NAGANUMA, On the functional equation of certain Dirichlet series, Inv.
Math. 9 (1969), 1-14.

[4] N. Kurokawa, Examples of eigenvalues of Hecke operators on Siegel cusp forms of
degree two, Inv. Math. 49 (1978), 149-165.

[5] H. MaaB, Uber eine Spezialschar von Modulformen zweiten Grades, Inv. Math. 52
(1979), 95-104.

[6] H. MaaB, Uber eine Spezialschar von Modulformen zweiten Grades (III), Inv. Math.
53 (1979), 255-265.

[7]1 1. MATsuDA, Dirichlet series corresponding to Siegel modular forms of degree two, level
N, Sci. papers coll. Gen. Ed. Univ. Tokyo 28 (1978), 21-49.

[8] S. Niwa, Modular forms of half integral weight and the integral of certain theta-
functions, Nagoya Math. J. 56 (1974), 147-161.

[9] S. Niwa, On Shimura’s trace formula, Nagoya Math. J. 66 (1977), 183-202.

[10] T. Opa, On modular forms associated with indefinite quadratic forms of signature



SIEGEL. MODULAR CUSP FORMS 75

(2, n—2), Math. Ann. 231 (1977), 97-144.

[11] S. RALLIS AND G. SCHIFFMANN, On a relation between SL. cusp forms and cusp forms
on the tube domains associated to orthogonal groups, preprint.

[12] G. SHIMURA, On modular forms of half integral weight, Ann. of Math. 97 (1973), 440-481.

[18] T. SHINTANI, On construction of holomorphic cusp forms of half integral weight,
Nagoya Math. J. 58 (1975), 83-126.

MATHEMATICAL INSTITUTE
TOoHOKU UNIVERSITY
SENDAI, 980 JAPAN








