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0. Introduction. In [1] Asoh classified connected closed smooth
manifolds of dimension less than 5, which admit a non-trivial smooth
S£7(2)-action up to Sϊ7(2)-equivariant diffeomorphisms. In [5] Nakanishi
investigated an equivariant classification of smooth SO(3)-actions on closed
connected orientable smooth 5-manifolds such that the orbit space is an
orientable surface. In [4] Hudson classified simply connected closed 5-
manifolds with SO(3)-actions admitting at least one singular orbit up to
*SO(3)-equivariant diffeomorphisms. The purpose of this note is to prove
the following theorem.

THEOREM. Suppose that a compact simply connected smooth 5-manifold
M5 without boundary admits an effective smooth U(2)-action φ: Z7(2)xikP—>
Mδ. Then M6 is U(2)-equivariantly diffeomorphic to one of the following
U(2)-manίfolds.
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where the 0(2)-action on 2-disk D2 is the natural one, U(2) acts on
S 3 x D2 by

A, I I , Cl l i-H-IAI l ( d e t ^ 4 ) - 2 f c , ( d β t A )
\ \ / / / \ \ I

Z7(2)/O(l) is U{2)-equivariantly diffeomorphic to d(U(2) x D2) by [A]\

[A, 1] and the attaching map fk is given by
0(2)

MA]) = [ A ( J j (det Λ)-2* , (det Af) .
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(III) M
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= U(2) x L(b, d) ,
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where a, b, c, d, A, B, C, D are integers satisfying the conditions: ad —
be = ± 1 and {A + B,b) = 1 = (A - B, C - D) and where L(b, d) is a 3-
dimensional lens space for b Φ 0, while we put

, ±1) =
w

eC2;(\z\-R)2+ \w\* = r

for fixed r, R with 0 < r < R. The Traction on 1/(6, d) is as follows.
Put

If b Φ 0, then

X

Y

0

V

C

D

Γ zxγy~x

where xb = ξ, yb = f] and δ = ad — be.

iw(xBy-AY_

7/6 = 0, then

zξ~YVx

wξ-vVu

ξ 0\ fz

0 η) ' \w

where (\z\ — Rf + \w\2 = r 2 .

REMARK, (i) In (II), Mi is diffeomorphic to the Wu-manifold
SU(S)ISO(S) by [2, Theorem 2.3] and in particular MQ

5 is C/(2)-equivariantly
diffeomorphic to SZ7(3)/SO(3) admitting the following C7(2)-action:

0\
{A, [X]) i

IΛ
X

where XeSU(Z) and [X]e SU(Z)/SO(Z).
(ii) In (II), denote φ by φk in case Mδ = Ml. If j1 ^ A, then φό is

not weakly equivariant to φk.

The remainder of this note is divided into three sections. In Section
1, we state necessary lemmas and show that the principal orbits of the
Z7(2)-action are of condimension one or two. In Section 2, we show that
if the codimension of the principal orbits is one, then Mδ is Z7(2)-equi-
variantly diffeomorphic to either (I) with k Φ 0, (II) or (III) with AD —
BC Φ 0. In Section 3, we show that if the codimension of the principal
orbits is two, then Mδ is C7(2)-equivariantly diffeomorphic to either (I)
with k = 0 or (III) with AD - BC = 0.
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The author wishes to express his sincere gratitude to Professor Fuichi
Uchida who suggested this topic, offered helpful advice and encouraged
him during the preparation of this note.

1. Preliminaries. In the first place, we define symbols and notations.

Gl = {Ae U(2); (det A)k = 1} (k Φ 0) .

l) 6 £7(2);
VI
/O 1\

Λ f - J - U ^ O)Γ .

m>n l i f t / ~

0

(m ^ 0 or w ^ 0) .

/0 1\
Λ - CΊ,-i,2,+i U ί χ 0jC1,_1,2fc+1 (fc ^ 1) .

a n d

S2 m - 1 = {αeCm; | |α | | = 1} (m ^ 1), where Cm is the complex vector
space of m-dimensional complex column vectors.

Zk = Z/A Z or {ω e Sι; ωh = 1} (fc ^ 0), where Z is the additive group
of all rational integers.

[ ] denotes an equivalence class of a certain equivalence relation.

For integers k, q with (fc, q) = l and Λ ^O, a free Zfc-action ^fc>g: S
sxZk—>

Sz is defined by

) \w ωq

We denote the orbit space of the action φk>q by L(k, q). It is called a
3-dimensional lens space. For convenience, we put

L(0,q)=

where ^ = ± 1 and 0 < r < R. Then L(0, q) is difFeomorphic to S1 x S\

Let G be a compact Lie group and let if be a closed subgroup. Let
p be a smooth if-action on a smooth manifold X. Then if acts on GxX
by (fe, (fir, x)) ι-> (fir/Z'~1, /t?(fc, »)). We denote the orbit space of this if-action
by G x X or (G x X)/K. Define a canonical G-action on G x X by (g'9

K K
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[g, x\) ι-> [g'g, x]. This smooth G-manifold G x X is called a twisted

product. By (H) we denote the type of the principal isotropy subgroup
of φ, that is, every principal isotropy subgroup of φ is conjugate to H.
The Z7(2)-action φ is effective if and only if each principal isotropy sub-
group does not contain any proper normal subgroup of Z7(2). The proper
normal subgroups of U(2) are Gi (k Φ 0) or subgroups of G{tl, where
G\tl is the center of 17(2). Thus φ is effective if and only if H Π G\Λ =
{E2}, where E2 is the unit matrix of Z7(2).

LEMMA 1.1. Suppose that a closed subgroup H of 17(2) satisfies
H Π G{}1 = {E2}. Then H is conjugate to one of the following subgroups:

CP,q,k ( ( p - ? , A 0 = l ) , Λ , ( ? U ,

where k, p, q, r are some integers.

PROOF. Since the closed subgroup of [7(2) whose dimension is greater
than one contains a non-trivial subgroup of G\Λ except {E2}, H must be
a finite subgroup or a 1-dimensional closed subgroup of 17(2). It is easy
to see that if H is a 1-dimensional closed subgroup, then H is conjugate
to Cτr,r+i f ° r some r. We also see easily that if H is a finite cyclic group
of 17(2), then H is conjugate to CPtqth for some p, q, k with (p — g, ft) = 1.

Thus we have only to prove that non-cyclic £Γ is conjugate to Δk

for some ft. Now let H be a non-cyclic finite subgroup of Z7(2).
Moreover suppose that HC\ G\Λ = {E2}. We define two homomorphisms
ft): S1 x Sί7(2) -• U(2), π: S1 x SJ7(2) -> SC7(2) by α)(α, A) = αA, ττ(α, A) = A.
The homomorphism ft) is surjective and its kernel ω~\E2) is equal to
{(1, E2), ( - 1 , -E2)}. For a subgroup G of £7(2) we put G = ftr^G). The
following facts are clear or well known:

(a) π\H is injective, i.e., H ~ π(H),
(b) geβ and ττ(flr) = — E2 implies g = ( — 1, — JS72).
(c) Up to conjugacy, a non-cyclic finite subgroup of SU(2) is iso-

morphic to one of the following:

Din = {x, y\x2 = (xyf = yn, # 4 = 1} (binary dihedral group, n ^ 2) ,

T* = fe 7/1 #2 = (ίcτ/)3 = ί/3, x4 = 1} (binary tetrahedral group) ,

0 * = {#, y I #2 = (α?2/)3 = y\ x* — 1} (binary octahedral group) ,

/ * = {x, y I x2 = {xyf = yδ, x* — 1} (binary icosahedral group) .

By (a), (b), (c), the subgroup H is isomorphic to one of D2n (dihedral
group), T (tetrahedral group), O (octahedral group), I (icosahedral
group).

If H is isomorphic to D2n, then H is isomorphic to Dfn by π. Suppose
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x,ye π(H) satisfy x2 = (xy)2 = yn, x4 = E2 and let (u, x), (y, y)eff ( c S 1 x
SU(2)). Then by (b), u2 = u2v2 = vn = - 1 since x2 = (xy)2 = yn = -E2.
Hence we see that u = ±V~^Λ, v = — 1 and n = 1 (mod 2). Up to con-
jugacy in SU(2), we can put

/λ 0\

\0

Let

-λ 0

0 - λ
= ω(u, x) Y = ω(v, y) = ί

\
Then Γ ^ ^ ^ I a n d l g G\tl.
Hence we may put

χ = Γ Z ) (a2 + \z\2 = 1 ,

Since F X F = X, we see t h a t α = 0 and \z\ = 1. Thus

Hence ί ί is conjugate to a subgroup of £7(2) which is generated by
matrices

_ (α = exp(2πl/-l/(2Jfc + 1)) for some A; ̂  1) .
1 0/ , \0 a)

Therefore if H is isomorphic to the dihedral group D2n (n^2), then
H is conjugate to Δk.

Next suppose that H is isomorphic to T (tetrahedral group). Then
π(H) is isomorphic to Γ*. Suppose a?, yeπ(fί) satisfy x2 = (xy)3 = yz,
x4 = # 2 and let (u, OJ), (V, y) e H ( c S 1 x SC7(2)). Then since ΛJ2 = (xy)z =
τ/3 = — 2?2» we have u2 = (uv)3 = v3 = — 1 by (b). This is a contradiction.
Thus ff is not isomorphic to the tetrahedral group.

In the same manner, we can show that H is isomorphic neither to
the octahedral group 0 nor to the icosahedral group /. Hence if H is
a non-cyclic finite subgroup, then H is conjugate to Δk for some k ̂  1.

q.e.d.

By Lemma 1.1, we have the following corollary.

COROLLARY 1.2. The codimension of the principal orbits of φ is one
or two.
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We omit the proof of the following lemma.

LEMMA 1.3. (i) A 3-dimensional closed subgroup of Z7(2) is Gl for
some k Φ 0 and is normal in £7(2).

(ii) A 2-dimensίonal closed subgroup of U{2) is conjugate to T2

or N\
(iii) The identity component of a 1-dimensional closed subgroup of

U{2) is conjugate to GpyQ for some p, q with (p, q) = 1.

Define a smooth map pjfk:U(2) -> L(k, 1) for j , k with j2 + k2 Φ 0 by

((a c\\ _ UR + r(\a\2 - \b\2)){ad - bc)j

Pj'\\b d)l " [ r(2ab)

Then pjyk induces the following £/(2)-diffeomorphism.

LEMMA 1.4. U(2)/G))k_j ^ L(k, 1) for j , k with j2 + k2 Φ 0.

The following lemmas are proved easily.

LEMMA 1.5. Assume that the integers m, n9 k9 p, q satisfy the con-
ditions k Φ 0, (p, q, k) — 1 and (m, n) = 1. T%e% Gι

myn CPyqjk = Gn3 tnjf where
/ / i \

(*» !Γ Λ ) α ^ *^βre exists a complex representation p: Gι

mjjnύ-+

S1 whose kernel is Cp>Qyk. Moreover, the representation p is unique up to
complex-conjugation.

LEMMA 1.6. Let K be a 1-dimensional closed subgroup of U(2) and
let H be a finite cyclic subgroup ofKΠ T2. Suppose that the order of
H is greater than one, H Π G\Λ = {E2} and K/H is connected. Then K
is a subgroup of T2, or there exists g e N2 such that H = gθ(l)g~x and
K = gθ{2)g~\

LEMMA 1.7. For a, b, c, de Z with ad — be = ± 1 , define a diffeomor-
phism f: S1 x S1 -* S1 x S1 by f(z, w) = (zawb, zcwd). The closed smooth
Z-manifold S1 x D2 U / S1 x D2 formed by attaching S1 x D2 to S1 x D2

on their boundaries under f is diffeomorphic to the Z-dimensional lens
space L(b, d).

PROOF. In the first place we treat the case b Φ 0. Put

U2= \\f]eL(b,d);\Z\^\W\
(L " _

Define φs: S
1 x D2 -^U, (s = 1, 2) by
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z, w) =
'-d

where ζb = z and δ = ad — be. Then since ^ = ^ 2 o / o n S ! x S\ ^ U / ^ 2

induces a diffeomorphism of S1 x D2 U /S1 x D2 onto L(6, d). Next we
treat the case 6 = 0. Put

= r2 and

\\ = r2 and

Define φ8: S
1 x D2->U8 (s = 1, 2) by

+ r(l - I w \ψ2)z*\ I {R - r(l - | w \ψ2)z

\ rzw I \ rw

where for the convenience of notations, even if \w\ < 1, we regard w~ι

as w since d = ± 1 . Then since φ1 = φ2o f on S1 x S2, ^ U/^2 induces a
diffeomorphism of S 1 x D2 U/S1 x D2 onto L(0, d). q.e.d.

We omit the proof of the following lemma.

LEMMA 1.8. For α, b, c, d, A, B, C, DeZ with ad — be = ± 1 , define
the same T2-action on L(b, d) that is defined in Part (III) of the main
theorem. Then

is simply connected if and only if (A + B, b) = 1. The canonical U{2)-
action on

ΐs effective if and only if (A — B, C — D) = 1.

Let G be a compact Lie group. Let Xlf X2 be compact connected
manifolds on which G acts smoothly. Assume that dX1 is equivariantly
diffeomorphic to dX2 as G-manifolds. Denote by M(f) = Xί\JfX2 the
compact connected G-manifold formed from Xx and X2 by the identifica-
tion of points of dXί and dX2 under a G-diffeomorphism / : dX1 —> 3X2.
The following lemma is described in [8, p. 161].

LEMMA 1.9. Let f, / ' : dXλ —> dX2 be G-invariant diffeomorphisms.
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Then M(f) is equivariantly dίffeomorphίc to M(f) as G-manifolds, if f
is G-diffeotopic to / ' .

In particular, if dXι and dX2 are both equivariantly diffeomorphic to
G/H as G-manifolds for a closed subgroup H of G, then every G-invariant
diffeomorphism dXx — G/H -» GjH = dX2 is the right translation by an
element of WG(H) = NG(H)/H, where NG(H) is the normalizer of H in G.
We thus have the following corollary.

COROLLARY 1.10. If a, βe WG(H) belong to the same component of
WG(H), then M(a) = X1 ΌaX2 is G-equivariantly diffeomorphic to M(β) =
Xί\JβX*.

Let Klf K2 be two closed subgroups of G such that H c K^ ΓΊ K2 and
let p8 (s = 1, 2) be a &8-dimensional orthogonal representation of Ks such
that KJH is diffeomorphic to 0(k8)/0(k8 — 1) by ps. Let L be a closed
subgroup of G. Suppose that Kλ U K2 c L. Then the following lemma
is proved easily.

LEMMA 1.11. For each a e WL{H) c WG(H),

G x (L x Dki[JaLx Dkή
L Kλ K2

is G-equivarίantly diffeomorphic to G x Dkί Ό aG x Dk2.
Kl K2

2. The proof when φ admits principal orbits of codimension 1. Then
the principal isotropy subgroup of φ is finite. We denote the type of
the principal isotropy subgroup by (H). Using some results due to Uchida
[8, Sections 1 and 5] concerning manifolds which admit a Lie group action
with codimension one orbits, we easily see the following facts:

Each principal orbit of φ is ί7(2)-equivariantly diffeomorphic to U(2)/H
and there are only two singular orbits U(2)(x1)~U(2)/K19 U(2)(x2)=U(2)/K2

where Klf K2 are some closed subgroups of U{2) such that HaK^ Π K2.
In fact, there are two slice representations plf p2 of Kl9 K2 respectively
and there is an element a e WU{2)(H) such that M5 is t/(2)-equivariantly
diffeomorphic to

M(a, plf p2) = U{2) x Dk± Uαtf(2) x
κ Kκ l

(2.1) Ks Φ £7(2). In fact, U{2) does not act transitively on 3D" = S\
(2.2) K8 is not 2-dimensional. In fact, neither T2 nor N2 acts

transitively on 3D3 = S2.
(2.3) K8 is not finite, since U(2)/K8 is a singular orbit.
(2.4) Both Kx and K2 are not 3-dimensional. For otherwise,
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and U(2)/K2 would be Z7(2)-equivariantly diffeomorphic to S\ Since in
the manifold Mδ the codimension of the orbit U(2)/K2 is greater than 2,
U(2)/K1 is simply connected by [8, Lemma 2.2.3]. This is a contradiction.

(2.5) Suppose that K1 is 3-dimensional and K2 is 1-dimensional. Then
K1 •= Gk for some k with k Φ 0. Since 3D4 = S3 is not homeomorphic to
GljΔj for any j ^ 1, K is not conjugate to Δά for any j ^ 1. First we
investigate the slice representation p: Gl —» 0(4) of the isotropy subgroup
Gfc. Since the identity component of Gk is SU(2) and i ^ = Gl acts
transitively on 3D4 = S3 by /?, we have Gl/H = S3. Hence SU(2) f\ H =
{E2}. Thus the restriction p \ SU(2) of p to Sί7(2) is a real representation
induced by the natural S£/(2)-action on C2. From this fact it follows
that for some p with \p\ < \k\ we have

/>(A) | Z ) = A\ Z )(detA)-* , where AeGl and ( ) e C2 = R* .

Hence i ϊ = CPfl_Pffc with (2p - 1, fc) = 1. Since JSΓX = Z7(2) x D\ X2 =

U(2) x D2, 1 , 0 1 2 = l7(2)/ff and X, U X2 = Mδ, H^XJ = HJU(2)IG\) =

= H1(U(2)/K2)f H^X, Π X2) - f
and iϊi(Xi U X2) = H^M5) = 0. By Mayer-Vietoris homology sequence of
JSΓi and X2, i?"^^ Π X2) -> H^X,) φ ^ ( X 2 ) -^ ^ ( X , U X2) is an exact sequence.
Hence fl1(JSΓ2) = fl1(^(2)/JBΓ2) = 0. Now we study K2. Since H1{ϋ{2)IO{2)) Φ
0, K2 is not conjugate to 0(2). If H = Cp>1-P}k = {S,}, then we may regard
K2 as a closed subgroup of T2. If & ̂  2, then by Lemma 1.6, K2 c T2.
Hence K2 = G^^Cp^p^ for some m, w with (m, w) = 1. By Lemma 1.5,
K2 = GL i ι n i where i = fc/(fc, m - (m + n)p). Since U(2)/K2 = L(j(m + w), 1)
by Lemma 1.4, Hλ(X2) - ^(X,) = Hλ{L{j{m + n), 1)) - Zj{m+n) = 0. Hence
| i(m + n)\ = 1. Thus j = ± 1 and m + u = ± 1 . Since in general, G\iV =
G1-^,.^ for (μ, v) = 1, it is no loss of generality to suppose that j = 1
and m + w = 1. Then m = p (modfc). Since (2p — 1, fc) = 1, we have
(2m — 1, A;) = 1. By Lemma 1.5, there is a unique slice representation
tf: Gw-m —> 0(2) whose kernel is i ί = CVΛ_Vyk = CmΛ_m>k. By Lemma 1.10,
there exists at most one [7(2)-equivariant diffeomorphism class of such
Mb for fc, m with (2m - 1, &) = 1, since Wϋ{2){H) = T2 (or U(2)) is con-
nected. We see easily that in this case Mδ is ί7(2)-equivariantly diffeo-
morphic to Sδ of (I) with k Φ 0 in the main theorem.

(2.6) Suppose that both Kx and K2 are 1-dimensional. Then the
principal isotropy subgroup H is conjugate to Cp>q>k for some p, q, k with
{p — q, k) — 1 or to Δk for some k ^ 1. Now we consider the Mayer-
Vietoris homology sequence of X1 and X2. Since il^Xi Π X2) = H1(U(2)/H)9

= Hλ{U{2) x D2) = HW&W.) (β = 1, 2) and fl^ U X2) =
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the sequence HάUffl/H) -^ H^U^/K,) 0 H1(U(2)/K2) ̂  Hλ{Mb) is exact.
Since M5 is simply connected, we have H^M5) = 0. Therefore μ is
surjective. The principal isotropy subgroup H is not conjugate to Ak

for any k ^ 1. In fact, assume that H is conjugate to Δk for some k ^
1. Then 11^17(2)/H) = Z and K2 must be conjugate to one of the following
subgroups:

= Z, ^ ( [ ί ( 2 ) / L 2 ) - Z 0 Z 2 and £Γ1(C/(2)/L3) = Z4. Thus
μ: H1(U(2)/H)-*H1(U(2)/K1)®H1(U(2)/K2) is not surjective. This is a
contradiction. Hence if is a finite cyclic subgroup of Z7(2). We may
regard if as a subgroup of T2 Π Kx Π iζ>

( i ) Assume that either K1 or K2 is conjugate to 0(2). We may
put Kx = 0(2). Then ί / ^ n X 2 ) = Hι{U{2)IH) = Z, since if = 0(1), where
0(1) = CΌ.1,2 by Lemma 1.6. Since the homomorphism μ: HX{U(2)IH) -•
H1(U(2)/K1)®H1(U(2)/K2) is surjective, we have ifx( ί/(2)/iQ = 0. Hence
if2 is not conjugate to 0(2). By Lemma 1.6, we can regard JKΓ2 as a
closed subgroup of T2. Let the identity component of K2 be Gι

afh with
(α, 6) = 1. Then K2 = G^-H. By Lemma 1.5, Gi,6 C0,1>2 = G\th or GL,26.
Hence by Lemma 1.4, U(2)/K2 = L(α + 6, 1) or L(2(α + 6), 1). Since in
general H^HJc, q)) = Zk and H1(U(2)/K2) = 0, we have K2 = Gl,b with
α + 6 = ± 1 . Without loss of generality, we may assume that b = 1 — α
and α is even. Hence if i^ = 0(2), then H — 0(1) and K2 = G2fe>1_2A; for
some integer &. Now the O(2)-action on the 2-disk D2 whose principal
isotropy subgroup is conjugate to 0(1) is necessarily the O(2)-action
induced by the canonical 2-dimensional real representation and by Lemma
1.5, the G^.i^/raction on the 2-disk D2 whose principal isotropy subgroup
is conjugate to 0(1) is necessarily the G^^fe-action induced by the
following 1-dimensional complex representation

k 0

where τ e C with | τ \ = 1 and ζeC. For a e WU{2)(O(1)). Put

Ml(a) = U(2) x D2 \Ja(U(2) x D2)/Glk ,_2fc .
0(2)

Since ^(2,(0(1))= Γ2/O(l), where O(l) = C0flf2, we have Mi(ά) = Mi([E2]) by
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Lemma 1.10. Now we shall show that Mί([E2]) is simply connected. Let
iβ:-X*!Π-Xz —*-X. (β = l, 2) be a natural inclusion, where Xx— Z7(2) x D2 and

0(2)

X2 = (U(2)xD2)/G1

2k>1_2k. Since the induced homomorphism i^: π1(X1 Π-X"2) =
π^U&yOO )) ~> TΓ̂ -Γi) = τr1(i7(2)/O(2)) is surjective and ^(-X.) = ^(L( l , 1)) =
0, we see that Mi([E2]) = JS^U^-Xa is simply connected by van Kampen's
theorem. Next we study the £7(2)-manifold X2. We have the following
commutative diagram:

[A] h- > [A, 1]

x

S3 x S1 Q S* x D2 ,

where

, ζ]) = U ( J )(det ^)- 2 f c, (det

o)
(άetA)~ik, (det A)2 .

Define a *7(2)-action on S s x Z>2 by

U ll'λ Z\) ̂  U f ' W e t A)--, (det Afζ) .

Then .Pj, is a Z7(2)-equivariant diffeomorphism. Therefore if one of the
two singular isotropy subgroups of the C/(2)-action φ is conjugate to
0(2), then the manifold Mδ is Z7(2)-equivariantly diffeomorphic to

Ml = U(2) x D2 UfbS
3 x -D2 .

0(2)

By Mayer-Vietoris homology sequence, we have H2(Mξ) = Z2. Hence Λβ
is diffeomorphic to the Wu-manifold SU(3)/SO(S) by [2, Theorem 2.3].
Now put

SΛ(S) = {LeSE^(3);*L = L}

and let 17(2) act on SΛ(3) by

where Ae 17(2), XeSΛ(S) and δ - det A. Then SU(2)/S0(Z) admitting
the Z7(2)-action in Remark in Section 0 is ϊ7(2)-equivariantly diffeomorphic
to SA(S) with the above Z7(2)-action by the map sending [U] to U*Uf
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where £7eS£7(3) and [E7] e S£7(3)/SO(3). Denote the isotropy subgroup
at XeSΛdi) by U(2)x. For XeSΛ(S), put

If | λ | = 1, then £7(2)x is conjugate to 0(2). If 0 < |λ | < 1, then £7(2)x

is conjugate to C0>1>2 = 0(1). If λ = 0, then £7(2)x is conjugate to G\Λ =
£7(1). Hence M0

5 = SΛ(3) = S£7(3)/SO(3).
Denote φ by φk in case M5 = Mk. Next we show that if j Φ k, then

φό is not weakly equivariant to φk. Suppose that φ5 is weakly equivariant
to φk. Then there exists an automorphism a of £7(2) and there exists a
diffeomorphism / : Ml —• Ml such that the following diagram is com-
mutative:

£7(2) x Ml -^U Ml

\aXf \f

£7(2) x Mb

k - ^ * Ml .

The automorphism a maps the center of £7(2) into itself i.e., induces an
automorphism of G\Λ. Therefore we have the following commutative
diagram:

PxMi-lUM,

[βxf
S1 x Mk -^-> Mk ,

where ψjf ψk are the S e c t i o n s induced by the restriction of the £7(2)-
actions φi9 φk to G\tl respectively and β is the automorphism of S1 induced
by a. The isotropy types of ψ^ are (ZJ, (Z2), (Z4i_i) and the isotropy
types of π/rfc are (Zx), (Z2), (Z^^). Hence |4j - 1| = |4fc - 1|. Thus j =
k. q.e.d.

(ii) Suppose that neither Kx nor K2 is conjugate to 0(2). By Lemma
1.6, we may assume that Klf K2 c T2. Let ps (s = 1, 2) be a 2-dimensiona]
real representation such that the induced ifs-action on D2 is transitive
on 3D2 and the kernel of p8 is equal to H. For a e Wi^CEΓ), let ikί5 be
£7(2)-equivariantly diffeomorphic to

Ml - M(a, plf p2) = £7(2) x D 2 U α£7(2) x D2 .

Now if p + q Ξ£ 0 (modΛ), then the normalizer of H = CPfffffc in £7(2) is Γ2.
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If p + q = 0 (mod k) then the normalizer of H = Cp,,,fc in Ϊ7(2) is N\
Hence Wuω(H) is connected or has two components. If a belongs to
the identity component of Wuω(H), then by Corollary 1.10 and Lemma
1.11, Ma is C7(2)-equivariantly diffeomorphic to

U(2) x (T2 x D2l)wT
2 x D2) .

Γ2 K 2 K

If W (̂2)(-ff) = N2IH and α belongs to the component of [λ], then H —
Ci,-i,2i+i = C5,3+1,23+1 for some j . By the same corollary and lemma we have

Ml ~ U(2) x (N2 x D2 U mΛΓ2 x i)2) ,
iV2 K K

where λ = (J J) e iV2.
Now we shall prove the following lemma.

LEMMA 2.1. N2 x D2 U^iV2 x Z)2 ΐs N2-equivariantly diffeomorphic to
K l K2

N2 x (Γ2 x Z) 2U[^]Γ 2 x D2) ,
7 7 2 ^ 1 ^

where Kλ = XK2X~ι and Kλ acts on D2 by pλ(h) = pzix^hx) (h e Kλ). Moreover
H = XHX-1 (zKλd T2.

PROOF. Identify N2/H with d(N2 x D2) by the map [A] κ> [A, 1],

where K = K19 K2 or Kλ. Define an iV2-difϊeomorphism 1: N2 x D2->
N2x D2 by ([A, ζ]) = [Aλ"1, ζ]. Then (N2 x Z)2, iV2/ίί) is i\P-equivariantly

diffeomorphic to (N2 x D\ N2/H) by Z, "where (X \ N2/H) ([A]) = [^λ"1].

Hence Z induces an V2-diffeomorphism of ΛΓ2 x D2UWN2 x i ) 2 onto

N2 x Z)2 U[j&2]iV
2 x D2. Thus iV2 x Z)2 UmN2 x Z)2 is i\Γ2-equivariantly

diffeomorphic to iV2 x (Γ2 x D 2 U [ J f x Z)2) by2 Lemma 1.11. q.e.d.

By this lemma, U(2) X2 (N2 x D2 UWN2 x D2) is [f(2)-equivariantly

diffeomorphic to [7(2) x (N2 x (T2 x ΰ 2 U ^ j T* x D2)) = U(2) x (T2 x D2

ΛΓ2 T2 K l

 2

 K χ T* K±

2 x D2). Thus if neither Kx nor K2 is conjugate to 0(2), then

M* = M(a, pu Pΐ) sU(2) x (T2 x f l ' U u ύ T * x ί>2) .
T2 Kl K2

Now we investigate L = T2 x D2 U ίEj T2 x D2. Since Klf K2 are the 1-
dimensional closed subgroups of T2, we have Kx = Gi,B, K2 = Gχ,F for
some A, B, X, YeZ with A2 + B2 Φ 0, X2 + Γ2 =£ 0. Then we can put
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where C, D and U, V must satisfy AD - BC Φ 0 and XV -YU Φ 0,
respectively, since the inaction on 3D2 induced by ps is transitive.
Define the T2-action βs on S1 x D2 by

Moreover, define the map βe of T2 x D2 onto S1 x D2 by

Then (T2 x D2, T2/H) is T2-equivariantly diffeomorphic to (S1 x D2, S 1 x

S1) by ]δβ, where

Vo »)1) = ft(f(o

Furthermore, we have the following commutative diagram

T2 x D2 < T2/H—[-—> T2/H > T2 x D2

κx identity κ2

\βi \PI\TVH \p2\TVH U

S1 x D2 -p S1 x S1 —t-^ S1 x S1 Q S1 x D2

where / = (β2\T2IH)-(β1 \ T'/H)-1 is a T2-equivariant diffeomorphism. The
map / is an automorphism of the topological group S1 x S1. Hence for
some α, 6, c, d e Z with ad — 6c = ± 1 , we have /(z, w) = Oαwδ, ^ci(;(i). On
the other hand, / ( f - γ , r ^ c ) - β*βΛξ-ByA, Γ Y ) = (rF>?x, Γ F ^ ) for
each ί, 77 e C with | f | = 1 and | η \ = 1. Hence ξ~YVx = r 5 α " ϋ Vα + C δ, ί"77?^ =
ξ-Bc-DdηAc+cd f o r arbitrary ξfηeC with |£ | = 1, |iy| = 1. Therefore

' Z7\ (A C\ίa c\
r F/ = \B Dj\b d) '

Moreover L = T2 x D2 U [̂ 2] Γ2 x D2 is T2-equivariantly diffeomorphic to

S1 x D2 U/S1 x I)2? By Lemma'1.7, as a T2-manifold we have S1 x D2
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U/S1 x D2 = L(b, d), where the T2-action on L(b, d) is the same action
that is defined in Part (III) of the main theorem described in the intro-
duction. Hence T2 x P U ^ Γ x f l 2 ^ L(6, d) as a T2-manifold. Thus

as a £/(2)-manifold M6 = M(a, ρlf p2) = 17(2) x L(b, d) for some α, 6, c, d, A,
T2

B,C,DeZ with αd — be = ± 1 and AZ> — BC ψ 0. Moreover by Lemma
1.8, we have (A + B, b) = 1 and (A - .B, C - D) = 1, since Mδ ^ M* =
M(a, pίf p2) = Z7(2) x L(6, d) is simply connected and the C/(2)-action on

Mδ is effective. Then H = G^,s Π GJ..̂  = G^,F Π G\j,v = Cr,r+1,AD_BC, where

(r + l ) = ( s £ ) ( θ ) f o r S O m e α ' / 3 e Z # Therefore in this case M5 is
t/(2)-equivariantly diffeomorphic to the C/(2)-manifold

of Part (III) with AD - BC Φ 0 in the main theorem.

3. The proof when <f> admits principal orbits of codimension 2.
Then the principal isotropy subgroup of φ is 1-dimensional. We denote
the type of the principal isotropy subgroup by (If). Then we may regard
H as Gί.H-i for some reZ by Lemma 1.1.

(3.1) Suppose that C7(2) appears as an isotropy subgroup. We
investigate 5-dimensional real representations of Z7(2). Let V be the
5-dimensional real vector space of all symmetric 3 x 3 real matrices with
trace 0. Let r be the 5-dimensional real representation of SO(3) on V
defined by τ(A, X) = AXA~ι for AeSO(3), XeV. We denote by λ,
the canonical 2-dimensional complex representation of U(2) or SZ7(2).
Denote the determinant representation of ί7(2) by λ2. Let p be the
natural homomorphism of 17(2) onto SO(β) = Z7(2)/G}fl. There are only the
following three possibilities of irreducible real representations of SZ7(2)
with dimension less than six: p0: SU(2) -> SU(2)/{±E2) ~ SO(S), r(λx):
SZ7(2) -^ SO(4), (Jo: Si7(2) -* SO(5), where ρ0 is the restriction of the above
p to SU(2)9 r(λj) is the underlying real representation of the complex
representation λx and σ0 = τ<>p0 (composition of τ and p0 as maps). These
representations can be uniquely extended, respectively, to the following
representations: p: U(2) -> SO(3), r(λΛΓ): 17(2) -> SO(4), σ: 17(2) -> SO(5),
where r(λxλf) is the underlying real representation of the complex
representation XJtfiA) = A(det A)m for A e ?7(2) and a = τ<>p. Thus the
following are all the 5-dimensional real representations of 17(2): p +
r(λ?): 17(2) -^ SO(3) x SO(2) c 0(5), r(λΛΓ) + 1: tf(2) -> SO(4) x SO(1) c 0(5),
σ: C7(2) —> SO(5) c 0(5), where r(λ*) is the underlying real representation
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of the complex representation λ?(A) = (det A)n for A e U(2) and 1 is the
trivial 1-dimensional real representation. Hence the 5-dimensional real
representation of 27(2) which induces an effective action with principal
orbits of codimension 2 is r(λΛΓ) + 1 for m — 0, — 1. Therefore if 17(2)
appears as an isotropy subgroup, then such action is of two isotropy types
(Gm,m+i, Ϊ7(2)) for m = 0, - 1 . We denote the set of fixed points of this
action by F(U(2), Mδ) or F. It follows from [3, IV 8.6. Theorem] that
the orbit space M* of this action is a 2-disk D2 and F(U(2), Mδ) = 3D2 =
S1. Denote by U the Z7(2)-invariant closed tubular neighborhood of F = S1

in Mδ and let X be the closure of Mδ -U in M\ Then X is also ?7(2)-
invar iant . Since U(2)/G1

m,m+1 = S 8 for m = 0, - 1 and Wϋ{2)(G1

mtm+1) = S\

we have

X = S 3 x F{Gl,m+ι, X)

by [7, Lemma 4.2], where i ^ G ^ + i , -X") = {xeX; G^,m+1c [7(2),} and
T^(2)(Gιil,m+1) = S1 acts freely on FiG^^^, X). Moreover we have the
S3-bundle X->X/U(2) with a ί7(2)-action. Now the orbit space X/U(2)
is the 2-dimensional disk D2. Thus X is C/(2)-equivariantly diffeomorphic
to S3 x D2. Moreover, dX is C7(2)-equivariantly diffeomorphic to S3 x S1,
hence so is dU. On the other hand, U-> F = S1 is a D4-bundle with a
C7(2)-action. Thus U is C7(2)-equivariantly difFeomorphic to D4 x S1.
Consequently, there exists a Z7(2)-equivariant difFeomorphism /:S 3 xS 1 ->
S3 x S1, so that Mδ is C7(2)-equivariantly diffeomorphic to the mani-
fold M(f) = D4 x S1 U/S3 x D2. Now for such / there exist a smooth
map a: S1-+S1 and a difFeomorphism β: S1-> S1 such that /(?, ζ) =
(ff«(C), /5(O) for (<z, ζ) 6 S3 x S1. Extend / to the C7(2)-equivariant difFeo-
morphism F: D* x S'-^D* x S1 defined by F(jbq, Q = (tqa(ζ), β(ζ)) (0 ^
ί ^ 1). Then F induces a C7(2)-equivariant difFeomorphism Sδ = D* x S1

UidS3 x D2->M{f) = Z)4 x S1 U/S3 x Z>2, where id is the identity map
of SB x S\ Consequently, Mδ is ί7(2)-equivariantly difFeomorphic to Sδ

of (I) with k = 0 in the main theorem.
(3.2) Gί does not appear as an isotropy subgroup of φ. Indeed,

the identity component of a 1-dimensional closed subgroup of Gξ is
GU.

(3.3) N2 does not appear as an isotropy subgroup of φ. Indeed,
suppose that N2 is an isotropy subgroup and p: N2 —> 0(3) is the slice
representation of p. Then the identity component of its principal iso-
tropy subgroup is Gϊ,_i. This is a contradiction.

(3.4) Suppose that T2 appears as an isotropy subgroup of φ. For
reZ, let ζ r: Γ

2 -> S1 be a complex representation defined by
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(ζ OV
ζ n\o

and let r(ζr) be the real representation induced by ζ r. The slice repre-
sentation of T2 whose principal isotropy subgroup is G>,r+i is necessarily
pr = r(ζr) + 1: T2->SO(2) x SO(1) c 0(3), where 1 is the 1-dimensional
trivial representation. The isotropy type of the T2-action induced by
the slice representation ζr is (GJ.,r+i, Γ2). Thus if T2 appears as an isotropy
subgroup of φ, then by (3.1), (3.2), (3.3) and this fact, φ is of two isotropy
types (Gr,r+i, T2) for some reZ.

Denote by Af(Γ2, the set of all points whose isotropy groups are
conjugate to T2. Since the isotropy type (Γ2) is maximal, MiT2) is a
C/(2)-invariant closed submanifold of M\ By [3, IV 8.6 Theorem], the
orbit spaces M6/U(2) and MLT2)/U(2) are homeomorphic to D2 and 3D2 = S\
respectively.

Denote by F(Γ2, Λf(Γ2>) or F the set of all points of Λf(Γ2) whose
isotropy subgroup contains T2. We identify Ϊ7(2)/T2 with S2 as Ϊ7(2)-
spaces. By [7, Lemma 4.2] we have j|f(r2) =17(2) x F = (U(2)/T2) x F,

where TF(T2) = T^(2)(T2) = iV2/Γ2 and W(T2) acts freely on F. We(may
identify W(T2) with S° - {±1}. S° acts on S2 by (±1, α) H> ±α, where
α e S 2 and ± l e S ° . Thus Λf(r2) = S2 x F as a Z7(2)-manifold. Moreover,

F/S° = M{T2)IU{2) = S1. Since S° acts freely on F, we see that F->S X

is a principal S°-bundle over S1. Hence F = S1 or S1 x S°.
Denote the normal bundle of Af(r2> in Mδ by ^. First we show that

y has a i7(2)-invariant complex structure, so that v is an orientable
real plane bundle with a ί7(2)-action. Next we show that F = S1 x S°
by means of the Gysin sequence. Consider the following commutative
diagram:

= 17(2) x F

where j is the inclusion map and μ = j*v is the induced bundle. Then
μ is a real plane bundle with i\P-action and v = J7(2) x j«. Thus if μ has

an ΛP-invariant complex structure, then it naturally induces a 17(2)-
invariant complex structure on v. Now we introduce a canonical complex
structure on μ.

Since the T2-action which is the restriction of the i\P-action on μ
leaves F fixed, each element of T2 induces an automorphism of every
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fiber of μ. In particular, consider the G^-action which is the restriction
of such a reaction. Since the above iSP-action is induced by the E n -
action φ and the isotropy type of φ is (G>,r+1, T2), such a G^-action is
free on the associated sphere bundle S(μ) of μ. Thus we can define the
complex structure on μ by means of the action of v/^ΛE2 e G\fl. Then
since G\tl is the center of E7(2), such a complex structure is compatible
with the iV2-action on μ, i.e., iV2-invariant. Hence v has a C7(2)-invariant
complex structure and the normal bundle %> is an orientable plane bundle.
In order to prove that F = S1 x S° let us assume F = S1 and derive a

contradiction. Then in the principal bundle F = S1 —> S1 the projection
p is the map p(z) = z2 for ze F = S\ Consider the bundle Λf(Γ2, =
S2 x F-> S2/S° = P2 (real projective plane). This is the sphere bundle
associated to the complex line bundle ξ = S2xC-+ P2, where the S°-action

so

S°xC-^C is defined by (±1, z)\-+ ±z. Since the bundle ξ can be regarded
as a real orientable plane bundle, we can apply the Gysin sequence of
the sphere bundle M{Tz} —> P2 = S2/ί?o. Thus the following sequence is
exact:

0 = H3(P2) -^ HX{P2) -> i ί 2 (M { r 2 ) ) -> H2(P2) - 0 .

Hence H2(M{T2)) = HX(P2) ~ Z2. Now denote by U a E/(2)-invariant closed
tubular neighborhood of Λf(Γ2) in Mδ and let JE7 be the closure of M5 — Z7
in M5. Then £7 is also E/'(2)-invariant. Moreover, we have the bundle
E->E/U(2) whose typical fiber is UffllGl,^. The orbit space E/U(2) is
diffeomorphic to the 2-disk D2. By Lemma 1.4, U(2)IG\,r+1 = L(2r + 1, 1).
Thus E = L(2r + 1, 1) x D2. Hence dU = dE = L(2r + 1,1) x S1. On
the other hand, the bundle 3Z7^Λf(Γ2) can be regarded as the sphere
bundle associated with the normal bundle v of Λf{Γ2> in Mδ. Since it has
been already proved that v is orientable, we can apply the Gysin sequence
of the above sphere bundle and get the exact sequence

0 = J Ϊ X M W -> H2(M{ΊΛ)) - H3(dU) .

Here iJ2(Λfίr2)) s Z2, Hs(dU) = Hs(L(2r + 1, 1) x S1) = Z. This is a con-
tradiction. Therefore F Φ S1. Hence F = S" x S1. Since ilί,^, =
(C7(2)/Γ2) x F ^ S ' x F a s a Z7(2)-space, Af(Γ*, = (U(2)/T*) x S1 = S2 x Sι

W(T2) S°

as a ?7(2)-space.
In the following commutative diagram of bundles
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we have tt = j*v and v — U(2) x μ. Since an orientable plane bundle
over S1 is trivial, μ = F x C = (S° x S1) x C as a bundle with an iV2-
action. Thus v = Z7(2) x ( F x C ) a s a bundle with a ί/(2)-action. The

jV-2

Γ2-action, which is the restriction of such a Z7(2)-action, induces a T2-
action on the fiber C. Since the Z7(2)-action on the associated D2-bundle
of v coincides with the ί7(2)-action on the C7(2)-invariant closed tubular
neighborhood U by φ, the principal isotropy type of such Traction on C

is (GJ.,r+1). Now we consider the plane bundle π: J7(2) x (S1 x C) —> M{T2} =

(U(2)/T2) x S1 = S2 x S1 with a C7(2)-action, where T2 acts on S1 x C by

, (r, ζ) H* (r, α and ττ([A, (τ, ζ)]) - ([A], τ) .

Define a map Λ: C/(2) x (S1 x C)
T2

U(2) x (S° x S1 x C) by h([A, (τ, ζ)]) -
[A, (1, τ, ζ)]. Then h is a [7(2)-equivariant isomorphism of vector bundles
with £7(2)-actions. We consider the plane bundle π: L(2rl + , 1) x (S1 xC)—>

S2 x S1 = M{T2)f where S1 acts on L(2r + 1, 1) and S1 x C by*

a n d ξ f τ 7 ] )

respectively. U(2) acts on L(2r + 1, 1) by

A,
z

_w /
A ( Z)(άetA)-

and the above projection π is defined by

π
z

w
= ([ 2 Re (zw)

Im

U(2) x (S1 x C) is £/(2)-equivariantly isomorphic to L(2r + 1, 1) x (S1 x C)
7-2 S 1

by the map

1

0

Thus we may regard L{2r + 1, 1) x (S1 x C) as the normal bundle v.

Hence U = L(2r + 1, 1) x (S1 x D2). On the other hand, E = L(2r + 1, 1) x

D2 = L(2r + 1, 1) x (D*Sχ Sι), where S1 acts on D2 x S1 by (r, (if, η)) H-»

(if, r̂ 7) (0 ^ ί ^ 1, |f I = \η\ = 1). Now as C7(2)-manifolds
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d(L(2r + 1, 1) x (S1 x -D2)) = d(L(2r + 1, 1) x (Z>2 x S1))
S1 S1

= L(2r + 1, 1) x Sι .

Denote by M(/) = L(2r + 1, 1) x (S1 x D2) ΌfL(2r + 1, 1) x (D2 x S1)

the manifold which we obtain from L(2r + 1, 1) x (S'xD2) and L(2r + 1,

1) x (D2 x S1) by identifying their boundaries under a ϊ7(2)-equivariant

diffeomorphism / : L(2r + 1, 1) x S1 -> L(2r + 1, 1) x S1. For any 17(2)-

equivariant diffeomorphism / : L(2r + 1, 1) x S1 -> L(2r + 1, 1) x S1, ΛΓ(/)

is Z7(2)-equivariantly diffeomorphic to M(id) where id is the identity map

of L(2r + 1, 1) x S1. In fact, for every Z7(2)-equivariant diffeomorphism

/ of L(2r + 1, 1) x S1, there exist a smooth map a: S1 -> L{2r + 1, 1) and

a diffeomorphism β: S1 —> S1 such that

= (A.α(C),/3(C)),

where A 6 17(2), Γ J Ί 6 L(2r + 1, 1) and ζ e S1. By means of / we define

a ?7(2)-equivariant diffeomorphism F: L(2r + 1, 1) x (S1 x D2) -^ L(2r + 1,

1) x (S1 x D2) by

/Γ Γ 1 Ί
t (f, *^) = [A α(f), (/3(ί), tη)] ,

where A 6 J7(2), 0 ^ ί ^ 1 and |f | = 1 = | ^ | . ί7 induces a i7(2)-equivariant
diffeomorphism of Λf(id) onto M(f).

Therefore for any ί/(2)-equivariant diffeomorphism / of L(2r + 1, 1) x

S\ M(f) is Z7(2)-equivariantly diffeomorphic to L(2r + 1, 1) x S\ Conse-

quently, M6 = U U E is Z7(2)-equivariantly diffeomorphic to L(2r + 1, 1) x

S3. Now suppose that a, 6, c, d, A, B, C, DeZ satisfy the condition of
(III) and AD - BC = 0 = (A - B)(X- Y). Then 6 = ± 1 . If X - Y = 0
(resp. A - J5 = 0), then X = Γ = 0 (resp. A = J5 = 0) and for some r e Z
we have

A\ / r \ I IX

B

Hence L(δ, d) is Γ2-equivariantly diffeomorphic to Sz admitting the
following reaction

o vr U



SMOOTH 5-MANIFOLDS

Consequently under this situation

21

On the other hand, 17(2). x S3 is U(2)-equivariantly diffeomorphic to

L(2r + 1, 1) x S3 by

where A e C/(2) and <? e S8. Therefore ilίs is t/(2)-equivariantly diffeomorphic
to the i7(2)-manifold

M

of (III) with AD - BC = 0 = (A - B)(X - Y) for some a, b, c, d, A, B, C,
DeZ.

(3.5) Suppose that each isotropy subgroup of φ is 1-dimensional,
that is, for some r the identity component of each isotropy subgroup
is conjugate to Gv,r+i Then it follows from [7, Lemma 4.2] that

W> s (17(2) x F(GJ.r+1> Ml))/Ntm(&,r+ύ = ^(2) x

S ((U(2)IGl,r+1) x F(GJ,r+1, ΛΓ5))/(T7Gi,τ+1) s L(2r /

where jP(Gί.,r+1, ilί
5) is the closed 3-dimensional submanifold of all points

of Mδ whose isotropy subgroups contain Grtr+lf S1 acts on L(2r + 1, 1) by

(O MGM
on FiG^r+u Mδ) almost freely (i.e., each isotropy subgroup is discrete)
and 17(2) acts on L(2r + 1, 1) by

z

w
(det A)~r

~r/(2r+1)

Now we investigate F* = F(Gι

r,r+u M5). The above S^action on F3 is
without fixed points and effective since each principal isotropy subgroup
of φ is conjugate to Gr,r+1. The orbit space Mδ/U(2) is homeomorphic to
the orbit space FB/S\ Since Mδ is simply connected, by [3, II 6.3.
Corollary] Mδ/U(2) = F^/S1 is a simply connected compact topological 2-
manifold. Hence it is D2 or S\ It follows from [3, IV 3.12. Theorem
and IV 8.3. Proposition] that F'/S1 = Mδ/U(2) s S\ Therefore by [6,
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Theorems 2 and 4], Fz is S^equivariantly diffeomorphic to a 3-dimensional
lens space admitting an effective S^-action with at most two exceptional
orbits. Let Zmι, Zm2 {mι Φ 0, m2φ 0) be the two exceptional isotropy
subgroups, where Zmg = {ωeC; ωms = 1} (s = 1, 2). For each exceptional
orbit S72ΓW8, s = 1, 2, there exists an invariant closed tubular neighborhood
Us such that F3 = U1U U2, U.f] U2 = dUt = 3 ^ . Moreover ί78 is a compact
connected smooth manifold on which S1 acts smoothly and is S -̂equi-
variantly diffeomorphic to a twisted product S1 x D2, where Zm acts on

2-disk D2 by σ8(ω, w) = ωnsw ((ms, w,) = l). Define an S'-action σ8 on S'-xD2

by

(τmsz, τnsw) .

Moreover, define the map σ8 of S1 x D2 onto S1 x D2 by
Z

Then σ8 is an S^-equivariant diffeomorphism. Hence (U8, dU8) is S1-
equivariantly diffeomorphic to (S1 x D2, S1 x S1). Moreover the manifold
F* is S'-equivariantly diffeomorphic to S1 x D2 U fS

ι x D2 where / : S1 x S1 ->
S1 x S1 is an S^equivariant diffeomorphism such that the following dia-
gram is commutative:

S1 x (S1 x S1) -^-> S1 x S1

S1 x (S1 x S1) - ^ Sι x S1 .

Now we must study the map /. Define another S^-action p on Sι x S1

by p(τ, (z, w)) = (τz, w). Then every S^-equivariant diffeomorphism of
S1 x S1 admitting the S^action p onto itself is S^diffeotopic to the map
(z, w) ι-> (zwk

9 w
δ) for some k and δ = ± 1 . Define a diffeomorphism σs:

S1 x S'-^S1 x S1 by σa(z, w) = (zmswPs, zn*w9s), where msq8 - n8p8 = 1.
Then σ8o(l5l x σs) — σ8op and /0 = J 2 o/o^r 1 is an S^equivariant diffeo-
morphism of S1 x S1 admitting the S^action p onto itself. Hence for
some k, f0 is S^diffeotopic to the S^-equivariant diffeomorphism go(z9 w) —
(zwk, wδ), where δ — ± 1 . Therefore / is S^-diffeotopic to the S^-equi-
variant diffeomorphism g with σ2 ° (l5i x g) — g°ox defined by

g(z, w) — (zαw\ zcwd) ,

where (? 5) = (!Γ 1^ i) ( f e g j ί ^ o 2 ) a n <^ ^ e f°^ o w i n^ diagram is com-
mutative
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S1 x S1 S1 x Sι

Sι x x S1

<72

-+S1 x S'QS1 x D2

By Lemma 1.9, S1 x D'U/S 1 x D2 is S'-equivariantly diffeomorphic to
S1 x -D2 UjS1 x Z)2. Therefore .F3 is the 3-dimensional lens space L(b, d)
admitting the following S'-action:

VZ

I w
z

w
Put

Then

A C

B D
r

r + 1

(b φθ,zb = ζ, ad -be = δ)

(6 = 0 ) .

u
V

aίX U) = iί CX ). AD-BC-0
\γ V) \B Dj\b d)

and the above S'-action on Lφ, d) induces the Γ2-action on Lφ, d) in
Part (III) of the main theorem described in the introduction. Therefore
if each isotropy subgroup of φ is of dimension 1, then Mb is C7(2)-equi-
variantly diffeomorphic to

M a

b dr \B D

A C
= [7(2) x Lφ, d)

for some a, b, c, d, A, B, C, DeZ with ad - be = ±1, AD - BC = 0,
A - B Φ 0 and (A - B)a + (C - D)b Φ 0. Moreover by Lemma 1.8,
(A + B, b) = 1 and (A - B, C - D) = 1, since M8 = U(2) x Lφ, d) is simply

connected and the ί7(2)-action on ΛP is effective. Then H — Gι

r,r+1 where

r — —
A C

Pi Qi

A- B C - D

Pi Qx
= 1

for some plt <JΊ 6 Z. Moreover there are at most two non-principal orbits
and they are exceptional orbits. Consequently in this case, the £7(2)-
manifold M6 is Z7(2)-equivariantly diffeomorphic to the C7(2)-manifold of
(III) with AD - BC = 0 Φ (A - B)(X - Y) for some a, b, e, d, A, B, C,
DeZ.
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Here we complete the proof of the main theorem.
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