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0. Introduction. In [1] Asoh classified connected closed smooth
manifolds of dimension less than 5, which admit a non-trivial smooth
SU(2)-action up to SU(2)-equivariant diffeomorphisms. In [5] Nakanishi
investigated an equivariant classification of smooth SO(8)-actions on closed
connected orientable smooth 5-manifolds such that the orbit space is an
orientable surface. In [4] Hudson classified simply connected closed 5-
manifolds with SO(8)-actions admitting at least one singular orbit up to
SO(3)-equivariant diffeomorphisms. The purpose of this note is to prove
the following theorem.

THEOREM. Suppose that a compact simply connected smooth 5-manifold
M°® without boundary admits an effective smooth U(2)-action ¢: U2) X M®—
M°. Then M*® s U(2)-equivariantly diffeomorphic to one of the following
U(2)-manifolds.

(I) S® on which UQ2) acts by

. /€ L(ad — be)*
a ¢
((b d) < 2 )) = ((az + cw)(ad — bc)"‘)
" \w (bz + dw)(ad — be)™
where (k, 2m — 1) = 1.
(II) M} = U(2)0>(<2)D2 Uys, S® % D*,

where the O(2)-action on 2-disk D* is the matural ome, U(2) acts on
S® x D* by

() - [ofeJomars, wae)

U2)/0Q1) is U(2)-equivariantly diffeomorphic to o(U(2) OX)DZ) by [A]+—
2
[4, 1] and the attaching map f, is given by

ATAD = (A ( (1) >(det A (det A)2) .
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(I11) M{(Z ;) (; g)}zU(z);gL@, ),

where a,b,c,d, A, B, C, D are integers satisfying the conditions: ad —
be= *1and (A+ B,b)=1= (A — B,C — D) and where L(b, d) is a 3-
dimensional lens space for b + 0, while we put

L, 1) = {(Z)ecz; (2] — RY + lwizzw}

for fized r, R with 0 <r < R. The T*action on L(b, d) is as follows.
Put

(X Uy (A C\/a ¢

Y V)_ B D (b d)”

(6 o) L)L)

where x* =& ¥y =1 and 6 = ad —be. If b =0, then

o o) ()= ()
s '—_) ?
0 7 w wenY
where (|z] — R + |w|* = %
REMARK. (i) In (II), M} is diffeomorphic to the Wu-manifold

SUB)/SO(3) by [2, Theorem 2.3] and in particular My is U(2)-equivariantly
diffeomorphic to SU(3)/SO(8) admitting the following U(2)-action:

(det 4)~* 0
“, [X]){( ) A)XJ

where X e SU(3) and [X]e SU(3)/SO(3).
(ii) In (II), denote ¢ by ¢, in case M° = M;. If j =+ k, then ¢, is
not weakly equivariant to ¢,.

If b+ 0, then

The remainder of this note is divided into three sections. In Section
1, we state necessary lemmas and show that the principal orbits of the
U(2)-action are of condimension one or two. In Section 2, we show that
if the codimension of the principal orbits is one, then M® is U(2)-equi-
variantly diffeomorphic to either (I) with k¥ = 0, (II) or (III) with AD —
BC # 0. In Section 3, we show that if the codimension of the principal
orbits is two, then M® is U(2)-equivariantly diffeomorphic to either (I)
with & = 0 or (III) with AD — BC = 0.
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The author wishes to express his sincere gratitude to Professor Fuichi
Uchida who suggested this topic, offered helpful advice and encouraged
him during the preparation of this note.

1. Preliminaries. In the first place, we define symbols and notations.

Gi={AcUQ); (det A =1} (k+0).

=1 Neve: g1=1=n
—{(0 77) PIel= —177}.

N = TZU(0 1)T2
= 1 o .

0
Gim:{@ 77)6U(2);5”=7)"‘} (m=#=0 or n+#0).

7 0
Chop = {(ag a)") e U@2); o* = 1} (k+0 and (p,q,k)=1).

01
10
St ={aeC™ |lal| =1} (m = 1), where C" is the complex vector
space of m-dimensional complex column vectors.
Z, = Z|kZ or {weS*; w* =1} (k # 0), where Z is the additive group
of all rational integers.

[ ] denotes an equivalence class of a certain equivalence relation.

For integers k, ¢ with (k, ¢)=1 and k=0, a free Z,-action ¢, ;: S’ Z, —

S? is defined by
2 z ®
el +)-22)
w w o

We denote the orbit space of the action ¢,, by L(k, q). It is called a
3-dimensional lens space. For convenience, we put

A/s = Cl,——l,2k+1 U ( )Cl,—1,2k+1 (k = 1) .

L0, 9) = {(Z)ecz; (|z] — R + |w]* = ,'.2} ,

where ¢ = +1 and 0 < » < R. Then L(0, q) is diffeomorphic to S* x S

Let G be a compact Lie group and let K be a closed subgroup. Let
o be a smooth K-action on a smooth manifold X. Then K acts on GX X
by (h, (g, x)) — (gh~, p(h, x)). We denote the orbit space of this K-action
by G §{< X or (G x X)/K. Define a canonical G-action on G X X by (¢,
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[9, 2]) —[9’9, #]. This smooth G-manifold G x X is called a twisted

product. By (H) we denote the type of the p;{incipal isotropy subgroup
of ¢, that is, every principal isotropy subgroup of ¢ is conjugate to H.
The U(2)-action ¢ is effective if and only if each principal isotropy sub-
group does not contain any proper normal subgroup of U(2). The proper
normal subgroups of U(2) are G{ (k # 0) or subgroups of Gij, where
Gi, is the center of U(2). Thus ¢ is effective if and only if HNG}, =
{E,}, where E, is the unit matrix of U(2).

LEMMA 1.1. Suppose that a closed subgroup H of U(2) satisfies
HNGi,={E)}). Then H is conjugate to one of the following subgroups:

Cp,q,k ((p —4q, k) = 1) ) 45, }-,r+1 ’
where k, p, q, 7 are some integers.

Proor. Since the closed subgroup of U(2) whose dimension is greater
than one contains a non-trivial subgroup of G!, except {E,}, H must be
a finite subgroup or a 1-dimensional closed subgroup of U(2). It is easy
to see that if H is a 1-dimensional closed subgroup, then H is conjugate
to G;, ., for some ». We also see easily that if H is a finite cyclic group
of U(2), then H is conjugate to C,,, for some p, q, k with (p —q, k)=1.

Thus we have only to prove that non-cyclic H is conjugate to 4,
for some k. Now let H be a non-cyclic finite subgroup of U(2).
Moreover suppose that HN G}, = {E,}). We define two homomorphisms
w: S*xSUQ) — UQ), n: S*xSU2) — SU2) by w(a, A) = aA, w(a, A) = A.
The homomorphism ® is surjective and its kernel o *(E,) is equal to
(@, E), (—1, —E,)}. For a subgroup G of U(2) we put G = »(G). The
following facts are clear or well known:

(a) =|H is injective, i.e., H = n(H),

(b) geH and n(g) = —E, implies g = (—1, —E)).

(¢) Up to conjugacy, a non-cyclic finite subgroup of SU(2) is iso-
morphic to one of the following:

Df = {x, y|2* = (xy)* = y", 2* = 1} (binary dihedral group, n = 2),
T* = {x, y|2* = (wy)’ = 9*, 2* = 1} (binary tetrahedral group) ,
O* ={x,y|2* = (xy)* = ¥*, 2* = 1} (binary octahedral group),
I* ={x, y|a*= (xy)’ = 9% 2* = 1} (binary icosahedral group) .
By (a), (b), (¢), the subgroup H is isomorphic to one of D,, (dihedral
group), 7T (tetrahedral group), O (octahedral group), I (icosahedral

group).
If H is isomorphic to D,,, then H is isomorphic to D% by 7. Suppose
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z, y e t(H) satisfy 2* = (xy)’= 9", «* = E, and let (u, x), (v, y) € H (cS'x
SU(2)). Then by (b), u*= u** = v" = —1 since z* = (xy)’ = y" = —E,.
Hence we see that w = =1V —1,v = —1 and n =1 (mod2). Up to con-
jugaey in SU(2), we can put

X 0 S
Y= <O X) , M=exp@V —1/n).

Let

X = o) Y=o >—(_” 0
= o, x = o, y) = 0 —x)°
Then X®= E, = X and X¢Gj ..

Hence we may put

a z
X=( ) (@*+|z*=1, a€eR).
z —a

Since YXY = X, we see that ¢« = 0 and |z| = 1. Thus

=l 2 ollo o) 7=l 2o 2

Hence H is conjugate to a subgroup of U(2) which is generated by
matrices

01 a 0 _
( ) ( _) (@ = exp(2nV —1/(2k + 1)) for some k =1).
1 0/, \0 «

Therefore if H is isomorphic to the dihedral group D,, (n = 2), then
H is conjugate to 4,.

Next suppose that H is isomorphic to T (tetrahedral group). Then
m(H) is isomorphic to T*. Suppose z, y<cn(H) satisfy 2* = (zy)* = ¥,
x* = E, and let (u, 2), (v, y)e H (cS' x SU(2)). Then since z* = (zy)’ =
y* = —HK,, we have v’ = (uv)®* = v* = —1 by (b). This is a contradiction.
Thus H is not isomorphic to the tetrahedral group.

In the same manner, we can show that H is isomorphic neither to
the octahedral group O nor to the icosahedral group I. Hence if H is
a non-cyclic finite subgroup, then H is conjugate to 4, for some &k = 1.

q.e.d.

By Lemma 1.1, we have the following corollary.

COROLLARY 1.2. The codimension of the principal orbits of ¢ is one
or two.
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We omit the proof of the following lemma.

LemMA 1.3. (i) A 3-dimensional closed subgroup of U2) is Gi for
some k = 0 and is normal in U(2).

(ii) A 2-dimensional closed subgroup of U(2) is conjugate to T*
or N2,

(iii) The identity component of a l-dimensional closed subgroup of
U(2) is conjugate to G, for some p, ¢ with (p, q) = 1.

Define a smooth map p,,:U(2) — L(k, 1) for j, k with j° + k* # 0 by

6 2)-[{gyemsr] oon
Parl\p a)) =1 \b | ’

((a c)) . ((R + r(la]® — [b]*)(ad — bC)")
Pi\p q)) = »(2@b) '

Then p,, induces the following U(2)-diffeomorphism.
LemMMA 1.4. U(Q)/G},._; = L(k, 1) for j, k with 7> + k* # 0.
The following lemmas are proved easily.

LemMMA 1.5. Assume that the integers m, n, k, p, q¢ satisfy the con-
ditions k + 0, (p, g, k) = 1 and (m, n) = 1. Then G}, ,-C, .. = Gnj.;» Where

i=k <lc, Z Z ’) and there exists a complex representation p: Gr;.; —
S* whose kernel is C,,,,. Moreover, the representation p is unique up to

complex-conjugation.

LEMMA 1.6. Let K be a 1-dimensional closed subgroup of U(2) and
let H be a finite cyclic subgroup of KN T* Suppose that the order of
H is greater than one, HN G}, = {E,} and K/H is connected. Then K
18 a subgroup of T?, or there exists g€ N* such that H = gOQ)g™" and
K = gO(2)g~.

LEMMA 1.7. For a, b, ¢, d€ Z with ad — bc = *1, define a diffeomor-
phism f:S'x 8'— S'x 8! by f(z, w) = (z*w®, zw?). The closed smooth
3-manifold S' x D* U;S* x D* formed by attaching S' x D* to S' x D?
on their boundaries under f is diffeomorphic to the 3-dimensional lens
space L(b, d).

ProOF. In the first place we treat the case b = 0. Put
U'—”:Z]GL(I) d)'|Z|<|W|} U—{{ZJGL(I) d); | Z| =z |W]|
1 = W ) ’ = ’ 2 = W ’ ’ = .

Define ¢,: S* X D* -U, (s =1, 2) by
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(2, w) = [(1 + lw[)~ @C )] » B, w) = [(1 + |w|2>"”2( C__,lﬂ ’
wl/

where * =z and 0 = ad — be. Then since ¢, = g,o f on S' X S*, ¢, U s,

induces a diffeomorphism of S* x D*U;S* X D? onto L(b, d). Next we
treat the case b = 0. Put

Z
Ul—:{(W)GC%(IZI—R)2+|W|2='r2 and [ZIgR},

U, = {(Vzv)ecz; (1Z) — Ry + |WF=1" and |Z|< R} -

Define ¢,: S* X D*—=U, (s =1,2) by

(B + r(1 — [w])")z" B —r1 —|w[)")e
) ’ ¢2(z9 w) = ( rw ) ’

¢1(z, w) = (

rew?

where for the convenience of notations, even if |w| < 1, we regard w
as w since d = *+1. Then since ¢, = ¢,o f on S* X S% ¢, U ¢, induces a
diffeomorphism of S' x D*U ;S* x D? onto L(0, d). q.e.d.

We omit the proof of the following lemma.

LEmMMA 1.8. For a,b,¢,d, A, B,C, De Z with ad — bec = =1, define
the same T*-action on L(b, d) that is defined in Part (III) of the main
theorem. Then

a ¢ A C
M{<b ) (3 D)} =U@ 3 Lo, 9

18 simply connected if and only 1f (A + B,b) = 1. The canonical U(2)-

action on
a ¢ A C
uly 2 (5 o) -v@ oo

18 effective if and only if (A — B,C — D) =1.

Let G be a compact Lie group. Let X, X, be compact connected
manifolds on which G acts smoothly. Assume that 0X, is equivariantly
diffeomorphic to 0X, as G-manifolds. Denote by M(f) = X, U X, the
compact connected G-manifold formed from X, and X, by the identifica-
tion of points of 90X, and 90X, under a G-diffeomorphism f:0X, — 0X,.
The following lemma is described in [8, p. 161].

LEMMA 1.9. Let f, f': 60X, — 0X, be G-invariant diffeomorphisms.
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Then M(f) is equivariantly diffeomorphic to M(f') as G-manifolds, if f
is G-diffeotopic to f'.

In particular, if 0X, and 0X, are both equivariantly diffeomorphic to
G/H as G-manifolds for a closed subgroup H of G, then every G-invariant
diffeomorphism o0X, = G/H — G/H = 90X, is the right translation by an
element of Wy(H) = Ny H)/H, where Ny (H) is the normalizer of H in G.
We thus have the following corollary.

COROLLARY 1.10. If a, Bc Wy (H) belong to the same component of
Ws(H), then M(a) = X, U, X, 18 G-equivariantly diffeomorphic to M(R) =
X, U X..

Let K,, K, be two closed subgroups of G such that Hc K, N K, and
let p, (s =1, 2) be a k,-dimensional orthogonal representation of K, such
that K,/H is diffeomorphic to O(k,)/O(k, —1) by p,. Let L be a closed
subgroup of G. Suppose that K, U K, L. Then the following lemma
is proved easily.

LeEMMA 1.11. For each ac W, (H) C Wy (H),
G X (L x DU, L x D*)
L K, Ky
18 G-equivariantly diffeomorphic to G x D* U ,G x D",
Ky Ky

2. The proof when ¢ admits principal orbits of codimension 1. Then
the principal isotropy subgroup of ¢ is finite. We denote the type of
the principal isotropy subgroup by (H). Using some results due to Uchida
[8, Sections 1 and 5] concerning manifolds which admit a Lie group action
with codimension one orbits, we easily see the following facts:

Each principal orbit of ¢ is U(2)-equivariantly diffeomorphic to U(2)/H
and there are only two singular orbits U(2)(x,) = U(2)/K,, U@2)(x,) = U(2)/K,
where K,, K, are some closed subgroups of U(2) such that HC K, N K,.
In fact, there are two slice representations p,, o, of K,, K, respectively
and there is an element a € Wy, (H) such that M° is U(2)-equivariantly
diffeomorphic to

M(e, p,, 0,) = U(2) X D=y, U?2) X D™

2.1) K,+U(2). In fact, U(2) does not act transitively on 6D° = S*.

(2.2) K, is not 2-dimensional. In fact, neither 7? nor N?* acts
transitively on oD?® = S2.

(2.3) K, is not finite, since U(2)/K, is a singular orbit.

(2.4) Both K, and K, are not 3-dimensional. For otherwise, U(2)/K,
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and U(2)/K, would be U(2)-equivariantly diffeomorphic to S'. Since in
the manifold M® the codimension of the orbit U(2)/K, is greater than 2,
U(2)/K, is simply connected by [8, Lemma 2.2.3]. This is a contradiction.
(2.5) Suppose that K, is 3-dimensional and K, is 1-dimensional. Then
K, = G} for some k with & = 0. Since 0D* = S® is not homeomorphic to
#/4; for any j = 1, K is not conjugate to 4; for any j=1. First we
investigate the slice representation p: G{ — O(4) of the isotropy subgroup
G}i. Since the identity component of G{ is SU(2) and K, = G} acts
transitively on 0D* = S® by p, we have G{/H = S®. Hence SU@2)N H =
{E.,}. Thus the restriction p|SU(2) of p to SU(2) is a real representation
induced by the natural SU(2)-action on C®. From this fact it follows
that for some p with |p| < |k| we have

2

p(A).(z):A<z>(detA)—p, where AeG? and (
w w w

) eC*=R*.
Hence H=C,,_,, with 2p — 1, k) =1. Since X, = U(2) X DY X, =
U(2) Py D, XNX,=U@2)/H and X, U X, = M°, H(X,) = Hl(lU(Z)/GZ) =
H,(SY) =2, H(X,)=H(UQ2)K,), H(X NX,)=HUQ®)/C,i,w) =2
and H(X,U X,) = H(M° = 0. By Mayer-Vietoris homology sequence of
X, and X,, H(X,N X, — H(X, P H(X, — H(X,UX,) is an exact sequence.
Hence H(X,) = H(U2)/K,) = 0. Now we study K,. Since H,(U(2)/0(2)) #
0, K, is not conjugate to O2). If H=C, -, , = {£,}, then we may regard
K, as a closed subgroup of 7% If k = 2, then by Lemma 1.6, K, T*
Hence K, = G%,,,-C,.._,. for some m, n with (m, n) =1. By Lemma 1.5,
K, = Gi;.; where j = k/(k, m — (m + n)p). Since U(2)/K, = L(j(m + n), 1)
by Lemma 1.4, H,(X,) = H\(X,) = H(L(j(m + n), 1)) = Z;im+n, = 0. Hence
|[jm + n)| = 1. Thus j = £1and m + n = *+1. Since in general, G, =
G-, _, for (g, v) =1, it is no loss of generality to suppose that j=1
and m +n =1. Then m = p (modk). Since (2p — 1, k) =1, we have
2m —1,k) =1. By Lemma 1.5, there is a unique slice representation
o: G, _.— O2) whose kernel is H=C,, ,, = Cpi_m: By Lemma 1.10,
there exists at most one U(2)-equivariant diffeomorphism class of such
M* for k, m with (2m — 1, k) = 1, since Wy (H) = T* (or U(2)) is con-
nected. We see eagsily that in this case M® is U(2)-equivariantly diffeo-
morphic to S® of (I) with £ # 0 in the main theorem.

(2.6) Suppose that both K, and K, are l-dimensional. Then the
principal isotropy subgroup H is conjugate to C,,,, for some p, g, k with
(—q,k)=1 or to 4, for some k¥ =1. Now we consider the Mayer-
Vietoris homology sequence of X, and X,. Since H(X, N X,) = H,(U(2)/H),
H(X,) = H,(U(2) X D*) = H,(U2)/K,) (s =1, 2)and H(X,U X,) = H(M"),
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the sequence H,(U(2)/H) " H(U®@)/K,) @ H(U@)/K,) 2> H,(M?) is exact.
Since M® is simply connected, we have H,(M® = 0. Therefore g is
surjective. The principal isotropy subgroup H is not conjugate to 4,
for any k¥ = 1. In fact, assume that H is conjugate to 4, for some k =
1. Then H,(UQ2)/H) = Z and K, must be conjugate to one of the following
subgroups:

01

L1=G},_1U(l 0

01
)G;,_l L= GiLU ( )G;,_z ,
1 0

L, = Gék+1,2k+1 U <(1) (1)>G§k+1,2k+1 .
HU®2)/L)=42, H(U@®@)/L)=Z2Z®Z, and H,(U@2)/L;) = Z,. Thus
p: H(U2)/H) — H(U2)/K,) @ H,(U(2)/K,) is not surjective. This is a
contradiction. Hence H is a finite cyclic subgroup of U(2). We may
regard H as a subgroup of T°N K, N K,.

(i) Assume that either K, or K, is conjugate to O(2). We may
put K,=02). Then H(X,NX,) = H,(UQ)/H)= Z, since H=0(1), where
01) =C,,, by Lemma 1.6. Since the homomorphism p: H(U(2)/H)—
H,(UQ2)/K,) d H(U2)/K,) is surjective, we have H,(U(2)/K,) = 0. Hence
K, is not conjugate to O(2). By Lemma 1.6, we can regard K, as a
closed subgroup of 7% Let the identity component of K, be G., with
(@, ) =1. Then K, = G,,-H. By Lemma 1.5, G ,-C,,, = G., or Gi, .
Hence by Lemma 1.4, UQ2)/K, = L(a + b,1) or L(2(a + b),1). Since in
general H,(L(k, q)) = Z, and H,(U(2)/K,) =0, we have K, = G.,, with
a + b= +1. Without loss of generality, we may assume thatb =1 —a
and a is even. Hence if K, = O2), then H = O1) and K, = Gj,,_,, for
some integer k. Now the O(2)-action on the 2-disk D? whose principal
isotropy subgroup is conjugate to O(1) is necessarily the O(2)-action
induced by the canonical 2-dimensional real representation and by Lemma
1.5, the G}, _,-action on the 2-disk D? whose principal isotropy subgroup
is conjugate to O(l) is necessarily the G, , ..-action induced by the
following 1-dimensional complex representation

* 0
((0 r) C)MC

where t€C with [t =1 and {€C. For aec Wy,,(0(1)). Put
Mi(a) = U(2) o>(<2)D2 U (U@2) X DGy, 1o -

Since Wy, (0(1))=T?/0O(1), where O(1)=C,,,, we have Mja)=M[E,]) by
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Lemma 1.10. Now we shall show that M(E,]) is simply connected. Let
1. X,NX,— X, (s=1,2) be a natural inclusion, where X,= U(2) x D? and

X,=(U@)% D)/Glyr_w. Since the induced homomorphism i,.: 7,(X, N X,) =
7,(U(2)/0(1)) — 7 (X)) = 7, (U(2)/0(2)) is surjective and z,(X,) = 7 (L, 1)) =
0, we see that Mi([E;]) = X Uz, X, is simply connected by van Kampen’s
theorem. Next we study the U(2)-manifold X,. We have the following
commutative diagram:

[Al———14, 1]
U2)/0(1) — (U(2) x DG,k
’ .
S x St G S® x D*,

where

Ful4, ) = (A ((1) )(det A, (det A)ﬁc) ,

FIAD = (A ((1))<det A (det A)ﬁ) .

Define a U(2)-action on S® x D? by

o (23 o )

Then F, is a U(2)-equivariant diffeomorphism. Therefore if one of the
two singular isotropy subgroups of the U(2)-action ¢ is conjugate to
0(2), then the manifold M°® is U(2)-equivariantly diffeomorphic to

M =UQ2) x D*U,8° x D*.
0(2)
By Mayer-Vietoris homology sequence, we have H,(M}) = Z,. Hence M}

is diffeomorphic to the Wu-manifold SU(8)/SO8) by [2, Theorem 2.3].
Now put

SAB) = {Le SU8); 'L = L}
and let U(2) act on S4(3) by
ot 0 o™t 0
A X X
w00 2x(y 0):

where Ae U2), XeSA8) and 6 = det A. Then SU(3)/SO(3) admitting
the U(2)-action in Remark in Section 0 is U(2)-equivariantly diffeomorphic
to SA4(3) with the above U(2)-action by the map sending [U] to U‘U,
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where Ue SU(3) and [U]e SU(3)/SO(3). Denote the isotropy subgroup
at XeSA(3) by U2),. For XeSA(8), put

Aoy
X=¢r a v
y v B

If |x] =1, then U(2), is conjugate to O2). If 0 < |n| <1, then U(2),
is conjugate to C,,, = O1). If » =0, then U(2), is conjugate to G;, =
U(1). Hence M; = S4(8) = SU(3)/SO(3).

Denote ¢ by ¢, in case M° = M;. Next we show that if j # k, then
#; is not weakly equivariant to ¢,. Suppose that ¢, is weakly equivariant
to ¢,. Then there exists an automorphism a of U(2) and there exists a
diffeomorphism f: M} — M; such that the following diagram is com-
mutative:

UQ@) x M} mp
laxf lf
U@) x M2 mp

The automorphism a maps the center of U(2) into itself i.e., induces an

automorphism of G},. Therefore we have the following commutative
diagram:
St x Mj—¢L>
s s

)y
S x M,-2 M,

where +r;, 4, are the S'-actions induced by the restriction of the U(2)-
actions ¢;, ¢, to Gi, respectively and 8 is the automorphism of S* induced
by «a. The isotropy types of +r; are (Z), (Z,), (Z,;_,) and the isotropy
types of +, are (Z)), (Z,), (Z,,_,). Hence |45 — 1| = |4k —1|. Thus j =
k. q.e.d.

(ii) Suppose that neither K, nor K, is conjugate to O(2). By Lemma
1.6, we may assume that K,, K, T*. Let p, (s =1, 2) be a 2-dimensional
real representation such that the induced K,-action on D?* is transitive
on 0D* and the kernel of p, is equal to H. For aec Wy, (H), let M® be
U(2)-equivariantly diffeomorphic to

M: = M(a, o, p) =U®) x D*U,U®) x D*.

Now if » + ¢ # 0 (mod k), then the normalizer of H = C,,,, in U(2) is T">.
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If p+¢=0 (modk) then the normalizer of H=C,,, in U2) is N2
Hence Wy, (H) is connected or has two components. If a belongs to
the identity component of Wy (H), then by Corollary 1.10 and Lemma
1.11, M? is U(2)-equivariantly diffeomorphic to

U@2) X (T* X D*UpyT* X DY) .
T2 K K,

If Wyo(H) = N*H and a belongs to the component of [A], then H =
C,,_isi+1 = C; jt1,25+1 Tor some j. By the same corollary and lemma we have
M =U@2) x (N* x D*UgN? x DY,

N2 Ky K,

where A = <(1) (1)> e N2,

Now we shall prove the following lemma.
LEMMA 2.1. N2 X D*U3yN? x D* 1s N*-equivariantly diffeomorphic to
K Ky
N? X (I* X D*UznT* x D%,
72 K K;
where K;=\K,\ ' and K, acts on D* by 0;(h)=p,(N"'hN) (h € K;). Moreover
H=\H\"'CcK,CcT-

Proor. Identify N?/H with a(N2 D% by the map [A4]+—[A4, 1],
where K = K,, K, or K,;. Define an N2 diffeomorphism X: N? x D* —
N2>< D by (4, ) =[Ar", L]. Then (N? >< D?, N*H) is N*-equivariantly
dlﬁ'eomorphlc to (NV? x D* N*H) by X, Where (X|N¥H)(JA) = [AN1].
Hence X induces an N2-d1ﬂ'eomorph1sm of N2 >< D*UpmN? X D* onto
N? X D* U (5, N* >< D*. Thus N X D*UyN? X D2 is N’-equivariantly
dlffeomorphlc to N2 x (1" >< D? U[E]T2 >< D?) by Lemma 1.11. g.e.d.

By this lemma, U(2) >< (N? >< D? UmN2 >< D? is U(2)-equivariantly
diffeomorphic to U(2) X (N2 X% (T2 >< D* U g, T2 x D?) = U(2) x (T x D?
Uten T* X D?). Thus 1f nelther K, nor K, is conJugate to 0(2), then

L9}

M* = M(ex, o, 0:) = U(2) >§ (T* >< D? Uz, TZ;< D?) .
2

Now we investigate L = T X D* Uz, T? X D®,  Since K, K, are the 1-

dimensional closed subgroups ‘of T2 we have K, =G4y K, = Gk y for
some A, B, X, Ye Z with A*+ B*+ 0, X*+4Y*+#0. Then we can put

ol D)= ol )=
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where C, D and U, V must satisfy AD — BC 0 and XV —YU # 0,
respectively, since the K,-action on 0D? induced by p, is transitive.
Define the T*-action g, on S* x D*? by

ﬁl (((E) g)! (z! w)) = (E—BnAz’ E_Dvcw)

~((¢ O i ,
(O
Moreover, define the map g, of T? X D? onto S* x D* by
s (1[50 — (p-Byd p-DpC
pl([(o 77), c]) = (74, £07°0)
~([(& O Y% v
102({:(0 7]), CJ) = (7%, &) .

Then (T* >< D* T*H) is T*-equivariantly diffeomorphic to (S* x D? S' X

SY by ,08, ‘Where
1 0 77)) - 5 77 ’ E 77 )

o, 9)-
irm((y 3)-o{ 1) -emiem

Furthermore, we have the following commutative diagram

Il
=3

=

T° % D*— TYH—23 , pyg— 12 % D
K, 1dent1ty K,
lPl J{Pl[ T*/H J'P2| T*/H lﬂz

S‘><D2:-S‘><S‘—f—>Sl><S‘C,S1><D2

where f = (0,| T*/H)-(0,| T*/H)™' is a T*-equivariant diffeomorphism. The
map f is an automorphism of the topological group S* x S*. Hence for
some a, b, ¢, d€ Z with ad — bc = +1, we have f(z, w) = (z*w®, z°w?). On
the other hand, f(&74, &77°) = PP & "n*, &%) = (795, &7'y") for
each ¢, neC with |£] = 1and || = 1. Hence g7¥9¥ = g-Bo-DipetC =¥yl —
g-Be-Dipdercd for arbitrary & neC with |£] =1, |p| = 1. Therefore

X U A C\ja ¢

(Y V) - <B D)(b d)‘
Moreover L = T* >< D* U, T? >< D? is T?-equivariantly diffeomorphic to
St x D*U,S* x D2 By Lemma 1.7, as a T?*-manifold we have S* x D*?
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UsS' x D* = L(b, d), where the T*-action on L(b, d) is the same action
that is defined in Part (III) of the main theorem desecribed in the intro-
duction. Hence 7% x D* Uy T >< D?* = L(b, d) as a T*manifold. Thus

as a U(2)-manifold M"’ = M(a, o, pz) =U(2) >< L(b, d) for some a, b, ¢, d, A,

B,C, De Z with ad — b¢c = =1 and AD — BC # 0. Moreover by Lemma

1.8, we have (A + B,b)=1 and (A — B, C — D) =1, since M°= M; =

M(a, p, 0,) = U2) X L(b, d) is simply connected and the U(2)-action on
T

M? is effective. Then H=G ;:NGt, = Gxry NGyy = C, .41 4p-5cy Where

(,,. _7; 1) = <§ g)(g) for some «, 3€Z. Therefore in this case M° is

U(2)-equivariantly diffeomorphic to the U(2)-manifold

o bz o)t
Myl s p) =U@ % L6

of Part (III) with AD — BC = 0 in the main theorem.

3. The proof when ¢ admits principal orbits of codimension 2.
Then the principal isotropy subgroup of ¢ is 1-dimensional. We denote
the type of the principal isotropy subgroup by (H). Then we may regard
H as G ., for some rc€Z by Lemma 1.1.

(8.1) Suppose that U(2) appears as an isotropy subgroup. We
investigate 5-dimensional real representations of U(2). Let V be the
5-dimensional real vector space of all symmetric 3 X 3 real matrices with
trace 0. Let 7 be the 5-dimensional real representation of SO(3) on V
defined by 7(4, X) = AXA™ for AecS0O@B), XeV. We denote by A,
the canonical 2-dimensional complex representation of U(2) or SU(2).
Denote the determinant representation of U(2) by \,. Let p be the
natural homomorphism of U(2) onto SO(3) = U(2)/G},. There are only the
following three possibilities of irreducible real representations of SU(2)
with dimension less than six: p,: SU(2) —» SUQ2)/{£ E;} = SO(3), r(\):
SU(2) — SO4), o, SU2) — SO(5), where p, is the restriction of the above
e to SU2), r(\) is the underlying real representation of the complex
representation A, and ¢, = 700, (composition of 7 and o, as maps). These
representations can be uniquely extended, respectively, to the following
representations: p:U(2) — SO3), rOW\):U2) — SO04), o0:U(2) — SO(5),
where »(MAT) is the underlying real representation of the complex
representation M A(A) = A(det A)™ for Ae U(2) and o = 7op. Thus the
following are all the 5-dimensional real representations of U(2): p +
r(AD):U(2) — SO(3) x SO2) < O(5), r(uA) + 1:U(2) — SO4) x SO(1) C O(5),
o: U2) — SO(5) c O(8), where r(\}) is the underlying real representation



16 H. OIKE

of the complex representation A*(A) = (det A)* for Ae U(2) and 1 is the
trivial 1-dimensional real representation. Hence the 5-dimensional real
representation of U(2) which induces an effective action with principal
orbits of codimension 2 is *(AA!) + 1 for m = 0, —1. Therefore if U(2)
appears as an isotropy subgroup, then such action is of two isotropy types
(G misy, U2) for m = 0, —1. We denote the set of fixed points of this
action by F(U(2), M® or F. It follows from [3, IV 8.6. Theorem] that
the orbit space M* of this action is a 2-disk D? and F(U(2), M°) = ¢D* =
S!. Denote by U the U(2)-invariant closed tubular neighborhood of F = S*
in M® and let X be the closure of M® —U in M® Then X is also U(2)-
invariant. Since U(2)/G% .+ = S® for m =0, —1 and Wy )(Gh ney) = SY
we have

X = S3 X F(G;n,'m‘i-l; X)
s1

by [7, Lemma 4.2], where F(Ghn+, X) = {x€X; Gh .t CU(2),} and
Wy (Ghmir) = S* acts freely on F(G} .+, X). Moreover we have the
S’-bundle X — X/U(2) with a U(2)-action. Now the orbit space X/U(2)
is the 2-dimensional disk D®. Thus X is U(2)-equivariantly diffeomorphic
to S® x D% Moreover, 0X is U(2)-equivariantly diffeomorphic to S® x S,
hence so is dU. On the other hand, U — F = S* is a D*bundle with a
U(2)-action. Thus U is U(2)-equivariantly diffeomorphic to D* x S
Consequently, there exists a U(2)-equivariant diffeomorphism f: S®*xS*'—
S® x S' so that M°® is U(2)-equivariantly diffeomorphic to the mani-
fold M(f) = D* X S*U;S® x D*. Now for such f there exist a smooth
map «:S'— S' and a diffeomorphism B: S*— S*' such that f(q, {) =
(qa(©), B)) for (g, ) e S® x S'. Extend f to the U(2)-equivariant diffeo-
morphism F: D* X S*— D* x S* defined by Fl(tq, {) = (tqa(Q), ) (0 =
t <1). Then F induces a U(2)-equivariant diffeomorphism S°®= D* x S!
UiwS®* X D* > M(f) = D* x 8*U;S® X D?, where id is the identity map
of S® x S*. Consequently, M° is U(2)-equivariantly diffeomorphic to S°
of (I) with £ = 0 in the main theorem.

(8.2) G} does not appear as an isotropy subgroup of ¢. Indeed,
the identity component of a 1-dimensional closed subgroup of G} is
Gi _..

(8.3) N? does not appear as an isotropy subgroup of ¢. Indeed,
suppose that N* is an isotropy subgroup and p: N*— O(3) is the slice
representation of o. Then the identity component of its principal iso-
tropy subgroup is Gi_,. This is a contradiction.

(3.4) Suppose that T appears as an isotropy subgroup of ¢. For
reZ, let {,: T*— S* be a complex representation defined by
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E 0 — ETHlp—r
Q«On»”Ev

and let 7({,) be the real representation induced by {,. The slice repre-
sentation of T whose principal isotropy subgroup is G:,.; is necessarily
o, =r¢,) + 1: T*— S0@) x SO(1) cO0(3), where 1 is the 1-dimensional
trivial representation. The isotropy type of the T*-action induced by
the slice representation ¢, is (G} .+, T%. Thus if T*® appears as an isotropy
subgroup of ¢, then by (3.1), (3.2), (3.8) and this fact, ¢ is of two isotropy
types (G:,,.,, T? for some re Z.

Denote by M., the set of all points whose isotropy groups are
conjugate to T* Since the isotropy type (7% is maximal, Mg is a
U(2)-invariant closed submanifold of M°. By [3, IV 8.6 Theorem], the
orbit spaces M®/ U(2) and M2/U(2) are homeomorphic to D? and 0D* = S,
respectively.

Denote by F(T? M,:) or F the set of all points of M, whose
isotropy subgroup contains 7%. We identify U(2)/T* with S* as U(2)-
spaces. By [7, Lemma 4.2] we have M = U(2) ;<2F = (U(2)/T? W>(§2)F,
where W(T?) = Wyo(T? = N?/T? and W(T? acts freely on F. We may
identify W(T?% with S° = {#1}. S° acts on S? by (%1, a) — *+a, where
acS? and +1¢8°. Thus My = S* S>§ F as a U(2)-manifold. Moreover,
F/S° = M/U(2) = S*. Since S° acts freely on F, we see that FF— S*
is a principal S°bundle over S*. Hence F' = S! or S* X S".

Denote the normal bundle of My, in M?® by v. First we show that
v has a U(2)-invariant complex structure, so that v is an orientable
real plane bundle with a U(2)-action. Next we show that FF = S'x S°
by means of the Gysin sequence. Consider the following commutative
diagram:

ft= g —v

L]

FlﬁmﬁzwméF

where j is the inclusion map and ¢ = j*v is the induced bundle. Then

u is a real plane bundle with N*action and v = U(2) X M Thus if 2 has
N

an N*invariant complex structure, then it naturally induces a U(2)-

invariant complex structure on v. Now we introduce a canonical complex

structure on p.
Since the T*-action which is the restriction of the N’-action on g
leaves F' fixed, each element of 7 induces an automorphism of every
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fiber of ¢. In particular, consider the G} -action which is the restriction
of such a T*-action. Since the above N®action is induced by the U(2)-
action ¢ and the isotropy type of ¢ is (Gi,., T?, such a G! -action is
free on the associated sphere bundle S(z) of y¢. Thus we can define the
complex structure on ¢ by means of the action of v —1E,eG!,. Then
since G}, is the center of U(2), such a complex structure is compatible
with the N*-action on g, i.e., N*-invariant. Hence v has a U(2)-invariant
complex structure and the normal bundle v is an orientable plane bundle.
In order to prove that FF = S* x S° let us assume F = S*' and derive a
contradiction. Then in the principal bundle F' = St %St the projection
p is the map p(®) =2* for ze FF = S'. Consider the bundle My =
S >< F — S*/S° = P, (real projective plane). This is the sphere bundle
assoclated to the complex line bundle & = Szx C — P,, where the S°action
S°xC — C is defined by (+1, 2)—~ +2. Since the bundle & can be regarded
as a real orientable plane bundle, we can apply the Gysin sequence of
the sphere bundle M2 — P, = S%S,. Thus the following sequence is
exact:
0 = H(P,) — H\(P,) - Hy(M2) — Hy(P,) = 0.

Hence H,(M;») = H,(P,) = Z,. Now denote by U a U(2)-invariant closed
tubular neighborhood of M., in M® and let E be the closure of M* —U
in M®. Then E is also U(2)-invariant. Moreover, we have the bundle
E — E/U(2) whose typical fiber is U(2)/G:,,.+,. The orbit space E/U(2) is
diffeomorphic to the 2-disk D*. By Lemma 1.4, U(2)/G:,,., = L@2r + 1, 1).
Thus E = L(2r + 1, 1) x D>. Hence oU =0E = L2r +1,1) x S*. On
the other hand, the bundle 0U — My, can be regarded as the sphere
bundle associated with the normal bundle v of M, in M® Since it has
been already proved that v is orientable, we can apply the Gysin sequence
of the above sphere bundle and get the exact sequence

0= H4(M<T2)) - Hz(M(TZ)) — Hy(o U) .

Here H,(M ) = Z,, H,0U) = Hy(L@2r + 1,1) x S*) = Z. This is a con-
tradiction. Therefore F + S'. Hence F = S° x S'. Since My =
(U(2)/T2)W>(<T2)F = §* S>§ F as a U(2)-space, M = (U@Q2)/T?) x S8* = 8* x S*
as a U(2)-space.

In the following commutative diagram of bundles

p—

L,

J
F——‘_’ M(T2)
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we have ¢ = j*v and v =U(2) x ¢. Since an orientable plane bundle
N2

over S' is trivial, g = F x C= (8" %x §*) X C as a bundle with an N*-
action. Thus v =U(2) X (Fx C) as a bundle with a U(2)-action. The
N

T*-action, which is the restriction of such a U(2)-action, induces a T*-
action on the fiber C. Since the U(2)-action on the associated D*bundle
of v coincides with the U(2)-action on the U(2)-invariant closed tubular
neighborhood U by ¢, the principal isotropy type of such T*-action on C
is (G:,.+;). Now we consider the plane bundle z: U(2) ;<2 (S* X C) > M2y =

(UQ)]T*) x §* = 8 x §* with a U(2)-action, where T? acts on S*' X C by

0
((g B)’ (z, C)) —(z, ap~"C) and n([A4, (7, O] = (4], 7) .

Define a map h:U(2) x (S* x C) —-U(2) x (8° x S* x C) by r(A4, (z, D) =
72 N2
[4, 1, 7,0)]. Then & is a U(2)-equivariant isomorphism of vector bundles
with U(2)-actions. We consider the plane bundle z: L(2r1+, 1) X (S*x C) —
st

S? x §8' = M, where S acts on L@2r +1,1) and S* x C by

-

S R pp—
w w

respectively. U(2) acts on L(2r + 1, 1) by

(L)Ll = L a(QJaeearr]

and the above projection 7 is defined by

A en)= (e ) )

2Im Zw)
U2) X (S* x C) is U(2)-equivariantly isomorphic to L2+ + 1, 1) X (S* x C)
T S
by the map

1
4, & 7] [A[O] G m] .

Thus we may regard L2r + 1,1) >< (S* x C) as the normal bundle v.
Hence U = L(2r +1, 1) >< (S* x D%. On the other hand, £ = L(2r + 1, 1) X

=L2r+1,1) >< (D2 >< SY, where S* acts on D? x S*' by (7, (&, ) —
(t{:, ) O=t= 1 |£] = |n»| =1). Now as U(2)-manifolds
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aL2r +1,1) Ef (St x DY) =o(L2r + 1, 1) X (D?* x SY)
S
=L@2r+1,1) x S*.

Denote by M(f) = L2r +1,1) X (S*x DY)U;L@2r + 1, 1) X (D? x SY
S S
the manifold which we obtain from L2r + 1, 1) X (S*x D% and L(2r +1,
S
1) §<1 (D? x S') by identifying their boundaries under a U(2)-equivariant

diffeomorphism f:L(2r +1,1) x S*— L@2r +1,1) x S'. For any U(2)-
equivariant diffeomorphism f: L(2r + 1,1) x S* - L@2r+1,1) x S*, M(f)
is U(2)-equivariantly diffeomorphic to M(id) where id is the identity map
of L2r + 1,1) x S*. In fact, for every U(2)-equivariant diffeomorphism
f of L(2r 4+ 1, 1) x S*, there exist a smooth map a: S* — L(2r + 1, 1) and
a diffeomorphism B: S* — S* such that

1
f(A'[ 0}, C) = (A-a(Q), BKQ) ,

where A e U(2), [(l)]eL(Zr +1,1) and {eS'. By means of f we define
a U(2)-equivariant diffeomorphism F: L(2» + 1, 1) x (S* x D* — L(2» + 1,
s1
1) x (S* x D* by
sl

1

where Ac U(2),0=t=<1and|&| =1=|7|. F induces a U(2)-equivariant
diffeomorphism of M(id) onto M(f).

Therefore for any U(2)-equivariant diffeomorphism f of L(2» + 1, 1) X

S, M(f) is U(2)-equivariantly diffeomorphic to L(2r + 1, 1) ;<1 S3. Conse-

quently, M®*=U U E is U(2)-equivariantly diffeomorphic to L(2» + 1, 1) X

Sl

S2. Now suppose that a, b, ¢, d, A, B, C, De Z satisfy the condition of

(III) and AD—BC=0=(A—-B(X—-Y). Thenb==+1. If X—-Y =0

(resp. A — B=0), then X =Y = 0 (resp. A = B = 0) and for some rcZ

el o)

Hence L(b, d) is T*-equivariantly diffeomorphic to S® admitting the

following T*-action
, — .
0 7/ \w wETHY="
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Consequently under this situation

a ¢\ (A C
M{(b d), (B D)} =v@ s

On the other hand, U(2) X S?® is U(2)-equivariantly diffeomorphic to
T
L2r +1,1) X S® by
S

4, ] — [A ( (1))<det Ay, q] ,

where A ¢ U(2)and q € S®. Therefore M®is U(2)-equivariantly diffeomorphic
to the U(2)-manifold

a ¢\ (A C
M{(b d), (B D):U(2);<2L(b, d)

of (III) with AD — BC=0= (A — B)(X —Y) for somea,b, ¢, d, A, B, C,
DeZ.

(8.5) Suppose that each isotropy subgroup of ¢ is 1-dimensional,
that is, for some 7 the identity component of each isotropy subgroup
is conjugate to G.,;,. Then it follows from [7, Lemma 4.2] that

M? = (U@) X F(G i1 M) Nper(Grpi) =U@) X F(G 0 M)
= (U@G ) X F(Gr sy MD(T?[GY ) = L21 + 1, 1) X F(G sy MF)

where F(G} ., M°) is the closed 3-dimensional submanifold of all points
of M® whose isotropy subgroups contain G: .., S* acts on L2r + 1, 1) by

(b =LEf )

on F(G!,., M® almost freely (i.e., each isotropy subgroup is discrete)
and U(2) acts on L(2r + 1, 1) by

2 o]

Now we investigate F® = F(G. .., M®. The above S*-action on F" is
without fixed points and effective since each principal isotropy subgroup
of ¢ is conjugate to G},:,. The orbit space M°/U(2) is homeomorphic to
the orbit space F?/S'. Since M® is simply connected, by [3, II 6.3.
Corollary] M®/U(2) = F?*/S* is a simply connected compact topological 2-
manifold. Hence it is D? or S2. It follows from [3, IV 3.12. Theorem
and IV 8.3. Proposition] that F?/S* = M®/U(2) = S®. Therefore by [6,
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Theorems 2 and 4], F*® is S'-equivariantly diffeomorphic to a 3-dimensional
lens space admitting an effective S*-action with at most two exceptional
orbits. Let Z,, Z,, (m,# 0, m, + 0) be the two exceptional isotropy
subgroups, where Z, = {weC; o™ =1} (s =1,2). For each exceptional
orbit §'/Z, , s = 1, 2, there exists an invariant closed tubular neighborhood
U, such that F°=U,UU,, U NU,=0U,=0U, Moreover U, is a compact
connected smooth manifold on which S*' acts smoothly and is S-equi-
variantly diffeomorphic to a twisted product S* x D? where Z,, acts on

st
2-disk D? by o,(w, w)=w™w ((m,, n,)=1). Define an S*-action &, on S*x D?
by

Gz, (2, w)) = (t™2, T"w) .

Moreover, define the map 4, of S* x D? onto S* x D? by

st

a,([& 7)) = (&ms, &™) .

Then o, is an S'-equivariant diffeomorphism. Henece (U, o0U,) is S'-
equivariantly diffeomorphic to (S* X D? S* x S'). Moreover the manifold
F? is S*-equivariantly diffeomorphic to S*x D*U ;S*x D* where f: S'XS'—
S* x S* is an S'-equivariant diffeomorphism such that the following dia-
gram is commutative:

St (S x 8 2L 8t x St
e
St x (St x S -2, 8t x St

Now we must study the map f. Define another S'-action p on S* x S
by o(z, (2, w)) = (tz, w). Then every S'-equivariant diffeomorphism of
St x S* admitting the S'-action p onto itself is S'-diffeotopic to the map
(z, w) — (zw*, w’) for some k¥ and 0 = +1. Define a diffeomorphism &,:
Stx St —8S'x St by 7,(z, w) = (z"w", 2"ws), where m,q, — n,p, = 1.
Then G,°(ls X G,) = 0,00 and f, = 0,0 fod;" is an S'-equivariant diffeo-
morphism of S* X S* admitting the S*-action p onto itself. Hence for
some k, f, is S'-diffeotopic to the S'-equivariant diffeomorphism g,(z, w) =
(zw*, w’), where 6 = 1. Therefore f is S'-diffeotopic to the S'-equi-
variant diffeomorphism g with &,0(1gz X ¢g) = go &, defined by

9(z, w) = (z*w’, z°w?) ,

I

where (g’ §> (ZT‘ 29_1(]10 g)(gﬁz Zi) and the following diagram is com-

mutative
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St x Sligg—“s1 x St

S'x D*DS x 8 1Y 51 81 St x Dt

By Lemma 1.9, S' X D*U,S* x D* is S'-equivariantly diffeomorphic to
S* x D*U,S' x D Therefore F*° is the 3-dimensional lens space L(b, d)
admitting the following S*-action:

(C [ZDH[ZMZ} b£0,2=¢ ad—be =0
’ w Wa—m , =6, _C_‘)

w w™e
(AC__(?‘)(m ) (X Uy
B D) - 'r—l—l 1y i) » Y V) - '—(/'__'_1) m2, n?)'

Then
= ) , =

and the above S'-action on L(b, d) induces the T*-action on L(b, d) in
Part (III) of the main theorem described in the introduction. Therefore
if each isotropy subgroup of ¢ is of dimension 1, then M°® is U(2)-equi-
variantly diffeomorphic to

s 3 o) -vmzmo

Put

b d)°’\B D
for some a,b,¢ d, A, B, C, De Z with ad — bc = *1, AD— BC =0,
A—B=+#0 and (A— B)a + (C— D) # 0. Moreover by Lemma 1.8,
(A+ B,b)=1and (A — B,C — D) =1, since M* =U(2) X L(b, d) is simply
T
connected and the U(2)-action on M°® is effective. Then H = G: ,., where
A C A—B C-— Dl _1
D, q Yo q:

for some p,, q,€ Z. Moreover there are at most two non-principal orbits
and they are exceptional orbits. Consequently in this case, the U(2)-
manifold M® is U(2)-equivariantly diffeomorphic to the U(2)-manifold of
(III) with AD — BC=0+# (A — B)(X —Y) for some a,b,cd, A, B,C,
DeZ.

r=—

’
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H. OIKE

Here we complete the proof of the main theorem.
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