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Introduction. By Artin [2] a normal (compact) Moishezon surface X
is protective if it has only rational singularities. The purpose of this
note is to prove a kahlerian analogue of this result. We call a normal
isolated surface singularity (X, x) nondegenerate if for some (and hence
for any) resolution / : (X, A)->{X, x){A = f~\x)) the natural homomorphism
Rιf*R —> Rιf^χ is surjective. In particular a rational singularity is
nondegenerate. Then our result is as follows.

THEOREM. Let X be a normal compact complex surface in & with
only nondegenerate isolated singularities. Then X is Kahler.

Recall that in general a compact complex space X is said to be in
^ if it is a meromorphic image of a compact Kahler manifold [9]. In
our case of a surface, it turns out, however, that this is equivalent to
the condition that any nonsingular model of X is Kahler (Proposition 2).
On the other hand, in general a complex space X is said to be Kahler
if there exists an open covering {Uμ} of X and a system of C°° strictly
plurisubharmonic functions {uμ} with each uμ defined on Uμ such that
uμ — uv is pluriharmonic on Uμ Π Uv (cf. [19], [9]). In this case ddcuμ =
ddcuv on Uμ Π Uy (dc = λ/^ϊφ — d) where d = d + 3) and hence we get a
globally defined real closed (1, l)-form a on X which is called a Kahler
form on X.

In Section 1 we shall prove a lemma on extension of a strictly
plurisubharmonic function across an isolated singular point (Lemma 1) as
well as draw some of its consequences (including Proposition 2 mentioned
above). Using this lemma, we shall derive in Section 2 a necessary and
sufficient condition for a normal compact complex surface to be Kahler
in terms of its resolution (Proposition 4); indeed Theorem above is an
immediate consequence of this proposition. Next in Section 3 we shall
give some characterization of nondegenerate singularities. In particular,
it turns out at once that nondegenerate singularities are nothing but
pararational singularities of Brenton [6]. Finally in Section 4 we shall
note that every small deformation of a normal compact Kahler surface
with only nondegenerate singularities is again Kahler by merely checking
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the condition of Moishezon [19], in which the study of singular Kahler
surfaces was initiated.

1. Extension of a strictly plurisubharmonic function. (1.1) Let Y
be a complex space. Let u:Y-^R\J{ — °°} be a map. Then u is said
to be plurisubharmonic if for any point y e Y there exist a neighborhood
Usy, an embedding j:U —>G of U into a domain G in CN and a plurisub-
harmonic function uG on G such that j*uG = u\π. On the other hand, u is
said to be weakly plurisubharmonic if for any holomorphic map h: D —*Y
of the unit disc D: = {teC; | t | < 1} into Γ, its pull-back /ι*u is either
subharmonic or = — oo. A plurisubharmonic function clearly is weakly
plurisubharmonic. Conversely, it was recently shown by Fornaess-
Narasimhan [7] that every weakly plurisubharmonic function is plurisub-
harmonic. Using this result we shall show the following lemma, which
is indeed a main ingredient of our proof of Theorem.

LEMMA 1. Let (X, x) be a normal isolated singularity with dim(JSΓ, x)^
2. Let u be a strictly plurisubharmonic function on X — x. Then for
any sufficiently small neighborhood V of x there exists a strictly plurisub-
harmonic function v on X such that u — v on X — V.

PROOF. By Grauert-Remmert [11] u extends to a unique weakly
plurisubharmonic function on X which we shall still denote by the same
letter u. Then by the result of Fornaess-Narasimhan cited above there
exists a neighborhood U of x, an embedding j : U -> B of U into an open
ball B in CN = CN(z) with center j(x) and plurisubharmonic function ύ
on B such that j*ύ = u. We may assume that j(x) is the origin of CN.
Let B±cB be another concentric ball. Then it suffices to show the lemma
for V = B^ X where we identify X with j(X). Take another concentric
ball B2cBi. Let λ be a nonnegative C°° function on CN with support
contained in Bλ such that λ(z) is a positive constant on J52, λ depends

only on \z\ and \ X(z)dV(z) = 1, where dV(z) is the standard volume
Jew

form on CN. Then as in Miyaoka [17] we set

= t u(z - ε\(z)ζ)X{ζ)dV(Z)

for any real number ε > 0. Then for any sufficiently small ε > 0, we
see that uε = u on B — Bly uε\π_B2m is strictly plurisubharmonic and uε

is plurisubharmonic on B2 (cf. [17]). Then for any such ε we set

vδ(z) = uε(z) + d\z\2X(z) , δ > 0 .

Then vδ(z) = u(z) on B — Bt and vδ(z) is strictly plurisubharmonic on B2.
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Moreover it is easy to see that if δ is sufficiently small, vδ{z)\u_Bl[λϋ also
is strictly plurisubharmonic. For such a 3 we can define a C°° strictly
plurisubharmonic function v on X by setting v = u on X — V and
v — vδ\v on V. q.e.d.

COROLLARY. Let (X, x) be as above. Let a be a Kahler form on
X — x. Suppose that a is written on X — x in the form a — ddcu for
some C°° function u on X — x. Then for any sufficiently small neigh-
borhood V of x there exists a Kahler form a! on X such that a' = a on
X- V.

PROOF. Since a is a Kahler form, u is strictly plurisubharmonic.
Hence we have only to set a! — ddcv where v is as in Lemma 1. q.e.d.

(1.2) As an immediate application of the above corollary we shall
show the following:

PROPOSITION 1. Let X be an irreducible normal complex space with
dim X ^ 2. Suppose that X has only isolated quotient singularities. Let
U be a smooth Zariski open subset of X such that dim(X — U) — 0. Let
a be a Kahler form on U. Then for any sufficiently small neighborhood
V of X — U in X we can find a Kahler form a on X such that ά\π_uv,v =
ct\u-ur\v In particular, X is a Kahler space, if so is U.

EXAMPLE. Let X be a ifahler manifold and G a finite group of
biholomorphic automorphisms of X. Suppose that the set of those points
which are fixed by some elements of G is isolated. Then X/G is a Kahler
space.

Now Proposition 1 is clearly a consequence of the following local
version of it.

LEMMA 2. Let (X, x) be an isolated quotient singurality with
dim(X, x) ^ 2. Let a be a Kahler form on X — x. Then for any suffici-
ently small neighborhood V of x there eixsts a Kahler form a! on X
such that a! = a on X — V.

PROOF. Let n = dim(X, x). We can find a neighborhood D of the
origin o of CN and a finite subgroup G Q GL(nf C) leaving D invariant
such that (1) X = D/G for a suitable representative X of (X, x) and (2)
the natural map π: D -> X is unramified over X': = X — x (cf. Prill [20]).
Let π': Dr —> X' be the induced map, where Dr = D — {o}. Let a = π'*a.
Then a is a G-invariant Kahler form on D'. Since n ^ 2, there exists
a C°° strictly plurisubharmonic function u on Dr such that a — ddcu by
Shiffman [22]. Replacing u by (l/|G|)Σ*eσ0*# we may assume that u
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also is G-invariant. Then u is a pull-back of a G°° function u on X'
and a = ddcu on X'. The lemma then follows from Corollary to
Lemma 1. q.e.d.

(1.3) As an application of Proposition 1 we shall show that any-
compact smooth analytic surface X in ^ is Kahler. The following special
case is essential:

LEMMA 3. Let X be a compact smooth analytic surface which is
bimeromorphic to a KZ surface of algebraic dimension zero. Then X is
Kahler if Xe&.

PROOF. We may assume that X is minimal; otherwise X is obtained
by a blowing up of the minimal one, say Xo, and hence is Kahler if Xo

is (cf. [9]). Then X contains only finite number of irreducible curves
Cif i = 1, , m, and C, are nonsingular rational curves with self-
intersection number C^C* = — 2 (cf. [13]). Moreover the intersection
matrix {C^Cβ) is negative definite. Hence there is a contraction / : X->
X' of C: = UΓ=i Ct to a finite number of rational double points pu , p8

of Xf. In particular, Xf has only isolated quotient singularities. We
show that Xf is a Kahler space. Since / is protective, this would
show that X is Kahler (cf. [9]). Now by our assumption, there exists a
compact Kahler manifold Y and a surjective holomorphic map h:Y-*X.
Let hf = fh. Since X' contains no curve, ti must be smooth over a
a Zariski open subset U £ Xr whose complement consists of a finite
number of points. Let a be a Kahler form on Y. By integration along
the fibers, h'*ar+1 defines a Kahler form a! on U, where r = dim h. The
result then follows from Proposition 1. (Since a rational singularity is
nondegenerate, we can also use Proposition 3 below instead of Proposition
1.) q.e.d.

REMARK 1. The proof actually shows that for any tubular neigh-
borhood of C in X there exists a Kahler form a on X such that a =
h*ar+1 on its complement in the notation above.

PROPOSITION 2. Let X be a compact complex manifold of dimension
2. Suppose that Xe^. Then X is Kahler.

PROOF. Since bλ(X) is even, we have only to consider the case where
X is a K3 surface of algebraic dimension zero (cf. Miyaoka [18]). In
this case X is Kahler by Lemma 3. q.e.d.

2. Extension of a Kahler form. (2.0) First we shall fix some
notations, terminologies and conventions.
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(a) Let (X, x) be a normal isolated singularity. Let / : (X, A) ->
(X, x) be a resolution of (X, x) where A = f~\x). We usually identify
X with any tubular neighborhood of A in X; in this note a tubular
neighborhood shall mean a relatively compact open neighborhood U with
C°° strongly pseudoconvex boundary such that A is a strong deformation
retract of U. (Note that X is then necessarily Stein.) In particular,
the restriction maps H\X9 R) —• H'(A9 R) are isomorphic for all ί Ξ> 0,
and ίί^X, ^ ) = (R*/*<?*). for all i > 0. Thus (when dim(X, x) = 2),
(X, sc) is nondegenerate if and only if the natural map e: H2(X, R) —>
H\X, #2) is surjective.

Take a local embedding (X, x) —> (C^, 0). Then we can always take
U as above in such a way that H\U - A, R) = H\U - f-\Bt), Λ) =
H*(K8, R) for all sufficiently small ε > 0, where Eε is the closed ball of
radius ε with center 0 and Kε is the boundary of Bε. In fact, we may
set U = f~\Bεo) for some ε0 > 0, where Bεo is the interior of BεQ.

(b) Let Y be a reduced complex space. We denote by &γ the sheaf
of germs of pluriharmonic functions on Y. Then we have the short
exact sequence of abelian groups on Y;

(1) 0 - > J R - ^ r ^ ^ r - > 0 ,

where c is the natural inclusion and μ(g) = —(imaginary part of g).
(When Y is smooth, this is well-known and the general case follows from
the smooth case readily.) From this we get the long exact sequence of
cohomology

( 2 ) -*H\Y,R)->H\Y,έ?γ)->H\Y,^γ)^HχY,R).

On the other hand, let μ*: 0$ -» &>γ be defined by μ*(g) = -(l/2π)log\g\.
Let c: H\Y, ^Y) -> H\Y, &*γ) be the resulting homomorphism. Then for
any line boundle L on Y we call c(L) the refined Chern class of L. One
checks readily that δc(L) = c(L), where c{L) is the real Chern class of L.

(c) Let Y be as in (b). Let a = {ddcuμ} be a Kahler form on F with
respect to an open covering IX = {Uμ} as in the introduction. Then a
defines a class a e H\ Y, &τ) which is the image of the class {uμ — uu) e
H\U, 3?γ) under the natural homomorphism H\U, &*γ) -> H\Y, &τ). We
call a the Kahler class defined by a.

When Y is nonsingular, we have the natural isomorphism H\Yf &*γ) =
Z1Λ/ddcEf where Z1*1 is the real vector space of real d-closed C°°(l, 1)-
forms on Y and E is that of real C°° functions on Y (cf. [22]). Under
this isomorphism the Kahler class a above corresponds precisely to the
Kahler form a considered modulo ddcE.
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(2.1) Let (X, x) be a normal isolated surface singularity. Let
/ : (X, A) —• (X, x) be a resolution. For a Kahler form a on X we shall
consider the following condition (E):

(E) Regard a as a Kahler form on X — x by restriction to I - A
followed by the isomorphism X — A = X — x. Then for any sufficiently
small neighborhood V of x in X there exists a Kahler form α' on X such
that α' = a on X — V (i.e., the conclusion of Corollary to Lemma 1 holds
true for α).

On the other hand, let Alf , Am be the irreducible components of
A. Then we shall denote by H(A) the (real) linear subspace of H\X, &%)
generated by the refined Chern classes c([AJ) of [AJ, where [A^\ is the
line bundle defined by At. Further, recall the exact sequence (2) for
Y = X;

(3) -> H\X, R) Λ H\X, &ϊ) -1 H\X, &ϊ) -> H\X, R) .

PROPOSITION 3. Let (X, x) be a normal isolated surface singularity.
Let f: (X, A) —* (X, x) be a resolution. Then:

(1) we have the natural direct sum decomposition H\X, &*χ) —
H(A) 0 Im d, where Im denotes the image, and

(2) for any Kahler form a on X, the following conditions are
equivalent)

(a) a satisfies the condition (E) above, and
(b) the Kahler class a e H\X, &%) defined by a belongs to H(A).

PROOF. (1) We consider the following commutative diagram of exact
sequences

i ' l ' Ί Ύ
H\X, R) * ml, &ϊ) —> H\X, &ϊ) —•+ H*(X, R) > H\X, <?ϊ)

e a . o

Γ
H\X - A, &ϊ)

where the horizontal sequences come from (1) for X and the vertical
lines are part of the local cohomology exact sequences. We first show
that a is isomorphic. First, we have the natural isomorphisms H\(X9 R) =
(BT=iH2

Ai(X, R) ^ ©ΓLi-ff0^., R) ^ R®m and H2(X, R) ^ H2(A, R) =
φ?=iH2(Ai9 R) = R®m, where Au , Am are the irreducible components of
A. Then a is given by; a(yl9 , ym) = ( , Σ?=i Vt(At-As\ •) where
(Ai Aj) is the intersection number of At and As. Indeed, the image of
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(0, . . , 1, , 0)(l in the i-th place) in H\X, R) by a is nothing but the
real Chern class c([AJ) of [AJ. Since the intersection matrix is negative
definite [10], a is isomorphic as was desired. Next we show that b is
the zero map. First note that the (topological) dual map b' of 6 is given
by b':H\A, ΩX\A)->H\A, R) (cf. [3]). But since the restriction of any
holomorphic 2-form a on X to A vanishes (so that the integral of a over
each At is zero), V is the zero map. Hence so is 6. Thus h is isomorphic,
since HA(X, ̂ x) = 0 by Grauert-Riemenschneider [12]. Then δc also is
isomorphic and we have the direct sum decomposition H\X, ^x) = Im c 0
Im d. It suffices to show that Imc — H(A). Consider the following
commutative diagram

Hi(X, &ϊ) — HA{X, R)

H\X, <?\) — H\X, &2) > H\X, R) ,

where cA is defined in the same way as c. (The sequences are in general
not exact.) Obviously the line bundles [A{] are in the image of k and
hence H(A) £ Im c. On the other hand, the above description of the
map a shows that δ(H(A)) = H\X, R). Thus H(A) = Imc as was desired.

(2) (b)=>(a). Suppose that aeH(A) = Imc. Then r(α) = 0 and
hence a = ddcu for some C°° function u on X — A. Then a satisfies the
condition (E) by Corollary to Lemma 1. (a) ==> (b). Suppose that a
satisfies (E). For any V and α' as in (E), write a' - ddcv on Xfor some
C°° function v. Then with respect to some local embedding (X, x) —• (Cn, 0),
there exists a small open ball B with center 0 in Cn such that a = ddcv
on X — XΠ B. Write B' = Xf) B. We show that the restriction map
j: H\X - x, &*x) -+ H\X - B\ ^x) is injective. In view of the com-
mutative diagram of exact sequences

H\X

H\X-

- x,

ι[
- B'

R)

R)

>H\X-x, έ?x)

\i

>Hι(X-B'^x:

> H\X - x, &x)

) > H\X - B', &

> H\X - x, R)

l\
x) >H\X-B',R)

coming from the sequence (1) on X — x9 we see that it suffices to show
that i is injective (cf. (2.0) (a)). But this is shown in Andreotti and
Grauert [1, Theoreme 15]. Now by the injectivity of j we can write
a = ddcv' for some C°° function v' on X — x. This implies that r(a) = 0
in H\X - A, &JZ) = H\X - x, &x\ or a e Imc = H{A). q.e.d.

REMARK 2. Let (X, x) be a normal isolated singularity of dimension ^
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3. Let / : (X, A) —> (X, x) be a resolution such that dim A = 1. Then the
same proof as above shows that no Kahler form on X satisfies the con-
dition (E), unless (X, x) is smooth.

(2.2) Next we globalize Proposition 3.

PROPOSITION 4. Let X be a normal complex surface with isolated
singular points xu x2, , x8. Let f: X —> X be a resolution. Let Av =
f~\xu) and Uu a tubular neighborhood of Av in X. Then the following
conditions are equivalent:

(1) X is a Kahler space.
(2) X is Kahler and there exists a Kahler form a on X such that

for each v the Kahler class ά v e Hι{Uv, ^x) defined by a\Up belongs to H(AV).

Note that Theorem in the introduction follows immediately from
Propositions 2, 3 and 4 together with (3), in view of the definition of
nondegeneracy.

For the implication (1) => (2) we need lemmas.

LEMMA 4. Let L be a line bundle on a complex manifold X. Let
bi, , bm be C°° sections of L on X which have no common zeroes. Then
the refined Chern class c(L) of L is represented by the real closed (1, 1)-
form (cf. 2.0) (c))

7 = ( -

Here if b3 (x) Φ 0 at xeX, then by definition ddc log(Σ£i 16* I2) =
ddc log((YJLi \bi\2)l\bό\

2) at x, which is independent of the choice of such
a j . The proof of the lemma is straightforward and is omitted.

LEMMA 5. Let X be a smooth complex surface and A Q X an
exceptional divisor. Let UΏ>U' 2 A be tubular neighborhoods of A. Let
Alf , Am be the irreducible components of A. Then there exists a line
bundle F on X of the form F = φT=i [Ai]ni whose refined Chern class c{F)
is represented by a real closed C°°(l, l)-/orm β which is positive definite
(i.e., Kahler) on Uf and vanishes identically on X — U.

PROOF, (cf. [21, §4, 3]). By [14, Lemma 4.10] there exist integers
nt such that (ΣΓ=i ̂ Λ Ay) < 0 for any j . Set L = ®Γ=i [AJ"n*. Then
L is positive, and hence is ample, on Ur (cf. [8, Lemmas 4 and 3]). So
for a sufficiently large b > 0 we can find holomorphic sections ψl9 , ψs

of LΘ& on U' which embeds Ur into the projective space P8~\ Let σ be
the canonical meromorphic section of L = ® [At]~ni

f which has thus no
zeroes and poles outside A. (Actually nt > 0 for all ΐ, and σ is holomor-



KAHLERIAN NORMAL COMPLEX SURFACES 109

phic.) Let p be a C°° funciton on X with support contained in U such
that p = 1 on U'. Then ρψlf , pψ8, (1 - p)σb are C°° sections of L®b

which have no common zeroes on X. Hence by Lemma 4

7 : = - (l/iπb)ddc log ( Σ I Pfi I2 + I (1 -

represents c{L). Since 7 = -(lj±πb)ddc log (Σί=i l^l2) on ZΓ it is negative
definite there and clearly 7 = 0 on X — U. Then it suffices to set F =
L* (the dual of L) and /3 = — 7. q.e.d.

PROOF OF PROPOSITION 4. We may assume that Uμf]Uv = 0 for
μ Φ v.

( 2 ) => (1). Let av be the restriction of a to Uv. By further restric-
tion, regard av as a Kahler form on f{Uv) — xv~Uv — Av. Then by
Proposition 3 after modification of av within a relatively compact open
subset of fiJJX a, extends to a Kahler form a[ on /(Z7J. Define a C°°
form α' on X by: a! = α'. on /(ί/J and α' = a on X ~ U , /(^,) = ^ ~ L λ v̂-
Then α' is a Kahler form on X.

(1) => ( 2). Let a! be a Kahler form on X Take a tubular neigh-
borhood Ul of Av with ?7̂  c Uv. Let AVii, i = 1, , mv, be the irreducible
components of Av. Then by Lemma 5 for each v there exists a line bundle
Fu on X of the form ®Γ=i [̂ v,i]fc^ whose refined Chern class is represented
by a real closed (1, l)-form βu which is positive definite on Ul and van-
ishes identically on X — Uv. Since f*a' is semipositive on X and positive
on X — UvΛ, cc: = Mf*a! + Σ*=i/5p is a Kahler form on X if we take a
real number M sufficiently large. Moreover αv = βv on each Uv9 where
βv is the class of βv in H\UVf &%). Hence α, eiJ(AJ. q.e.d.

REMARK 3. Let I be a Kahler manifold (of arbitrary dimension)
and A an exceptional (compact) connected submanifold of codimension 1
in X in the sense of Grauert [10]. Let f:X—>X be the contraction of
A to a normal point a; of a complex space X. Then a modification of
the proof of Theorem shows that if h1Λ(A) = 1 and H\A, ^Γ*v) = 0 for
all v > 0, X also is Kahler where yΓ* is the conormal sheaf of A in X.
This is a kahlerian analogue of Grauert's criterion for protective contrac-
tion ([10, Satz 8]).

(2.3) The following proposition shows that the condition of Theorem,
i.e., the nondegeneracy of the singularity, is a consequence of a certain
global condition on the variety X.

PROPOSITION 5. Let X be a normal compact complex surface in ^.
Then X has only nondegenerate singularities if the natural homomorphism
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f*:H2(X,Ox)^H2(X,Oχ) is injective for some (and hence for any)
resolution f\X-*X of X. In particular, X is Kahler. Moreover,
under the same condition, X is projective if X is projective.

PROOF. By Theorem, the second assertion follows from the first.
The first assertion follows from the commutative diagram

H\X,R) >H°(X,R%R) > H\X,R) > H\X,R)

> i i J
JoL (A, c/^t) • tl \Λ.y K J*L/χ) > Jti (Λ., c/χ) > ±i (,A, C/χ)

of exact sequences coming from the Leray spectral sequences for /, if
we note the surjectivity of a (Xe &). To show the last assertion, recall
from the proof of Theorem that for any Kahler form β on X we can find
a Kahler form a on X such that β = f*a on a complement of a tubular
neighborhood of A: = /"'(Sing X). Let β e H\X, R) (resp. δ e EΓ\X, R))
be the class defined by β (resp. a). Then by the above remark, β — f*ά
is contained in the image of the natural map H2

A(X, R) —> H\X, R), which
is generated by the real Chern classes c(Aτ): = c([AJ) of [AJ, where At

are the irreducible components of A. Namely β — f*a = Σt rM^i) for
some real numbers r<. Suppose now that X is projective and β is a real
Chern class of an ample line bundle L on X. Then r< are all rational
numbers; indeed 0 = f*a c(Aj) = β-c(Aj) — ̂ r^AiΆj) for any jf β'c(Aj)
is an integer and {(AtΆs)} is a negative definite integral matrix. Thus
mf*a = f*(ma) is a real Chern class of a line bundle for some m > 0.
Then from our assumption and from the commutative diagram of exact
sequences

Jtl {A., C/ ~ ) • £1 \Λ., Zi ) > ϊl \2i., C/χ)

it follows that ma itself is a real Chern class of a line bundle, say L'.
Then by Grauert [10, Satz 3] V is ample and hence X is projective.

REMARK 4. The last assertion is originally due Brenton (cf. [5, Prop.
10]).

3. Criteria for nondegeneracy. We use the convention and notation
of (2.0) (a).

(3.1) We first note the following:

LEMMA 6. Let (X, x) be a normal isolated singularity. Let f: (X, A) ->
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(X, x) be a resolution. Then the natural map H\X, R) -> H\X, <??) is
injective.

PROOF. We consider the commutative diagram of exact sequences
(2) for X and A;

H%X, &Ϊ) > H\X, &ϊ) — H\X, R) > H\X, έ?χ)

1
H\A, <PΛ) > H°{A, &A) > H\A, R) > H\A, έ?A) ,

where the vertical arrows are the restriction maps. It suffices to show
that b is the zero map. Since r is isomorphic, this follows, if b is the
zero map, or d is surjective. Since A is compact and connected, by the
maximum principle d is isomorphic to the map d':C -»R defined by d\s) =
— (imaginary part of s). Thus d is surjective as was desired. q.e.d.

Let (X, x) be a normal isolated surface singularity and / : (X, A) —>
(X, x) a resolution. Then we set &L(X, x) = b^X) and call it the first
Betti number of (X, x). This is independent of the chosen resolution /.
Let pg(X, x) := ά\m{R1f^^)x = άimH\X, έ?χ) be the geometric genus of
(X, 05). Then the above lemma shows the inequality 6X(X, x) <̂  2pg(X, x).
From the definitions we obtain:

PROPOSITION 6. A normal isolated surface singularity (X, x) is
nondegenerate if and only if b^X, x) = 2pg(X, x).

(3.2) According to Brenton [6], a normal isolated surface singularity
(X, x) is called pararational, if, for some (and hence for any) resolution
/: (X, A) —> (X, x) of (X, x) such that A is of normal crossings in X, we
have (1) (the dual graph of) A contains no cycles and (2) R1f^^ = 0
where ^ is the ideal sheaf of A with the reduced structure.

PROPOSITION 7. Let (X, x) be a normal isolated surface singulality.
Then (X, x) is nondegenerate if and only if (X, x) is pararational.

PROOF. Let Alf , Am be the irreducible components of A and
Pif ' "jVn the singular points of A. Since A is a curve with normal
crossings, we have b^A) - n — m + 1 + ΣΓ=i 2g(Ai) and g(A): = dim H\Af

0>A) = n .— m + 1 + ΣΓ=i g(At)f where bx is the first Betti number and
g(Ai) is the genus of At. Hence we see that the following conditions
are equivalent: (a) dim* H\A, R)^2 dim H\A, έ?A), (b) dimRH\A, R) =
2 dim H\A, tfA) and (c) n — m + 1 = 0. Note further that (c) is equi-
valent to the condition (1) of (3.2) above. Now we consider the following
commutative diagram
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H\X, R) -^-* H\A, R)

l I
0 > H\X, jr) > H\X, &ϊ) > H\A, <?A) > 0 ,

where the bottom sequence is exact, since H°(X, tfx) -* H\A, tfA) = C
is surjective and H\X, <J^) = 0. Then in view of the above remark
together with the injectivity of e (Lemma 6), it follows that (1) and (2)
imply the surjectivity of e. Conversely if e is surjective, then the above
equivalent conditions are satisfied, and dim H\X, ^) + dim H\A, #A) =
dim H1 (X, έ?ϊ) ^ (1/2) dim* H1 (X, R) = dim H1 (A, έ?A) by (b). Hence
H\X, ^) •= 0 as was desired. q.e.d.

EXAMPLE. Let A be a compact Riemann surface and L a negative
line bundle on A. Let (X, x) be the normal isolated singularity obtained
by contracting the zero section of L. Then (X, x) is nondegenerate if
and only if H\A, L*®m) = 0 for any m > 0, where L* denotes the dual
of L. In particular simple-elliptic singularity of K. Saito are all non-
degenerate.

(3.3) Modifying Laufer's argument [15], we shall give a criterion
which makes no use of a resolution.

PROPOSITION 8. Let (X, x) be a normal isolated surface singularity.
Then (X, x) is nondegenerate if and only if the following condition is
satisfied; any holomorphic 2-form ω on X — x is If-integrάble whenever
the class [ω + ώ] e H\X — x, R) defined by ω + ώ vanishes. Here ώ
denotes the complex conjugate of ω.

First we recall some results needed for the proof from the duality
theory.

(a) Let U = X-x. Then H\U, ^υ) has the natural QFS struc-
ture (QFS = quotient of Frechet-Schwartz) which is separated in our
case where X is Stein (cf. [3, p. 82, Theorem 6.1]). On the other
hand, by a theorem of Malgrange [16] H2(U, Ω\j) = 0 because dimϊJ = 2.
Hence by Serre duality, (1) the natural QDFS structure (QDFS = quotient
of dual of FS) on Hi(U, Ω\) also is separated and (2) H\U, d7n) and
Hl(U, Ω2u) are in topological duality, where c denotes the compact supports
(cf. [3]). Let ωx := j\Ω2

σ be the Grothendieck dualizing sheaf on X where
j:U-^Xis the inclusion (cf. [12]). Then depth ωx = 2so that H°e(X, ωx) =
Hl(X, ωx) = 0 (cf. [3, p. 41, Corollary 3.10]). Therefore from the exact
sequence

H°e(X, ωx) - ωx,x -> Hl(U, Ω%) - H\(X, ωx)
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we have the natural (topological) isomorphism δ: ωXtX = Hl(U, Q2

n).
We now proceed to describe the induced duality between H\U9 έ?u)

and ωXtX, or the pairing < , > giving this duality. Let aeH\U9 έ?π) and
β € (ϋx>x be arbitrary. Let ά (resp. β) be a 3-closed C°° (0, l)-form on U
(resp. a holomorphic 2-form defined on V — x for some open neighborhood
V of x) representing a (resp. /3). Let p be a C°° function with compact
support on X such that /) = 1 on a neighborhood V of a? with F ' c V.

Then 9(|0/3) has compact support on U and hence I ά Λ 3(/0̂ ) is finite.
Further, the integral is independent of the choice of α, β and p as above
depending only on a and β. Then from the definition of δ it follows

t h a t ( a , β ) = [άΛ d ( ρ β ) .

Let Bε be the ball of radius ε with center x with respect to a local
embedding of X into CN. Let Se be the boundary sphere Bε. Let C7e =
X - Bε Π X and iξ = X Π S£. Take ε so small that J S s n l £ V. Then
using Stokes' theorem we obtain

[ aΛd(pβ) = [ aΛd(pβ) = \ d(άΛpβ)-\ da A pβ = \ άΛβ.
lu )uε Juε Juε }κε

Since these are independent of ε as above, we write K = Ke symbolically.

We have thus <α, ̂ > = \ a A β.

(b) Let / : {X, A) -* (X, x) be resolution. Consider the coboundary
map ζ: H\X — A, έ?x) -> H2

A(X, d7x) in the local cohomology exact se-
quence. Note that ζ is surjective since H\X, Ox) = 0. Both terms
have the natural QFS structures for which ζ is continuous (cf. [3, pp.
82, 287]). Since H\A, Ωx) is finite dimensional, H\(X, έ?x) is separated
and H\{X, έ?x) and H°(A, Ω\) are in natural topological duality. On the
other hand, since H\X - A, έ?x) = H\X - x, έ?x), the transpose ζ' of ζ
gives rise to a homomorphism H°(A, Ωx) —>- ωXtX by (a). Further, with a
little more efforts this homomorphism is identified with the natural
homomorphism (f*Ωx)x —> ωXiX obtained by the restriction to X — A ^
X — x, which we shall still denote by ζ\

(c) Let K = Kε be as in (a). Then for K = C or R we have
H\X -A,K)^ H\X -x,K)£ί H\K, K) for all i (cf. (2.0) (a)) and they
are finite dimensional over K. So they have the natural FS structure with
its (topological) dual given by H\X - A, K)f^H\K, K)'^H*-\K, K) =
HZ~\X - A, K) by the Poincare duality.

The natural map 7C: H\X - A, C) -> H\X - A, &x) is given by
7c(a) = the class of άlf where &x is the (0, l)-component of a represent-
ing d-closed 1-form a of α. Then from the description of the duality
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in (a) it follows that the dual map Ύ'C: ωXtX -> H\X — A, C) is given
by yfc(β) = β modulo d-closed forms via the natural isomorphism
H\X- A, C) = H\V- x, C), where β and V are as in (a) with V
suitably restricted.

PROOF OF PROPOSITION 8. Let / : (X, A) -> (X, x) be a resolution.
Consider the commutative diagram of local cohomology exact sequences

H\Xf R) -5-> H\X - A9R) > H\(Xf R) -^U H2(X, R)

H\(X, &ϊ) > H\X, <?ϊ) ~^-> H\X - A, <?2) i H1(X9 <?2) ,

where the vertical arrows are the natural maps. First by Grauert-
Riemenschneider [12] H^X, έ?χ) = 0 so that ε is injective. Since a is
injective (cf. the proof of Proposition 3), b is surjective. This implies
that (Xfx) is nondegenerate, i.e., e is surjective if and only if I m τ 2
Im ε — Ker ζ, where Im and Ker denote the image and the kernel respec-
tively; in other words, the complex

H\X -A,R)-^-> H\X - A, <?z) — H\(X, &ϊ)

is exact. In view of the remarks preceding the proof, the topological
dual of this sequence is given by

H\X - A9R)^— ωXίX £- (f+Ω\)m

and this sequence is exact if and only if the original sequence is exact
(cf. [3, p. 248 (C)]). Further, Im ζ' is precisely the space of ZΛintegrable
holomorphic 2-forms o n l - x (cf. [12], [15]). On the other hand, with
K as in (c) above, by the description of Ίr

c above we see that Y is given
by the map τ'(/5) = the class of (l/2)(/3 + β) where β is as in (a) and β
denotes its complex conjugate. The proposition thus follows.

4. Small deformations and nondegeneracy. We show that every
small deformation of a normal compact Kahler surface with only non-
degenerate isolated singularities is again Kahler.

PROPOSITION 9. Let X be a normal compact complex surface in ^ .
Suppose that X has only nondegenerate singularities so that X is Kahler
(cf. Theorem). Then every (flat) small deformation Xt of X is Kahler.

This is a consequence of the following theorem of Moishezon [19] in
view of Lemma 7 below.

THEOREM (Moishezon). Let X be a normal compact Kahler space.
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// the natural map H\X, R) —> H\X, #z) is surjective, then every small
deformation Xt of X is again Kdhler.

LEMMA 7. Let X be as in Proposition 9. Then the natural map
H\X, R) -> iΓ(X, έ?x) is surjective.

PROOF. Let /:X—>X be a resolution. We consider the following
commutative diagram of exact sequences derived from the Leray spectral
sequence for /

H\X, &3t)

H\X, Rf*R) > H\X, R) • H2(X, R) -£-» jBrβ(Xt

\a

x) >HχX,d7x) >H\X,&X) > 0 .

Our assumption is that a is surjective and we have to show that b is
surjective. Since Xeί^7, c is surjective. Hence by diagram chasing it
suffices to show that de: iΓ(X, &-£) -> H\X, R2f*R) is surjective. Let
χu " '$ χm be the singular points of X. Let Au = f~\xu) and A = UΓ=i Au.
Then we show even that the composite map Hι

A(X, &i) -» H\X, &χ) ->
JEf°(X, R2f*R) is surjective. First, we have the natural isomorphisms
H\{X, &Ϊ) s ®UH\u{X, &2) and H\X, R%R) = ®^H\AV, Λ ând thus
it suffices to show that the composite map Hiu(X, &χ) —> H\X, 3?ί) —»
H\AV, R) is surjective for any v. This is indeed proved in the course of
the proof of Proposition 3. q.e.d.

EXAMPLE. Let C be any nonsingular cubic curve in the complex
projective plane P 2. Take ten points qlf , q10 on C arbitrarily and blow
up P2 with center qu , q\0. Let X be the resulting surface and E the
proper transform of C in X Then the self-intersection number EΈ =
— 1 so that E can be blown down to a simple-elliptic singularity x of a
normal Moishezon surface X. Then by our Theorem together with
example in (3.2) X is Kahler, though X is not pro jective for 'general'
choice of qim

This example of kahlerian non-projective Moishezon surface is originally
due to Moishezon [19], where he has proved that the above X —
X(βit ' f ?io) ίs Kahler if it is sufficiently near to a projective one by
using the above theorem. (Note that his proof amounts to showing that
(X, x) is nondegenerate in our sense.) Many other examples of kahlerian
non-projective normal Moishezon surfaces can now be obtained by using
our criterion. For instance, let h:Y->C be a projective nonsingular
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elliptic surface with q{Y) = g(C), where q(Y) and g(C) are the irregularity
and the genus of Y and C, respectively. Let ceC be a general point
and peYc the general point of Ye. Let X be the normal surface
obtained by blowing up p and then contracting the proper transform of
Yc to a unique singular point xeX. Then X satisfies the desired
condition.
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