KÄHLERIAN NORMAL COMPLEX SURFACES

Akira Fujiki

(Received April 5, 1982)

Introduction. By Artin [2] a normal (compact) Moishezon surface X is projective if it has only rational singularities. The purpose of this note is to prove a kählerian analogue of this result. We call a normal isolated surface singularity (X, x) nondegenerate if for some (and hence for any) resolution $f: (\tilde{X}, A) \to (X, x)(A = f^{-1}(x))$ the natural homomorphism $R^1f_*R \to R^1f_*\mathcal{O}_{\tilde{X}}$ is surjective. In particular a rational singularity is nondegenerate. Then our result is as follows.

THEOREM. Let X be a normal compact complex surface in C with only nondegenerate isolated singularities. Then X is Kähler.

Recall that in general a compact complex space X is said to be in \mathscr{C} if it is a meromorphic image of a compact Kähler manifold [9]. In our case of a surface, it turns out, however, that this is equivalent to the condition that any nonsingular model of X is Kähler (Proposition 2). On the other hand, in general a complex space X is said to be Kähler if there exists an open covering $\{U_{\mu}\}$ of X and a system of C^{∞} strictly plurisubharmonic functions $\{u_{\mu}\}$ with each u_{μ} defined on U_{μ} such that $u_{\mu} - u_{\nu}$ is pluriharmonic on $U_{\mu} \cap U_{\nu}$ (cf. [19], [9]). In this case $dd^{\circ}u_{\mu} =$ $dd^{\circ}u_{\nu}$ on $U_{\mu} \cap U_{\nu}$ ($d^{\circ} = \sqrt{-1}(\bar{\partial} - \partial)$ where $d = \partial + \bar{\partial}$) and hence we get a globally defined real closed (1, 1)-form α on X which is called a Kähler form on X.

In Section 1 we shall prove a lemma on extension of a strictly plurisubharmonic function across an isolated singular point (Lemma 1) as well as draw some of its consequences (including Proposition 2 mentioned above). Using this lemma, we shall derive in Section 2 a necessary and sufficient condition for a normal compact complex surface to be Kähler in terms of its resolution (Proposition 4); indeed Theorem above is an immediate consequence of this proposition. Next in Section 3 we shall give some characterization of nondegenerate singularities. In particular, it turns out at once that nondegenerate singularities are nothing but pararational singularities of Brenton [6]. Finally in Section 4 we shall note that every small deformation of a normal compact Kähler surface with only nondegenerate singularities is again Kähler by merely checking the condition of Moishezon [19], in which the study of singular Kähler surfaces was initiated.

1. Extension of a strictly plurisubharmonic function. (1.1) Let Y be a complex space. Let $u: Y \to \mathbf{R} \cup \{-\infty\}$ be a map. Then u is said to be plurisubharmonic if for any point $y \in Y$ there exist a neighborhood $U \ni y$, an embedding $j: U \to G$ of U into a domain G in C^N and a plurisubharmonic function u_G on G such that $j^*u_G = u|_U$. On the other hand, u is said to be *weakly plurisubharmonic* if for any holomorphic map $h: D \to Y$ of the unit disc $D: = \{t \in C; |t| < 1\}$ into Y, its pull-back h^*u is either subharmonic. Conversely, it was recently shown by Fornaess-Narasimhan [7] that every weakly plurisubharmonic function is plurisubharmonic. Using this result we shall show the following lemma, which is indeed a main ingredient of our proof of Theorem.

LEMMA 1. Let (X, x) be a normal isolated singularity with dim $(X, x) \ge 2$. 2. Let u be a strictly plurisubharmonic function on X - x. Then for any sufficiently small neighborhood V of x there exists a strictly plurisubharmonic function v on X such that u = v on X - V.

PROOF. By Grauert-Remmert [11] u extends to a unique weakly plurisubharmonic function on X which we shall still denote by the same letter u. Then by the result of Fornaess-Narasimhan cited above there exists a neighborhood U of x, an embedding $j: U \to B$ of U into an open ball B in $\mathbb{C}^N = \mathbb{C}^N(z)$ with center j(x) and plurisubharmonic function \hat{u} on B such that $j^*\hat{u} = u$. We may assume that j(x) is the origin of \mathbb{C}^N . Let $B_1 \subset B$ be another concentric ball. Then it suffices to show the lemma for $V = B_1 \cap X$ where we identify X with j(X). Take another concentric ball $B_2 \subset B_1$. Let λ be a nonnegative \mathbb{C}^∞ function on \mathbb{C}^N with support contained in B_1 such that $\lambda(z)$ is a positive constant on B_2 , λ depends only on |z| and $\int_{\mathbb{C}^N} \lambda(z) dV(z) = 1$, where dV(z) is the standard volume form on \mathbb{C}^N . Then as in Miyaoka [17] we set

$$\widetilde{u}_{arepsilon}(z) = \int_{c^N} \widehat{u}(z - arepsilon \lambda(z) \zeta) \lambda(\zeta) d\, V(\zeta)$$

for any real number $\varepsilon > 0$. Then for any sufficiently small $\varepsilon > 0$, we see that $\tilde{u}_{\varepsilon} \equiv \hat{u}$ on $B - B_1$, $\tilde{u}_{\varepsilon}|_{U-B_2 \cap U}$ is strictly plurisubharmonic and \tilde{u}_{ε} is plurisubharmonic on B_2 (cf. [17]). Then for any such ε we set

$$v_{\delta}(z) = \widetilde{u}_{arepsilon}(z) + \delta \, | \, z \, |^{\, 2} \lambda(z)$$
 , $\ \delta > 0$.

Then $v_s(z) \equiv \hat{u}(z)$ on $B - B_1$ and $v_s(z)$ is strictly plurisubharmonic on B_2 .

Moreover it is easy to see that if δ is sufficiently small, $v_{\delta}(z)|_{U-B_2\cap U}$ also is strictly plurisubharmonic. For such a δ we can define a C^{∞} strictly plurisubharmonic function v on X by setting v = u on X - V and $v = v_{\delta}|_{v}$ on V. q.e.d.

COROLLARY. Let (X, x) be as above. Let α be a Kähler form on X - x. Suppose that α is written on X - x in the form $\alpha = dd^{\circ}u$ for some C° function u on X - x. Then for any sufficiently small neighborhood V of x there exists a Kähler form α' on X such that $\alpha' = \alpha$ on X - V.

PROOF. Since α is a Kähler form, u is strictly plurisubharmonic. Hence we have only to set $\alpha' = dd^{\circ}v$ where v is as in Lemma 1. q.e.d.

(1.2) As an immediate application of the above corollary we shall show the following:

PROPOSITION 1. Let X be an irreducible normal complex space with dim $X \ge 2$. Suppose that X has only isolated quotient singularities. Let U be a smooth Zariski open subset of X such that dim(X - U) = 0. Let α be a Kähler form on U. Then for any sufficiently small neighborhood V of X - U in X we can find a Kähler form $\tilde{\alpha}$ on X such that $\tilde{\alpha}|_{U-U \cap V} = \alpha|_{U-U \cap V}$. In particular, X is a Kähler space, if so is U.

EXAMPLE. Let X be a Kähler manifold and G a finite group of biholomorphic automorphisms of X. Suppose that the set of those points which are fixed by some elements of G is isolated. Then X/G is a Kähler space.

Now Proposition 1 is clearly a consequence of the following local version of it.

LEMMA 2. Let (X, x) be an isolated quotient singurality with $\dim(X, x) \ge 2$. Let α be a Kähler form on X - x. Then for any sufficiently small neighborhood V of x there eixsts a Kähler form α' on X such that $\alpha' = \alpha$ on X - V.

PROOF. Let $n = \dim(X, x)$. We can find a neighborhood D of the origin o of C^N and a finite subgroup $G \subseteq GL(n, C)$ leaving D invariant such that (1) $X \cong D/G$ for a suitable representative X of (X, x) and (2) the natural map $\pi: D \to X$ is unramified over X': = X - x (cf. Prill [20]). Let $\pi': D' \to X'$ be the induced map, where $D' = D - \{o\}$. Let $\tilde{\alpha} = \pi'^* \alpha$. Then $\tilde{\alpha}$ is a G-invariant Kähler form on D'. Since $n \ge 2$, there exists a C^{∞} strictly plurisubharmonic function \tilde{u} on D' such that $\tilde{\alpha} = dd^{\circ}\tilde{u}$ by Shiffman [22]. Replacing \tilde{u} by $(1/|G|) \sum_{g \in G} g^* \tilde{u}$ we may assume that \tilde{u}

also is G-invariant. Then \tilde{u} is a pull-back of a C^{∞} function u on X'and $\alpha = dd^{\circ}u$ on X'. The lemma then follows from Corollary to Lemma 1. q.e.d.

(1.3) As an application of Proposition 1 we shall show that any compact smooth analytic surface X in \mathscr{C} is Kähler. The following special case is essential:

LEMMA 3. Let X be a compact smooth analytic surface which is bimeromorphic to a K3 surface of algebraic dimension zero. Then X is Kähler if $X \in \mathscr{C}$.

PROOF. We may assume that X is minimal; otherwise X is obtained by a blowing up of the minimal one, say X_0 , and hence is Kähler if X_0 is (cf. [9]). Then X contains only finite number of irreducible curves C_i , $i = 1, \dots, m$, and C_i are nonsingular rational curves with selfintersection number $C_i \cdot C_i = -2$ (cf. [13]). Moreover the intersection matrix $(C_i \cdot C_j)$ is negative definite. Hence there is a contraction $f: X \to C_j$ X' of $C := \bigcup_{i=1}^{m} C_i$ to a finite number of rational double points p_1, \dots, p_s of X'. In particular, X' has only isolated quotient singularities. We show that X' is a Kähler space. Since f is projective, this would show that X is Kähler (cf. [9]). Now by our assumption, there exists a compact Kähler manifold Y and a surjective holomorphic map $h: Y \to X$. Let h' = fh. Since X' contains no curve, h' must be smooth over a a Zariski open subset $U \subseteq X'$ whose complement consists of a finite number of points. Let α be a Kähler form on Y. By integration along the fibers, $h'_* \alpha^{r+1}$ defines a Kähler form α' on U, where $r = \dim h$. The result then follows from Proposition 1. (Since a rational singularity is nondegenerate, we can also use Proposition 3 below instead of Proposition 1.) q.e.d.

REMARK 1. The proof actually shows that for any tubular neighborhood of C in X there exists a Kähler form $\hat{\alpha}$ on X such that $\hat{\alpha} = h_* \alpha^{r+1}$ on its complement in the notation above.

PROPOSITION 2. Let X be a compact complex manifold of dimension 2. Suppose that $X \in \mathscr{C}$. Then X is Kähler.

PROOF. Since $b_1(X)$ is even, we have only to consider the case where X is a K3 surface of algebraic dimension zero (cf. Miyaoka [18]). In this case X is Kähler by Lemma 3. q.e.d.

2. Extension of a Kähler form. (2.0) First we shall fix some notations, terminologies and conventions.

(a) Let (X, x) be a normal isolated singularity. Let $f: (\tilde{X}, A) \to (X, x)$ be a resolution of (X, x) where $A = f^{-1}(x)$. We usually identify \tilde{X} with any tubular neighborhood of A in \tilde{X} ; in this note a *tubular* neighborhood shall mean a relatively compact open neighborhood U with C^{∞} strongly pseudoconvex boundary such that A is a strong deformation retract of U. (Note that X is then necessarily Stein.) In particular, the restriction maps $H^i(\tilde{X}, R) \to H^i(A, R)$ are isomorphic for all $i \geq 0$, and $H^i(\tilde{X}, \mathcal{O}_{\tilde{X}}) \cong (R^i f_* \mathcal{O}_{\tilde{X}})_x$ for all i > 0. Thus (when $\dim(X, x) = 2$), (X, x) is nondegenerate if and only if the natural map $e: H^2(\tilde{X}, R) \to H^2(\tilde{X}, \mathcal{O}_{\tilde{X}})$ is surjective.

Take a local embedding $(X, x) \to (\mathbb{C}^N, o)$. Then we can always take U as above in such a way that $H^i(U - A, \mathbb{R}) \cong H^i(U - f^{-1}(\overline{B}_{\epsilon}), \mathbb{R}) \cong H^i(K_{\epsilon}, \mathbb{R})$ for all sufficiently small $\varepsilon > 0$, where \overline{B}_{ϵ} is the closed ball of radius ε with center o and K_{ϵ} is the boundary of \overline{B}_{ϵ} . In fact, we may set $U = f^{-1}(B_{\epsilon_0})$ for some $\varepsilon_0 > 0$, where B_{ϵ_0} is the interior of $\overline{B}_{\epsilon_0}$.

(b) Let Y be a reduced complex space. We denote by \mathscr{P}_Y the sheaf of germs of pluriharmonic functions on Y. Then we have the short exact sequence of abelian groups on Y;

(1)
$$0 \to \mathbf{R} \xrightarrow{\iota} \mathcal{O}_{\mathbf{Y}} \xrightarrow{\mu_{\mathbf{Y}}} \mathcal{O}_{\mathbf{Y}} \to 0$$
,

where ι is the natural inclusion and $\mu(g) = -(\text{imaginary part of } g)$. (When Y is smooth, this is well-known and the general case follows from the smooth case readily.) From this we get the long exact sequence of cohomology

$$(2) \longrightarrow H^{1}(Y, \mathbb{R}) \to H^{1}(Y, \mathscr{O}_{Y}) \to H^{1}(Y, \mathscr{O}_{Y}) \xrightarrow{o} H^{2}(Y, \mathbb{R}) .$$

On the other hand, let $\mu^*: \mathcal{O}_Y^* \to \mathcal{O}_Y$ be defined by $\mu^*(g) = -(1/2\pi) \log |g|$. Let $\hat{c}: H^1(Y, \mathcal{O}_Y^*) \to H^1(Y, \mathcal{O}_Y)$ be the resulting homomorphism. Then for any line boundle L on Y we call $\hat{c}(L)$ the refined Chern class of L. One checks readily that $\hat{\delta c}(L) = c(L)$, where c(L) is the real Chern class of L.

(c) Let Y be as in (b). Let $\alpha = \{ dd^e u_\mu \}$ be a Kähler form on Y with respect to an open covering $\mathfrak{U} = \{ U_\mu \}$ as in the introduction. Then α defines a class $\overline{\alpha} \in H^1(Y, \mathscr{P}_Y)$ which is the image of the class $\{ u_\mu - u_\nu \} \in$ $H^1(\mathfrak{U}, \mathscr{P}_Y)$ under the natural homomorphism $H^1(\mathfrak{U}, \mathscr{P}_Y) \to H^1(Y, \mathscr{P}_Y)$. We call $\overline{\alpha}$ the Kähler class defined by α .

When Y is nonsingular, we have the natural isomorphism $H^1(Y, \mathscr{P}_Y) \cong Z^{1,1}/dd^c E$, where $Z^{1,1}$ is the real vector space of real *d*-closed $C^{\infty}(1, 1)$ -forms on Y and E is that of real C^{∞} functions on Y (cf. [22]). Under this isomorphism the Kähler class $\bar{\alpha}$ above corresponds precisely to the Kähler form α considered modulo $dd^c E$.

(2.1) Let (X, x) be a normal isolated surface singularity. Let $f: (\tilde{X}, A) \to (X, x)$ be a resolution. For a Kähler form α on \tilde{X} we shall consider the following condition (E):

(E) Regard α as a Kähler form on X - x by restriction to $\tilde{X} - A$ followed by the isomorphism $\tilde{X} - A \cong X - x$. Then for any sufficiently small neighborhood V of x in X there exists a Kähler form α' on X such that $\alpha' = \alpha$ on X - V (i.e., the conclusion of Corollary to Lemma 1 holds true for α).

On the other hand, let A_1, \dots, A_m be the irreducible components of A. Then we shall denote by H(A) the (real) linear subspace of $H^1(\tilde{X}, \mathscr{P}_{\tilde{X}})$ generated by the refined Chern classes $\hat{c}([A_i])$ of $[A_i]$, where $[A_i]$ is the line bundle defined by A_i . Further, recall the exact sequence (2) for $Y = \tilde{X}$;

$$(3) \longrightarrow H^{1}(\widetilde{X}, \mathbb{R}) \xrightarrow{e} H^{1}(\widetilde{X}, \mathscr{O}_{\widetilde{X}}) \xrightarrow{d} H^{1}(\widetilde{X}, \mathscr{O}_{\widetilde{X}}) \to H^{2}(\widetilde{X}, \mathbb{R}) .$$

PROPOSITION 3. Let (X, x) be a normal isolated surface singularity. Let $f: (\tilde{X}, A) \to (X, x)$ be a resolution. Then:

(1) we have the natural direct sum decomposition $H^{1}(\widetilde{X}, \mathscr{G}_{\widetilde{X}}) = H(A) \bigoplus \text{Im } d$, where Im denotes the image, and

(2) for any Kähler form α on \widetilde{X} , the following conditions are equivalent;

- (a) α satisfies the condition (E) above, and
- (b) the Kähler class $\overline{\alpha} \in H^1(\widetilde{X}, \mathscr{P}_{\widetilde{X}})$ defined by α belongs to H(A).

PROOF. (1) We consider the following commutative diagram of exact sequences

where the horizontal sequences come from (1) for \tilde{X} and the vertical lines are part of the local cohomology exact sequences. We first show that *a* is isomorphic. First, we have the natural isomorphisms $H^2_A(\tilde{X}, \mathbf{R}) \cong \bigoplus_{i=1}^m H^2_{A_i}(\tilde{X}, \mathbf{R}) \cong \bigoplus_{i=1}^m H^0(A_i, \mathbf{R}) \cong \mathbf{R}^{\oplus m}$ and $H^2(\tilde{X}, \mathbf{R}) \cong H^2(A, \mathbf{R}) \cong \bigoplus_{i=1}^m H^2(A_i, \mathbf{R}) \cong \mathbf{R}^{\oplus m}$, where A_1, \dots, A_m are the irreducible components of *A*. Then *a* is given by; $a(y_1, \dots, y_m) = (\dots, \sum_{i=1}^m y_i(A_i \cdot A_j), \dots)$ where $(A_i \cdot A_j)$ is the intersection number of A_i and A_j . Indeed, the image of

 $(0, \dots, 1, \dots, 0)(1$ in the *i*-th place) in $H^2(\widetilde{X}, \mathbf{R})$ by *a* is nothing but the real Chern class $c([A_i])$ of $[A_i]$. Since the intersection matrix is negative definite [10], *a* is isomorphic as was desired. Next we show that *b* is the zero map. First note that the (topological) dual map *b'* of *b* is given by $b': H^0(A, \Omega^2_{\widetilde{X}}|_A) \to H^2(A, \mathbf{R})$ (cf. [3]). But since the restriction of any holomorphic 2-form α on \widetilde{X} to *A* vanishes (so that the integral of α over each A_i is zero), *b'* is the zero map. Hence so is *b*. Thus *h* is isomorphic, since $H^1_A(\widetilde{X}, \mathscr{O}_{\widetilde{X}}) = 0$ by Grauert-Riemenschneider [12]. Then δc also is isomorphic and we have the direct sum decomposition $H^1(\widetilde{X}, \mathscr{O}_{\widetilde{X}}) = \operatorname{Im} c \bigoplus$ Im *d*. It suffices to show that $\operatorname{Im} c = H(A)$. Consider the following commutative diagram

$$egin{aligned} H^1_A(\widetilde{X},\,\mathscr{O}^*_{\widetilde{X}}) & \stackrel{\hat{c}_A}{\longrightarrow} H^1_A(\widetilde{X},\,\mathscr{O}_{\widetilde{\lambda}}) & \stackrel{h}{\longrightarrow} H^2_A(\widetilde{X},\,oldsymbol{R}) \ & igg| k & igg| c & igg| a \ H^1(\widetilde{X},\,\mathscr{O}^*_{\widetilde{X}}) & \stackrel{\hat{c}}{\longrightarrow} H^1(\widetilde{X},\,\mathscr{O}_{\widetilde{X}}) & \stackrel{\delta}{\longrightarrow} H^2(\widetilde{X},\,oldsymbol{R}) \ , \end{aligned}$$

where \hat{c}_A is defined in the same way as \hat{c} . (The sequences are in general not exact.) Obviously the line bundles $[A_i]$ are in the image of k and hence $H(A) \subseteq \text{Im } c$. On the other hand, the above description of the map a shows that $\delta(H(A)) = H^2(\tilde{X}, \mathbf{R})$. Thus H(A) = Im c as was desired.

(2) (b) \Rightarrow (a). Suppose that $\overline{\alpha} \in H(A) = \operatorname{Im} c$. Then $r(\overline{\alpha}) = 0$ and hence $\alpha = dd^{\circ}u$ for some C° function u on $\widetilde{X} - A$. Then α satisfies the condition (E) by Corollary to Lemma 1. (a) \Rightarrow (b). Suppose that α satisfies (E). For any V and α' as in (E), write $\alpha' = dd^{\circ}v$ on X for some C° function v. Then with respect to some local embedding $(X, x) \rightarrow (C^n, 0)$, there exists a small open ball B with center 0 in C^n such that $\alpha = dd^{\circ}v$ on $X - X \cap B$. Write $B' = X \cap B$. We show that the restriction map $j: H^1(X - x, \mathscr{P}_X) \rightarrow H^1(X - B', \mathscr{P}_X)$ is injective. In view of the commutative diagram of exact sequences

$$\begin{array}{cccc} H^{1}(X - x, \mathbf{R}) & \longrightarrow & H^{1}(X - x, \mathscr{O}_{X}) \longrightarrow & H^{1}(X - x, \mathscr{O}_{X}) \longrightarrow & H^{2}(X - x, \mathbf{R}) \\ & & & & & \downarrow i & & \downarrow j & & \downarrow \downarrow s \\ H^{1}(X - B', \mathbf{R}) \longrightarrow & H^{1}(X - B', \mathscr{O}_{X}) \longrightarrow & H^{1}(X - B', \mathscr{O}_{X}) \longrightarrow & H^{2}(X - B', \mathbf{R}) \end{array}$$

coming from the sequence (1) on X - x, we see that it suffices to show that *i* is injective (cf. (2.0) (a)). But this is shown in Andreotti and Grauert [1, Théorème 15]. Now by the injectivity of *j* we can write $\alpha = dd^{c}v'$ for some C^{∞} function v' on X - x. This implies that $r(\overline{\alpha}) = 0$ in $H^{1}(\widetilde{X} - A, \mathscr{P}_{\widetilde{X}}) = H^{1}(X - x, \mathscr{P}_{X})$, or $\overline{\alpha} \in \text{Im } c = H(A)$. q.e.d.

REMARK 2. Let (X, x) be a normal isolated singularity of dimension \geq

3. Let $f: (\tilde{X}, A) \to (X, x)$ be a resolution such that dim A = 1. Then the same proof as above shows that no Kähler form on X satisfies the condition (E), unless (X, x) is smooth.

(2.2) Next we globalize Proposition 3.

PROPOSITION 4. Let X be a normal complex surface with isolated singular points x_1, x_2, \dots, x_s . Let $f: \tilde{X} \to X$ be a resolution. Let $A_{\nu} = f^{-1}(x_{\nu})$ and U_{ν} a tubular neighborhood of A_{ν} in \tilde{X} . Then the following conditions are equivalent:

(1) X is a Kähler space.

(2) \widetilde{X} is Kähler and there exists a Kähler form α on \widetilde{X} such that for each ν the Kähler class $\overline{\alpha}_{\nu} \in H^{1}(U_{\nu}, \mathscr{P}_{\widetilde{X}})$ defined by $\alpha|_{U_{\nu}}$ belongs to $H(A_{\nu})$.

Note that Theorem in the introduction follows immediately from Propositions 2, 3 and 4 together with (3), in view of the definition of nondegeneracy.

For the implication $(1) \Rightarrow (2)$ we need lemmas.

LEMMA 4. Let L be a line bundle on a complex manifold X. Let b_1, \dots, b_m be C^{∞} sections of L on X which have no common zeroes. Then the refined Chern class $\hat{c}(L)$ of L is represented by the real closed (1, 1)-form (cf. 2.0) (c))

$$\gamma = (-1/4\pi) dd^{\circ} \log \Bigl(\sum\limits_{i=1}^m |b_i|^2 \Bigr)$$
 .

Here if $b_j(x) \neq 0$ at $x \in X$, then by definition $dd^c \log (\sum_{i=1}^m |b_i|^2) = dd^c \log ((\sum_{i=1}^m |b_i|^2)/|b_j|^2)$ at x, which is independent of the choice of such a j. The proof of the lemma is straightforward and is omitted.

LEMMA 5. Let \tilde{X} be a smooth complex surface and $A \subseteq \tilde{X}$ an exceptional divisor. Let $U \supset U' \supseteq A$ be tubular neighborhoods of A. Let A_1, \dots, A_m be the irreducible components of A. Then there exists a line bundle F on \tilde{X} of the form $F = \bigotimes_{i=1}^{m} [A_i]^{n_i}$ whose refined Chern class $\hat{c}(F)$ is represented by a real closed $C^{\infty}(1, 1)$ -form β which is positive definite (i.e., Kähler) on U' and vanishes identically on $\tilde{X} - U$.

PROOF. (cf. [21, §4, 3]). By [14, Lemma 4.10] there exist integers n_i such that $(\sum_{i=1}^{m} n_i A_i \cdot A_j) < 0$ for any j. Set $L = \bigotimes_{i=1}^{m} [A_i]^{-n_i}$. Then L is positive, and hence is ample, on U' (cf. [8, Lemmas 4 and 3]). So for a sufficiently large b > 0 we can find holomorphic sections ψ_1, \dots, ψ_s of $L^{\otimes b}$ on U' which embeds U' into the projective space P^{s-1} . Let σ be the canonical meromorphic section of $L = \bigotimes [A_i]^{-n_i}$, which has thus no zeroes and poles outside A. (Actually $n_i > 0$ for all i, and σ is holomorphic.

phic.) Let ρ be a C^{∞} funciton on \widetilde{X} with support contained in U such that $\rho \equiv 1$ on U'. Then $\rho_{\psi_1}, \dots, \rho_{\psi_s}, (1-\rho)\sigma^b$ are C^{∞} sections of $L^{\otimes b}$ which have no common zeroes on \widetilde{X} . Hence by Lemma 4

$$\gamma := -(1/4\pi b) dd^c \log \left(\sum\limits_{i=1}^{s} |\,
ho \psi_i |^2 + |\,(1-
ho) \sigma^b \,|^2 \,
ight)$$

represents $\hat{c}(L)$. Since $\gamma = -(1/4\pi b)dd^{\circ}\log(\sum_{i=1}^{s}|\psi_{i}|^{2})$ on U' it is negative definite there and clearly $\gamma \equiv 0$ on $\tilde{X} - U$. Then it suffices to set $F = L^{*}$ (the dual of L) and $\beta = -\gamma$. q.e.d.

PROOF OF PROPOSITION 4. We may assume that $U_{\mu} \cap U_{\nu} = \emptyset$ for $\mu \neq \nu$.

 $(2) \Rightarrow (1)$. Let α_{ν} be the restriction of α to U_{ν} . By further restriction, regard α_{ν} as a Kähler form on $f(U_{\nu}) - x_{\nu} \cong U_{\nu} - A_{\nu}$. Then by Proposition 3 after modification of α_{ν} within a relatively compact open subset of $f(U_{\nu})$, α_{ν} extends to a Kähler form α'_{ν} on $f(U_{\nu})$. Define a C^{∞} form α' on X by: $\alpha' = \alpha'_{\nu}$ on $f(U_{\nu})$ and $\alpha' = \alpha$ on $X - \bigcup_{\nu} f(U_{\nu}) = \tilde{X} - \bigcup_{\nu} U_{\nu}$. Then α' is a Kähler form on X.

 $(1) \Rightarrow (2)$. Let α' be a Kähler form on X. Take a tubular neighborhood U'_{ν} of A_{ν} with $U'_{\nu} \subset U_{\nu}$. Let $A_{\nu,i}$, $i = 1, \dots, m_{\nu}$, be the irreducible components of A_{ν} . Then by Lemma 5 for each ν there exists a line bundle F_{ν} on \tilde{X} of the form $\bigotimes_{i=1}^{m_{\nu}} [A_{\nu,i}]^{k_{i}}$ whose refined Chern class is represented by a real closed (1, 1)-form β_{ν} which is positive definite on U'_{ν} and vanishes identically on $\tilde{X} - U_{\nu}$. Since $f^{*}\alpha'$ is semipositive on \tilde{X} and positive on \tilde{X} and positive on \tilde{X} is a kähler form on \tilde{X} if we take a real number M sufficiently large. Moreover $\bar{\alpha}_{\nu} = \bar{\beta}_{\nu}$ on each U_{ν} , where $\bar{\beta}_{\nu}$ is the class of β_{ν} in $H^{1}(U_{\nu}, \mathscr{P}_{\tilde{X}})$. Hence $\bar{\alpha}_{\nu} \in H(A_{\nu})$.

REMARK 3. Let \tilde{X} be a Kähler manifold (of arbitrary dimension) and A an exceptional (compact) connected submanifold of codimension 1 in \tilde{X} in the sense of Grauert [10]. Let $f: \tilde{X} \to X$ be the contraction of A to a normal point x of a complex space X. Then a modification of the proof of Theorem shows that if $h^{1,1}(A) = 1$ and $H^1(A, \mathcal{M}^{*\nu}) = 0$ for all $\nu > 0$, X also is Kähler where \mathcal{M}^* is the conormal sheaf of A in \tilde{X} . This is a kählerian analogue of Grauert's criterion for projective contraction ([10, Satz 8]).

(2.3) The following proposition shows that the condition of Theorem, i.e., the nondegeneracy of the singularity, is a consequence of a certain global condition on the variety X.

PROPOSITION 5. Let X be a normal compact complex surface in C. Then X has only nondegenerate singularities if the natural homomorphism $f^*: H^2(X, O_X) \to H^2(\tilde{X}, O_{\tilde{X}})$ is injective for some (and hence for any) resolution $f: \tilde{X} \to X$ of X. In particular, X is Kähler. Moreover, under the same condition, \tilde{X} is projective if X is projective.

PROOF. By Theorem, the second assertion follows from the first. The first assertion follows from the commutative diagram

$$\begin{array}{cccc} H^{1}(\widetilde{X},\,\boldsymbol{R}) & \longrightarrow & H^{0}(X,\,\boldsymbol{R}^{1}\boldsymbol{f}_{*}\boldsymbol{R}) & \longrightarrow & H^{2}(X,\,\boldsymbol{R}) & \longrightarrow & H^{2}(\widetilde{X},\,\boldsymbol{R}) \\ & & & \downarrow & & \downarrow & & \downarrow \\ & & & \downarrow & & \downarrow & & \downarrow \\ H^{1}(\widetilde{X},\,\mathscr{O}_{\widetilde{X}}) & \longrightarrow & H^{0}(X,\,\boldsymbol{R}^{1}\boldsymbol{f}_{*}\mathscr{O}_{\widetilde{X}}) & \longrightarrow & H^{2}(X,\,\mathscr{O}_{X}) & \longrightarrow & H^{2}(\widetilde{X},\,\mathscr{O}_{\widetilde{X}}) \end{array}$$

of exact sequences coming from the Leray spectral sequences for f, if we note the surjectivity of $a \ (X \in \mathscr{C})$. To show the last assertion, recall from the proof of Theorem that for any Kähler form β on \widetilde{X} we can find a Kähler form α on X such that $\beta = f^* \alpha$ on a complement of a tubular neighborhood of A: = $f^{-1}(\operatorname{Sing} X)$. Let $\overline{\beta} \in H^2(\widetilde{X}, R)$ (resp. $\overline{\alpha} \in H^2(X, R)$) be the class defined by β (resp. α). Then by the above remark, $\overline{\beta} - f^*\overline{\alpha}$ is contained in the image of the natural map $H^2_{\mathcal{A}}(\widetilde{X}, \mathbf{R}) \to H^2(\widetilde{X}, \mathbf{R})$, which is generated by the real Chern classes $c(A_i) := c([A_i])$ of $[A_i]$, where A_i are the irreducible components of A. Namely $\bar{\beta} - f^* \bar{\alpha} = \sum_i r_i c(A_i)$ for some real numbers r_i . Suppose now that \widetilde{X} is projective and $\overline{\beta}$ is a real Chern class of an ample line bundle L on \tilde{X} . Then r_i are all rational numbers; indeed $0 = f^* \overline{\alpha} \cdot c(A_j) = \overline{\beta} \cdot c(A_j) - \sum r_i(A_i \cdot A_j)$ for any $j, \overline{\beta} \cdot c(A_j)$ is an integer and $\{(A_i \cdot A_j)\}$ is a negative definite integral matrix. Thus $mf^*\bar{\alpha} = f^*(m\bar{\alpha})$ is a real Chern class of a line bundle for some m > 0. Then from our assumption and from the commutative diagram of exact sequences

$$egin{aligned} H^1(X,\,\mathscr{O}_X^*) & \longrightarrow H^2(X,\,Z) & \longrightarrow H^2(X,\,\mathscr{O}_X) \\ & & & \downarrow f^* & & \downarrow \\ H^1(\widetilde{X},\,\mathscr{O}_{\widetilde{\mathfrak{r}}}^*) & \longrightarrow H^2(\widetilde{X},\,Z) & \longrightarrow H^2(\widetilde{X},\,\mathscr{O}_{\widetilde{X}}) \end{aligned}$$

it follows that $m\bar{\alpha}$ itself is a real Chern class of a line bundle, say L'. Then by Grauert [10, Satz 3] L' is ample and hence X is projective.

REMARK 4. The last assertion is originally due Brenton (cf. [5, Prop. 10]).

3. Criteria for nondegeneracy. We use the convention and notation of (2.0) (a).

(3.1) We first note the following:

LEMMA 6. Let (X, x) be a normal isolated singularity. Let $f:(\tilde{X}, A) \rightarrow \mathcal{X}$

(X, x) be a resolution. Then the natural map $H^{1}(\widetilde{X}, \mathbb{R}) \to H^{1}(\widetilde{X}, \mathscr{O}_{\widetilde{X}})$ is injective.

PROOF. We consider the commutative diagram of exact sequences (2) for \tilde{X} and A;

where the vertical arrows are the restriction maps. It suffices to show that b is the zero map. Since r is isomorphic, this follows, if \overline{b} is the zero map, or d is surjective. Since A is compact and connected, by the maximum principle d is isomorphic to the map $d': C \to R$ defined by d'(s) =-(imaginary part of s). Thus d is surjective as was desired. q.e.d.

Let (X, x) be a normal isolated surface singularity and $f: (\tilde{X}, A) \rightarrow (X, x)$ a resolution. Then we set $b_1(X, x) = b_1(\tilde{X})$ and call it the first Betti number of (X, x). This is independent of the chosen resolution f. Let $p_g(X, x) := \dim(R^1 f_* \mathcal{O}_{\tilde{X}})_x = \dim H^1(\tilde{X}, \mathcal{O}_{\tilde{X}})$ be the geometric genus of (X, x). Then the above lemma shows the inequality $b_1(X, x) \leq 2p_g(X, x)$. From the definitions we obtain:

PROPOSITION 6. A normal isolated surface singularity (X, x) is nondegenerate if and only if $b_1(X, x) = 2p_g(X, x)$.

(3.2) According to Brenton [6], a normal isolated surface singularity (X, x) is called *pararational*, if, for some (and hence for any) resolution $f: (\tilde{X}, A) \to (X, x)$ of (X, x) such that A is of normal crossings in \tilde{X} , we have (1) (the dual graph of) A contains no cycles and (2) $R^1f_*\mathscr{I} = 0$ where \mathscr{I} is the ideal sheaf of A with the reduced structure.

PROPOSITION 7. Let (X, x) be a normal isolated surface singulality. Then (X, x) is nondegenerate if and only if (X, x) is pararational.

PROOF. Let A_1, \dots, A_m be the irreducible components of A and p_1, \dots, p_n the singular points of A. Since A is a curve with normal crossings, we have $b_1(A) = n - m + 1 + \sum_{i=1}^m 2g(A_i)$ and $g(A) := \dim H^1(A, \mathscr{O}_A) = n - m + 1 + \sum_{i=1}^m g(A_i)$, where b_1 is the first Betti number and $g(A_i)$ is the genus of A_i . Hence we see that the following conditions are equivalent: (a) $\dim_{\mathbb{R}} H^1(A, \mathbb{R}) \ge 2 \dim H^1(A, \mathscr{O}_A)$, (b) $\dim_{\mathbb{R}} H^1(A, \mathbb{R}) = 2 \dim H^1(A, \mathscr{O}_A)$ and (c) n - m + 1 = 0. Note further that (c) is equivalent to the condition (1) of (3.2) above. Now we consider the following commutative diagram

A. FUJIKI

where the bottom sequence is exact, since $H^{0}(\widetilde{X}, \mathscr{O}_{\widetilde{X}}) \to H^{0}(A, \mathscr{O}_{A}) \cong C$ is surjective and $H^{2}(\widetilde{X}, \mathscr{I}) = 0$. Then in view of the above remark together with the injectivity of e (Lemma 6), it follows that (1) and (2) imply the surjectivity of e. Conversely if e is surjective, then the above equivalent conditions are satisfied, and dim $H^{1}(\widetilde{X}, \mathscr{I}) + \dim H^{1}(A, \mathscr{O}_{A}) =$ dim $H^{1}(\widetilde{X}, \mathscr{O}_{\widetilde{X}}) \leq (1/2) \dim_{R} H^{1}(\widetilde{X}, R) = \dim H^{1}(A, \mathscr{O}_{A})$ by (b). Hence $H^{1}(\widetilde{X}, \mathscr{I}) = 0$ as was desired.

EXAMPLE. Let A be a compact Riemann surface and L a negative line bundle on A. Let (X, x) be the normal isolated singularity obtained by contracting the zero section of L. Then (X, x) is nondegenerate if and only if $H^1(A, L^{*\otimes m}) = 0$ for any m > 0, where L^* denotes the dual of L. In particular simple-elliptic singularity of K. Saito are all nondegenerate.

(3.3) Modifying Laufer's argument [15], we shall give a criterion which makes no use of a resolution.

PROPOSITION 8. Let (X, x) be a normal isolated surface singularity. Then (X, x) is nondegenerate if and only if the following condition is satisfied; any holomorphic 2-form ω on X - x is L^2 -integrable whenever the class $[\omega + \bar{\omega}] \in H^2(X - x, \mathbf{R})$ defined by $\omega + \bar{\omega}$ vanishes. Here $\bar{\omega}$ denotes the complex conjugate of ω .

First we recall some results needed for the proof from the duality theory.

(a) Let U = X - x. Then $H^1(U, \mathcal{O}_U)$ has the natural QFS structure (QFS = quotient of Frechet-Schwartz) which is separated in our case where X is Stein (cf. [3, p. 82, Theorem 6.1]). On the other hand, by a theorem of Malgrange [16] $H^2(U, \Omega_U^2) = 0$ because dimU = 2. Hence by Serre duality, (1) the natural QDFS structure (QDFS = quotient of dual of FS) on $H^1_c(U, \Omega_U^2)$ also is separated and (2) $H^1(U, \mathcal{O}_U)$ and $H^1_c(U, \Omega_U^2)$ are in topological duality, where c denotes the compact supports (cf. [3]). Let $\omega_X := j_* \Omega_U^2$ be the Grothendieck dualizing sheaf on X where $j: U \to X$ is the inclusion (cf. [12]). Then depth $\omega_X = 2$ so that $H^0_c(X, \omega_X) = H^1_c(X, \omega_X) = 0$ (cf. [3, p. 41, Corollary 3.10]). Therefore from the exact sequence

$$H^0_c(X, \omega_X) \to \omega_{X,x} \to H^1_c(U, \Omega^2_U) \to H^1_c(X, \omega_X)$$

we have the natural (topological) isomorphism $\delta: \omega_{x,x} \cong H^1_{\epsilon}(U, \Omega^2_U)$.

We now proceed to describe the induced duality between $H^1(U, \mathcal{O}_U)$ and $\omega_{X,x}$, or the pairing \langle , \rangle giving this duality. Let $\alpha \in H^1(U, \mathcal{O}_U)$ and $\beta \in \omega_{X,x}$ be arbitrary. Let $\tilde{\alpha}$ (resp. $\tilde{\beta}$) be a $\bar{\partial}$ -closed C^{∞} (0, 1)-form on U(resp. a holomorphic 2-form defined on V - x for some open neighborhood V of x) representing α (resp. β). Let ρ be a C^{∞} function with compact support on X such that $\rho \equiv 1$ on a neighborhood V' of x with $V' \subset V$. Then $\bar{\partial}(\rho\tilde{\beta})$ has compact support on U and hence $\int_{U} \tilde{\alpha} \wedge \bar{\partial}(\rho\tilde{\beta})$ is finite. Further, the integral is independent of the choice of $\tilde{\alpha}, \tilde{\beta}$ and ρ as above depending only on α and β . Then from the definition of δ it follows that $\langle \alpha, \beta \rangle = \int_{U} \tilde{\alpha} \wedge \bar{\partial}(\rho\tilde{\beta})$.

Let B_{ε} be the ball of radius ε with center x with respect to a local embedding of X into C^{N} . Let S_{ε} be the boundary sphere B_{ε} . Let $U_{\varepsilon} = X - B_{\varepsilon} \cap X$ and $K_{\varepsilon} = X \cap S_{\varepsilon}$. Take ε so small that $B_{\varepsilon} \cap X \subseteq V'$. Then using Stokes' theorem we obtain

$$\int_{U} \tilde{\alpha} \wedge \bar{\partial} (\rho \tilde{\beta}) = \int_{U_{\varepsilon}} \tilde{\alpha} \wedge \bar{\partial} (\rho \tilde{\beta}) = \int_{U_{\varepsilon}} d(\tilde{\alpha} \wedge \rho \tilde{\beta}) - \int_{U_{\varepsilon}} d\tilde{\alpha} \wedge \rho \tilde{\beta} = \int_{K_{\varepsilon}} \tilde{\alpha} \wedge \tilde{\beta} .$$

Since these are independent of ε as above, we write $K = K_{\varepsilon}$ symbolically. We have thus $\langle \alpha, \beta \rangle = \int_{-}^{-} \tilde{\alpha} \wedge \tilde{\beta}$.

(b) Let $f: (\tilde{X}, A) \to (\tilde{X}, x)$ be resolution. Consider the coboundary map $\zeta: H^1(\tilde{X} - A, \mathcal{O}_{\tilde{X}}) \to H^2_A(\tilde{X}, \mathcal{O}_{\tilde{X}})$ in the local cohomology exact sequence. Note that ζ is surjective since $H^2(\tilde{X}, O_{\tilde{X}}) = 0$. Both terms have the natural QFS structures for which ζ is continuous (cf. [3, pp. 82, 287]). Since $H^1(A, \Omega^2_{\tilde{X}})$ is finite dimensional, $H^2_A(\tilde{X}, \mathcal{O}_{\tilde{X}})$ is separated and $H^2_A(\tilde{X}, \mathcal{O}_{\tilde{X}})$ and $H^0(A, \Omega^2_{\tilde{X}})$ are in natural topological duality. On the other hand, since $H^1(\tilde{X} - A, \mathcal{O}_{\tilde{X}}) \cong H^1(X - x, \mathcal{O}_X)$, the transpose ζ' of ζ gives rise to a homomorphism $H^0(A, \Omega^2_{\tilde{X}}) \to \omega_{X,x}$ by (a). Further, with a little more efforts this homomorphism is identified with the natural homomorphism $(f_*\Omega^2_{\tilde{X}})_x \to \omega_{X,x}$ obtained by the restriction to $\tilde{X} - A \cong$ X - x, which we shall still denote by ζ' .

(c) Let $K = K_{\varepsilon}$ be as in (a). Then for K = C or R we have $H^{i}(\tilde{X} - A, K) \cong H^{i}(X - x, K) \cong H^{i}(K, K)$ for all i (cf. (2.0) (a)) and they are finite dimensional over K. So they have the natural FS structure with its (topological) dual given by $H^{i}(\tilde{X} - A, K)' \cong H^{i}(K, K)' \cong H^{3-i}(K, K) \cong H^{3-i}(\tilde{X} - A, K)$ by the Poincaré duality.

The natural map $\gamma_c: H^1(\tilde{X} - A, C) \to H^1(\tilde{X} - A, \mathcal{O}_{\tilde{X}})$ is given by $\gamma_c(\alpha) =$ the class of $\tilde{\alpha}_1$, where $\tilde{\alpha}_1$ is the (0, 1)-component of a representing *d*-closed 1-form $\tilde{\alpha}$ of α . Then from the description of the duality

in (a) it follows that the dual map $\gamma'_c : \omega_{X,x} \to H^2(\widetilde{X} - A, C)$ is given by $\gamma'_c(\beta) = \widetilde{\beta}$ modulo *d*-closed forms via the natural isomorphism $H^2(\widetilde{X} - A, C) \cong H^2(V - x, C)$, where $\widetilde{\beta}$ and V are as in (a) with Vsuitably restricted.

PROOF OF PROPOSITION 8. Let $f: (\tilde{X}, A) \to (X, x)$ be a resolution. Consider the commutative diagram of local cohomology exact sequences

where the vertical arrows are the natural maps. First by Grauert-Riemenschneider [12] $H^1_A(\widetilde{X}, \mathscr{O}_{\widetilde{X}}) = 0$ so that ε is injective. Since *a* is injective (cf. the proof of Proposition 3), *b* is surjective. This implies that (X, x) is nondegenerate, i.e., *e* is surjective if and only if $\operatorname{Im} \gamma \supseteq \operatorname{Im} \varepsilon = \operatorname{Ker} \zeta$, where Im and Ker denote the image and the kernel respectively; in other words, the complex

$$H^{1}(\widetilde{X} - A, \mathbf{R}) \xrightarrow{\gamma} H^{1}(\widetilde{X} - A, \mathscr{O}_{\widetilde{X}}) \xrightarrow{\zeta} H^{2}_{A}(\widetilde{X}, \mathscr{O}_{\widetilde{X}})$$

is exact. In view of the remarks preceding the proof, the topological dual of this sequence is given by

$$H^2(\widetilde{X} - A, R) \xleftarrow{\gamma'}{\longleftarrow} \omega_{X,x} \xleftarrow{\zeta'}{(f_* \Omega^2_{\widetilde{X}})_x}$$

and this sequence is exact if and only if the original sequence is exact (cf. [3, p. 248 (C)]). Further, Im ζ' is precisely the space of L^2 -integrable holomorphic 2-forms on X - x (cf. [12], [15]). On the other hand, with K as in (c) above, by the description of γ'_c above we see that γ' is given by the map $\gamma'(\beta) =$ the class of $(1/2)(\tilde{\beta} + \tilde{\beta})$ where $\tilde{\beta}$ is as in (a) and $\tilde{\beta}$ denotes its complex conjugate. The proposition thus follows.

4. Small deformations and nondegeneracy. We show that every small deformation of a normal compact Kähler surface with only non-degenerate isolated singularities is again Kähler.

PROPOSITION 9. Let X be a normal compact complex surface in \mathscr{C} . Suppose that X has only nondegenerate singularities so that X is Kähler (cf. Theorem). Then every (flat) small deformation X_t of X is Kähler.

This is a consequence of the following theorem of Moishezon [19] in view of Lemma 7 below.

THEOREM (Moishezon). Let X be a normal compact Kähler space.

If the natural map $H^2(X, \mathbb{R}) \to H^2(X, \mathscr{O}_X)$ is surjective, then every small deformation X_t of X is again Kähler.

LEMMA 7. Let X be as in Proposition 9. Then the natural map $H^{2}(X, \mathbb{R}) \rightarrow H^{2}(X, \mathscr{O}_{X})$ is surjective.

PROOF. Let $f: \widetilde{X} \to X$ be a resolution. We consider the following commutative diagram of exact sequences derived from the Leray spectral sequence for f

$$\begin{array}{c} H^{1}(\tilde{X},\mathscr{P}_{\widetilde{X}}) \\ & \downarrow^{e} \\ H^{0}(X,R^{1}f_{*}R) \longrightarrow H^{2}(X,R) \longrightarrow H^{2}(\widetilde{X},R) \xrightarrow{d} H^{0}(X,R^{2}f_{*}R) \\ & \downarrow^{a} \qquad \qquad \downarrow^{b} \qquad \qquad \downarrow^{c} \qquad \qquad \downarrow \\ H^{0}(X,R^{1}f_{*}\mathscr{O}_{\widetilde{X}}) \longrightarrow H^{2}(X,\mathscr{O}_{X}) \longrightarrow H^{2}(\widetilde{X},\mathscr{O}_{\widetilde{X}}) \longrightarrow 0 \ . \end{array}$$

Our assumption is that a is surjective and we have to show that b is surjective. Since $\widetilde{X} \in \mathscr{C}$, c is surjective. Hence by diagram chasing it suffices to show that $de: H^1(\widetilde{X}, \mathscr{P}_{\widetilde{X}}) \to H^0(X, R^2 f_* \mathbf{R})$ is surjective. Let x_1, \dots, x_m be the singular points of X. Let $A_{\nu} = f^{-1}(x_{\nu})$ and $A = \bigcup_{\nu=1}^m A_{\nu}$. Then we show even that the composite map $H^1_A(\widetilde{X}, \mathscr{P}_{\widetilde{X}}) \to H^1(\widetilde{X}, \mathscr{P}_{\widetilde{X}}) \to$ $H^0(X, R^2 f_* \mathbf{R})$ is surjective. First, we have the natural isomorphisms $H^1_A(\widetilde{X}, \mathscr{P}_{\widetilde{X}}) \cong \bigoplus_{\nu=1}^m H^1_{A_\nu}(\widetilde{X}, \mathscr{P}_{\widetilde{X}})$ and $H^0(X, R^2 f_* \mathbf{R}) \cong \bigoplus_{\nu=1}^m H^2(A_\nu, \mathbf{R})$ and thus it suffices to show that the composite map $H^1_{A_\nu}(\widetilde{X}, \mathscr{P}_{\widetilde{X}}) \to H^1(\widetilde{X}, \mathscr{P}_{\widetilde{X}}) \to$ $H^2(A_{\nu}, \mathbf{R})$ is surjective for any ν . This is indeed proved in the course of the proof of Proposition 3. q.e.d.

EXAMPLE. Let C be any nonsingular cubic curve in the complex projective plane P^2 . Take ten points q_1, \dots, q_{10} on C arbitrarily and blow up P^2 with center q_1, \dots, q_{10} . Let \tilde{X} be the resulting surface and E the proper transform of C in \tilde{X} . Then the self-intersection number $E \cdot E =$ -1 so that E can be blown down to a simple-elliptic singularity x of a normal Moishezon surface X. Then by our Theorem together with example in (3.2) X is Kähler, though X is not projective for 'general' choice of q_i .

This example of kählerian non-projective Moishezon surface is originally due to Moishezon [19], where he has proved that the above $X = X(q_1, \dots, q_{10})$ is Kähler if it is sufficiently near to a projective one by using the above theorem. (Note that his proof amounts to showing that (X, x) is nondegenerate in our sense.) Many other examples of kählerian non-projective normal Moishezon surfaces can now be obtained by using our criterion. For instance, let $h: Y \to C$ be a projective nonsingular A. FUJIKI

elliptic surface with q(Y) = g(C), where q(Y) and g(C) are the irregularity and the genus of Y and C, respectively. Let $c \in C$ be a general point and $p \in Y_c$ the general point of Y_c . Let X be the normal surface obtained by blowing up p and then contracting the proper transform of Y_c to a unique singular point $x \in X$. Then X satisfies the desired condition.

References

- A. ANDREOTTI AND H. GRAUERT, Théorème de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193-259.
- [2] M. ARTIN, Some numerical criteria for contractibility of curves on algebraic surfaces, Amer. J. Math. 84 (1962), 485-496.
- [3] C. BANICA AND O. STANSILA, Algebraic methods in the global theory of complex spaces, John Wiley and Sons, London-New York-Sydney-Tronto and Editura Academiei, Bucuresti, 1976.
- [4] J. BINGENER, On deformations of Kähler maps, preprint.
- [5] L. BRENTON, Some algebraicity criteria for singular surfaces, Inventiones Math. 41 (1977), 129-147.
- [6] L. BRENTON, On singular complex surfaces with vanishing geometric genus and pararational singularities, Composito Math. 43 (1981), 297-315.
- [7] J. E. FORNAESS AND R. NARASIMHAN, The Levi problem on complex spaces with singularities, Math. Ann. 248 (1980), 47-72.
- [8] A. FUJIKI, On the blowing down of analytic spaces, Publ. RIMS, Kyoto Univ. 10 (1975), 473-507.
- [9] A. FUJIKI, Closedness of the Douady spaces of compact Kähler spaces, Publ. RIMS, Kyoto Univ. 14 (1978), 1-52.
- [10] H. GRAUERT, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331-368.
- H. GRAUERT AND R. REMMERT, Plurisubharmonische Funktionen in Komplexen Räumen, Math. Z. 65 (1956), 175-194.
- [12] H. GRAUERT AND O. RIEMENSCHNEIDER, Verschwindungassätze für analytische Kohomologie Gruppen auf Komplexen Räumen, Inventiones Math. 11 (1970), 263-292.
- [13] K. KODAIRA, On compact analytic surfaces I, Ann. of Math. 71 (1960), 111-152.
- [14] H. LAUFER, Normal two-dimensional singularities, Ann. of Math. Studies 71, 1971.
- [15] H. LAUFER, On rational singularities, Amer. J. Math. 94 (1972), 597-608.
- [16] B. MALGRANGE, Faisceaux sur les variété analytique-reélles, Bull. Soc. Math. France 85 (1957), 231-237.
- [17] Y. MIYAOKA, Extension theorems of Kähler metrics, Proc. Japan Acad. 50 (1974), 407-410.
- [18] Y. MIYAOKA, Kähler metrics on elliptic surfaces, Proc. Japan Acad. 50 (1974), 533-536.
- [19] B. MOISHEZON, Singular kählerian spaces, Proc. Int. Conf. on manifolds and related topics in topology, Univ. of Tokyo Press, 1974, 343-351.
- [20] D. PRILL, Local classification of quotients of complex manifolds by discontinuous groups, Duke Math. J. 34 (1967), 375-386.
- [21] O. RIEMENSCHENEIDER, Characterizing Moishezon spaces by almost positive coherent analytic sheaves, Math. Z. 123 (1971), 263-284.

[22] B. SHIFFMAN, Extension of positive line bundles and meromorphic maps, Inventiones Math. 15 (1972), 332-347.

Institute of Mathematics Yoshida College Kyoto University Kyoto, 606 Japan