ZETA FUNCTIONS IN SEVERAL VARIABLES ASSOCIATED WITH PREHOMOGENEOUS VECTOR SPACES II: A CONVERGENCE CRITERION

Fumihiro Sato

(Received March 8, 1982)

In the previous paper [14], we introduced zeta functions associated with prehomogeneous vector spaces and proved their functional equations with respect to a Q-regular subspace. For application of the results in [14], it is desirable to find a practical criterion for convergence of zeta functions. The purpose of the present paper is to give a certain sufficient condition for absolute convergence of zeta functions, which is a generalization of the method used by Suzuki [22].

In $\S 1$, we recall the definition of zeta functions associated with prehomogeneous vector spaces and formulate the main result (Theorem 1). The proof of Theorem 1 is given in §2. Our argument is based upon the techniques in adele geometry developed by Ono [10], [12] and [13]. We shall give some applications of Theorem 1 in § 3 and the forthcoming paper [15].

The author would like to thank T. Suzuki for many stimulating discussions.

In what follows, we denote by $\boldsymbol{Z}, \boldsymbol{Q}, \boldsymbol{R}$ and \boldsymbol{C} the ring of rational integers, the rational number field, the real number field and the complex number field, respectively. For a prime ν (finite or infinite) of $\boldsymbol{Q}, \boldsymbol{Q}_{\nu}$ is the completion of \boldsymbol{Q} with respect to ν. For a finite prime p, \boldsymbol{Z}_{p} is the ring of p-adic integers and \boldsymbol{F}_{p} is the finite field with p elements. We use the standard notation in Galois cohomology and adele geometry. In particular for any affine algebraic set X defined over $\boldsymbol{Q}, X_{\boldsymbol{Q}_{\nu}}$ (resp. $X_{\boldsymbol{Z}_{p}}$) are the set of \boldsymbol{Q}_{ν}-rational (resp. \boldsymbol{Z}_{p}-integral) points of X. The adelization of X over \boldsymbol{Q} is denoted by X_{A}. For a \boldsymbol{Q}-rational gauge form ω on X and a prime ν of $\boldsymbol{Q},|\omega|_{\nu}$ is the measure on $X_{\boldsymbol{Q}_{\nu}}$ induced by ω. We denote by $\mathscr{S}\left(V_{A}\right)$ the Schwartz-Bruhat space on the adelization V_{A} of a \boldsymbol{Q}-vector space V. The cardinality of a set X is denoted by $\#(X)$. For a linear algbraic group G, we denote by $\mathscr{D}(G)$ and $R_{u}(G)$ its derived group and its unipotent radical, respectively.

1. Statement of the main results. 1.1. First we recall the difini-
tion of zeta functions associated with prehomogeneous vector spaces (for more detailed treatment, see [14, § 1 and $\S 4]$). Let (G, ρ, V) be a prehomogeneous vector space (briefly a p.v.) defined over Q and S be its singular set. The singular set S is, by definition, a proper algebraic subset of V such that $V-S$ is a single G-orbit. The algebraic set S is defined over \boldsymbol{Q}. Let S_{1}, \cdots, S_{n} be the \boldsymbol{Q}-irreducible components of S with codimension 1. Let P_{1}, \cdots, P_{n} be \boldsymbol{Q}-irreducible polynomials defining S_{1}, \cdots, S_{n}, respectively. Then P_{1}, \cdots, P_{n} are relative invariants of (G, ρ, V) and there exist Q-rational characters $\chi_{1}, \cdots, \chi_{n}$ of G such that

$$
P_{i}(\rho(g) x)=\chi_{i}(g) P_{i}(x) \quad(g \in G, x \in V, 1 \leqq i \leqq n)
$$

Let G_{R}^{+}be a subgroup of G_{R} containing the identity component and let $V_{R}-S_{R}=V_{1} \cup \cdots \cup V_{\nu}$ be the G_{R}^{+}-orbit decomposition. We fix a basis of V and a matrix expression of G compatible with the given Q-structure and such that $\rho\left(G_{z}\right) V_{z} \subset V_{z}$. Put

$$
\Gamma=\left\{g \in G_{Z} \cap G_{R}^{+} ; \chi_{i}(g)=1(1 \leqq i \leqq n)\right\} .
$$

For any $x \in V$, denote by G_{x} the isotropy subgroup of G at x :

$$
G_{x}=\{g \in G ; \rho(g) x=x\}
$$

Let G_{x}° be the identity component of G_{x}. Set $G_{x}^{+}=G_{x} \cap G_{\boldsymbol{R}}^{+}$and $\Gamma_{x}=$ $G_{x} \cap \Gamma$. Let V_{Q}^{\prime} be the subset of $V_{Q}-S_{Q}$ consisting of all elements x such that G_{x}° has no non-trivial Q-rational character. We assume that V_{Q}^{\prime} is non-empty.

Let Ω be a right invariant Q-rational gauge form on G. Then there exists a Q-rational character Δ of G such that $L_{h}^{*} \Omega=\Delta(h) \Omega(h \in G)$, where $L_{h}^{*} \Omega$ is the pull back of Ω by the left translation $L_{h}(g)=h g$. For some integer d, the character $(\operatorname{det} \rho / \Delta)^{d}$ corresponds to a relative invariant of (G, ρ, V) and we can find a $\delta=\left(\delta_{1}, \cdots, \delta_{n}\right)$ in \boldsymbol{Q}^{n} such that

$$
\{\operatorname{det} \rho(g) / \Delta(g)\}^{d}=\chi_{1}(g)^{d \delta_{1}} \ldots \chi_{n}(g)^{d^{\partial_{n}}}
$$

Let $d g$ be a right invariant measure on G_{R}^{+}and $d x$ be a Euclidean measure on V_{R}. Put

$$
\omega(x)=\left|P_{1}(x)\right|^{-\delta_{1}} \cdots\left|P_{n}(x)\right|^{-\delta_{n}} d x
$$

For any x in V_{Q}^{\prime}, the group G_{x}^{+}is a unimodular Lie group. Normalize a Haar measure $d \mu_{x}$ on G_{x}^{+}by the following formula:

$$
\begin{equation*}
\int_{G_{\boldsymbol{R}}^{+}} F(g) d g=\int_{G_{\boldsymbol{R}}^{+} / G_{x}^{+}} \omega(\rho(g) x) \int_{G_{x}^{+}} F(g h) d \mu_{x}(h) \quad\left(F \in L^{1}\left(G_{\boldsymbol{R}}^{+}, d g\right)\right) \tag{1-1}
\end{equation*}
$$

The volume

$$
\mu(x)=\int_{\sigma_{x}^{+} / \Gamma_{x}} d \mu_{x}
$$

is finite for any x in V_{Q}^{\prime}.
Let L be a Γ-invariant lattice in V_{Q} and set $L^{\prime}=L \cap V_{Q}^{\prime}$ and $L_{i}=$ $L^{\prime} \cap V_{i}(1 \leqq i \leqq \nu)$. The subset L_{i} is also Γ-stable and we denote by $\Gamma \backslash L_{i}$ the set of all Γ-orbits in L_{i}. We put

$$
\xi_{i}(L ; s)=\sum_{x \in \Gamma \backslash L_{i}} \mu(x)\left|P_{1}(x)\right|^{-s_{1}} \cdots\left|P_{n}(x)\right|^{-s_{n}} \quad\left(s \in \boldsymbol{C}^{n}, 1 \leqq i \leqq \nu\right)
$$

The Dirichlet series $\xi_{1}, \cdots, \xi_{\nu}$ are called the zeta functions associated with (G, ρ, V).
1.2. A p.v. (G, ρ, V) is said to be split over a field K if it is defined over K and every rational character of G corresponding to a relative invariant is also defined over K. Now the following lemma is an easy consequence of [14, Lemma 1.2 (ii) and Lemma 1.3].

Lemma 1.1. The following assertions are equivalent:
(1) (G, ρ, V) is split over K.
(2) Every absolutely irreducible component of S with codimension 1 is defined over K.
(3) Any relative invariant coincides with a rational function with coefficients in K up to a constant multiple.

In the rest of this paper, we are exclusively concerned with p.v.'s split over \boldsymbol{Q}.

Set $G_{1}=\left\{g \in G ; \chi_{i}(g)=1(1 \leqq i \leqq n)\right\}$. Since we are assuming that (G, ρ, V) is split over \boldsymbol{Q}, the group G_{1} coincides with the group generated by $\mathscr{D}(G), R_{x}(G)$ and a generic isotropy subgroup G_{x} for an $x \in V-S$ (cf. [16, § 4 Proposition 19]). Denote by H the connected component of the identity element of G_{1}. Then H is the group generated by $\mathscr{D}(G)$, $R_{u}(G)$ and G_{x}° for an $x \in V-S$. Put $H_{x}=H \cap G_{x}$. Obviously H_{x} contains G_{x}°. We always assume that
(S) H_{x} is a connected semi-simple algebraic group for any $x \in V-S$.

It follows from (S) that $V-S \cong G / G_{x}$ is an affine variety (see, e.g., [1, p. 579]). Hence the singular set S is a hypersurface defined by the polynomial $P_{1} \cdots P_{n}$.

For any semi-simple algebraic group A defined over \boldsymbol{Q}, we denote by $\widetilde{A}=(\widetilde{A}, \pi)$ the universal covering group of A defined over $Q: \pi: \widetilde{A} \rightarrow A$. It is known that $H^{1}\left(\boldsymbol{Q}_{p}, \widetilde{A}\right)$ is trivial for any finite prime p (cf. [21, Theorem 3.3]). Consider the following property for such a group A :
(H) For every inner \boldsymbol{Q}-form A^{\prime} of A,

$$
H^{1}\left(\boldsymbol{Q}, \tilde{\boldsymbol{A}}^{\prime}\right) \rightarrow \prod_{\nu} H^{1}\left(\boldsymbol{Q}_{\nu}, \tilde{A}^{\prime}\right)=H^{1}\left(\boldsymbol{R}, \tilde{\boldsymbol{A}}^{\prime}\right)
$$

is a bijection.
We shall say that (G, ρ, V) has the property (H) if the group H_{x} has the property (H) for any x in $V_{Q}-S_{Q}$.

We further consider the following condition:
(W) For any $x \in V_{Q}-S_{Q}$, the Tamagawa number $\tau\left(\tilde{H}_{x}\right)$ of \tilde{H}_{x} does not exceed some positive constant independent of x.

The main theorem of this paper is as follows:
Theorem 1. If a p.v. (G, ρ, V) split over \boldsymbol{Q} has the properties (\mathbb{S}), (H) and (W), then the Dirichlet series $\xi_{1}(L ; s), \cdots, \xi_{2}(L ; s)$ are absolutely convergent for $\operatorname{Re} s_{1}>\delta_{1}, \cdots, \operatorname{Re} s_{n}>\delta_{n}$.

If the group H_{x} is trivial for some $x \in V-S$, we may consider that (G, ρ, V) satisfies (S), (H) and (W).

Corollary. Let (G, ρ, V) be a p.v. split over Q. If the group H_{x} is trivial for some $x \in V-S$, then the Dirichlet series $\xi_{1}(L ; s), \cdots, \xi_{2}(L ; s)$ are absolutely convergent for $\operatorname{Re} s_{1}>\delta_{1}, \cdots, \operatorname{Re} s_{n}>\delta_{n}$.

Remark 1. If H_{x} has no simple component of type E_{8}, the condition (S) implies the condition (H) (cf. [3]). By the classification of irreducible p.v.'s ([16]), no simple component of type E_{8} appears in $H_{x}(x \in V-S)$ for any irreducible regular p.v. The so-called Weil conjecture asserts that the Tamagawa number of any simply connected algebraic group defined over \boldsymbol{Q} is equal to 1 . This conjecture is established for a fairly wide class of semi-simple algebraic groups (cf. [7], [8], [9] and [24]). For such groups, we can take 1 as a positive constant in (W). These remarks show that the most essential condition is (\mathbf{S}). Notice that this condition is concerned only with the structure of (G, ρ, V) over \boldsymbol{C}.

Remark 2. Theorem 1 and Corollary are partial affirmative answers to the conjecture proposed in [14, §4].
1.3. Let (G, ρ, V) be a p.v. split over \boldsymbol{Q} with the properties (\mathbf{S}), (H) and (W). Assume that (G, ρ, V) is decomposed over \boldsymbol{Q} into a direct sum as $(G, \rho, V)=\left(G, \rho_{1} \oplus \rho_{2}, E \oplus F\right)$ and F is a Q-regular subspace. Note that, by the assumption that (G, ρ, V) is split over \boldsymbol{Q}, any regular subspace is necessarily a Q-regular subspace. Let F^{*} be the vector space dual to F and ρ_{2}^{*} the representation of G on F^{*} contragredient to ρ_{2}. Set $\rho^{*}=\rho_{1} \oplus \rho_{2}^{*}$ and $V^{*}=E \oplus F^{*}$.

Proposition 1.2. The p.v. $\left(G, \rho^{*}, V^{*}\right)$ is also a p.v. split over \boldsymbol{Q} with the properties $(\mathrm{S}),(\mathrm{H})$ and (W).

Proof. By [14, Lemma 2.4, (iii)], the group of all characters corresponding to relative invariants of (G, ρ, V) coincides with that of $\left(G, \rho^{*}, V^{*}\right)$. Hence (G, ρ, V) is split over \boldsymbol{Q} if and only if so is $\left(G, \rho^{*}, V^{*}\right)$. Let P be a relative invariant of (G, ρ, V) with coefficients in Q such that the Hessian

$$
H_{P, y}=\operatorname{det}\left(\frac{\partial^{2} P}{\partial y_{i} \partial y_{j}}(x, y)\right) \quad(x \in E, y \in F)
$$

with respect to F does not vanish identically. Then the mapping $\phi_{P}: V-S \rightarrow V^{*}-S^{*}$ introduced in [14, (2-3)] is a G-equivariant biregular rational mapping defined over \boldsymbol{Q} (cf. [14, Lemma 2.4, (iv)]). Moreover ϕ_{P} induces a one-to-one correspondence between $V_{Q}-S_{Q}$ and $V_{Q}^{*}-S_{Q}^{*}$. For any $\xi \in V_{Q}-S_{Q}$, we have $G_{\xi}=G_{\phi_{P}(\xi)}$ and hence $H_{\xi}=H_{\phi_{P}(\xi)}$ (cf. [14, Lemma 2.4, (ii)]). Thus the conditions (S), (H) and (W) are satisfied also by (G, ρ^{*}, V^{*}).

Let $(G, \rho, V)=\left(G, \rho_{1} \oplus \rho_{2}, E \oplus F\right)$ be a p.v. split over \boldsymbol{Q} with a \boldsymbol{Q}-regular subspace F satisfying the conditions (S), (H) and (W). Then the condition (S) yields the condition (6-1) of [14]. As is remarked in the preceding paragraph, (G, ρ, V) satisfies (5-2) of [14]. The condition (6-2) follows immediately from Proposition 1.2 and Theorem 1. Hence the results in $[14, \S 6]$ can be applied to such a p.v. and we are able to obtain functional equations of associated zeta functions.

Theorem 2. Let (G, ρ, V) be a p.v. split over \boldsymbol{Q} with a reductive algebraic group G satisfying the conditions (S), (H) and (W). Then the Dirichlet series $\xi_{1}(L ; s), \cdots, \xi_{2}(L ; s)$ have analytic continuations to meromorphic functions of s in the whole of \boldsymbol{C}^{n}.

Proof. Since G is reductive, the condition (\mathbf{S}) implies that V is regular over \boldsymbol{Q} ([16, §4 Remark 26]). Hence the theorem follows from Theorem 1 and [14, Corollary 1 to Theorem 2].
1.4. As examples, consider the following two p.v.'s which were studied in [14, §7].
(1) $\quad G=S L(2) \times G L(1)^{3}, \quad V=C^{2} \oplus C^{2} \oplus C^{2}, \quad \rho\left(g, t_{1}, t_{2}, t_{3}\right)(x, y, z)=$ $\left(g x t_{1}^{-1}, g y t_{2}^{-1}, g z t_{3}^{-1}\right)$,
(2) $G=G L(2) \times G L(1), V=\left\{x \in M(2 ; C) ;{ }^{t} x=x\right\} \oplus C^{2}, \rho\left(g_{2}, g_{1}\right)(x, y)=$ $\left(g_{2} x^{t} g_{2},{ }^{t} g_{2}^{-1} y g_{1}\right)$.

In these two cases, we have
(1) $H=S L(2) \times\{1\}^{3}, \delta=(1,1,1), H_{x}=$ trivial for all x in $V-S$,
(2) $H=S L(2) \times\{1\}, \delta=(1,1), H_{x}=$ trivial for all x in $V-S$.

Hence, by Corollary to Theorem 1, we see that the associated zeta functions are absolutely convergent for $\operatorname{Re} s_{1}, \operatorname{Re} s_{2}, \operatorname{Re} s_{3}>1$ in the former case and for $\operatorname{Re} s_{1}$, $\operatorname{Re} s_{2}>1$ in the latter case. The explicit formulas (7-4) and (7-5) of [14] of the zeta functions for the standard lattices V_{z} show that our result is the best possible.

We shall present another application of Theorem 1 in §3 (see also [15]).
2. Proof of Theorem 1. We devide the proof into several steps.
2.1. Let $\phi: V \rightarrow \boldsymbol{C}^{n}$ be the polynomial mapping defined by $\phi(x)=$ $\left(P_{1}(x), \cdots, P_{n}(x)\right)$. For any $t \in\left(\boldsymbol{C}^{\times}\right)^{n}$, we put $V(t)=\phi^{-1}(t)$. Since $V-S=$ $\phi^{-1}\left(\left(C^{\times}\right)^{n}\right)$ is a G-orbit, G_{1} acts on $V(t)\left(t \in\left(C^{\times}\right)^{n}\right)$ transitively. Take a point x in $V(t)$. Then $G_{1}=\mathscr{D}(G) R_{v}(G) G_{x}$ and hence $V(t)$ is a $\mathscr{D}(G) R_{u}(G)$ orbit. In particular $V(t)$ is a homogeneous space of H and is irreducible. It is clear that ϕ is submersive at any point in $V-S$. Hence we have a \boldsymbol{Q}-rational gauge form $\theta_{t}(x)=d x / d P_{1} \wedge \cdots \wedge d P_{n}$ on $V(t)$ for any $t \in\left(\boldsymbol{Q}^{\times}\right)^{n}$ (cf. [25, I.5.]). It is clear that the gauge form θ_{t} is H-invariant. For a Q-rational point ξ in $V(t)$, we define a morphism $\pi_{\xi}: H \rightarrow V(t)$ by $\pi_{\xi}(h)=\rho(h) \xi$. Let $d h$ be a \boldsymbol{Q}-rational invariant gauge form on H and $d \nu_{\xi}$ be the \boldsymbol{Q}-rational invariant gauge form on H_{ξ} given by $d \nu_{\varepsilon}=$ $d h /\left(\pi_{\xi}\right)^{*}\left(\theta_{t}\right)$. It is easy to check that we can normalize a Haar measure $d g$ on G_{R}^{+}such that

$$
\begin{equation*}
d \mu_{\xi}=\prod_{i=1}^{n}\left|t_{i}\right|^{\delta_{i}-1}\left|d \nu_{\xi}\right|_{\infty} \quad\left(\xi \in V(t)_{Q}\right) \tag{2-1}
\end{equation*}
$$

on $H_{\xi, \mathrm{R}} \cap G_{\xi}^{+}$, where $d \mu_{\xi}$ is the Haar measure on G_{ξ}^{+}normalized by the formula (1-1).

Let

$$
\begin{equation*}
\nu(\xi)=\int_{H_{\xi}, R^{\prime} H_{\xi}, Z}\left|d \nu_{\xi}\right|_{\infty} \quad\left(\xi \in V_{Q}-S_{Q}\right) . \tag{2-2}
\end{equation*}
$$

Obviously the indices [$H_{\xi, R}: H_{\xi, R} \cap G_{\xi}^{+}$] and [$G_{\xi}^{+}: G_{\xi}^{+} \cap H_{\xi, R}$] are finite and depend only upon the G_{R}^{+}-orbit of ξ. Hence we can find two positive constants A and B such that

$$
\begin{equation*}
A \prod_{i=1}^{n}\left|t_{i}\right|^{\delta_{i}-1} \nu(\xi)<\mu(\xi)<B \prod_{i=1}^{n}\left|t_{i}\right|^{\delta_{i}-1} \nu(\xi) \quad\left(\xi \in V(t)_{Q}\right) . \tag{2-3}
\end{equation*}
$$

It is sufficient to prove Theorem 1 for $L=V_{Z}$. Moreover we may assume that P_{1}, \cdots, P_{n} have coefficients in \boldsymbol{Z}. Then we have

$$
\sum_{i=1}^{\nu} \xi_{i}(L ; s)=\sum_{t}\left\{\sum_{\xi} \mu(\xi)\right\} \prod_{i=1}^{n}\left|t_{i}\right|^{-s_{i}}
$$

where $t=\left(t_{1}, \cdots, t_{n}\right)$ runs through all n-tuples of non-zero integers and the summation with respect to ξ is taken over a complete set of representatives of $\Gamma \backslash V(t)_{Z}$. Now we consider the sum $A(t)=\sum_{\xi \in H_{Z} \backslash(t) Z} \nu(\xi)$. The group Γ and H_{z} are commensurable. Hence, by (2-3), the domain of absolute convergence of $\sum_{i=1}^{y} \xi_{i}(L ; s)$ coincides with that of the Dirichlet series

$$
\begin{equation*}
\sum_{t} A(t) \prod_{i=1}^{n}\left|t_{i}\right|^{-s_{i}+\delta_{i}-1} \tag{2-4}
\end{equation*}
$$

So we concentrate our attention to the estimation of $A(t)$.
2.2. Let A be an algebraic group defined over \boldsymbol{Q} or a Galois module over \boldsymbol{Q}. We use the following two symbols:

$$
i^{1}(A)=\#\left(\operatorname{Ker}\left\{H^{1}(\boldsymbol{Q}, A) \rightarrow \prod_{\nu} H^{1}\left(\boldsymbol{Q}_{\nu}, A\right)\right\}\right), \quad h^{1}(A)=\#\left(H^{1}(\boldsymbol{Q}, A)\right)
$$

Lemma 2.1. Let A be a connected semi-simple algebraic group defined over \boldsymbol{Q} with the property (H). Let (\widetilde{A}, π) be the universal covering group of A defined over \boldsymbol{Q}. Denote by M the kernel of π and put

$$
\widehat{M}=\operatorname{Hom}(M, G L(1)) .
$$

The group \hat{M} is a Galois module over \boldsymbol{Q} in a natural manner. Then we have

$$
i^{1}(A) \leqq i^{1}(\hat{M}) h^{1}(\widetilde{A})
$$

Remark. By the condition (H) and [2, Theorems 6.1 and 7.1], the right hand side of the inequality is finite.

Proof of Lemma 2.1. Consider the following commutative diagram:

Both of the horizontal sequences are exact. Let $\gamma \in H^{1}(\boldsymbol{Q}, A)$ be a cohomology class in $\operatorname{Ker} p_{1}$. Then we have $\#\left(\Delta^{-1}(\Delta(\gamma))\right) \leqq h^{1}\left({ }_{r} \widetilde{A}\right)$ where ${ }_{r} A$ is the inner Q-form of A corresponding to γ (cf. [18, Chap. 1, §5, Prop. 44, Cor.]). Since γ is in $\operatorname{Ker} p_{1}, r \widetilde{A}$ is isomorphic to \widetilde{A} over \boldsymbol{R}. Hence, by (H), $\#\left(\Delta^{-1}(\Delta(\gamma))\right) \leqq h^{1}(\widetilde{A})$. Therefore, by the duality theorem of Tate ([23, Th. 3.1 (a)]), we obtain

$$
i^{1}(A) \leqq h^{1}(\widetilde{A}) \sharp\left(\operatorname{Ker} p_{2}\right)=i^{1}(\hat{M}) h^{1}(\widetilde{A}) .
$$

2.3. We return to the situation in $\S 1$ and $\S 2.1$. Let H_{A} (resp. V_{A}, $\left.V(t)_{A}\right)$ be the adelization of H (resp. $\left.V, V(t)\right)$ over \boldsymbol{Q}. The representation
ρ induces an action of H_{A} on V_{A} and hence on $V(t)_{A}$. We denote them also by ρ. Two elements x and y in V_{Q} are said to be globally (resp. locally) equivalent if they are in the same $H_{Q^{-}}$(resp. $H_{A^{-}}$) orbit. Denote by Θ_{x} the set of all elements in V_{Q} locally equivalent to $x \in V_{Q}: \Theta_{x}=$ $V_{Q} \cap \rho\left(H_{A}\right) x$. We write $\sim \backslash \Theta_{x}$ for the set of all global equivalence classes in Θ_{x}. Put $\tau\left(\Theta_{x}\right)=\sum_{\xi \in \sim \theta_{x}} \tau\left(H_{\xi}\right)$ where $\tau\left(H_{\xi}\right)$ is the Tamagawa number of the semi-simple algebraic group H_{ξ}.

Lemma 2.2. The numbers $\tau\left(\Theta_{x}\right)\left(x \in V_{Q}-S_{Q}\right)$ are bounded.
Proof. Let $\left(\widetilde{H}_{\xi}, \pi\right)$ be the universal covering group of H_{ξ} defined over \boldsymbol{Q} and put $M_{\xi}=\operatorname{Ker} \pi$ and $\widehat{M}_{\xi}=\operatorname{Hom}\left(M_{\xi}, G L(1)\right)$. By [10, Theorem 2.3.1],

$$
\tau\left(H_{\xi}\right)=\#\left(\widehat{M}_{\xi}^{\xi}\right) \tau\left(\widetilde{H}_{\xi}\right) / i^{1}\left(\widehat{M}_{\xi}\right)
$$

where \hat{M}_{ξ}^{\otimes} is the set of all fixed elements in \hat{M}_{ξ} under the cannonical action of $\mathbb{E}=\operatorname{Gal}(\overline{\boldsymbol{Q}} / \boldsymbol{Q})$. Set

$$
\tau=\operatorname{Sup}\left\{\tau\left(\tilde{H}_{\xi}\right) ; \xi \in V_{Q}-S_{Q}\right\}
$$

The condition (W) asserts that τ is finite. Hence $\tau\left(H_{\xi}\right) \leqq \tau m / i^{1}\left(\hat{M}_{\xi}\right)$ where $m=\#\left(\widehat{M}_{\xi}\right)=\#\left(M_{\xi}\right)$. By the prehomogeneity, the constant m does not depend on ξ. Let y be an element in Θ_{x} such that $i^{1}\left(\widehat{M}_{y}\right) \leqq i^{1}\left(\hat{M}_{\xi}\right)$ for any $\xi \in \Theta_{x}$. Then, by [12, Lemma 6.2] and Lemma 2.1,

$$
\tau\left(\Theta_{x}\right) \leqq \tau m i^{1}\left(H_{y}\right) / i^{1}\left(\widehat{M}_{y}\right) \leqq \tau m h^{1}\left(\widetilde{H}_{y}\right)
$$

The condition (H) implies that $h^{1}\left(\widetilde{H}_{y}\right)$ depends only on the isomorphism class of H_{y} over \boldsymbol{R}. Since the number of G_{R}^{+}-orbits in $V_{R}-S_{R}$ is finite,

$$
h^{1}=\operatorname{Sup}\left\{h^{1}\left(\widetilde{H}_{y}\right) ; y \in V_{Q}-S_{Q}\right\}<+\infty
$$

Thus we have the inequality $\tau\left(\Theta_{x}\right) \leqq \tau m h^{1}\left(x \in V_{Q}-S_{Q}\right)$. The right hand side of this inequality is independent of x.
2.4. By the condition (S), the group H has no non-trivial rational character. Hence, for any $t \in\left(\boldsymbol{Q}^{\times}\right)^{n}, V(t)$ is a special homogeneous space defined over \boldsymbol{Q} in the sence of Ono [12]. The formal product $\Pi_{\nu}\left|\theta_{t}\right|_{\nu}$ well-defines a measure on $V(t)_{A}$ (cf. [12, §4]). The Tamagawa measure on H_{A} (resp. $H_{\xi, A}, \xi \in V_{Q}-S_{Q}$) is given by

$$
|d h|_{A}=\prod_{\nu}|d h|_{\nu} \quad\left(\text { resp. }\left|d \nu_{\xi}\right|_{A}=\prod_{\nu}\left|d \nu_{\xi}\right|_{\nu}\right) .
$$

Lemma 2.3. Let f be an everywhere non-negative function in $L^{1}\left(V(t)_{A} ;\left|\theta_{t}\right|_{A}\right)$. Then

$$
I(f, t)=\int_{H_{A^{\prime}} \boldsymbol{H} \boldsymbol{Q}} \sum_{\xi \in V(t) \boldsymbol{Q}} f(\rho(h) \xi)|d h|_{A}<c_{1} \int_{V(t) \boldsymbol{A}} f(x)\left|\theta_{t}(x)\right|_{A}
$$

for some positive constant c_{1} independent of t and f.
Proof. It is easy to see that

$$
I(f, t)=\sum_{\varepsilon}^{\prime} \tau\left(H_{\xi}\right) \int_{\rho\left(H_{A}\right) \epsilon} f(x)\left|\theta_{t}(x)\right|_{A}
$$

where the summation is taken over all the global equivalence classes ξ in $V(t)_{e}$. Since the integral on the right hand side depends only on the local equivalence class of ξ, we have

$$
I(f, t)=\sum_{\xi}^{\prime \prime} \tau\left(\theta_{\xi}\right) \int_{\rho\left(H_{A}\right) \xi} f(x)\left|\theta_{t}(x)\right|_{A}
$$

where the summation is taken over all the local equivalence classes ξ in $V(t)_{e}$. By Lemma 2.2,

$$
I(f, t)<c_{1} \int_{\rho\left(H_{\mathcal{A}}\right) V(t) \boldsymbol{e}} f(x)\left|\theta_{t}(x)\right|_{\mathcal{A}} \leqq c_{1} \int_{V(t)_{\mathcal{A}}} f(x)\left|\theta_{t}(x)\right|_{\mathcal{A}}
$$

for some positive constant c_{1} independent of t and f.
Lemma 2.4. We have the inequality

$$
A(t)<c_{2} \prod_{p} \int_{V(t) z_{p}}\left|\theta_{t}(x)\right|_{p} \quad\left(t \in\left(\boldsymbol{Q}^{\times}\right)^{n}\right)
$$

for some positive constant c_{2} independent of t, where the product with respect to p is taken over all finite primes of \boldsymbol{Q}.

Proof. Set $\Phi=\boldsymbol{Q}_{\nu} \Phi_{\nu}$ where Φ_{p} is the characteristic function of $V_{z_{p}}$ for any finite prime p and Φ_{∞} is an everywhere non-negative smooth function on V_{R} with the compact support contained in $V_{R}-S_{R}$. Then the restriction of Φ to $V(t)_{A}$ is an L^{1}-function with respect to the measure $\left|\theta_{t}\right|_{A}$ and

$$
I(\Phi, t)=I\left(\left.\Phi\right|_{V(t) \boldsymbol{A}}, t\right) \geqq \prod_{p} \int_{H_{Z_{p}}}|d h|_{p} \times \int_{H_{\boldsymbol{R}^{\prime} / H_{\mathcal{Z}}}} \sum_{\tilde{E} \in V(t) \boldsymbol{Z}} \Phi_{\infty}(\rho(h) \xi)|d h|_{\infty} .
$$

Since H is special in the sense of Ono [12], the product

$$
\prod_{p} \int_{H_{Z_{p}}}|d h|_{p}
$$

is finite. Let $V(t)_{\boldsymbol{R}}=V(t)_{1, \boldsymbol{R}} \cup \cdots \cup V(t)_{\boldsymbol{m}, \boldsymbol{R}}$ be the $H_{\boldsymbol{R}}$-orbit decomposition. For any G_{R}-orbit \mathcal{O} in $V_{R}-S_{R}$ and for $t \in\left(\boldsymbol{R}^{\times}\right)^{n}$ such that $V(t)_{R} \cap \mathcal{O} \neq \varnothing$, the number of H_{R}-orbits in $V(t)_{R} \cap \mathcal{O}$ depends only on \mathcal{O}, since H_{R} is a normal subgroup of G_{R}. This shows that the number m of H_{R}-orbits in $V(t)_{\boldsymbol{R}}$ does not exceed some positive constant M. Put $V\left(t_{i, \boldsymbol{Z}}=V(t)_{i, \boldsymbol{R}} \cap\right.$ $V(t)_{\boldsymbol{z}}$. Assuming that $\left(\operatorname{Supp} \Phi_{\infty}\right) \cap V(t)_{\boldsymbol{R}} \subset V(t)_{t, \mathbf{R}}$, we obtain

$$
I(\Phi, t) \geqq A(t)_{i} \cdot\left\{\prod_{p} \int_{H_{Z_{p}}}|d h|_{p}\right\} \cdot \int_{V(t)_{\boldsymbol{R}}} \Phi_{\infty}(x)\left|\theta_{t}(x)\right|_{\infty}
$$

Here we put $A(t)_{i}=\sum_{\xi} \nu(\xi)$ where ξ runs through a complete set of representatives of $H_{Z} \backslash V(t)_{i, z}$. Hence, by Lemma 2.3,

$$
A(t)_{i}<c_{1}\left\{\prod_{p} \int_{H_{Z_{p}}}|d h|_{p}\right\}^{-1} \prod_{p} \int_{V(t) Z_{p}}\left|\theta_{t}(x)\right|_{p}
$$

for any i. Therefore the inequality in the lemma is valid for

$$
c_{2}=M \cdot c_{1} \cdot\left\{\prod_{p} \int_{H_{Z_{p}}}|d h|_{p}\right\}^{-1}
$$

2.5. For any algebraic object X defined over \boldsymbol{Q} or \boldsymbol{Q}_{p}, we denote by $X^{(p)}$ the reduction of X modulo a finite prime p. The following lemma is easily proved by the theory of reduction of constant fields (cf. [19, Chap. III]).

Lemma 2.5. There exists a finite set \boldsymbol{P}_{1} of primes of \boldsymbol{Q} such that, for any finite prime $p \notin \boldsymbol{P}_{1}$,
(1) $G^{(p)}$ is a connected linear algebraic group defined over \boldsymbol{F}_{p},
(2) the reduction $\rho^{(p)}$ of ρ is a representation of $G^{(p)}$ on $V^{(p)}$ defined over \boldsymbol{F}_{p} and $\rho^{(p)}\left(G^{(p)}\right)$ acts on $V^{(p)}-S^{(p)}$ transitively,
(3) all the coefficients of P_{1}, \cdots, P_{n} are in \boldsymbol{Z}_{p} and $S^{(p)}$ is given by

$$
S^{(p)}=\bigcup_{i=1}^{n}\left\{x \in V^{(p)} ; P_{i}^{(p)}(x)=0\right\}
$$

Take a Q-subgroup H_{s} of H such that H_{s} is semi-simple and H is a semi-direct product of H_{s} and $R_{u}(H)$. Since H has no non-trivial character, such an H_{s} exists (cf. [12, Theorem 2.1]).

Lemma 2.6. There exists a finite set \boldsymbol{P}_{2} of primes of \boldsymbol{Q} such that (1) $\quad P_{2} \supset P_{1}$,
(2) if $p \notin \boldsymbol{P}_{2}$, then $H^{(p)}$ is a connected linear algebraic group defined over \boldsymbol{F}_{p} and is a semi-direct product of $R_{u}(H)^{(p)}$ and $H_{s}^{(p)}$,
(3) for any $t \in \boldsymbol{Z}^{n}$, if $\left(p, t_{1} \cdots t_{n}\right)=1$ and $p \notin \boldsymbol{P}_{2}$, then $H_{F_{p}}^{(p)}$ acts transitively on $V(t)_{F_{p}}^{(p)}$.

Proof. Fix a $\xi \in(V-S) \cap V_{z}$ and put $\tau=\left(\tau_{1}, \cdots, \tau_{n}\right)=\left(P_{1}(\xi), \cdots\right.$, $\left.P_{n}(\xi)\right)$. Let P_{2} be a finite set of primes which, in addition to (1) and (2), satisfies the conditions
(4) if $p \notin \boldsymbol{P}_{2}$, then $\left(p, \tau_{1} \cdots \tau_{n}\right)=1$ and $H^{(p)}$ acts transitively on $V(\tau)^{(p)}$, and
(5) if $p \notin \boldsymbol{P}_{2}$, then $\left(H_{\xi}\right)^{(p)}$ is a connected semi-simple algebraic group and coincides with the group

$$
H_{\bar{\xi}}^{(p)}=\left\{g \in H^{(p)} ; \rho^{(p)}(g) \bar{\xi}=\bar{\xi}\right\}
$$

where $\bar{\xi}=\xi(\bmod p)$. Let us prove that these four conditions imply the condition (3). Let p be a prime which is not contained in \boldsymbol{P}_{2} and let t_{1}, \cdots, t_{n} be rational integers such that $\left(p, t_{1} \cdots t_{n}\right)=1$. Since $p \notin \boldsymbol{P}_{1}$, the group $G^{(p)}$ acts transitively on $V^{(p)}-S^{(p)}$. Hence, for an $\eta \in V(t)_{F_{p}}^{(p)}$, there exists a $g \in G^{(p)}$ such that $\rho^{(p)}(g) \bar{\xi}=\eta$. By (4), $g H^{(p)} g^{-1}=H^{(p)}$ acts transitively on $V(t)^{(p)}$. By (5), the group $H_{\eta}^{(p)}=g H_{\xi}^{(p)} g^{-1}$ is also connected. Therefore, by [5, Theorem 2], the principal homogeneous spaces

$$
\left\{g \in H^{(p)} ; \rho^{(p)}(g) \eta=x\right\} \quad\left(x \in V(t)_{F_{p}}^{(p)}\right)
$$

over $H_{\eta}^{(p)}$ defined over \boldsymbol{F}_{p} have non-empty sets of \boldsymbol{F}_{p}-rational points. This shows that P_{2} satisfies the condition (3).

Lemma 2.7. If $p \notin \boldsymbol{P}_{2}$ and $t_{1}, \cdots, t_{n} \in \boldsymbol{Z}_{p}^{\times}$,

$$
\int_{V(t) Z_{p}}\left|\theta_{t}\right|_{p}=p^{-(\operatorname{dim} V-n)} \#\left(H_{F_{p}}^{(p)}\right) / \#\left(H_{\eta, \boldsymbol{F}_{p}}^{(p)}\right)
$$

for an $\eta \in V(t)_{F_{p}}^{(p)}$.
Proof. If $p \notin \boldsymbol{P}_{2}$ and $t_{1}, \cdots, t_{n} \in \boldsymbol{Z}_{p}^{\times}$, we have, by Lemma 2.6 (3),

$$
\begin{equation*}
\#\left(V(t)_{F_{p}}^{(p)}\right)=\#\left(H_{F_{p}}^{(p)}\right) / \#\left(H_{\eta, F_{p}}^{(p)}\right) \tag{2-5}
\end{equation*}
$$

for an $\eta \in V(t)_{F_{p}}^{(p)}$. Since $H^{(p)}$ acts on $V(t)^{(p)}$ transitively, every point in $V(t)_{F_{p}}^{(p)}$ is a simple point. Hence, by the same argument as in the proof of [24, Theorem 2.2.5], we obtain

$$
\int_{V(t)_{Z_{p}}}\left|\theta_{t}(x)\right|_{p}=p^{-(\operatorname{dim} V-n)} \#\left(V(t)_{F_{p}}^{(p)}\right) .
$$

Combining this equality with (2-5), we get the lemma.
Lemma 2.8. Let t be an n-tuple of non-zero integers. Then, for some positive constant c_{3} independent of t,

$$
\Pi_{p}^{\prime} \int_{V(t) Z_{p}}\left|\theta_{t}\right|_{p} \leqq c_{3} \Pi_{p}^{\prime} \int_{\Gamma_{p}(1)}\left(1-p^{-1}\right)^{-n}|d x|_{p}
$$

where $\Gamma_{p}(1)=\left\{x \in V_{Z_{p}} ; P_{i}(x) \in \boldsymbol{Z}_{p}^{\times}(1 \leqq i \leqq n)\right\}$ and the product is taken over all finite primes such that $\left(p, t_{1}\right)=\cdots=\left(p, t_{n}\right)=1$ and $p \notin \boldsymbol{P}_{2}$.

Proof. Since $H_{s}^{(p)}$ and $H_{\eta}^{(p)}\left(\eta \in V(t)_{F_{p}}^{(p)}\right)$ are semi-simple for $p \notin \boldsymbol{P}_{2}$, it is known that

$$
\prod_{i=1}^{r}\left(1-p^{-a(i)}\right) \leqq p^{-\operatorname{dim} H^{(p)}} \#\left(H_{F_{p}}^{(p)}\right)=p^{-\operatorname{dim} H_{s}^{(p)}} \#\left(H_{s, F_{p}}^{(p)}\right) \leqq \prod_{i=1}^{r}\left(1+p^{-a(i)}\right)
$$

and

$$
\prod_{i=1}^{r^{\prime}}\left(1-p^{-b(i)}\right) \leqq p^{-\mathrm{d} \mathrm{~m} H_{\eta}^{(p)}} \#\left(H_{\eta, F_{p}}^{(p)}\right) \leqq \prod_{i=1}^{r^{\prime}}\left(1+p^{-b(i)}\right)
$$

where $r=\operatorname{rank} H_{s}^{(p)}, r^{\prime}=\operatorname{rank} H_{\eta}^{(p)}$ and $a(i), b(i) \geqq 2$ (cf. [11] and [10, Appendix II]). The constants $b(1), \cdots, b\left(r^{\prime}\right)$ and r^{\prime} are independent of η and p. By Lemma 2.7, we have

$$
\begin{align*}
& \left\{\prod_{i=1}^{r}\left(1-p^{-a(i)}\right)\right\} /\left\{\prod_{i=1}^{r^{\prime}}\left(1+p^{-b(i)}\right)\right\} \tag{2-6}\\
& \quad \leqq \int_{V(\tau) Z_{p}}\left|\theta_{\tau}\right|_{p} \leqq\left\{\prod_{i=1}^{r}\left(1+p^{-a(i)}\right)\right\} /\left\{\prod_{i=1}^{r^{\prime}}\left(1-p^{-b(i)}\right)\right\}
\end{align*}
$$

for any $p \notin \boldsymbol{P}_{2}$ and any $\tau \in\left(\boldsymbol{Z}_{p}^{\times}\right)^{n}$. Hence

$$
\int_{V(t)_{Z_{p}}}\left|\theta_{t}\right|_{p} \leqq\left\{\prod_{i=1}^{r} \frac{\left(1+p^{-a(i)}\right)}{\left(1-p^{-a(i)}\right)}\right\}\left\{\prod_{i=1}^{r^{\prime}} \frac{\left(1+p^{-b(i)}\right)}{\left(1-p^{-b(i)}\right)}\right\} \int_{V(\tau) Z_{p}}\left|\theta_{\tau}\right|_{p}
$$

for any $p \notin \boldsymbol{P}_{2}$ such that $\left(p, t_{1}\right)=\cdots=\left(p, t_{n}\right)=1$ and for any $\tau \in\left(\boldsymbol{Z}_{p}^{\times}\right)^{n}$. Put

$$
c_{3}=\prod_{p}\left\{\prod_{i=1}^{r} \frac{\left(1+p^{-a(i)}\right)}{\left(1-p^{-a(i)}\right)}\right\}\left\{\prod_{i=1}^{r^{\prime}} \frac{\left(1+p^{-b(i)}\right)}{\left(1-p^{-b(i)}\right)}\right\}
$$

where the product is over all the finite primes. Then

$$
\begin{aligned}
\Pi_{p}^{\prime} \int_{V(t) z_{p}}\left|\theta_{t}\right|_{p} & \leqq c_{3} \Pi_{p}^{\prime} \int_{\left(Z_{p}^{\times}\right) n}\left(1-p^{-1}\right)^{-n}\left|d \tau_{1}\right|_{p} \cdots\left|d \tau_{n}\right|_{p} \int_{V(\tau) Z_{p}}\left|\theta_{\tau}\right|_{p} \\
& =c_{3} \Pi_{p}^{\prime} \int_{\Gamma_{p}(1)}\left(1-p^{-1}\right)^{-n}|d x|_{p}
\end{aligned}
$$

2.6. Let T be the torus part of the radical of G. Since (G, ρ, V) is split over \boldsymbol{Q} and has the property (\mathbf{S}), T is a \boldsymbol{Q}-split torus of dimension n. Let $\psi_{1}, \cdots, \psi_{n}$ be a system of generators of the group of rational characters of T. Then there exists an n by n integral matrix $D=\left(d_{i j}\right)$ of rank n such that $\chi_{i}=\prod_{j=1}^{n} \psi_{j}^{d_{i j}}(1 \leqq i \leqq n)$ on T. We identify T with $G L(1)^{n}$ via the isomorphism $\psi: T \rightarrow G L(1)^{n}$ defined by $\psi(g)=\left(\psi_{1}(g), \cdots\right.$, $\left.\psi_{n}(g)\right)$. For any prime number p, we put $T_{z_{p}}=\psi^{-1}\left(\left(\boldsymbol{Z}_{p}^{\times}\right)^{n}\right)$. Let i_{p} be the index of $\rho\left(T_{z_{p}}\right) \cap G L(V)_{z_{p}}$ in $\rho\left(T_{z_{p}}\right)$. The index i_{p} is finite for all p and is equal to 1 for almost all p. Set

$$
V_{t, z_{p}}=\left\{\gamma x ; x \in V(t)_{z_{p}}, \gamma \in \rho\left(T_{z_{p}}\right) \cap G L(V)_{z_{p}}\right\}
$$

Denote by d_{1}, \cdots, d_{n} the elementary divisors of D and set

$$
v_{p}=\prod_{i=1}^{n} \int_{U_{p}\left(d_{i}\right)}|d \tau|_{p}
$$

where $U_{p}\left(d_{i}\right)=\left\{\tau=u^{d_{i}} ; u \in \boldsymbol{Z}_{p}^{\times}\right\}$. For a $u \in\left(\boldsymbol{Z}_{p}^{\times}\right)^{n}$ and a $t \in\left(\boldsymbol{Q}^{\times}\right)^{n}$, we write

$$
\left.u^{D}=\left(\chi_{1}\left(\psi^{-1}(u)\right), \cdots, \chi_{n}\left(\psi^{-1}(u)\right)\right)=\left(\prod_{j=1}^{n} u_{j}^{d_{1 j}}, \cdots, \prod_{j=1}^{n} u_{j}^{d_{n j}}\right)\right)
$$

and

$$
u^{D} t=\left(\chi_{1}\left(\psi^{-1}(u)\right) t_{1}, \cdots, \chi_{n}\left(\psi^{-1}(u)\right) t_{n}\right) .
$$

Lemma 2.9. For any finite prime p and any $t \in(\boldsymbol{Z}-\{0\})^{n}$,

$$
\int_{V_{(t)} Z_{p}}\left|\theta_{t}\right|_{p} \leqq\left(i_{p} / v_{p}\right)\left|t_{1} \cdots t_{n}\right|_{p}^{-1} \int_{V_{t, Z_{p}}}|d x|_{p}
$$

Proof. For a $u \in\left(\boldsymbol{Z}_{p}^{\times}\right)^{n}$ such that $\rho \circ \psi^{-1}(u) \in G L(V)_{Z_{p}}, \rho \circ \psi^{-1}(u)$ induces a homeomorphism of $V(t)_{z_{p}}$ onto $V(\tau)_{z_{p}}$ and we have

$$
\int_{V(t)_{p}}\left|\theta_{t}\right|_{p}=\int_{V(\tau) Z_{p}}\left|\theta_{\tau}\right|_{p}
$$

where $\tau=u^{D} t$. Further we obtain

$$
\int_{\tau}\left|d \tau_{1}\right|_{p} \cdots\left|d \tau_{n}\right|_{p} \geqq\left|t_{1} \cdots t_{n}\right|_{p} v_{p} / i_{p}
$$

where the integral is taken over the set

$$
\left\{\tau=u^{D} t ; u \in\left(\boldsymbol{Z}_{p}^{\times}\right)^{n}, \rho \circ \psi^{-1}(u) \in G L(V)_{z_{p}}\right\}
$$

Hence

$$
\begin{aligned}
\int_{V(t) Z_{p}}\left|\theta_{t}\right|_{p} & \leqq\left(i_{p} / v_{p}\right)\left|t_{1} \cdots t_{n}\right|_{p}^{-1} \int_{\tau}\left|d \tau_{1}\right|_{p} \cdots\left|d \tau_{n}\right|_{p} \int_{V_{(\tau) Z_{p}}}\left|\theta_{\tau}\right|_{p} \\
& =\left(i_{p} / v_{p}\right)\left|t_{1} \cdots t_{n}\right|_{p}^{-1} \int_{v_{t}, \boldsymbol{z}_{p}}|d x|_{p} .
\end{aligned}
$$

Corollary. If $\left(p, d_{1}\right)=\cdots=\left(p, d_{n}\right)=1$,

$$
\int_{V(t) z_{p}}\left|\theta_{t}\right|_{p} \leqq i_{p} \prod_{i=1}^{n}\left(d_{i}, p-1\right)\left|t_{1} \cdots t_{n}\right|_{p}^{-1} \int_{V_{t, z_{p}}}\left(1-p^{-1}\right)^{-n}|d x|_{p}
$$

Proof. If $\left(p, d_{i}\right)=1$, then

$$
\int_{U_{p}\left(d_{i}\right)}|d \tau|_{p}=\left(1-p^{-1}\right) /\left(d_{i}, p-1\right) .
$$

This proves the assertion.
2.6. The following lemma is a generalization of a part of [13, Theorem 1].

Lemma 2.10. (1) Put

$$
\lambda_{\nu}= \begin{cases}\left(1-p^{-1}\right)^{n} & \text { for } \nu=a \text { finite prime } p, \\ 1 & \text { for } \nu=\infty .\end{cases}
$$

Then $\left\{\lambda_{\nu}\right\}$ is a convergence factor for $V-S$, namely,

$$
\prod_{p} \lambda_{p}^{-1} \int_{(V-S)_{p}}|d x|_{p}<\infty
$$

(2) For any $f \in \mathscr{S}\left(V_{A}\right)$, the integral

$$
\int_{(V-S)_{A}} \prod_{i=1}^{n}\left|P_{i}(x)\right|_{A}^{s_{i}} f(x)\left|\lambda^{-1} d x\right|_{A}
$$

is absolutely convergent for $\operatorname{Re} s_{1}, \cdots, \operatorname{Re} s_{n}>0$, where

$$
\left|\lambda^{-1} d x\right|_{A}=\prod_{\nu} \lambda_{\nu}^{-1}|d x|_{\nu} .
$$

Proof. Since we are assuming that (G, ρ, V) is split over \boldsymbol{Q}, the polynomials P_{1}, \cdots, P_{n} are absolutely irreducible and algebraically independent. We take a finite set \boldsymbol{P} of primes of \boldsymbol{Q} satisfying the following three conditions:
(1) \boldsymbol{P} э ∞.
(2) If $p \notin \boldsymbol{P}$, then P_{1}, \cdots, P_{n} have coefficients in \boldsymbol{Z}_{p}. Moreover their reductions $P_{1}^{(p)}, \cdots, P_{n}^{(p)}$ modulo p remain to be absolutely irreducible and algebraically independent.
(3) If $p \notin P$, then

$$
\int_{(V-S)_{Z_{p}}}|d x|_{p}=p^{-\operatorname{dim} V \#\left[(V-S)_{F_{p}}^{(p)}\right] . ~}
$$

Let p be a prime such that $p \notin \boldsymbol{P}$. In the following, we denote by c_{1}, c_{2}, \cdots positive constants independent of p. For any subset I of $\{1,2, \cdots, n\}$, we put

$$
N_{I}^{(p)}=\#\left\{x \in \boldsymbol{F}_{p}^{\mathrm{dim} \nu} ; P_{i}^{(p)}(x)=0 \text { for all } i \in I\right\} .
$$

In particular, for $I=\varnothing, N_{\varnothing}^{(p)}=p^{\text {dim } V}$. Then $\#\left[(V-S)_{P_{p}}^{(p)}\right]=\sum_{I}(-1)^{\#(1)} N_{I}^{(p)}$. Since $P_{1}^{(p)}, \cdots, P_{n}^{(p)}$ are algebraically independent, by [6, Lemma 1],

$$
\begin{equation*}
N_{I}^{(p)} \leqq c_{1} p^{\mathrm{dim} V-\#(I)} \tag{2-7}
\end{equation*}
$$

If $\#(I)=1$, by [6, Theorem 1] and the fact that $P_{i}^{(p)}$'s are absolutely irreducible, we have

$$
\begin{equation*}
\left|N_{I}^{(p)}-p^{\mathrm{dim} V-1}\right| \leqq c_{2} p^{\mathrm{dim} V-3 / 2} \quad(\#(I)=1) . \tag{2-8}
\end{equation*}
$$

By (3), we get

$$
\lambda_{p}^{-1} \int_{(V-S) z_{p}}|d x|_{p}=\left(1-p^{-1}\right)^{-n} \sum_{I}(-1)^{\sharp(I)} p^{-\mathrm{dim} V} N_{I}^{(p)} .
$$

Hence, by (2-7) and (2-8),

$$
\begin{equation*}
\left.\left|1-\lambda_{p}^{-1} \int_{(V-S)_{z}}\right| d x\right|_{p} \mid<c_{3} p^{-3 / 2} \tag{2-9}
\end{equation*}
$$

This implies the first assertion. It is enough to prove the second assertion under the additional assumption that f is of the form $f=\boldsymbol{Q}_{\nu} f_{\nu}$ where $f_{\nu} \in \mathscr{S}\left(V_{Q_{\nu}}\right)$ and f_{p} is the characteristic function of $V_{z_{p}}$ for almost
all p. So we may assume that, if $p \notin \boldsymbol{P}, f_{p}$ is the characteristic function of $V_{z_{p}}$. For a $p \notin \boldsymbol{P}$, put

$$
I^{(p)}=\int_{V_{Z_{p}}} \prod_{i=1}^{n}\left|P_{i}(x)\right|_{p}^{s_{p}^{i}} \lambda_{p}^{-1}|d x|_{p}
$$

Also put

$$
E_{0}=\left\{x \in V_{z_{p}} ; P_{i}(x) \not \equiv 0(\bmod p) \text { for all } i\right\}
$$

and $E_{1}=V_{z_{p}}-E_{0}$. Since $\left|P_{i}(x)\right|_{p}=1(1 \leqq i \leqq n)$ on E_{0}, we have by the assumption (3)

$$
\begin{equation*}
\int_{E_{0}} \prod_{i=1}^{n}\left|P_{i}(x)\right|_{p}^{s_{i}} \lambda_{p}^{-1}|d x|_{p}=\lambda_{p}^{-1} \int_{(V-S) Z_{p}}|d x|_{p} . \tag{2-10}
\end{equation*}
$$

Assume that $\operatorname{Re} s_{1}, \cdots, \operatorname{Re} s_{n} \geqq \varepsilon$. Then $\left.\left|\prod_{i=1}^{n}\right| P_{i}(x)\right|_{p} ^{s_{i}} \mid \leqq p^{-\varepsilon}$ for $x \in E_{1}$. Hence

$$
\left.\left|\int_{E_{1}} \prod_{i=1}^{n}\right| P_{i}(x)\right|_{p} ^{s i} \lambda_{p}^{-1}|d x|_{p} \mid \leqq \lambda_{p}^{-1} p^{-\operatorname{dim} V-\varepsilon} \#\left[E_{1}: \bmod p\right]
$$

It is obvious that $\#\left[E_{1}: \bmod p\right]=\sum_{I \neq \varnothing}(-1)^{\#(1)-1} N_{I}^{(p)} . \quad$ By (2-7), we get

$$
\begin{equation*}
\left.\left|\int_{E_{1}} \prod_{i=1}^{n}\right| P_{i}(x)\right|_{p} ^{\varepsilon_{i}} \lambda_{p}^{-1}|d x|_{p} \mid<c_{4} p^{-1-\varepsilon} \tag{2-11}
\end{equation*}
$$

Since the integral over $V_{z_{p}}$ is the sum of those over E_{1} and E_{0}, it follows from (2-9), (2-10) and (2-11) that

$$
\left.\left|1-\int_{V_{Z_{p}}} \prod_{i=1}^{n}\right| P_{i}(x)\right|_{p} ^{\varepsilon_{i}} \lambda_{p}^{-1}|d x|_{p} \mid<c_{5} \operatorname{Max}\left(p^{-3 / 2}, p^{-1-\varepsilon}\right)
$$

($p \notin \boldsymbol{P}, \operatorname{Re} s_{1}, \cdots, \operatorname{Re} s_{n} \geqq \varepsilon$). This shows that the integral

$$
\int_{(V-S)_{A}} \prod_{i=1}^{n}\left|P_{i}(x)\right|_{A}^{s_{i}} f(x)\left|\lambda^{-1} d x\right|_{A}
$$

converges absolutely for $\operatorname{Re} s_{1}, \cdots, \operatorname{Re} s_{n}>0$ and is equal to the product

$$
\prod_{\nu} \int_{(V-S)} \prod_{Q_{\nu}} \prod_{i=1}^{n}\left|P_{i}(x)\right|_{\nu}^{s_{i}} f_{\nu}(x) \lambda_{\nu}^{-1}|d x|_{\nu}
$$

2.7. Now we are ready to prove Theorem 1. Set

$$
\boldsymbol{P}_{3}=\boldsymbol{P}_{2} \cup\left\{p ; p \mid d_{i} \text { for some } i\right\} \cup\left\{p ; i_{p} \geqq 2\right\},
$$

where \boldsymbol{P}_{2} is a finite set of primes given by Lemma 2.7. By Lemma 2.8, Lemma 2.9 and its corollary, we obtain

$$
\begin{align*}
& \prod_{p} \int_{V(t) Z_{p}}\left|\theta_{t}\right|_{p}<c_{3}\left\{\prod_{p \in P_{3}} i_{p}\left(1-p^{-1}\right)^{n} / v_{p}\right\}\left\{\prod_{p \mid t_{1} \cdots t_{n}} \prod_{i=1}^{n}\left(d_{i}, p-1\right)\right\} \tag{2-12}\\
& \times \prod_{p}\left|t_{1} \cdots t_{n}\right|_{p}^{-1} \int_{\Gamma_{p}(t)} \lambda_{p}^{-1}|d x|_{p}
\end{align*}
$$

where $\Gamma_{p}(t)=\left\{x \in V_{z_{p}} ;\left|P_{i}(x)\right|_{p}=\left|t_{i}\right|_{p}(1 \leqq i \leqq n)\right\}$ and c_{3} is the constant given by Lemma 2.8.

Lemma 2.11. Let d be a non-zero integer. Then, for any $\varepsilon>0$, there exists a constant c_{ε} such that

$$
\prod_{p ; t}(d, p-1)<c_{\varepsilon}|t|^{\varepsilon}
$$

for all $t \in \boldsymbol{Z}-\{0\}$.
Proof. Take a prime number p_{0} such that $\log d<\varepsilon \log p_{0}$. Let m_{0} be the number of primes smaller than p_{0}. Let m be the number of primes which divide t. If $m \leqq m_{0}$, then $\Pi_{p \mid t}(d, p-1) \leqq d^{m} \leqq d^{m_{0}}$. Assume that $m>m_{0}$. Let

$$
|t|=p_{1}^{r_{1}} \cdots p_{m}^{r_{m}} \quad\left(p_{1}<p_{2}<\cdots<p_{m}, r_{i} \geqq 1\right)
$$

be the decomposition of $|t|$ into the product of primes. Then we have

$$
\log |t|=\sum_{i=1}^{m} r_{i} \log p_{i}>m_{0} \log 2+\left(m-m_{0}\right) \log p_{0}
$$

Hence

$$
\prod_{p \mid t}(d, p-1) \leqq d^{m}<\exp \left\{\left(\log d / \log p_{0}\right) \log |t|+m_{0} \log d\right\}<d^{m_{0}}|t|^{\varepsilon}
$$

Thus we get $\Pi_{p \mid t}(d, p-1)<d^{m_{0}}|t|^{\varepsilon}$ for any $t \in \boldsymbol{Z}-\{0\}$.
For an arbitrary $\varepsilon>0$, by (2-12) and Lemma 2.11, there exists a constant c_{ε}^{\prime} independent of t, such that

$$
\prod_{p} \int_{V(t) z_{p}}\left|\theta_{t}\right|_{p}<c_{\varepsilon}^{\prime} \prod_{p}\left\{\left|t_{1} \cdots t_{n}\right|_{p}^{-1-\varepsilon} \int_{\Gamma_{p}(t)} \lambda_{p}^{-1}|d x|_{p}\right\}
$$

Therefore, by Lemma 2.4, the Dirichlet series (2-4) is majorized by

$$
\begin{aligned}
& c_{2} c_{\varepsilon}^{\prime} \sum_{t} \prod_{p}\left\{\prod_{i=1}^{n}\left|t_{i}\right|_{p}^{s_{i}-\delta_{i}-\varepsilon} \int_{\Gamma_{p}(t)} \lambda_{p}^{-1}|d x|_{p}\right\} \\
& \leqq 2^{n} c_{2} c_{\varepsilon}^{\prime} \prod_{p} \int_{V_{Z_{p}}} \prod_{i=1}^{n}\left|P_{i}(x)\right|_{p}^{s_{i} \delta_{i}-\varepsilon} \lambda_{p}^{-1}|d x|_{p}
\end{aligned}
$$

Lemma 2.10 implies that the Dirichlet series (2-4) converges absolutely for $\operatorname{Re} s_{1}>\delta_{1}, \cdots, \operatorname{Re} s_{n}>\delta_{n}$. Thus Theorem 1 is proved.

Remark. If we remove the assumption that (G, ρ, V) is split over \boldsymbol{Q} in Theorem 1, then we are able to obtain a less precise result that $\xi_{1}(L ; s), \cdots, \xi_{\nu}(L ; s)$ are absolutely convergent for $\operatorname{Re} s_{1}>\delta_{1}+r+1, \cdots$, $\operatorname{Re} s_{n}>\delta_{n}+r+1$ where r is the dimension of the torus part of the radical of H. Moreover, Theorem 2 is valid without the assumption of of splitness of (G, ρ, V).
3. Application. In this section, we give an application of Theorem 1 to the castling transform. The notion of castling transform was introduced by M. Sato and plays an essential role in the classification of irreducible p.v.'s (see [16]).
3.1. Let G_{0} be a connected linear algebraic group, V_{0} a finite dimensional C-vector space and ρ_{0} a rational representation of G_{0} on V_{0}. For any positive integer k, we denote by Λ_{1} the standard representation of $G L(k)$ (or $S L(k)$) on the k-dimensional vector space $V(k)=\boldsymbol{C}^{k}$. Put $m=$ $\operatorname{dim} V_{0}$. For a $k(1 \leqq k \leqq m-1)$, consider the triples

$$
(G, \rho, V)=\left(G_{0} \times G L(k), \rho_{0} \otimes \Lambda_{1}, V_{0} \otimes V(k)\right)
$$

and

$$
\left(G^{\prime}, \rho^{\prime}, V^{\prime}\right)=\left(G_{0} \times G L(m-k), \rho_{0}^{*} \otimes \Lambda_{1}, V_{0}^{*} \otimes V(m-k)\right)
$$

where V_{0}^{*} is the vector space dual to V_{0} and ρ_{0}^{*} is the representation of G_{0} contragredient to ρ_{0}.

Let $\Lambda^{k}\left(V_{0}\right)\left(\right.$ resp. $\left.\Lambda^{m-k}\left(V_{0}^{*}\right)\right)$ be the k - (resp. $(m-k)$-) fold exterior power of V_{0} (resp. V_{0}^{*}). The representation ρ_{0} (resp. ρ_{0}^{*}) canonically induces a representation ρ_{k} (resp. ρ_{m-k}^{*}) of G_{0} on $\Lambda^{k}\left(V_{0}\right)$ (resp. $\left.\Lambda^{m-k}\left(V_{0}^{*}\right)\right)$. We may identify $\Lambda^{k}\left(V_{0}\right)$ and $\Lambda^{m-k}\left(V_{0}^{*}\right)$ via the canonical pairing $\Lambda^{k}\left(V_{0}\right) \times$ $\Lambda^{m-k}\left(V_{0}\right) \rightarrow \Lambda^{m}\left(V_{0}\right) \cong \boldsymbol{C}$. Fix an identification $\iota: \Lambda^{k}\left(V_{0}\right) \rightarrow \Lambda^{m-k}\left(V_{0}^{*}\right)$. Then

$$
\begin{equation*}
\iota\left(\rho_{k}(g) y\right)=\operatorname{det} \rho_{0}(g) \cdot \rho_{m-k}^{*}(g) \iota(y) \quad\left(g \in G_{0}, y \in \Lambda^{k}\left(V_{0}\right)\right) \tag{3-1}
\end{equation*}
$$

We also identify V (resp. V^{\prime}) with the direct sum of k (resp. $m-k$) copies of V_{0} (resp. $\left.V_{0}^{*}\right)$. Let $\lambda: V \rightarrow \Lambda^{k}\left(V_{0}\right)$ and $\lambda^{\prime}: V^{\prime} \rightarrow \Lambda^{m-k}\left(V_{0}^{*}\right)$ be the mappings defined by $\lambda\left(x_{1}, \cdots, x_{k}\right)=x_{1} \wedge \cdots \wedge x_{k}$ and $\lambda^{\prime}\left(x_{1}^{*}, \cdots, x_{m-k}^{*}\right)=$ $x_{1}^{*} \wedge \cdots \wedge x_{m-k}^{*}$. We get

$$
\left\{\begin{array}{l}
\lambda(\rho(g, h) x)=(\operatorname{det} h)^{-1} \rho_{k}(g) \lambda(x), \tag{3-2}\\
\lambda^{\prime}\left(\rho^{\prime}\left(g, h^{\prime}\right) x^{\prime}\right)=\left(\operatorname{det} h^{\prime}\right)^{-1} \rho_{m-k}^{*}(g) \lambda^{\prime}\left(x^{\prime}\right)
\end{array}\right.
$$

$\left(g \in G_{0}, h \in G L(k), h^{\prime} \in G L(m-k), x \in V, x^{\prime} \in V^{\prime}\right)$.
Set $W=V-\lambda^{-1}(0)$ and $W^{\prime}=V^{\prime}-\lambda^{\prime-1}(0)$.
Lemma 3.1. For an $x \in W$ and an $x^{\prime} \in W^{\prime}$ such that $\iota(\lambda(x))=\lambda^{\prime}\left(x^{\prime}\right)$, the isotropy subgroup G_{x} of G at x is isomorphic to the isotropy subgroup $G_{x^{\prime}}^{\prime}$ of G^{\prime} at x^{\prime}.

Proof. Let p (resp. p^{\prime}) be the projection of G (resp. G^{\prime}) onto G_{0}. Since the fibre $\lambda^{-1}(\lambda(x))$ (resp. $\lambda^{\prime-1}\left(\lambda^{\prime}\left(x^{\prime}\right)\right)$) is a principal homogeneous space of $S L(k)$ (resp. $S L(m-k)$), we obtain

$$
p\left(G_{x}\right)=\left\{g \in G_{0} ; \rho_{k}(g) \lambda(x)=t \lambda(x) \text { for some } t \in \boldsymbol{C}^{\times}\right\}
$$

and

$$
p^{\prime}\left(G_{x^{\prime}}^{\prime}\right)=\left\{g \in G_{0} ; \rho_{m-k}^{*}(g) \lambda^{\prime}\left(x^{\prime}\right)=t \lambda^{\prime}\left(x^{\prime}\right) \text { for some } t \in \boldsymbol{C}^{\times}\right\}
$$

Hence, by (3-1), $p\left(G_{x}\right)=p^{\prime}\left(G_{x^{\prime}}^{\prime}\right)$. It can be easily seen that $G_{x} \cong p\left(G_{x}\right)$ and $G_{x^{\prime}}^{\prime} \cong p^{\prime}\left(G_{x^{\prime}}^{\prime}\right)$.

The next lemma is an immediate consequence of Lemma 3.1.
Lemma 3.2. The triple (G, ρ, V) is a p.v. if and only if the triple $\left(G^{\prime}, \rho^{\prime}, V^{\prime}\right)$ is a p.v. In this case, we have $\lambda(V-S)=\lambda^{\prime}\left(V^{\prime}-S^{\prime}\right)$, where S and S^{\prime} is the singular sets of (G, ρ, V) and ($G^{\prime}, \rho^{\prime}, V^{\prime}$), respectively.

We call the triples (G, ρ, V) and $\left(G^{\prime}, \rho^{\prime}, V^{\prime}\right)$ the castling transforms of each other.

It is well-known that any invariant of $S L(k)$ (resp. $S L(m-k)$) on V (resp. V^{\prime}) is a composite of a rational function on $\Lambda^{k}\left(V_{0}\right)$ (resp. $\left.\Lambda^{m-k}\left(V_{0}^{*}\right)\right)$ and λ (resp. $\left.\lambda^{\prime}\right)$. Hence we obtain the following lemma:

Lemma 3.3. Any relative invariant of $(G, \rho, V)\left(\right.$ resp. $\left.\left(G^{\prime}, \rho^{\prime}, V^{\prime}\right)\right)$ is of the form $Q(\lambda(x))$ (resp. $Q\left(\lambda^{\prime}\left(x^{\prime}\right)\right)$), where Q is a homogeneous relative invariant of the triple $\left(G_{0}, \rho_{k}, \Lambda^{k}\left(V_{0}\right)\right)\left(\right.$ resp. $\left(G_{0}, \rho_{m-k}^{*}, \Lambda^{m-k}\left(V_{0}^{*}\right)\right)$).

Note that there exists a natural one-to-one correspondence between the set of homogeneous relative invariants of ($G_{0}, \rho_{k}, \Lambda^{k}\left(V_{0}\right)$) and that of ($G_{0}, \rho_{m-k}^{*}, \Lambda^{m-k}\left(V_{0}^{*}\right)$).

Suppose that (G_{0}, ρ_{0}, V_{0}) is defined over a field K. Then (G, ρ, V) and ($G^{\prime}, \rho^{\prime}, V^{\prime}$) have natural K-structures. In Lemma 3.1, if x and x^{\prime} are K-rational points, G_{x} and $G_{x^{\prime}}^{\prime}$ are K-isomorphic. Moreover, we have ^ $\lambda\left(V_{K}-S_{K}\right)=\lambda^{\prime}\left(V_{K}^{\prime}-S_{K}^{\prime}\right)$. By Lemmas 1.1 and 3.3, (G, ρ, V) is a p.v. split over K if and only if so is ($G^{\prime}, \rho^{\prime}, V^{\prime}$).

Theorem 3. Suppose that $\left(G_{0}, \rho_{0}, V_{0}\right)$ is defined over \boldsymbol{Q}. Then the following two assertions are equivalent:
(1) (G, ρ, V) is a p.v. split over \boldsymbol{Q} with the properties (S), (H) and (W).
(2) $\left(G^{\prime}, \rho^{\prime}, V^{\prime}\right)$ is a p.v. split over \boldsymbol{Q} with the properties (S), (H) and (W).

Proof. We prove (1) implies (2). By the observation preceding the theorem, $\left(G^{\prime}, \rho^{\prime}, V^{\prime}\right)$ is also a p.v. split over \boldsymbol{Q}. Let H (resp. H^{\prime}) be the connected component of $G_{1}=G_{x} \mathscr{D}(G) R_{u}(G)$ (resp. $\left.G_{1}^{\prime}=G_{x^{\prime}}^{\prime} \mathscr{O}\left(G^{\prime}\right) R_{u}\left(G^{\prime}\right)\right)$, where x (resp. x^{\prime}) is a generic point of (G, ρ, V) (resp. ($\left.G^{\prime}, \rho^{\prime}, V^{\prime}\right)$). Since $\iota \lambda\left(V_{Q}-S_{Q}\right)=\lambda^{\prime}\left(V_{Q}^{\prime}-S_{Q}^{\prime}\right)$, for any $x^{\prime} \in V_{Q}^{\prime}-S_{Q}^{\prime}$, we can find an $x \in V_{Q}-S_{Q}$ such that $\iota(\lambda(x))=\lambda^{\prime}\left(x^{\prime}\right)$. Put $G_{0, x^{\prime}}^{\circ}=p\left(G_{x}^{\circ}\right)=p^{\prime}\left(G_{x^{\prime}}^{\circ}\right)$. By the condition (S) for (G, ρ, V), the group $G_{0, x^{\prime}}^{\circ}$ is a connected semi-simple algebraic
group and has no non-trivial character. Hence, for any $g \in G_{0, x^{\prime}}^{\circ}$, we have $\rho_{k}(g) \lambda(x)=\lambda(x)$ and $\rho_{m-k}^{*}(g) \lambda^{\prime}\left(x^{\prime}\right)=\lambda^{\prime}\left(x^{\prime}\right)$. This implies that $G_{x}^{\circ} \subset G_{0, x^{\prime}}^{\circ} \times$ $S L(k)$ and $\left(G_{x^{\prime}}^{\prime}\right)^{\circ} \subset G_{0, x^{\prime}}^{\circ} \times S L(m-k)$. Therefore $H=H_{0} \times S L(k)$ and $H^{\prime}=H_{0} \times S L(m-k)$, where we put $H_{0}=G_{0, x^{\prime}}^{\circ} \mathscr{D}\left(G_{0}\right) R_{u}\left(G_{0}\right)$. Thus we obtain $H_{x} \cong\left\{g \in H_{0} ; \rho_{k}(g) \lambda(x)=\lambda(x)\right\}=\left\{g \in H_{0} ; \rho_{m-k}^{*}(g) \lambda^{\prime}\left(x^{\prime}\right)=\lambda^{\prime}\left(x^{\prime}\right)\right\} \cong H_{x^{\prime}}$. Since the isomorphisms are all defined over \boldsymbol{Q}, the conditions (S), (H) and (W) hold also for ($G^{\prime}, \rho^{\prime}, V^{\prime}$).
3.2. As is noted in [16, §2], the castling transform gives us a method to construct a new p.v. from a given p.v. Thanks to Theorems 1 and 3 , we are able to make use of the castling transform in order to find new Dirichlet series satisfying certain functional equations. Here is an example:

Let Y be an m by m rational non-degenerate symmetric matrix of signature $(p, q)(p+q=m, p, q \geqq 1)$. We assume that $m \geqq 4$. Set $G_{0}=S O(Y)$. Denote by ρ_{0} the natural representation of G_{0} on $V_{0}=$ $V(m)=C^{m}$. Also set $G^{(1)}=S O(Y) \times G L(1)$ and $V^{(1)}=V_{0}$. Let $\rho^{(1)}$ be the representation of $G^{(1)}$ on $V^{(1)}$ defined by the formula

$$
\rho^{(1)}(g, t) x=\rho_{0}(g) x t^{-1} \quad\left(g \in S O(Y), t \in G L(1), x \in V^{(1)}\right) .
$$

The triple $\left(G^{(1)}, \rho^{(1)}, V^{(1)}\right)$ is a regular p.v. split over \boldsymbol{Q} and has a unique (up to a constant factor) irreducible relative invariant $P(x)={ }^{t} x Y x$. The zeta functions associated with this p.v. are the Siegel zeta functions (see [20] and [17, § 2, $\left.\mathrm{n}^{\circ} 4\right]$).

It is easy to check that the p.v. $\left(G^{(1)}, \rho^{(1)}, V^{(1)}\right)$ satisfies (S), (H) and (W). By the repeated use of Theorem 3, the triples

$$
\begin{aligned}
& \left(G^{(2)}, \rho^{(2)}, V^{(2)}\right)=\left(G^{(1)} \times S L(m-1), \rho^{(1)} \otimes \Lambda_{1}, V^{(1)} \otimes V(m-1)\right), \\
& \left(G^{(3)}, \rho^{(3)}, V^{(3)}\right)=\left(G^{(2)} \times S L\left(m^{2}-m-1\right), \rho^{(2)} \otimes \Lambda_{1}, V^{(2)} \otimes V\left(m^{2}-m-1\right)\right),
\end{aligned}
$$

are p.v.'s split over \boldsymbol{Q} with the same properties. Since $G^{(i)}$ is reductive and the generic isotropy subgroup is semi-simple, all these p.v.'s are regular (over Q) ([16, §4, Remark 26]). By Theorems 1 and 2, their associated zeta functions are absolutely convergent in some half plane and are continued meromorphically to the whole complex plane. Applying the result in [17] or [14] to these p.v.'s, we are able to obtain infinitely many new Dirichlet series which have analytic continuations to meromorphic functions in \boldsymbol{C} and satisfy certain functional equations.

Here we give the explicit form of the functional equations of the zeta functions only for $\left(G^{(2)}, \rho^{(2)}, V^{(2)}\right)$. In the following we omit the superscript (2).

Identify the vector space V with $M(m, m-1)$. The representation ρ is given by

$$
\begin{aligned}
\rho(g, t, h) x=g x(t h)^{-1} \quad(g \in S O(Y), t \in G L(1), & h \in S L(m-1) \\
& x \in M(m, m-1)) .
\end{aligned}
$$

We also identify V^{*} with $V=M(m, m-1)$ via the symmetric bilinear form

$$
\left\langle x, x^{*}\right\rangle=\operatorname{tr}^{t} x x^{*} \quad\left(x, x^{*} \in M(m, m-1)\right) .
$$

The representation ρ^{*} contragradient to ρ is given by $\rho^{*}(g, t, h) x^{*}=$ ${ }^{t} g^{-1} x^{*}\left(t^{t} h\right)$. The polynomial $P(x)=\operatorname{det}\left({ }^{t} x Y x\right)\left(\right.$ resp. $\left.Q\left(x^{*}\right)=\operatorname{det}\left({ }^{t} x^{*} Y^{-1} x^{*}\right)\right)$ is an irreducible relative invariant of (G, ρ, V) (resp. (G, ρ^{*}, V^{*})).

Set $G_{\boldsymbol{R}}^{+}=S O(Y)_{\boldsymbol{R}} \times \boldsymbol{R}_{+} \times S L(m-1)_{\boldsymbol{R}}$ where \boldsymbol{R}_{+}is the multiplicative group of positive real numbers. We put

$$
\begin{array}{rlrl}
V_{+} & =\left\{x \in V_{\mathbf{R}} ; P(x)>0\right\}, & V_{-} & =\left\{x \in V_{\mathbf{R}} ; P(x)<0\right\}, \\
V_{+}^{*} & =\left\{x^{*} \in V_{R}^{*} ; Q\left(x^{*}\right)>0\right\}, & V_{-}^{*}=\left\{x^{*} \in V_{R}^{*} ; Q\left(x^{*}\right)<0\right\}
\end{array}
$$

where $V_{\boldsymbol{R}}=V_{\boldsymbol{R}}^{*}=M(m, m-1 ; \boldsymbol{R})$. The orbit decompositions of $V_{\boldsymbol{R}}-S_{\boldsymbol{R}}$ and $V_{R}^{*}-S_{R}^{*}$ are as follows:

$$
V_{R}-S_{R}=V_{+} \cup V_{-}, \quad V_{R}^{*}-S_{R}^{*}=V_{+}^{*} \cup V_{-}^{*}
$$

For an $f \in \mathscr{S}\left(V_{R}\right)=\mathscr{S}\left(V_{R}^{*}\right)$, set

$$
\Phi_{ \pm}(f ; s)=\int_{V_{ \pm}}|P(x)|^{s} f(x) d x \quad \text { and } \quad \Phi_{ \pm}^{*}(f ; s)=\int_{V_{ \pm}^{*}}\left|Q\left(x^{*}\right)\right|^{s} f\left(x^{*}\right) d x^{*}
$$

where $d x$ and $d x^{*}$ are the standard Euclidean measures on $V_{\boldsymbol{R}}$ and $V_{\boldsymbol{R}}^{*}$, respectively. We define the Fourier transform \hat{f} of f by putting

$$
\widehat{f}(x)=\int_{V_{\boldsymbol{R}}^{*}} f\left(x^{*}\right) \exp \left(2 \pi \sqrt{-1}\left\langle x, x^{*}\right\rangle\right) d x^{*}
$$

The explicit form of the functional equation in [17, Theorem 1] (or [14, Theorem 1]) is as follows:

Lemma 3.4. The functions $\Phi_{ \pm}(f ; s)$ and $\Phi_{ \pm}^{*}(f ; s)$ have analytic continuations to meromorphic functions of s in C and satisfy the following functional equations:

$$
\begin{aligned}
\binom{\Phi_{+}(\hat{f} ; s)}{\Phi_{-}(\hat{f} ; s)}= & (-1)^{m} \pi^{-2(m-1) s-(m-1)(m+2) / 2}|\operatorname{det} Y|^{(m-1) / 2} \\
& \times \prod_{i=1}^{m-1} \Gamma(s+(i+1) / 2)^{2} \prod_{i=1}^{m-2} \sin (2 s+i) \pi / 2 \\
& \times\left(\begin{array}{cc}
-\sin (2 s+q) \pi / 2 & \sin p \pi / 2 \\
\sin q \pi / 2 & -\sin (2 s+p) \pi / 2
\end{array}\right)\binom{\Phi_{+}^{*}(f ;-s-m / 2)}{\Phi_{-}^{*}(f ;-s-m / 2)}
\end{aligned}
$$

Let L be a $\rho\left(S O(Y)_{z} \times S L(m-1)_{z}\right)$-invariant lattice in $M(m, m-1 ; \boldsymbol{Q})$ and L^{*} be the lattice dual to L. Let $\xi_{ \pm}(L ; s)$ and $\xi_{ \pm}^{*}\left(L^{*} ; s\right)$ be the zeta functions introduced in $\S 1$ (or [14, §4], [17]). Set

$$
v(L)=\int_{V_{\boldsymbol{R}^{\prime} / L}} d x
$$

By Lemma 3.4 and [14, Theorem 2] (or [17, Theorem 2 and Additional Remark 2]), we have the following theorem:

Theorem 4.

$$
\begin{aligned}
&\left(\begin{array}{l}
\xi_{+}^{*}\left(L^{*} ;\right. \\
\xi_{-}^{*}\left(L^{*} ;\right.
\end{array} m / 2-s\right) \\
&=(-1)^{m}|\operatorname{det} Y|^{(m-1) / 2} v(L)^{-1} \pi^{-2(m-1) s+(m-1)(m-2) / 2} \\
& \times \prod_{i=0}^{m-2} \Gamma(s-i / 2)^{2} \prod_{i=1}^{m-2} \sin (2 s-i-1) \pi / 2 \\
& \times\left(\begin{array}{cc}
-\sin (2 s-m+q) \pi / 2 & \sin q \pi / 2 \\
\sin p \pi / 2 & -\sin (2 s-m+p) \pi / 2
\end{array}\right)\binom{\xi_{+}(L ; s)}{\xi_{-}(L ; s)}
\end{aligned}
$$

Remark 1. In his lecture at RIMS, Kyoto University in the autumn of 1974, T. Shintani gave a general formula relating the functional equation satisfied by complex powers of relative imvariants of a p.v. to that of its casting transform under the assumptions that G_{0} is reductive and the singular set is an irreducible hypersurface.

Remark 2. In [17], the following condition, which assures the convergence of zeta functions and is checked by the Weil-Igusa criterion ([25, p. 20], [4, § 2]), is imposed on p.v.'s ([17, p. 146]):

For every $f \in \mathscr{S}\left(V_{R}\right)$, the integral

$$
\begin{equation*}
I(f)=\int_{G_{\mathbf{R}}^{1} / G_{\mathbf{Z}}^{1}} \sum_{x \in V_{Z}} f(\rho(g) x) d^{1} g \tag{3-3}
\end{equation*}
$$

converges absolutely and the mapping $f \mapsto I(f)$ defines a tempered distribution on V_{R} (where $G^{1}=G_{x}[G, G]$ for a generic point x and $d^{1} g$ is a Haar measure on G_{R}^{1}).

This condition is however much stronger than what is needed to ensure the convergence of zeta functions (cf. [17, p. 169, Additional Remark 2]). For example, if $i \geqq 2$, the p.v. ($\left.G^{(i)}, \rho^{(i)}, V^{(i)}\right)$ does not satisfy (3-3). Though our assumptions (S), (H) and (W) are fairly restrictive, the class of p.v.'s treated in this paper contains several interesting examples which do not satisfy the condition (3-3).

References

[1] A. Bialynicki-Birula, On homogeneous affine spaces of linear algebraic groups, Amer. J. Math. 85 (1963), 577-582.
[2] A. Borel and J. P. Serre, Theoremes de finitude en cohomologie galoisienne, Comment. Math. Helv. 39 (1964), 111-164.
[3] M. Kneser, Hasse principle for H^{1} of simply connected groups, Proc. Symp. in pure Math., IX, Amer. Math. Soc. (1966), 159-163.
[4] J.-I. Igusa, On certain representations of semi-simple algebraic groups and the arithmetic of the corresponding invariants (1), Invent. Math. 12 (1971), 62-94.
[5] S. LaNg, Algebraic groups over finite fields, Amer. J. Math. 78 (1956), 555-563.
[6] S. Lang and A. Weil, Number of points of varieties in finite fields, Amer. J. Math. 76 (1954), 819-827.
[7] R. P. Langlands, The volume of the fundamental domain for some arithmetical subgroups of Chevalley groups, Proc. Symp. in pure Math., IX, Amer. Math. Soc. (1966), 143-148.
[8] K. F. Li, On the Tamagawa number of quasi-split groups, Bull. Amer. Math. Soc. 82 (1976), 300-302.
[9] J. G. M. Mars, Les nombres de Tamagawa de certaines groupes exceptionels, Bull. Soc. Math. France 94 (1966), 97-140.
[10] T. Ono, On the relative theory of Tamagawa numbers, Ann. of Math. 82 (1965), 88-111.
[11] T. Ono, On Tamagawa numbers, Proc. Symp. in pure Math., IX, Amer. Math. Soc. (1966), 122-132.
[12] T. ONO, A mean value theorem in adele geometry, J. Math. Soc. Japan 20 (1968), 275-288.
[13] T. Ono, An integral attached to a hypersurface, Amer. J. Math. 90 (1968), 1224-1236.
[14] F. Sato, Zeta functions in several variables associated with prehomogeneous vector spaces I: Functional equations, Tôhoku Math. J. 34 (1982), 437-483.
[15] F. Sato, Zeta functions in several variables associated with prehomogeneous vector spaces III: Eisenstein series for indefinite quadratic forms, Ann. of Math. 116 (1982), 177-212.
[16] M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their invariants, Nagoya Math. J. 65 (1977), 1-155.
[17] M. Sato and T. Shintani, On zeta functions associated with prehomogeneous vector spaces, Ann. of Math. 100 (1974), 131-170.
[18] J. P. Serre, Cohomologie galoisienne, Lecture Notes in Math. 5, Springer-Verlag, Berlin-Heidelberg-New York, 1964.
[19] G. Shimura and Y. Taniyama, Complex multiplication of abelian varieties and its applications to number theory, Pub. Math. Soc. Japan, No. 6, Math. Soc. Japan, 1961.
[20] C. L. Siegel, Uber die Zetafunktionen indefiniter quadratischer Formen I, II, Math. Z. 43 (1938), 682-708; 44 (1939), 398-426.
[21] T. A. Springer, Galois cohomology of linear algebraic groups, Proc. Symp. in pure Math., IX, Amer. Math. Soc. (1966), 149-158.
[22] T. Suzuki, On zeta functions associated with quadratic forms of variable coefficients, Nagoya Math. J. 73 (1979), 117-147.
[23] J. Tate, Duality theorems in Galois cohomology over number fields, Proc. Int. Congr. of Mathematicians, Stockholm, (1962), 288-295.
[24] A. Weil, Adeles and algebraic groups, Institute for Advanced Study, Princeton, N.J., 1961.
[25] A. Weil, Sur les formule de Siegel dans la theorie des groupes classiques, Acta Math. 113 (1965), 1-87.

Department of Mathematics

Rikkyo University

Nishi-Ikebukuro, Tokyo 171
Japan

