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1. Introduction. The spherical representation of a curve in the
Euclidean 3-space is a representation on the unit sphere S2 obtained with
the use of tangent vectors. We consider a generalization of the notion
of spherical representations to an m-dimensional submanifold in the
Euclidean w-space. We denote a submanifold by (i, M) where M is an
m-dimensional manifold and i is an immersion i: M —> Rn. If the spherical
representation of (i, M) is regular, the image is an immersed submanifold
of dimension 2m — 1 in the unit hypersphere of Rn. Any submanifold
and its infinitesimal deformations we consider are assumed to be C°°.

Let p be any point of M and {0}p be the origin of TP(M). To any
half line of TP(M) from {0}p there corresponds a point of the unit
hypersphere Sjr\l) of Rn. Taking all points p of M and all half lines
of TP(M) from {0}p we get the spherical representation of (i, M).

For our purpose a little more precise description will be preferable.
Any immersion ί of M induces a Riemannian metric g on M and this
determines the unit hypersphere SP(M) of TP(M). For any point (i, p)
of (i, M) there exists just one m-dimensional tangent plane of (i, M) and
in this tangent plane we can take a hypersphere of radius 1 and with
center (ΐ, p). Let us denote this hypersphere by (ΐ', SP(M)). Then for any
point q e SP(M) we have just one point (i', q) of Rn. Let 0 be the origin
of Rn and OX be the oriented segment obtained by a parallel translation
of oriented segment joining (i, p) to (i', g). Then X is a point of Sj'^l).
Thus a mapping s: S(Λί) —> Sj"^!) is obtained such that s(q) = X and we
call s the spherical representation of (i, Λf), or the spherical representation
of ilί" induced by the immersion i.

In the present paper we consider only such cases that s is an immer-
sion. Then s is called a regular spherical representation or a regular
spherical map and its image a spherical image.

We take a compact orientable manifold M and consider the integral
I of the volume element of the spherical image s(S(M)). I is a functional
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of the immersion i. The purpose of the present paper is to get some
submanifolds (i, M) such that the functional I is stationary at this
immersion i with respect to any infinitesimal deformation of ΐ. Our
original aim was to find critical points of I in general cases, but the
necessary and sufficient condition for (i, M) to be a critical point of
/ was not obtained in a clear-cut form. Hence only some special cases
are treated in the present paper where (i, M) is an isometric and isotropic
immersion of a space form. But the final result is still a little complicated.
Hence we assume further that the immersion is constant isotropic. The
main results are the following theorems.

THEOREM 1. Let (M, g) be an m-dimensional space form of constant
curvature c > 0 and (i, M) be a submanifold of Rn such that the immer-
sion is isometric to (M, g) and the normal curvature vector σp(t, t) has
constant length V h, h Φ c, independent of the tangent vector t and the
point p of M. This submanifold is a critical point of the functional I
if and only if every component of the mean curvature vector is an
eigenfunction of the Laplacian of (M, g) with an eigenvalue λ where
X = ( ( m + 2)h + 2(m - l)c)/3.

THEOREM 2. Let (M, g) be as in Theorem 1. Furthermore we assume
that the submanifold lies on the hypersphere S%~\p) of Rn where the
center is the origin 0 and the radius is p. Let (i) and (ii) be the
following conditions,

( i ) (i, M) is a minimal submanifold of the hypersphere Sz~\p),
(ii) (i, M) is a critical point of I and p satisfies

mp-* = ( ( w + 2)h + 2(m - l»/3 .

Then (i) and (ii) are equivalent conditions.

This theorem shows that a Veronese manifold considered as a sub-
manifold of a Euclidean space is a critical point of /.

In §2 we introduce a Riemannian metric to the spherical image
s(S(M)). From this Riemannian metric we get the formula for the volume
element of s(S(M)). In §3 the integral / of this volume element and
the derivative of I with respect to an infinitesimal deformation of the
immersion are calculated. In §4 we consider the special case where
(i, M) is isometric to a space form and the immersion is isotropic, namely,
σp(t, t) has constant length (h(p))m but h(p) may depend on p. In § 5 we
consider the case where h(p) is independent of the point p and prove
the main theorems. In §6 we prove that a Veronese manifold is a
critical point of /. There we also discuss some relation of the present
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result to some of the results obtained by O'Neill [5] and by Itoh and
Ogiue [2], [3].

The author wishes to express his hearty thanks to the referee whose
kind suggestions was helpful very much to the improvement of the paper.

2. The Riemannian metric G of a spherical image. We first give
a local expression for a spherical map. We use indices

a, b, c, •••,&, i, j , ••• = 1, -- ,m ,

ιc,\μ, - ,p,σ,τ, = 1, , n

and adopt usual summation convention with respect to Latin indices.
x1, - - -, xm are local coordinates of M so that a point p of M in a coor-
dinate neighborhood is expressed by p = (a;1, , xm), and U\ , £7n are
the rectangular coordinates of a point in Rn. Thus i is expressed locally
by

(2.1) Uκ = Uκ(x\ - - - , x m ) .

We put

(2.2) B{ = dU'/dx* = diUK , gJt = B\B\

where the summation symbol Σ« * s omitted for short. gόi are the
components of the Riemannian metric induced on the submanifold (i, M)
from the natural metric of Rn. Thus we can consider (ΐ, M) as a
Riemannian manifold (Λf, gr).

The Christoffel symbols of gβi are denoted by ] . .[ and the com-

ponents of the second fundamental form of (i, M) are

(2.3) Hjt< = FyBf = dβϊ - k .) Bi
3 i)

where 7 is the Riemannian connection of (ikf, g).
If ί is a unit tangent vector of (M, g) at a point p e M, then t = thdh

where (d19 , 3J is the natural frame of Ẑ CM") and the components th

satisfy g^P't* = 1. A point g of SP(M) is nothing but a unit tangent
vector of (M, g) at p. If the spherical map s carries q to β(g) = X, then
the rectangular coordinates Xκ of X are given by

(2.4) Xκ - t*Bϊ , ff^t* = 1 .

Since SP(M) is an (m — l)-dimensional sphere, we need m — 1 numbers
1/S * * *»I/1"1 t° determine a point of SP(M) in some open subset. Thus
a point X of the spherical image β(S(Λf)), such that Xes(ϊ7) where Ϊ7
is some open subset of S(M)9 is determined by 2m — 1 numbers
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x\ , xm, y\ , ym~ι and we have n functions Xκ = Xκ(x\ , xm; y\

Now we introduce new indices

u, v, w, x, y, z = m + 1, , 2m — 1 ,

A, B, C, A ••• = 1, . . , 2 m - 1

and put xM = T/"-™. A covering of S(jfcf) by suitable neighborhoods Uλ

(λ e yl) is considered and the spherical image is expressed by

X* = X&to,,, , α?S,; l/ϊi,, , 2/HΓ1)

for the part s(Uλ). The spherical map s is regular if and only if the
rank of the (n, 2m — l)-matrix [dXfo/dxh)] is 2m — 1 for all \eΛ. This
is assumed throughout the paper.

We define GCB by

(2.5) GCB = dcX*dBX*

where dc = d/dxc. That s is regular is equivalent to that GCB are the
coefficients of a positive quadratic form and our assumption assures that
the spherical image becomes a Riemannian manifold with the Riemannian
metric G whose components are GCB. As we have

(2.6) dόX
κ = tΉjf + VfiB* , duX

κ = dJBf ,

we get

Git = Hjc*HίbΎtb + gjpVtf ,

(2.7) Gju = QchVpdut
h ,

G . . = 9cbdvt
cdut

b .

DEFINITION. We define Z)yi, Ύvu, uf by

(2.8) D y i = HjcΉib

κtcth , 7 , . = gcbdvt
cdut

b ,

(2.9) F ^ = ux

vdvt
h .

We prove that u" are uniquely determined by (2.9). As the vector
field t satisfies g^tH* = 1, we get

tyβ = 0 , *AΓ = 0

where tt = ̂ jί5'. As the rank of the (m, m — l)-matrix [dut*] is m — 1,
there exists one and only one (m — 1, m)-matrix [Uiu] satisfying (2.9).

As 8 is regular, rank [Dy<] = m and (2.8) shows that Djt are the
coefficients of a positive quadratic form. We get from (2.7), (2.8) and
(2.9)
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(2.10) Gόi = Ddi + Ίnufuf , Gju = Ύυuu/, Gυu = 7vu.

This implies

REMARK. We denote the normal curvature vector of (i, M) at (i, p)
by σp(t91) where t is a unit tangent vector. The components of σp(t91)
are Hάi

κVt\ The normal curvature vector at (i, p) associated with a pair
of unit tangent vectors u and v is denoted by σp(u9 v). Its components
are Hάi

κu5v\ Suppose that σp(u9 v) = 0 for some p, u and v. As we can
choose (y1, , T/971"1) in such a way that ίφ 1, , xm; y1, , i/^"1) = v9 we
get HfruH1 = 0 and consequently D^'u* = 0 for this (T/1, , i/™"1). This
proves that ||σp(u, ι;)|| > 0 for every p, u and v.

DEFINITION. We define Dji and Tu by

(2.11) DbjD
H = δ} , 7 M 7 " = δu

υ .

Then the contravariant components of the Riemannian metric G of
s(S(M)) are

(2.12) Gjί = Djί , Gvί = - u / D c ί , Gυϊt - Dcbuc

vub

u + Tu .

From (2.10) we get

(2.13) det [GBA] = (det [i?y<])(det [7.J) ,

or, in short, detG = (det D)(det 7).

3. The functional I and its derivative. As the regular spherical
image s(S(M)) is endowed with the Riemannian metric G, we can consider
its volume element. Dividing S(M) into a number of parts S(M)λ, xeΛ,
so that each part is contained in some coordinate neighborhood of S(M),
we can express the volume element in the form

((det D)(det 7)) V W - - • dxmdyι dym~x ,

or in the form ((det D)(det i))1/2dxdy, for short. We define J by

I = ΣIχ, Iχ = \\ ((det D)(det Ί))mdxdy
λ JJS(M)χ

which we write, for convenience, as

(3.1) I = \ \ ((det D)(det i))1/2dxdy .
J JS(M)

I is a functional of immersion i.
Let us consider an infinitesimal deformation of i.
If the immersion i of M into Rn depends on a parameter α, the
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position vector of (ϊ, p), peM, is written locally as

Uκ = Uκ(x\ - - - , x m ; a ) .

We consider only the case where Uκ are C°° functions of x\ , xm and
a. As the tangent vector t = thdh also depends on a we have in general

th = t h ( x \ ' " f x m

9 y \ •• , ^ / m - 1 ; α )

in each suitable coordinate neighborhood. But we can consider without
loss of generality that, at each point p e M, the ratio ί1: t2: : tm does
not depend on α. Thus there exists a function ψ satisfying dth/da = φth.
As t is a unit tangent vector, we get

(3.2) φ = -2~1(dgji/da)tΨ .

DEFINITION. We define the vector field V of deformation as the
vector field whose components are given by Vκ = d Uκ/da.

Then we have 3(3,ETΌ/δα = dtV
κ and

(3.3) dgJt/da = BjV'Bϊ + B/^F* .

From (3.2) we get

(3.4) φ = -t'djV't'Bt ,

(3.5) dth/da = -t'djV't'BϊP .

As we have the general formula

3 j h \ /da = (XβWψtfgJda) + Vtfgjdά) - Fa(dgjί/da)] ,

we get, by substituting (3.3) into the second member,

(3.6) d j . k ] / da = g^Γft V*B* + da V'HjS) .

For the second fundamental form we have

(3.7) dHji'/da = VjVtV - ^ ^ ( F / . F ^ f + dcV
λHόi

λ)Bκ

b .

As FΛ and Uκ are independent of y\ , 7/m-1, we get from (3.5)

(3.8) d(dut
h)/da = du(dth/da) = -(t'djV't'BfidJΪ - {dάV

κB*)du{VV)th ,

(3.9) aτVtt/3α = (3β7*Bί + dbV
κBΪ)dvt

cdut
b - 2τ, t t3 cF^ίί cί& .

From (3.5) and (3.7) we get

(3.10) dDjJda = 2φDjί + (FfcV*Hib

κ + ΓtF0VΉJb')rth .

From (2.13) we get
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Now we have

cV
cHihΎth + mψ

+ T dJb'dJ Ψ}VBl - (m - WjV'B tH1

in view of (3.9), (3.10) and D^Dj, = m, T"Ύvn = m - 1. On the other hand
we have

from

(γ 3, W - ffJ< + t'tOfl'αi*" = 0 ,

( r d . W - fit3'* + titt)gΛAf = 0 .

Thus we get

(3.11) (l/2)(D"3jDί4/3α + VdΎjda)

= D'ψy.VHaΎt* + g'ΨjVB; - 2mF3Ύ'iBϊt3tί

Substituting this result into

= f Γf
jiίLJ

we get

(3.12) ^L = [ \\ (DiψfcVΉib

κtctb + g'ΨjV'Bf
da jMLJSpίM)

- 2mFjV
κBι

κtjtί)(det7)υ2dy](άetDY/2dx

4. The differential coefficient of I in some special cases. Assume
M is compact orientable. That the submanifold (i, M) is a critical point
of / means that for any infinitesimal deformation from (i, M) the second
member of (3.12) vanishes. The vector field V of deformation is defined
on M but the domain of integration in (3.12) is S(M). In order to get
a clear-cut formula for a critical point we must first compute the integral
over each SP(M), but as Dji are not polynomials in t1, , tm in general,
the computation is practically difficult. Thus we consider only some
special cases satisfying the following:

ASSUMPTION, (ί, M) is an isometric and isotropic immersion of a
space form of constant curvature c > 0.
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Then we have

(4.1) Hn'HjS - HjhΉki

κ = c(gkhgjί - gjhgki) ,

(4.2) Hhi<Hih' + Hkί«Hjh

κ + HkhΉόi* = h(gkjgίh + gkίgjh + gkhg5i)

where h is a function on M.
From (4.1) and (4.2) we get

(4.3) HkiΉih* = (1/3)((Λ + 2c)gkjgih + (h - c)(gkigjh + gkhgit))

and from (2.8)

(4.4) DSi = (l/3)((λ - c)gjt + (2Λ + c ) ^ ) ,

(4.5) ^ 3ί + \
λ — c λ(Λ — c)

(4.6) det D = ((h- c)l?>γ-ιh det

As we have assumed that the spherical map s is regular, h — c > 0
everywhere on M.

Now dω = (det Ίf^dy1 d?/™"1 is the volume element of the sphere
SP(M) which is isometric to the standard (m — l)-sphere S ^ ^ l ) . Hence
we have at p

(4.7) ( tΨdω = —c^g'1

isp{M) m

where cm_λ is the volume of Sm~\ΐ).
Let us consider Sm'\l) as the unit hypersphere of Rm given by

(u1)2 + + (um)2 = 1 where u1, , um are the rectangular coordinates
of Rm. Then we get

where the domain of integration is Sm~1(l) Applying this result to
SP(M) we get

(4.8) γtHHhdω = (cm_J(m(m + 2)))(gkjgίh + gkίgjh

From (4.5), (4.7) and (4.8) we get

\Djitct\det7)1/2dy

7ΓT^ / fotλ7W + g g + ffV
m(Λ — c) m(m + 2)Λ(λ — c)

Then, as VάVeV
κ, Hίb

κ, VόV% B- are independent of the unit tangent vector
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t, we get from (3.12)

da m~~1 J J_\ m(h — c) m(m + 2)h(h — c)

2tl + C rγ Γ7ΐ T7ΊCTT iic ^HΠ T

- e)

x ((fc - c)/3) (m~1)/2(fe d e t flr)1/2da?.

5. Some critical points of the functional /. Hereafter we assume
h is constant. This means that the normal curvature vector σp(t91) of
(i, M) has constant length Vh independent of p and t. In this case
dl/da vanishes for every infinitesimal deformation if and only if the
following equation is satisfied,

(5.1)

This is a direct consequence of Green's theorem. On the other hand we
have

m(h — c) m(m + 2)h(h — <

— 2h + c VaV
jHiilc + HiK = 0 .

m(m + 2)h(h — c)

= PfΉj" + (m - ΐ)cHt

u ,

where Kjlc are the contravariant components of the Ricci tensor. Hence
(5.1) becomes

(5.2) (mh - c)[ZJHκ - ((m + 2)h + 2(m - l)c)Hκ] = 0

where Δ is the Laplacian, Δ — — F/% and if* are the components of the
mean curvature vector defined by mHκ = Htκ. As we have h — c > 0,
the case mh — c = 0 is excluded. Hence we get from (5.2)

(5.3) ΔHK = λίP

where

(5.4) λ = ((m + 2)Λ + 2(m - l)c)/3 .

Thus we have proved Theorem 1.
Now suppose that (i, Jkf) lies on the hypersphere So"\p)f namely the

hyper sphere of radius p and with center at the origin of Rn. Then we
have Uκ Uκ = ρ\ UKB{ = 0, gάi + UΉόi

κ = 0, hence

(5.5) UΉK = - 1 .

If (i, M) is a minimal submanifold of So~\p)9 then we get

(5.6) miίΛ = -ΔUK = -mρ-2Uκ
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as in [6]. On the other hand we have from (4.3)

(5.7) HKHK = ((m + 2)Λ + 2(m -

Hence we get

(5.8) m/r2 = ((m + 2)Λ + 2(m - l)c)/3

which proves that J i P = λff holds with X satisfying (5.4). Thus (i, Λf)
is a critical point of /.

Conversely, suppose (i, M) is a critical point of I and p satisfies (5.8).
Then we get, in view of (5.5),

Uκ(mHκ + xUκ) = -m + Xp2

which vanishes because of (5.4) and (5.8). On the other hand we have

(ΔUK - xU*)(ΔUκ - xUκ)dω = ( UK(ΔΔUK - 2xΔUκ + X2Uκ)dω
M J

= x[ Uκ(mHk + Xϋκ)dω ,

hence Δ Uκ — X Uκ = 0. Thus we have proved Theorem 2.

6. A space form immersed isometrically as an isotropic submanifold
in a hypersphere of Rn.

REMARK. In §6 an immersed submanifold is denoted by M. The
notation (i, M) is not used.

In a paper of O'Neill [5] it is stated that, if M is an m-dimensional
space form of constant curvature c and at the same time M is an isotropic
submanifold of an (m + m(m + l)/2 — l)-dimensional space form M of
constant curvature c, with c < c, then M is a minimal submanifold of
M and \\σ(t, t)\\2 = (2(m - l)/(m + 2))(c - c). On the other hand we find
in a paper [2] by Itoh and Ogiue the following theorems.

THEOREM A. Let M be an m-dimensίonal space form of constant
curvature c, and M be an (m + m(m + l)/2 — l)-dimensίonal space form
of constant curvature c. If c < c, and M is an isotropic submanifold
of M with parallel second fundamental form, then c = (m/2(m + l))c,
and the immersion is rigid.

THEOREM B. Let M be an m-dimensional space form of constant cur-
vature c, and M be an (m+m(m + l)/2—l)-dimensional space form of con-
stant curvature c. If c < c, and M is an isotropic submanifold of M,
then c = (m/2(m + l))c, α^ώ ίfee immersion is rigid provided that m ^ 4.

It seems that such results have some relation to some of the results



SPHERICAL REPRESENTATION 75

of the present paper. In the present paper the dimension n of the
ambient space is undecided since the immersion may not be full.

As we are considering the case where the immersed submanifold M
lies on S%~\p), we express the latter locally by

IP = Uκ(u\ •• ,un-1)

where u\ •••, un~ι are the local coordinates of S*~\p). We use indices

a,β,7, 3 = 1, - , Λ - 1

and the immersion of M into Ss~~\p) is given locally by

ua = ua(x\ , xm) .

We also use the notations,

Bκ

a = d UKldua , Bf = du'/dx* ,

and get

dlP/dx* = Bt = Bκ

aB« .

Then the natural Riemannian metric on So"\p) has components gβa such
that

and the components Hβa

κ of the second fundamental form of So~\p) in
Rn and the components fl"^" of the second fundamental form of M in
S»0-\p) satisfy [1]

Hβa' = -ρ~2gβaU
κ,

Kδrβa — HδaΉrβ

κ — Hra

κHδβ

κ = c(gδagrβ — gragiβ) ,

where ίΓ3ri9α are the covariant components of the curvature tensor of
SJΓ\P) and c = p"2. Thus we get

(6.1) # * / # * / = Hk/Hih

agβa + c Λ i Λ *

This shows that M is isotropic in Rn if and only if M is isotropic in
Ss~\p). If we denote by σB(t, t) the normal curvature vector of M in
Rn and by α5(ί, t) the normal curvature vector of M in S<?~Xp), then we
get from (6.1)

(6.2) | | σ s ( t , t)||2 = ||σB(fi, t)\\2 - c = h - c .

On the other hand we get from (5.7), where we now put p~2 = c,

(6.3) h = (3mc - 2(m - l)c)/(m + 2) .
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Hence we have the formula

(6.4) || σs(tf t) |Γ = (2(m - l)/(m + 2))(c - c)

which has been obtained by O'Neill [5].
As we can see in [2], [3] and [4], a Veronese manifold satisfies the

equations

c = 1 , c = (m/2(m + l))c , c = p~2 = 2(m + l)/m , λ = λ2 = 2(m + 1) .

Since a Veronese manifold is an isotropic submanifold (see [2]), we get
h = 4 from (6.2) and (6.4), which is valid as a result of O'NeilΓs paper
[5]. Hence (5.8) is satisfied and a Veronese manifold is a critical point
of I.
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