ON SPHERICAL REPRESENTATION OF AN m-DIMENSIONAL SUBMANIFOLD IN THE EUCLIDEAN n-SPACE

Dedicated to Professor Shigeo Sasaki on his seventieth birthday

Yosio Mutō

(Received January 9, 1982)

1. Introduction. The spherical representation of a curve in the Euclidean 3 -space is a representation on the unit sphere S^{2} obtained with the use of tangent vectors. We consider a generalization of the notion of spherical representations to an m-dimensional submanifold in the Euclidean n-space. We denote a submanifold by (i, M) where M is an m-dimensional manifold and i is an immersion $i: M \rightarrow R^{n}$. If the spherical representation of (i, M) is regular, the image is an immersed submanifold of dimension $2 m-1$ in the unit hypersphere of R^{n}. Any submanifold and its infinitesimal deformations we consider are assumed to be C^{∞}.

Let p be any point of M and $\{O\}_{p}$ be the origin of $T_{p}(M)$. To any half line of $T_{p}(M)$ from $\{O\}_{p}$ there corresponds a point of the unit hypersphere $S_{0}^{n-1}(1)$ of R^{n}. Taking all points p of M and all half lines of $T_{p}(M)$ from $\{O\}_{p}$ we get the spherical representation of (i, M).

For our purpose a little more precise description will be preferable. Any immersion i of M induces a Riemannian metric g on M and this determines the unit hypersphere $S_{p}(M)$ of $T_{p}(M)$. For any point (i, p) of (i, M) there exists just one m-dimensional tangent plane of (i, M) and in this tangent plane we can take a hypersphere of radius 1 and with center (i, p). Let us denote this hypersphere by ($i^{\prime}, S_{p}(M)$). Then for any point $q \in S_{p}(M)$ we have just one point $\left(i^{\prime}, q\right)$ of R^{n}. Let O be the origin of R^{n} and $O X$ be the oriented segment obtained by a parallel translation of oriented segment joining (i, p) to (i^{\prime}, q). Then X is a point of $S_{0}^{n-1}(1)$. Thus a mapping $s: S(M) \rightarrow S_{0}^{n-1}(1)$ is obtained such that $s(q)=X$ and we call s the spherical representation of (i, M), or the spherical representation of M induced by the immersion i.

In the present paper we consider only such cases that s is an immersion. Then s is called a regular spherical representation or a regular spherical map and its image a spherical image.

We take a compact orientable manifold M and consider the integral I of the volume element of the spherical image $s(S(M)) . \quad I$ is a functional
of the immersion i. The purpose of the present paper is to get some submanifolds (i, M) such that the functional I is stationary at this immersion i with respect to any infinitesimal deformation of i. Our original aim was to find critical points of I in general cases, but the necessary and sufficient condition for (i, M) to be a critical point of I was not obtained in a clear-cut form. Hence only some special cases are treated in the present paper where (i, M) is an isometric and isotropic immersion of a space form. But the final result is still a little complicated. Hence we assume further that the immersion is constant isotropic. The main results are the following theorems.

Theorem 1. Let (M, g) be an m-dimensional space form of constant curvature $c>0$ and (i, M) be a submanifold of R^{n} such that the immersion is isometric to (M, g) and the normal curvature vector $\sigma_{p}(t, t)$ has constant length $\sqrt{h}, h \neq c$, independent of the tangent vector t and the point p of M. This submanifold is a critical point of the functional I if and only if every component of the mean curvature vector is an eigenfunction of the Laplacian of (M, g) with an eigenvalue λ where $\lambda=((m+2) h+2(m-1) c) / 3$.

Theorem 2. Let (M, g) be as in Theorem 1. Furthermore we assume that the submanifold lies on the hypersphere $S_{o}^{n-1}(\rho)$ of R^{n} where the center is the origin O and the radius is ρ. Let (i) and (ii) be the following conditions,
(i) (i, M) is a minimal submanifold of the hypersphere $S_{o}^{n-1}(\rho)$,
(ii) (i, M) is a critical point of I and ρ satisfies

$$
m \rho^{-2}=((m+2) h+2(m-1) c) / 3
$$

Then (i) and (ii) are equivalent conditions.
This theorem shows that a Veronese manifold considered as a submanifold of a Euclidean space is a critical point of I.

In $\S 2$ we introduce a Riemannian metric to the spherical image $s(S(M))$. From this Riemannian metric we get the formula for the volume element of $s(S(M))$. In $\S 3$ the integral I of this volume element and the derivative of I with respect to an infinitesimal deformation of the immersion are calculated. In $\S 4$ we consider the special case where (i, M) is isometric to a space form and the immersion is isotropic, namely, $\sigma_{p}(t, t)$ has constant length $(h(p))^{1 / 2}$ but $h(p)$ may depend on p. In $\S 5$ we consider the case where $h(p)$ is independent of the point p and prove the main theorems. In $\S 6$ we prove that a Veronese manifold is a critical point of I. There we also discuss some relation of the present
result to some of the results obtained by 0 'Neill [5] and by Itoh and Ogiue [2], [3].

The author wishes to express his hearty thanks to the referee whose kind suggestions was helpful very much to the improvement of the paper.
2. The Riemannian metric G of a spherical image. We first give a local expression for a spherical map. We use indices

$$
\begin{aligned}
& a, b, c, \cdots, h, i, j, \cdots=1, \cdots, m \\
& \kappa, \lambda, \mu, \cdots, \rho, \sigma, \tau, \cdots=1, \cdots, n
\end{aligned}
$$

and adopt usual summation convention with respect to Latin indices. x^{1}, \cdots, x^{m} are local coordinates of M so that a point p of M in a coordinate neighborhood is expressed by $p=\left(x^{1}, \cdots, x^{m}\right)$, and U^{1}, \cdots, U^{n} are the rectangular coordinates of a point in R^{n}. Thus i is expressed locally by

$$
\begin{equation*}
U^{k}=U^{k}\left(x^{1}, \cdots, x^{m}\right) \tag{2.1}
\end{equation*}
$$

We put

$$
\begin{equation*}
B_{i}^{\kappa}=\partial U^{\kappa} / \partial x^{i}=\partial_{i} U^{\kappa}, \quad g_{j i}=B_{j}^{\kappa} B_{i}^{\kappa} \tag{2.2}
\end{equation*}
$$

where the summation symbol \sum_{x} is omitted for short. $g_{j i}$ are the components of the Riemannian metric induced on the submanifold (i,M) from the natural metric of R^{n}. Thus we can consider (i, M) as a Riemannian manifold (M, g).

The Christoffel symbols of $g_{j i}$ are denoted by $\left\{\begin{array}{l}j^{h} \\ i\end{array}\right\}$ and the components of the second fundamental form of (i, M) are

$$
H_{j i}{ }^{\kappa}=\nabla_{j} B_{i}^{\kappa}=\partial_{j} B_{i}^{\kappa}-\left\{\begin{array}{c}
h \tag{2.3}\\
j \\
i
\end{array}\right\} B_{h}^{\kappa}
$$

where ∇ is the Riemannian connection of (M, g).
If t is a unit tangent vector of (M, g) at a point $p \in M$, then $t=t^{h} \partial_{h}$ where $\left(\partial_{1}, \cdots, \partial_{m}\right)$ is the natural frame of $T_{p}(M)$ and the components t^{h} satisfy $g_{j i} t^{j} t^{i}=1$. A point q of $S_{p}(M)$ is nothing but a unit tangent vector of (M, g) at p. If the spherical map s carries q to $s(q)=X$, then the rectangular coordinates X^{κ} of X are given by

$$
\begin{equation*}
X^{\kappa}=t^{i} B_{i}^{\kappa}, \quad g_{j i} t^{j} t^{i}=1 \tag{2.4}
\end{equation*}
$$

Since $S_{p}(M)$ is an $(m-1)$-dimensional sphere, we need $m-1$ numbers y^{1}, \cdots, y^{m-1} to determine a point of $S_{p}(M)$ in some open subset. Thus a point X of the spherical image $s(S(M))$, such that $X \in s(U)$ where U is some open subset of $S(M)$, is determined by $2 m-1$ numbers
$x^{1}, \cdots, x^{m}, y^{1}, \cdots, y^{m-1}$ and we have n functions $X^{\kappa}=X^{\kappa}\left(x^{1}, \cdots, x^{m} ; y^{1}\right.$, \cdots, y^{m-1}).

Now we introduce new indices

$$
\begin{aligned}
& u, v, w, x, y, z=m+1, \cdots, 2 m-1 \\
& A, B, C, D, \cdots=1, \cdots, 2 m-1
\end{aligned}
$$

and put $x^{u}=y^{u-m}$. A covering of $S(M)$ by suitable neighborhoods U_{λ} ($\lambda \in \Lambda$) is considered and the spherical image is expressed by

$$
X^{\kappa}=X_{(\lambda)}^{\kappa}\left(x_{(\lambda)}^{1}, \cdots, x_{(\lambda)}^{m} ; y_{(\lambda)}^{1}, \cdots, y_{(\lambda)}^{m-1}\right)
$$

for the part $s\left(U_{\lambda}\right)$. The spherical map s is regular if and only if the rank of the $(n, 2 m-1)$-matrix $\left[\partial X_{(\lambda)}^{\kappa} / \partial x_{(2)}^{A}\right]$ is $2 m-1$ for all $\lambda \in \Lambda$. This is assumed throughout the paper.

We define $G_{C B}$ by

$$
\begin{equation*}
G_{C B}=\partial_{C} X^{\kappa} \partial_{B} X^{\kappa} \tag{2.5}
\end{equation*}
$$

where $\partial_{C}=\partial / \partial x^{c}$. That s is regular is equivalent to that $G_{C B}$ are the coefficients of a positive quadratic form and our assumption assures that the spherical image becomes a Riemannian manifold with the Riemannian metric G whose components are $G_{C B}$. As we have

$$
\begin{equation*}
\partial_{j} X^{\kappa}=t^{i} H_{j i}{ }^{\kappa}+V_{j} t^{i} B_{i}^{\kappa}, \quad \partial_{u} X^{\kappa}=\partial_{u} t^{i} B_{i}^{\kappa}, \tag{2.6}
\end{equation*}
$$

we get

$$
\begin{align*}
G_{j i} & =H_{j c}{ }^{*} H_{i b}{ }^{k} t^{c} t^{b}+g_{c b} \nabla_{j} t^{c} \nabla_{i} t^{b}, \\
G_{j u} & =g_{c b} \nabla_{j} t^{c} \partial_{u} t^{b}, \tag{2.7}\\
G_{v u} & =g_{c b} \partial_{v} t^{c} \partial_{u} t^{b} .
\end{align*}
$$

Definition. We define $D_{j i}, \gamma_{v u}, u_{i}{ }^{u}$ by

$$
\begin{gather*}
D_{j i}=H_{j c}{ }^{\kappa} H_{i b}{ }^{\kappa} t^{c} t^{b}, \quad \gamma_{v u}=g_{c b} \partial_{v} t^{c} \partial_{u} t^{b}, \tag{2.8}\\
\nabla_{i} t^{h}=u_{i}{ }^{v} \partial_{v} t^{h} . \tag{2.9}
\end{gather*}
$$

We prove that $u_{i}{ }^{u}$ are uniquely determined by (2.9). As the vector field t satisfies $g_{j i} t^{j} t^{i}=1$, we get

$$
t_{i} \nabla_{k} t^{i}=0, \quad t_{i} \partial_{u} t^{i}=0
$$

where $t_{i}=g_{i j} t^{j}$. As the rank of the ($m, m-1$)-matrix [$\partial_{u} t^{i}$] is $m-1$, there exists one and only one ($m-1, m$)-matrix [$u_{i}{ }^{u}$] satisfying (2.9).

As s is regular, $\operatorname{rank}\left[D_{j i}\right]=m$ and (2.8) shows that $D_{j i}$ are the coefficients of a positive quadratic form. We get from (2.7), (2.8) and (2.9)

$$
\begin{equation*}
G_{j i}=D_{j i}+\gamma_{v u} u_{j}{ }^{v} u_{i}{ }^{u}, \quad G_{j u}=\gamma_{v u} u_{j}{ }^{v}, \quad G_{v u}=\gamma_{v u} . \tag{2.10}
\end{equation*}
$$

This implies

$$
G_{C B} P^{c} P^{B}=D_{j i} P^{j} P^{i}+\gamma_{v u}\left(u_{j}{ }^{v} P^{j}+P^{v}\right)\left(u_{i}{ }^{u} P^{i}+P^{u}\right) .
$$

Remark. We denote the normal curvature vector of (i, M) at (i, p) by $\sigma_{p}(t, t)$ where t is a unit tangent vector. The components of $\sigma_{p}(t, t)$ are $H_{j i}{ }^{\kappa} t^{j} t^{i}$. The normal curvature vector at (i, p) associated with a pair of unit tangent vectors u and v is denoted by $\sigma_{p}(u, v)$. Its components are $H_{j i}{ }^{\kappa} u^{j} v^{i}$. Suppose that $\sigma_{p}(u, v)=0$ for some p, u and v. As we can choose (y^{1}, \cdots, y^{m-1}) in such a way that $t\left(x^{1}, \cdots, x^{m} ; y^{1}, \cdots, y^{m-1}\right)=v$, we get $H_{j i}{ }^{\text {a }} u^{j} t^{i}=0$ and consequently $D_{j i} u^{j} u^{i}=0$ for this (y^{1}, \cdots, y^{m-1}). This proves that $\left\|\sigma_{p}(u, v)\right\|>0$ for every p, u and v.

Definition. We define $D^{j i}$ and $\gamma^{v u}$ by

$$
\begin{equation*}
D_{b j} D^{b i}=\delta_{j}^{i}, \quad \gamma_{x v} \gamma^{x u}=\delta_{v}^{u} . \tag{2.11}
\end{equation*}
$$

Then the contravariant components of the Riemannian metric G of $s(S(M))$ are

$$
\begin{equation*}
G^{j i}=D^{j i}, \quad G^{v i}=-u_{c}^{v} D^{c i}, \quad G^{v u}=D^{c b} u_{c}{ }^{v} u_{b}{ }^{u}+\gamma^{v u} \tag{2.12}
\end{equation*}
$$

From (2.10) we get

$$
\begin{equation*}
\operatorname{det}\left[G_{B A}\right]=\left(\operatorname{det}\left[D_{j i}\right]\right)\left(\operatorname{det}\left[\gamma_{v u}\right]\right), \tag{2.13}
\end{equation*}
$$

or, in short, $\operatorname{det} G=(\operatorname{det} D)(\operatorname{det} \gamma)$.
3. The functional I and its derivative. As the regular spherical image $s(S(M))$ is endowed with the Riemannian metric G, we can consider its volume element. Dividing $S(M)$ into a number of parts $S(M)_{\lambda}, \lambda \in \Lambda$, so that each part is contained in some coordinate neighborhood of $S(M)$, we can express the volume element in the form

$$
((\operatorname{det} D)(\operatorname{det} \gamma))^{1 / 2} d x^{1} \cdots d x^{m} d y^{1} \cdots d y^{m-1}
$$

or in the form $((\operatorname{det} D)(\operatorname{det} \gamma))^{1 / 2} d x d y$, for short. We define I by

$$
I=\sum_{\lambda} I_{\lambda}, \quad I_{\lambda}=\iint_{S(M)_{\lambda}}((\operatorname{det} D)(\operatorname{det} \gamma))^{1 / 2} d x d y
$$

which we write, for convenience, as

$$
\begin{equation*}
I=\iint_{S(M)}((\operatorname{det} D)(\operatorname{det} \gamma))^{1 / 2} d x d y \tag{3.1}
\end{equation*}
$$

I is a functional of immersion i.
Let us consider an infinitesimal deformation of i.
If the immersion i of M into R^{n} depends on a parameter α, the
position vector of (i, p), $p \in M$, is written locally as

$$
U^{k}=U^{k}\left(x^{1}, \cdots, x^{m} ; \alpha\right)
$$

We consider only the case where U^{ε} are C^{∞} functions of x^{1}, \cdots, x^{m} and α. As the tangent vector $t=t^{h} \partial_{h}$ also depends on α we have in general

$$
t^{h}=t^{h}\left(x^{1}, \cdots, x^{m}, y^{1}, \cdots, y^{m-1} ; \alpha\right)
$$

in each suitable coordinate neighborhood. But we can consider without loss of generality that, at each point $p \in M$, the ratio $t^{1}: t^{2}: \cdots: t^{m}$ does not depend on α. Thus there exists a function φ satisfying $\partial t^{h} / \partial \alpha=\varphi t^{h}$. As t is a unit tangent vector, we get

$$
\begin{equation*}
\varphi=-2^{-1}\left(\partial g_{j i} / \partial \alpha\right) t^{j} t^{i} \tag{3.2}
\end{equation*}
$$

Definition. We define the vector field V of deformation as the vector field whose components are given by $V^{\kappa}=\partial U^{\kappa} / \partial \alpha$.

Then we have $\partial\left(\partial_{i} U^{k}\right) / \partial \alpha=\partial_{i} V^{k}$ and

$$
\begin{equation*}
\partial g_{j i} / \partial \alpha=\partial_{j} V^{\kappa} B_{i}^{\kappa}+B_{j}^{\kappa} \partial_{i} V^{\kappa} \tag{3.3}
\end{equation*}
$$

From (3.2) we get

$$
\begin{gather*}
\varphi=-t^{j} \partial_{j} V^{\kappa} t^{i} B_{i}^{\kappa}, \tag{3.4}\\
\partial t^{h} / \partial \alpha=-t^{j} \partial_{j} V^{\kappa} t^{i} B_{i}^{\kappa} t^{h} . \tag{3.5}
\end{gather*}
$$

As we have the general formula

$$
\partial\left\{\begin{array}{c}
h \\
j \\
j
\end{array}\right\} / \partial \alpha=(1 / 2) g^{h a}\left[\nabla_{j}\left(\partial g_{i a} / \partial \alpha\right)+\nabla_{i}\left(\partial g_{j a} / \partial \alpha\right)-\nabla_{a}\left(\partial g_{j i} / \partial \alpha\right)\right],
$$

we get, by substituting (3.3) into the second member,

$$
\partial\left\{\begin{array}{cc}
h & \tag{3.6}\\
j & i
\end{array}\right\} / \partial \alpha=g^{h a}\left(\nabla_{j} \nabla_{i} V^{\kappa} B_{a}^{\kappa}+\partial_{a} V^{\kappa} H_{j i}{ }^{\kappa}\right) .
$$

For the second fundamental form we have

$$
\begin{equation*}
\partial H_{j i}{ }^{\kappa} / \partial \alpha=\nabla_{j} \nabla_{i} V^{\kappa}-g^{c b}\left(\nabla_{j} \nabla_{i} V^{\lambda} B_{c}^{\lambda}+\partial_{c} V^{\lambda} H_{j i}{ }^{2}\right) B_{b}^{\kappa} \tag{3.7}
\end{equation*}
$$

As V^{k} and U^{k} are independent of y^{1}, \cdots, y^{m-1}, we get from (3.5)

$$
\begin{gather*}
\partial\left(\partial_{u} t^{h}\right) / \partial \alpha=\partial_{u}\left(\partial t^{h} / \partial \alpha\right)=-\left(t^{j} \partial_{j} V^{\kappa} t^{i} B_{i}^{\kappa}\right) \partial_{u} t^{h}-\left(\partial_{j} V^{\kappa} B_{i}^{\kappa}\right) \partial_{u}\left(t^{j} t^{i}\right) t^{h}, \tag{3.8}\\
\partial \gamma_{v u} / \partial \alpha=\left(\partial_{c} V^{\kappa} B_{b}^{\kappa}+\partial_{b} V^{\kappa} B_{c}^{k}\right) \partial_{v} t^{t} \partial_{u} t^{b}-2 \gamma_{v u} \partial_{c} V^{\kappa} B_{b}^{\kappa} t^{c} t^{b} . \tag{3.9}
\end{gather*}
$$

From (3.5) and (3.7) we get

$$
\begin{equation*}
\partial D_{j i} / \partial \alpha=2 \varphi D_{j i}+\left(\nabla_{j} \nabla_{c} V^{\kappa} H_{i b}{ }^{\kappa}+\nabla_{i} \nabla_{c} V^{\kappa} H_{j b}{ }^{\kappa}\right) t^{c} t^{b} . \tag{3.10}
\end{equation*}
$$

From (2.13) we get

$$
\partial(\operatorname{det} G)^{1 / 2} / \partial \alpha=(1 / 2)\left(D^{j i} \partial D_{j i} / \partial \alpha+\gamma^{v u} \partial \gamma_{v u} / \partial \alpha\right)(\operatorname{det} G)^{1 / 2} .
$$

Now we have

$$
\begin{aligned}
(1 / 2)\left(D^{j i} \partial D_{j i} / \partial \alpha+\gamma^{v u} \partial \gamma_{v u} / \partial \alpha\right)= & D^{j i} \nabla_{j} \nabla_{c} V^{\kappa} H_{i b}{ }^{\kappa} t^{c} t^{b}+m \varphi \\
& +\gamma^{v u} \partial_{v} t^{j} \partial_{u} t^{i} \nabla_{j} V^{\kappa} B_{i}^{\kappa}-(m-1) \nabla_{j} V^{\kappa} B_{i}^{\kappa} t^{j} t^{i}
\end{aligned}
$$

in view of (3.9), (3.10) and $D^{j i} D_{j i}=m, \gamma^{v u} \gamma_{v i}=m-1$. On the other hand we have

$$
\gamma^{v u} \partial_{v} t^{j} \partial_{u} t^{i}=g^{j i}-t^{j} t^{i}
$$

from

$$
\begin{aligned}
& \left(\gamma^{v u} \partial_{v} t^{j} \partial_{u} t^{i}-g^{j i}+t^{j} t^{i}\right) g_{a i} t^{a}=0, \\
& \left(\gamma^{v u} \partial_{v} t^{j} \partial_{u} t^{i}-g^{j i}+t^{j} t^{i}\right) g_{a i} \partial_{x} t^{a}=0 .
\end{aligned}
$$

Thus we get

$$
\begin{align*}
& (1 / 2)\left(D^{j i} \partial D_{j i} / \partial \alpha+\gamma^{v u} \partial \gamma_{v u} / \partial \alpha\right) \tag{3.11}\\
& \quad=D^{j i} \nabla_{j} \nabla_{c} V^{\kappa} H_{i b}{ }^{\kappa} t^{c} t^{b}+g^{j i} \nabla_{j} V^{\kappa} B_{i}^{\kappa}-2 m \nabla_{j} V^{\kappa} B_{i}^{\kappa} t^{j} t^{i} .
\end{align*}
$$

Substituting this result into

$$
\frac{d I}{d \alpha}=\iint_{S(M)} \frac{\partial(\operatorname{det} G)^{1 / 2}}{\partial \alpha} d x d y=\int_{M}\left[\int_{S_{p}(M)} \frac{\partial(\operatorname{det} G)^{1 / 2}}{\partial \alpha} d y\right] d x
$$

we get

$$
\begin{align*}
& \frac{d I}{d \alpha}=\int_{M}\left[\int _ { S _ { p } (M) } \left(D^{j i} \nabla_{j} \nabla_{c} V^{\kappa} H_{i b}{ }^{\kappa} t^{\kappa} t^{b}+g^{j i} \nabla_{j} V^{\kappa} B_{i}^{\kappa}\right.\right. \tag{3.12}\\
&\left.\left.-2 m \nabla_{j} V^{\kappa} B_{i}^{\kappa} t^{j} t^{i}\right)(\operatorname{det} \gamma)^{1 / 2} d y\right](\operatorname{det} D)^{1 / 2} d x
\end{align*}
$$

4. The differential coefficient of I in some special cases. Assume M is compact orientable. That the submanifold (i, M) is a critical point of I means that for any infinitesimal deformation from (i, M) the second member of (3.12) vanishes. The vector field V of deformation is defined on M but the domain of integration in (3.12) is $S(M)$. In order to get a clear-cut formula for a critical point we must first compute the integral over each $S_{p}(M)$, but as $D^{j i}$ are not polynomials in t^{1}, \cdots, t^{m} in general, the computation is practically difficult. Thus we consider only some special cases satisfying the following:

Assumption. (i, M) is an isometric and isotropic immersion of a space form of constant curvature $c>0$.

Then we have

$$
\begin{gather*}
H_{k h}{ }^{\kappa} H_{j i}{ }^{\kappa}-H_{j h}{ }^{\kappa} H_{k i}{ }^{\kappa}=c\left(g_{k h} g_{j i}-g_{j h} g_{k i}\right), \tag{4.1}\\
H_{k j}{ }^{\kappa} H_{i h}{ }^{\kappa}+H_{k i}{ }^{\kappa} H_{j h}{ }^{\kappa}+H_{k h}{ }^{\kappa} H_{j i}{ }^{\kappa}=h\left(g_{k j} g_{i h}+g_{k i} g_{j h}+g_{k h} g_{j i}\right) \tag{4.2}
\end{gather*}
$$

where h is a function on M.
From (4.1) and (4.2) we get

$$
\begin{equation*}
H_{k j}{ }^{\kappa} H_{i h}{ }^{\kappa}=(1 / 3)\left((h+2 c) g_{k j} g_{i h}+(h-c)\left(g_{k i} g_{j h}+g_{k h} g_{j i}\right)\right) \tag{4.3}
\end{equation*}
$$

and from (2.8)

$$
\begin{gather*}
D_{j i}=(1 / 3)\left((h-c) g_{j i}+(2 h+c) t_{j} t_{i}\right), \tag{4.4}\\
D^{j i}=\frac{3}{h-c} g^{j i}-\frac{2 h+c}{h(h-c)} t^{j} t^{i} \tag{4.5}\\
\operatorname{det} D=((h-c) / 3)^{m-1} h \operatorname{det} g . \tag{4.6}
\end{gather*}
$$

As we have assumed that the spherical map s is regular, $h-c>0$ everywhere on M.

Now $d \omega=(\operatorname{det} \gamma)^{1 / 2} d y^{1} \cdots d y^{m-1}$ is the volume element of the sphere $S_{p}(M)$ which is isometric to the standard $(m-1)$-sphere $S^{m-1}(1)$. Hence we have at p

$$
\begin{equation*}
\int_{S_{p}(M)} t^{j} t^{i} d \omega=\frac{1}{m} c_{m-1} g^{j i} \tag{4.7}
\end{equation*}
$$

where c_{m-1} is the volume of $S^{m-1}(1)$.
Let us consider $S^{m-1}(1)$ as the unit hypersphere of R^{m} given by $\left(u^{1}\right)^{2}+\cdots+\left(u^{m}\right)^{2}=1$ where u^{1}, \cdots, u^{m} are the rectangular coordinates of R^{m}. Then we get

$$
\int u^{k} u^{j} u^{i} u^{h} d \omega=\left(c_{m-1} /(m(m+2))\right)\left(\delta^{k j} \delta^{i h}+\delta^{k i} \delta^{j h}+\delta^{k h} \delta^{j i}\right)
$$

where the domain of integration is $S^{m-1}(1)$. Applying this result to $S_{p}(M)$ we get

$$
\begin{equation*}
\int t^{k} t^{j} t^{i} t^{h} d \omega=\left(c_{m-1} /(m(m+2))\right)\left(g^{k j} g^{i h}+g^{k i} g^{j h}+g^{k h} g^{j i}\right) \tag{4.8}
\end{equation*}
$$

From (4.5), (4.7) and (4.8) we get

$$
\begin{aligned}
& \int D^{j i} t^{c} t^{b}(\operatorname{det} \gamma)^{1 / 2} d y \\
& \quad=\left[\frac{3}{m(h-c)} g^{j i} g^{c b}-\frac{2 h+c}{m(m+2) h(h-c)}\left(g^{j i} g^{c b}+g^{j c} g^{i b}+g^{j b} g^{i c}\right)\right] c_{m-1}
\end{aligned}
$$

Then, as $\nabla_{j} \nabla_{c} V^{\kappa}, H_{i b}{ }^{\kappa}, \nabla_{j} V^{\kappa}, B_{i}^{\kappa}$ are independent of the unit tangent vector
t, we get from (3.12)

$$
\begin{align*}
\frac{d I}{d \alpha}= & c_{m-1} \int_{M}\left[\left(\frac{3}{m(h-c)}-\frac{2(2 h+c)}{m(m+2) h(h-c)}\right) \nabla_{j} \nabla_{i} V^{\kappa} H^{j i \kappa}\right. \tag{4.9}\\
& \left.-\frac{2 h+c}{m(m+2) h(h-c)} \nabla_{j} \nabla^{j} V^{\kappa} H_{i}^{j \kappa}-g^{j i} \nabla_{j} V^{\kappa} B_{i}^{\kappa}\right] \\
& \times((h-c) / 3)^{(m-1) / 2}(h \operatorname{det} g)^{1 / 2} d x .
\end{align*}
$$

5. Some critical points of the functional I. Hereafter we assume h is constant. This means that the normal curvature vector $\sigma_{p}(t, t)$ of (i, M) has constant length \sqrt{h} independent of p and t. In this case $d I / d \alpha$ vanishes for every infinitesimal deformation if and only if the following equation is satisfied,

$$
\begin{align*}
& \left(\frac{3}{m(h-c)}-\frac{4 h+2 c}{m(m+2) h(h-c)}\right) \nabla_{j} \nabla_{i} H^{j i \kappa} \tag{5.1}\\
& \quad-\frac{2 h+c}{m(m+2) h(h-c)} \nabla_{j} \nabla^{j} H_{i}^{i \kappa}+H_{i}^{i \kappa}=0 .
\end{align*}
$$

This is a direct consequence of Green's theorem. On the other hand we have

$$
\nabla_{j} \nabla_{i} H^{j i \kappa}=\nabla_{j} \nabla^{j} H_{i}{ }^{i \kappa}+\nabla_{j}\left(K^{j k} B_{k}^{\kappa}\right)=\nabla_{j} \nabla^{j} H_{i}{ }^{i \kappa}+(m-1) c H_{i}{ }^{i \kappa},
$$

where $K^{j k}$ are the contravariant components of the Ricci tensor. Hence (5.1) becomes

$$
\begin{equation*}
(m h-c)\left[3 \Delta H^{\kappa}-((m+2) h+2(m-1) c) H^{\kappa}\right]=0 \tag{5.2}
\end{equation*}
$$

where Δ is the Laplacian, $\Delta=-\nabla_{i} \nabla^{i}$, and H^{κ} are the components of the mean curvature vector defined by $m H^{\kappa}=H_{i}{ }^{i \kappa}$. As we have $h-c>0$, the case $m h-c=0$ is excluded. Hence we get from (5.2)

$$
\begin{equation*}
\Delta H^{\kappa}=\lambda H^{\kappa} \tag{5.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda=((m+2) h+2(m-1) c) / 3 \tag{5.4}
\end{equation*}
$$

Thus we have proved Theorem 1.
Now suppose that (i, M) lies on the hypersphere $S_{0}^{n-1}(\rho)$, namely the hypersphere of radius ρ and with center at the origin of R^{n}. Then we have $U^{\kappa} U^{\kappa}=\rho^{2}, U^{\kappa} B_{i}^{\kappa}=0, g_{j i}+U^{k} H_{j i}{ }^{\kappa}=0$, hence

$$
\begin{equation*}
U^{x} H^{x}=-1 \tag{5.5}
\end{equation*}
$$

If (i, M) is a minimal submanifold of $S_{0}^{n-1}(\rho)$, then we get

$$
\begin{equation*}
m H^{\kappa}=-\Delta U^{k}=-m \rho^{-2} U^{\kappa} \tag{5.6}
\end{equation*}
$$

as in [6]. On the other hand we have from (4.3)

$$
\begin{equation*}
H^{\kappa} H^{\kappa}=((m+2) h+2(m-1) c) /(3 m) \tag{5.7}
\end{equation*}
$$

Hence we get

$$
\begin{equation*}
m \rho^{-2}=((m+2) h+2(m-1) c) / 3 \tag{5.8}
\end{equation*}
$$

which proves that $\Delta H^{\varepsilon}=\lambda H^{k}$ holds with λ satisfying (5.4). Thus (i,M) is a critical point of I.

Conversely, suppose (i, M) is a critical point of I and ρ satisfies (5.8). Then we get, in view of (5.5),

$$
U^{k}\left(m H^{k}+\lambda U^{k}\right)=-m+\lambda \rho^{2}
$$

which vanishes because of (5.4) and (5.8). On the other hand we have

$$
\begin{aligned}
\int_{M}\left(\Delta U^{k}-\lambda U^{k}\right)\left(\Delta U^{k}-\lambda U^{k}\right) d \omega & =\int_{M} U^{k}\left(\Delta \Delta U^{k}-2 \lambda \Delta U^{k}+\lambda^{2} U^{k}\right) d \omega \\
& =\lambda \int_{M} U^{k}\left(m H^{k}+\lambda U^{k}\right) d \omega
\end{aligned}
$$

hence $\Delta U^{x}-\lambda U^{x}=0$. Thus we have proved Theorem 2.
6. A space form immersed isometrically as an isotropic submanifold in a hypersphere of R^{n}.

Remark. In $\S 6$ an immersed submanifold is denoted by M. The notation (i, M) is not used.

In a paper of $O^{\prime} N e i l l$ [5] it is stated that, if M is an m-dimensional space form of constant curvature c and at the same time M is an isotropic submanifold of an $(m+m(m+1) / 2-1)$-dimensional space form \tilde{M} of constant curvature \tilde{c}, with $c<\tilde{c}$, then M is a minimal submanifold of M and $\|\sigma(t, t)\|^{2}=(2(m-1) /(m+2))(\widetilde{c}-c)$. On the other hand we find in a paper [2] by Itoh and Ogiue the following theorems.

Theorem A. Let M be an m-dimensional space form of constant curvature c, and \tilde{M} be an $(m+m(m+1) / 2-1)$-dimensional space form of constant curvature \tilde{c}. If $c<\tilde{c}$, and M is an isotropic submanifold of \widetilde{M} with parallel second fundamental form, then $c=(m / 2(m+1)) \widetilde{c}$, and the immersion is rigid.

Theorem B. Let M be an m-dimensional space form of constant curvature c, and \tilde{M} be an $(m+m(m+1) / 2-1)$-dimensional space form of constant curvature \widetilde{c}. If $c<\widetilde{c}$, and M is an isotropic submanifold of \widetilde{M}, then $c=(m / 2(m+1)) \widetilde{c}$, and the immersion is rigid provided that $m \leqq 4$.

It seems that such results have some relation to some of the results
of the present paper. In the present paper the dimension n of the ambient space is undecided since the immersion may not be full.

As we are considering the case where the immersed submanifold M lies on $S_{0}^{n-1}(\rho)$, we express the latter locally by

$$
U^{k}=U^{x}\left(u^{1}, \cdots, u^{n-1}\right)
$$

where u^{1}, \cdots, u^{n-1} are the local coordinates of $S_{0}^{n-1}(\rho)$. We use indices

$$
\alpha, \beta, \gamma, \delta=1, \cdots, n-1
$$

and the immersion of M into $S_{0}^{n-1}(\rho)$ is given locally by

$$
u^{\alpha}=u^{\alpha}\left(x^{1}, \cdots, x^{m}\right)
$$

We also use the notations,

$$
B_{\alpha}^{\kappa}=\partial U^{\kappa} / \partial u^{\alpha}, \quad B_{i}^{\alpha}=\partial u^{\alpha} / \partial x^{i},
$$

and get

$$
\partial U^{\kappa} / \partial x^{i}=B_{i}^{\kappa}=B_{\alpha}^{\kappa} B_{i}^{\alpha}
$$

Then the natural Riemannian metric on $S_{0}^{n-1}(\rho)$ has components $g_{\beta \alpha}$ such that

$$
g_{j i}=B_{j}^{\kappa} B_{i}^{\kappa}=g_{\beta \alpha} B_{j}^{\beta} B_{i}^{\alpha}, \quad g_{\beta \alpha}=B_{\beta}^{\kappa} B_{\alpha}^{\kappa}
$$

and the components $H_{\beta \alpha}{ }^{\kappa}$ of the second fundamental form of $S_{0}^{n-1}(\rho)$ in R^{n} and the components $H_{j i}{ }^{\alpha}$ of the second fundamental form of M in $S_{0}^{n-1}(\rho)$ satisfy [1]

$$
\begin{aligned}
& H_{\beta \alpha}{ }^{\kappa}=-\rho^{-2} g_{\beta \alpha} U^{\kappa}, \\
& K_{\delta \tau \beta \alpha}=H_{\delta i}{ }^{\kappa} H_{\gamma \beta}{ }^{\kappa}-H_{\gamma \alpha}{ }^{\kappa} H_{\partial \beta}{ }^{\kappa}=\widetilde{c}\left(g_{\delta \delta} g_{\gamma \beta}-g_{\gamma \alpha} g_{\partial \beta}\right), \\
& H_{j i}{ }^{\kappa}=H_{j i}{ }^{\alpha} B_{\alpha}^{\kappa}+B_{j}^{\beta} B_{i}^{\alpha} H_{\beta \alpha}{ }^{\kappa}=H_{j i}{ }^{\alpha} B_{\alpha}^{\kappa}-\rho^{-2} g_{j i} U^{\kappa}
\end{aligned}
$$

where $K_{\delta \gamma \beta \alpha}$ are the covariant components of the curvature tensor of $S_{0}^{n-1}(\rho)$ and $\widetilde{c}=\rho^{-2}$. Thus we get

$$
\begin{equation*}
H_{k j}{ }^{\kappa} H_{i h}{ }^{\kappa}=H_{k j}{ }^{\beta} H_{i h}{ }^{\alpha} g_{\beta \alpha}+\widetilde{c} g_{k j} g_{i h} . \tag{6.1}
\end{equation*}
$$

This shows that M is isotropic in R^{n} if and only if M is isotropic in $S_{0}^{n-1}(\rho)$. If we denote by $\sigma_{R}(t, t)$ the normal curvature vector of M in R^{n} and by $\sigma_{S}(t, t)$ the normal curvature vector of M in $S_{0}^{n-1}(\rho)$, then we get from (6.1)

$$
\begin{equation*}
\left\|\sigma_{S}(t, t)\right\|^{2}=\left\|\sigma_{R}(t, t)\right\|^{2}-\tilde{c}=h-\tilde{c} \tag{6.2}
\end{equation*}
$$

On the other hand we get from (5.7), where we now put $\rho^{-2}=\tilde{c}$,

$$
\begin{equation*}
h=(3 m \tilde{c}-2(m-1) c) /(m+2) . \tag{6.3}
\end{equation*}
$$

Hence we have the formula

$$
\begin{equation*}
\left\|\sigma_{S}(t, t)\right\|^{2}=(2(m-1) /(m+2))(\widetilde{c}-c) \tag{6.4}
\end{equation*}
$$

which has been obtained by O'Neill [5].
As we can see in [2], [3] and [4], a Veronese manifold satisfies the equations
$c=1, \quad c=(m / 2(m+1)) \widetilde{c}, \quad \widetilde{c}=\rho^{-2}=2(m+1) / m, \quad \lambda=\lambda_{2}=2(m+1)$. Since a Veronese manifold is an isotropic submanifold (see [2]), we get $h=4$ from (6.2) and (6.4), which is valid as a result of O'Neill's paper [5]. Hence (5.8) is satisfied and a Veronese manifold is a critical point of I.

References

[1] B. Y. Chen and K. Yano, On submanifolds of submanifolds of a Riemannian manifold, J. Math. Soc. Japan 23 (1971), 548-554.
[2] T. Itoh and K. Ogiue, Isotropic immersions, J. Differential Geometry 8 (1973), 305-316.
[3] T. Itoh and K. Ogiue, Isotropic immersions and Veronese manifolds, Trans. Amer. Math. Soc. 209 (1975), 109-117.
[4] Y. Mutō, Submanifolds of a Euclidean space with homothetic Gauss map, J. Math. Soc. Japan 32 (1980), 531-555.
[5] B. O'Neill, Isotropic and Kaehler immersions, Canad. J. Math. 17 (1965), 907-915.
[6] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380-385.

Musashi Institute of Technology
Setagaya-ku, 158 Tokyo
Japan
Mailing address
2262-150, Томіока-сно,
Kanazawa-ku, Yokohama, 236
Japan

