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Introduction. The purpose of this paper is to study polarized
varieties which are double coverings of protective varieties of J-genus
zero. Such varieties are called hyperelliptic polarized varieties (see (1.1)
for a precise definition), because the z/-genus is a higher-dimensional
analogue of the genus of curves (cf. [PI], [F6] etc.). As examples of
these varieties, we have double coverings of Pn (cf. [W]), i£3-surfaces
polarized by hyperelliptic curves on them (cf. [Sa 2]), Fano-threefolds
whose anti-canonical linear systems are not very ample but have no base
point (cf. [Is]), canonically polarized surfaces with c\ = 2pg — 4 (cf.
[Ho 1]), etc. The present article is an outcome of the efforts to find a
unified systematic method for the study of them. In particular, the
works of Horikawa and Iskovskih were very stimulating for the author.

Compared with [Ho 1], our theory is still incomplete because of the
ampleness assumption. This is almost equivalent to assuming that the
branch loci are non-singular, which is not the case in many interesting
examples such as Hubert modular surfaces. Moreover, since the ample-
ness is not preserved under specialization, our result is not powerful
enough to study deformations of hyperelliptic polarized varieties (cf.
(8.33)). The author hopes to improve these points by systematically
developing a theory of semipolarized varieties in future.

In §1 we give a characterization of hyperelliptic polarized varieties.
In §2, assuming char(^) Φ 2 from that time on, we review a general
theory on the structure of double coverings. Then, according to the
structures of the image varieties of J-genus zero, we classify hyperelliptic
polarized manifolds into five types (I), (II), (IV), (Σ) and (*). Their
structures are studied in more detail in §3, §4 and §5, where we classify
them further according to the nature of the branch loci. The results
are summarized in tables in § 6 for the convenience in later use. § 7 and
§8 are devoted to the study of their deformations. In the Appendix
we give generalized versions of classical results on curves.

This work was completed mainly while the author was a Miller
Fellow at the University of California, Berkeley. He would like to
express his hearty thanks to the Miller Institute and to many mathema-
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ticians at Berkeley, especially to Professors R. Hartshorne, A. Ogus and
Dr. L. Ein, with whom he very much enjoyed interesting and valuable
discussions. He thanks also the referee, who suggested (3.8) and (7.12)
to him.

Notation, convention and terminology. Basically we employ the
notation as in [Fl] ~ [F6], which is similar to that of [EGA] and [Ha 2].
We work in the category of ^-schemes of finite type, where $ is a fixed
algebraically closed field of any characteristic (however, from §2om we
assume char ($)^ 2). A point means a ^-rational point. A variety means
an irreducible reduced ^-scheme, which is assumed to be proper over
$t unless specifically stated to the contrary. A manifold means a nόn-
singular variety. Line bundles are identified with the invertible sheaves
of their sections. Tensor products of line bundles are denoted additively,
while the intersection numbers of them are denoted multiplicatively.

Here are some of the symbols we use often.
[A]: The line bundle associated with a linear system A of Cartier divisors.
Bs A : The set-theoretic intersection of all the members of A.
pΛ: The rational mapping defined by A.
\L\ : The complete linear system associated with a line bundle L.
hq(^r[L\): = dim R\^~ ®^ .Sf) for a coherent sheaf ^ where &> is

the invertible sheaf of sections of L.
Lτ : The pull-back of L to a space T by a given morphism. However,

when there is no danger of confusion, we write very often simply
L instead of Lτ. Similar convention is used also for Cartier divisors,
vector bundles, etc.

ωv : The dualizing sheaf of a locally Macaulay variety V.
KM: The canonical bundle of a manifold M. So ωM = έ?M\KM\
Ci(M): The i-th Chern class of M.
pg(M) : = hn(M, έ?M) = h\M, KM), the geometric genus of M.
bi(M): The i-th Betti number of Λf.
TM : The tangent bundle of M.
ΘM := έ?M[TM], the sheaf of vector fields on M.
P(E): The Pr"1-bundle E" — {zero section}/$x associated with a vector

bundle E of rank r, where E" is the dual bundle.
HE : The tautological line bundle on P(E), corresponding to the invertible

sheaf £?(1) in the notation of [EGA].
Ha, Hβ, : The line bundle defined by hyperplane sections on projective

spaces Paf Pβ, indicated by the same Greek letters.
RB{W): The double covering of W with branch locus B (cf. (2.1)).
d(M9 L): = Ln, where (Λf, L) is a polarized variety and n = dim M.
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g(M, L): The sectional genus of (M, L).
Xj(M, L): The i-th sectional Euler-Poincare characteristic of (M, L) (see

(8.4; 1) for a precise definition).
Δ(M, L) : = n + d(M, L) - h°(M, L), the zf-genus of (Λf, L).

1. Characterizations of hyperelliptic polarized varieties.

DEFINITION (1.1). A polarized variety (V, L) is said to by hyper el-
liptic if Bs \L\ = 0 , the morphism p^,: V—>PN(N = dim |L|) is of degree
two onto its image W and if Δ(W9 H) = 0 for the hyperplane section H
on TF.

REMARK. The morphism p: V—>W is finite since L = p*H is ample
on F. If dim V = 1, then F is a hyperelliptic curve, because W is a
Veronese curve = J P \

LEMMA (1.2). Let L be a line bundle on a variety V such that
Bs \L\ = 0 . Let W be the image of the rational mapping plL\: V-* PN

(-W = dim |L|) and let H be the hyperplane section bundle. Then the
natural mapping p*: H°(W, H) -+ H°(V, L) is bijective.

PROOF. H\PN, έ?(l)) -» H\V, L) is bijective by the definition of plLl.
This factors through H\W, H). So p* is surjective. On the other
hand, p* is injective since p is surjective. Hence p* is bijective.

PROPOSITION (1.3). d( V, L) = 2Δ( V, L) for any hyperelliptic polarized
variety (F, L).

PROOF. Let W and H be as in (1.1) and set n — dim V, w — deg W.

Then d(V, L) = 2w. Δ{W, H) = 0 means h\W, H) = n + w. So Δ(V, L) =
n + d(V,L) - h\W, H) = w by (1.2). Thus we obtain d(V, L) = 2J(F, L).

(1.4) In the rest of this section we will consider the converse of
the above fact. In particular, we will prove the following:

THEOREM. Let (V, L) be a polarized variety such that Bs |L | = 0 ,
d = d(V, L) = 2Δ(V, L) = 2Δ and g = g(V, L) > Δ. Then (F, L) is hy-
perelliptic unless L is simply generated and (F, L) is a Fano-KZ
variety.

The meaning of "Fano-if3 variety" is defined below.

DEFINITION (1.5). A polarized variety (F, L) is said to be globally
Macaulay if Hq{ F, tL) — 0 for any integers q, t with 0 < q < n = dim F.
In this case F is locally Macaulay. (For a proof, see, e.g., [F6; (5.8)].)

(F, L) is said to be globally Gorenstein if it is globally Macaulay
and if the dualizing sheaf ωv is isomorphic to έ?v[rL] for some integer
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r. r is called the index and r + n — 1 is called the sectional index of
(V, L). Of course, Vis locally Gorenstein if (V, L) is globally Gorenstein.

(V, L) is called a Fano-K3 variety if it is globally Gorenstein and
if the sectional index is one.

REMARK (1.6). Let V be a protectively normal subvariety of PN

with hyperplane section H. Then the local ring at the vertex of the
affine cone of V is Macaulay (resp. Gorenstein) if and only if (V, H) is
globally Macaulay (resp. Gorenstein). But we do not need this fact in
this paper and proof is omitted.

EXAMPLES (1.7). (1) (Pn,H) is globally Gorenstein with index
— n — 1. Conversely, any globally Gorenstein polarized variety with
sectional index ^—2 is isomorphic to (Pn,H). For a proof, use the
arguments in [Fl]. Compare also (1.11) below.

(2) Any globally Gorenstein polarized variety with sectional index
— 1 is isomorphic to a hyperquadric. This is proved similarly as (1).

(3) Globally Gorenstein polarized varieties with sectional index 0
were called Del Pezzo varieties in [F6]. We have A(V,L) = 1 in this
case and a classification theorem of Del Pezzo manifolds ( = non-singular
varieties) are obtained.

(4) Any polarized if3-surface is globally Gorenstein with sectional
index one, and hence a Fano-i£3 variety. Any canonical curve of genus
^ 2 is a Fano-J£3 variety. If M is a complex threefold with L = —KM

being ample, then (M, L) is a Fano-i£3 variety.
(5) If the canonical bundle K of a non-singular surface S is ample

and if H\S, ^s) = 0, then (S, K) is a globally Gorenstein manifold with
sectional index two.

(6) For any complete intersection V of type (dlf , dr) in Pn+r

9

(V, H) is globally Gorenstein with index dι + + dr — n — r — 1.

PROPOSITION (1.8). Let (F, L) be a polarized variety and let D be
an irreducible reduced member of \L\ such that H\V, tL) -> H\D9 tLD)
is surjective for every t. Then

(1) (V, L) is globally Macaulay if so is (D, LD).
(2) // (D, LD) is globally Gorenstein, then (V, L) is also globally

Gorenstein and the sectional indices are the same.

PROOF. For (1), apply [F3; (2.1)]. To prove (2), set ωD = έ?D[rLD].
V is locally Macaulay by (1) and we have ωD = ωv[L]D by the adjunc-
tion formula. Applying [F3; (2.2)], we infer H\V, ωv[tL\) = 0 for
any t <; — r. So, from the exact sequence 0 = H°(V, ωv[—rL]) ->
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H\V, ωF[(l - r)L\)-+H\D, ωD[-rL\)-+H\V, ωv[-rL]) = 0, we infer
that there is a homomorphism φ: &v —> cov[(l — r)L] such that φD is an
isomorphism. Then the supports of both 3ίΓ = Ker (φ) and <g* = Coker (φ)
are at most finite sets, because they do not meet the ample divisor D.
Hence 3fΓ = 0, since it is a subsheaf of the torsion free sheaf £?Ύ.
Using the exact sequence 0 -> &v —> ωv[(l — r)L] -> <g* —> 0 and
iΓ(F, ^V) = 0, we obtain Λ°(ς?) = Λ°(7, ωF[(l - r)L]) - 1 = 0. So <Sf = 0
and φ is an isomorphism. Thus we prove (2).

(1.9) PROOF OF THE THEOREM (1.4). Let (W, H) be as in (1.2) and
set w = deg W, n = dim V. Let <5 be the mapping degree of p = jO^:
V-> FT. Then 2J = d = dw and 0 ̂  J(FΓ, H) = n + w - h°(V, L) = w - Δ
by (1.2). Hence, if δ ̂  2, the equality must hold and 8 = 2. This
means that (V, L) is hyper elliptic. So we consider the case 8 = 1.

Suppose first that n — 1. We claim # = Δ + 1. Indeed, otherwise,
we would have h\ωv[-L - p]) = h\V, L) - 1 = g - Δ - 1 > 0 for a
general point p on V. Moreover Bs | L — p \ = 0 since |O is birational.
So (A4) in the Appendix would imply h\L) + h\ω[-L]) ^ h\p) +
fe°(ω[ — p]) = g. But the left hand side equals 1 + g. This contradiction
proves our claim g = J + 1. Therefore feo(α>[ —L]) = /^(L) = g — Δ = 1
and we have a non-zero homomorphism φ: έ?[L] —> ω. By [F2; Lemma
1.4], 9> is an isomorphism since deg L = d = 2Δ = 2g — 2 = deg (α>).
Applying (Al) we further see that L is simply generated. Thus the
assertion is true in case n — 1.

For the case n Ξ> 2, we use the induction on %. A general member
D of \L\ is a regular rung of (F, L) by [P6; (3.7)]. So d(D, L) = d,
g(D, L) = g and Δ(D, L) = Δ. Hence LD is simply generated and (D, L)
is globally Gorenstein with sectional index one by the induction
hypothesis. Then, by [F2; Cor. 2.3] (or [F3; (3.1)], [PI; Prop. 1.7]), we
infer that L is simply generated on V and that H\V,tL) -> H\D,tL)
is surjective for every t. Applying (1.8) we complete the proof.

COROLLARY (1.10). Let {V, L) be a polarized variety such that
Bs \L\ = 0 , d(V, L) = 2Δ(V, L) and g{V, L) > Δ{V, L) + 1. Then (F, L)
is hyper elliptic.

PROPOSITION (1.11). Let (V, L) be a Fano-K3 variety with n =
dim V ^ 3. Then X(V, tL) = (2t + n - 2)(ί + 1) (ί + n - 3)(2-1dί(ί +
n — 2) + n(n — l))/w! where d = d(V, L). Moreover d = 2Δ{V, L) and
g(V, L) = Δ(V, L) + 1.

PROOF. We use the same argument as in [F6; (5.9)]. We have
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Hn(V, tL) = 0 for ί > 2 - n since α>Γ = ^V[(2 - Λ)L]. SO %(F, ίL) = 0
for 2 - w < t < 0 and hence we may set %(F, ίL) = (t + 1) (ί + w — 3)
(d£3 + αί2 + 6ί + c)/w! for some constants α, 6 and c. Moreover
c = n{n - l)(w - 2) because X(V, έ?v) = 1. We infer d = 2#(F, L) - 2
from α>F = (2 - w)L. Hence a = 3d(w - 2)/2. Using X( F, (2 - n)L) =
(-l)n&"( F, α)F) = (- l ) n in addition, we obtain b = d(n - 2)2/2 + 2n(w - 1).
These calculations give the above formula for X(V,tL). Now we have
h\V, L) = X(V,L) = n + 2~ιd. This implies d = 2Δ{V, L) and g(V, L) =
Δ(V,L) + 1.

REMARK. If n = 2, we have X( V, tL) = 2~1df + 2 and d = 2d,

g = 4 + l.

COROLLARY (1.12). Let (V, L) be a Fano-K2> variety such that
Bs ILI = 0 . TT̂ w L is simply generated unless (F, L) is hyper elliptic.

2. Structure of double coverings. From now on, throughout this
paper, we assume char (®) Φ 2.

(2.1) Let T7be a variety and let F be a line bundle on TΓ. Suppose
that we have a member B of |2F | . Then, as is well known, there is
a natural way to construct a divisor D on the ^-bundle F over "FT, in
such a way that the restriction π to D of the projection F—>W makes
D a branched double covering of W with branch locus B (cf., e.g., [F4;
(2.3)]). D is denoted by RBίF(W) since it is determined uniquely by the
triple (W, F, B). If there is no other line bundle Ff with Be \2F'\, we
write RB(W) too. Note that:

(1) RBlF(W) is irreducible unless B = 25' for some £ ' e \F\.
(2) UJBIJF.(W) is non-singular if so are both W and B.

THEOREM (2.2). Let W, F and B be as in (2.1), let V = RBtF(W)
and let π: V-+W be the natural morphism. Suppose that W and B are
non-singular. Then

(1) there is a natural exact sequence 0 —• &w —> iz*d?v —> ̂ W[—F] —> 0
αm£ ί/ îs sequence splits.

( 2 ) π*B = 2R for some Re\π*F\.
(3) i ί F = π*Kw + i?, where Kx denotes the canonical bundle of a

manifold X.

These are easy consequences of the construction of F We will call
B (resp. R) the branch locus (resp. ramification locus) of π. Equipped
with the reduced structure, they are isomorphic to each other by π.

(2.3) Now we consider general double coverings. First we prove
the following:
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LEMMA. Let f: V -^>W be a proper finite separable morphism between
normal varieties V, W which may not be complete. Suppose that f~\x)
consists of two points for any general point x on W. Then there is a
non-trivial involution i of V such that f = / ° ί. Moreover, W is iso-
morphic to the quotient V/i.

PROOF. Let Sv and Sw be the singular loci of V and W respectively
and let Wo = W - (Sw\Jf(Sr)). Note that codim (W - Wo) ^ 2 since V
and W are normal. fo Vo = f~1(Wo)-+Wo is a finite flat morphism.
Therefore ^ — f+tfγ is locally free of rank two on Wo. Since ^ is
an ^V-algebra, we have the trace mapping τ: ^ —> &w on Wo. Let
j : £? — £?w —> ^~ be the natural homomorphism and let ^ be the cokernel
of it. Then τ gives a splitting ^~ = έ? 0 ^ on Wo because char ($) Φ 2.
Furthermore, on Wo, we have ^ = Ker (τ) and this is an invertible
sheaf. Let 9 be a local base of ^ on some open set U in Wo.
Calculating the trace with respect to the basis (1, φ) of ^ we infer
<p2elm(j) since <£>eKer(τ). Now, for any | e H \ U , _^""), we can write
ψ = a + bφ for some α, beH\U, #), and define (̂T/Γ) = α — bφ. Then
^ is an ^-algebra involution of ^ ^ , since φ2elm(j). Moreover, we
can easily verify that this definition is independent of the choice of the
local base φ of ^ . Hence we can patch them together to obtain a
global involution c of ^~ which is. defined on Wo. Let g: Vo —> V and
h: T^o-^T^be the open embeddings respectively. Since codim (V— Vo) ^ 2
and V is normal, we have g^Vo = &v- Hence h*(^Ό) = ^Γ. So the
above involution c of ^ 0 can be extended to an involution of jβf defined
on the whole W. Since V = £fi*> (^~) by the finiteness of /, this
induces an involution i of 7 with the desired property. The natural
morphism V/ί —> W is an isomorphism by Zariski's main theorem.

(2.4) Let /, Vf W and i be as above. Suppose in addition that V
is non-singular. We will study the local structure of ί around the fixed
point set X of i.

For each point x e X, the action of i on the tangent space of V at
x is semisimple, and its eigenvalues are 1 and —1. Choose an (etale)
local coordinate system (yu --yk, yk+1, , yn) of V at x such that i*dya =
dya at x for each a ^ k and i*dyβ = —dyβ at x for each β > k. Put
*a = (Va + i*l/«)/2 for a ^ k and 2;̂  = (yβ - i*^)/2 for β > k. Then,
thanks to the Jacobian criterion, (zu , zn) is a local coordinate system
of V at α. Since i*2;α = za and i*2;̂  = -zβ for α ^ fc and /3 > k, X is
the submanifold defined by ^fc+1 = = zn = 0 in a neighborhood of x.
Thus we conclude that X is a disjoint union \JlZl Xk, where each Xk is
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a non-singular subspace (which is not necessarily connected) of V of
pure dimension k.

(2.5) Now we can describe the possible singularities of W = V/i as
follows.

Let y be a singular point of W. Then y must be the image of a
point x on X. lί xe Xn_19 then 7/ is a simple point. If x e XQ9 then 1/ looks
like the vertex of the affine cone of the Veronese manifold (Pn~\ 2H).
In general, if x e Xkf then y looks like a vertex of a generalized cone
over the Veronese manifold (Pn~k-\ 2H) whose set of vertices is a linear
submanifold of dimension k in some PN.

THEOREM (2.6). Let f:V-*W be a finite morphism of mapping
degree two between manifolds V and W. Then V = RBfF(W) for some
FeFic(W) and Be\2F\.

PROOF. By (2.3), we have an involution i of 7 such that W = V/i.
By (2.5), the fixed point set R of i is a non-singular divisor on V. R
is mapped isomorphically onto B = f(R), which is a non-singular divisor
on W. Moreover, as we saw in (2.3), f*έ?v = d?w® ^ for some inverti-
ble sheaf <gf on W. Take F so that έ?w[ — F] = &. For any section φ
of i f on some open set U of W, we have φ2eH°(U, <?w) aH\U, f^v)
as in (2.3). This process gives rise to a homomorphism <g?(8)2->^V.
Letting β be the corresponding element of H°(W, 2F), we easily see that
B = {β = 0} and V=RB>F(W).

(2.7) We return to the situation (2.4) where V is non-singular but
W may be singular. Let X be as in (2.4) and let V be the blowing-up
of V with center X. Then i induces an involution V on V, whose fixed
point set R is the exceptional divisor lying over X R is non-singular
since so is X. Hence W -> V/i' is non-singular. We have a natural
morphism W —> W, which makes W the blowing-up of W with center
Y — f(X). Applying (2.6) to V-^>W, we can relate the structures of
V and W via V and W.

(2.8) We will apply the preceding theory to hyper elliptic polarized
manifolds. First we classify them roughly.

Let (M, L) be a hyperelliptic polarized manifold and let W and H be
as in (2.1). Since Δ(W,H) — 0, the polarized variety (W, H) is of one
of the following types (cf. [Fl] and [F6; §4]).

(a) (W,H) = (P% &(X)Y
(b) W is a non-singular hyperquadric in Pn+1 and H = ^V(l).
(c) (W,H)2Z (P(E), HE) for an ample vector bundle E on P\
(d)
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(e) W is a generalized cone over a base manifold of one of the
above types (a), (b), (c) and (d).

REMARK. In any case Pic(TΓ) is free of 2-torsion.

DEFINITION (2.9). A hyper elliptic polarized manifold (Λf, L) is said
to be of type (I) (resp. (II), (Σ), (IV) or (*)) if (W, H) is of the above
type (a) (resp. (b), (c), (d) or (e)).

REMARK. When (TF, Jϊ) = (Pi x Pp, Ha + Hβ), this definition is a
little ambiguous. However, usually, it is more convenient to consider
(Λf, L) to be of type (Σ) rather than of type (II). See (3.3).

3. Type (I), (II) and (IV). (3.1) Let (Λf, L) be a hyperelliptic
polarized manifold of type (I). Then, by (2.6), we have Λf = RB{Pn) for
some hypersurface B of even degree. We say (Λf, L) to be of type (l£)
if deg (B) = 2a + 2. Clearly B is connected unless n = 1. Since F =
£?(α + 1) in this case, (2.2) implies

(1) Hq(M, tL) = Hq(Pn, έ?(t)) © Hq(Pn, έ?(t - a - 1)) for any integers
q, t. In particular, (1.2) implies H°(Pn, έ?{ — a)) = 0, and hence we have

(2) α ^ l .
Moreover, by easy calculations and (1), we obtain
(3) X(M, tL) = {(t + 1) (ί + n) + (t - a) - - (t - a + n - l)}/nl.
Combining (2.2; 3) and the above (1), we see:
(4) (M, L) is globally Gorenstein with sectional index a — 1.
Furthermore
( 5 ) M is a hypersurface of degree 2a + 2 in the weighted protective

space P(a + 1,1, , 1) (cf. [M]).
For a proof of (5), use the induction on n (like [M] and [F3; (3.2)])

and the following:

LEMMA (3.2). Suppose that n^2 and let D be a general member

of \L\. Then (D, LD) is a hyperelliptic polarized manifold of type (EΓ1).

Indeed, the image H of D is a general hyperplane on Pn. Hence
Y = B Π H is non-singular. So D = RY(H) is non-singular, too. Then
the assertion is obvious.

(3.3) Let (Λf, L) be a hyperelliptic polarized manifold of type (II).
Then M = RB(Q)> where Q is the non-singular hyperquadric with
dimQ = w and Be\2F\ for some FePic(Q). (Λf, L) is said to be of
type (II;) if F = (a + 1)H. When % = 2, F is not necessarily an integral
multiple of H = ^ ( 1 ) . In such a case (Λf, L) will be considered to be
of type (Σ).

(3.4) Similarly as in (3.1), we have the following results for any
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hyperelliptic polarized manifold (M, L) of type (II;).
(1) H*{M, tL) ^ Hq(Q, tH) 0 Hq(Q, (ί - a - 1)H) for any q, t.
(2) α ^ l .
(3) X(M, tL) = {(ί + 1) (ί + n - l)(2ί + n) + (ί - α) (ί - a +

w -2)(2t ~2α + n - 2)}/n!.
(4) (Λf, L) is globally Gorenstein with sectional index a.
(5) (M, L) is a weighted complete intersection of type (2, 2α + 2)

in F(α + 1, 1, , 1). (cf. [M] and [F3; (3.3)]).
(6) For any general member D of \L\, (D, LD) is a hyperelliptic

polarized manifold of type (IE"1).
(3.5) Let (M, L) be a hyperelliptic polarized manifold of type (IV).

Then M=RB(P2

a) for some Be |(2α + 2)ίfJ and L = f*[2Ha], where /is
the natural morphism M-+PI. In this case (M, L) is said to be of type
(IV|) or (IVα). Similarly as before, we have:

(1) Hq{M, tL) = H\P\ έ?(2t)) Θ H\P\ <?(2t - a - 1)) for any q, t.
(2) a ^ 2 (compare (3.1; 2)).
(3) Z(Af, ίL) = 4ί2 - (2α - 4)ί + (α2 - a + 2)/2.
(4) (ikf, L) is globally Macaulay and KM = (a — 2)Ha. So (M9 L) is

globally Gorenstein if and only if a is even, and the sectional index is
a/2 in that case.

REMARK. (Jkf, L) is not a weighted complete intersection even if a
is even. Needless to say, the manifold M itself is the same as that of
type (Γβ).

(3.6) We will further calculate several invariants of (M9 L) such as
Betti numbers, Picard groups and so on. Our main tool is the Lefschetz
theorem. So we make the following:

DEFINITION. A covariant (or contravariant) functor F from the
category of algebraic varieties to the category of groups is called a
Lefschetz functor of degree d if it has the following property:

For any non-singular ample divisor A on any manifold M with
dim M = n > d + 1, the homomorphism F(c) is bijectίve for the inclusion
c:A->M.

If the above assertion is valid in case Hq(M, —tA) = 0 for any q < n,
t > 0, then F will be called a weakly Lefschetz functor of degree d.

EXAMPLES (3.7). (a) In case B = C, the topological homotopy group
7Γi is a Lefschetz functor of degree ΐ. The homology group Hq( ;Z) is
a Lefschetz functor of degree q. The cohomology group Hq( Z) is a
contravariant Lefschetz functor of degree q. The Picard group Pic( )
is a contravariant Lefschetz functor of degree 2.
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(b) In case p = char (fl) > 0, the ί-adic cohomology group iϊ9( ;Qι)
is a contravariant Lefschetz functor of degree q. The tame fundamental
group π[v), which is defined similarly as the usual algebraic fundamental
group by considering only etale coverings of degree prime to p, is a
Lefschetz functor of degree 1. The Picard group is a weakly Lefschetz
functor of degree two.

LEMMA (3.8). Let A and B be hypersurfaces in Pn of degrees a and
b respectively. Suppose that they intersect normally along C = A Π B
and that a > b. Then there exists a non-singular hypersurface D of
degree a such that D Π B = C.

PROOF. Let E be the exceptional divisor on the blowing-up of Pn

with center C. The proper transforms A! and Bf of A and B belong to
\aH — E\ and \bH — E\ respectively, where H is the pull-back of ^*(1).
Since A' Π B' = 0 and [Af] = [B'] + (α - b)H9 we infer that
Bs \aH — E\ = 0 and that this linear system is very ample outside B\
Hence a general member Df of \aH — E\ is non-singular. Moreover the
image D of D' in Pn has the desired property.

THEOREM (3.9). Let (M, L) be a hyper elliptic polarized manifold of
type (I;) {resp. (II;)) and let f be the morphism M->W = Pn (resp. Q71).
Then F(f) is bijective for any weakly Lefschetz functor of degree <n.

PROOF. Here we consider the case of type (II) only, because the
same method works in case of type (I). By (3.8), there exists a non-
singular hypersurface D in Pn+1 such that D n Qn = B, the branch locus of
/. Then N = RD(Pn+1) is hyperelliptic of type (R+1), and M is an ample
divisor on N. The ramification locus R of N"—> Pn+1 is an ample divisor
on N and is isomorphic to D. Therefore, by (3.1; 4) and (3.4; 4), we
obtain: F(M)~F(N) = F(R) = F(D)=F(Pn+1) ^ F(Qn). So F{f) is bijective.

COROLLARY (3.10). Let (M, L) be as above. Then Pic (M) is generat-
ed by L if n*z 3.

COROLLARY (3.11). Let (M, L) be as above. Then, for any integer
i with i Φ n, bt(M) — Q if i is odd and bt{M) — 1 if i is even.

For a proof, use also the Poincare duality. Moreover, one can show
that H2ί(M; Z) is generated by c^L)* for i < n/2 in case S = C.

REMARK. AS for the Euler number, we have e(M) = 2e(W) — e{B).
So we can calculate bn(M) too, using (3.11).

COROLLARY (3.12). Let (M, L) be as in (3.9) and suppose that n^2.
Then πλ(M) = {1} in case S = C, and π[p) = {1} in case p = char (Λ) > 0.
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COROLLARY (3.13). Let (M, L) be as in (3.12). Then Pic (M) has
no torsion prime to char ($). In particular, it is free of 2-torsίon.

4. Type (*). (4.1) For a while until (4.4), let (M, L) be a hyperel-
liptic polarized manifold of type (*). Namely, the image W of p = plLl

is singular.
(4.2) The results in [PI; §4] and [F6; (4.11)] describe the structure

of WaPN as follows:
Let S be the set of singular points of W. Then S is a linear sub-

manifold in PN. Let Y be a linear submanifold of PN such that Γfl
S = 0 and dim S + dim Γ = JNΓ - 1. Then Γ = ΓΠ TΓ is non-singular
and J(Γ, H) = 0. So Γ is one of the types (a), (b), (c) and (d) in (2.8).
Moreover, W is the generalized cone S * T, that is, the closure of the
union of all the lines passing a point on S and another point on T.

(4.3) Combining (4.2) and (2.5), we infer that (T, H) = {Pι

β, 2Hβ) or
(P2

β, 2Hβ). In view of (2.7), we let P' (resp. ΛΓ) be the blowing-up of
PN (resp. M) with center S (resp. X = ρ~\S)), and let W be the proper
transform of TΓ on P'. Then there is a natural double covering p':
M' -» TΓ'.

Since TF = S * Γ, we infer that W = Pτ(2Hβ 0 V), where F is the
direct sum of (1 + dim S) trivial line bundles on T, and the tautological
line bundle Ha on W is the pull-back of ^V(l) = H. Moreover, the ex-
ceptional divisor E lying over S is the unique member of \Ha — 2Hβ\.

E is a component of the branch locus B of p'. So we write B =
£? + A. Then S n A = 0, since 5 is non-singular. We may set [A] =
xHa + yHβ, because Pic(W') is generated by (the pull-backs of) Ha and
Hβ. Then x is odd and y is even, since [B] is divisible by two in
Pic(ΐF'). On the other hand, E^T x P d i m S and [Ha]E is the pull-back
of έ?(ϊ) of the second factor. Therefore, 0 = [A]E implies that y = 0
and dim S = 0. Now we make the following:

DEFINITION (4.4). (M, L) is said to be of type (*IIβ) (resp. (*IVβ)) if
T = P1 (resp. P2) and x = 2a + 1.

In any case, S is a point and W is the cone over the Veronese
manifold T with vertex S. In particular dimilί = 2 (resp. 3) if (Mf L)
is of type (*Πβ) (resp. (*IVα)).

(4.5) Conversely, given a Veronese manifold (Γ, if) s (P;-1, 2 ^ )
and any non-singular member D of |(2α + 1)H\ on the cone W over T,
we can construct a polarized manifold (Λf, L) in the following way.

Let P' be the blowing-up of PN at the vertex of W and let TΓ, E,
Ha be as in (4.3). Furthermore set B = E + A, where A is the lift of
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D to W. Let F = (α + l)Ha - ^ and M = i2*,F(T7') and let C be the
component of the ramification locus R of M' —> W lying over E. Clearly
C^E^P"-1 and [C]c = <?(-!), since [E]E = έ?(-2) and [#]*, = [2C].
So C can be contracted to a non-singular point. Let M be the manifold
obtained by this contraction. Then M' —> TF' induces a finite morphism
f:M-+W. Setting L = f*t?w(l) we get a polarized manifold (Λf, L),
which is hyperelliptic of type (*IIβ) (resp. (*IVβ)) if n = 2 (resp. = 3)
and a ^ 1. We can carry out this process even if a = 0, but then
fίo(TΓ, if) -> jff°(Λf, L) is not surjective and one easily sees that (Λf, L) =

REMARK. (Λf, L) is determined uniquely by the divisor D. Hence
they are all deformations of each other.

(4.6) Let things be as above (n being an arbitrary positive integer)
and set Z' = C + Hβe Pic (ΛΓ). Then [Z% = 0 and hence Z' is the pull-
back of ^ e P i c ( M ) . Moreover we have:

( 1 ) L = 2Z and KM = (2α - n - ΐ)Z in Pic (AT).
( 2 ) H*(M, tL) = H«(W, tHa) Θ mW'f (ί - α - l)ffβ + # , ) .
( 3 ) d(Λf, L) = 2n, d{M, Z) = 1, flf(Λf, Z) = α αTid g(M, L) = 1 +

(2α + w - 3)2n"2.
( 4 ) (M, L) αnώ (Λf, Z) are globally Macaulay.
( 5 ) .For any general member Y of \L\, (Y, Z) is a hyperelliptic

polarized manifold of type (IJΓ1)-
( 6 ) For any general member X of \Z\, (X, Zx) is a polarized

manifold of the same type as in (4.5).
( 7 ) (Λf, Z) is a hypersurface of degree 2(2α + 1) in the weighted

protective space P(2a + 1, 2, 1, , 1).
( 8 ) F(Λf) = F(Pn) for any weakly Lefschetz functor F of degree

PROOF. We have L = Ha = [E] + 2Hβ - 2C + 2Hβ = 2Zf in Pic (AT).
Hence L = 2Z in Pic(Λf). We have IT*" = - 2 H β - (w - 2)Hβ because
TΓ = Pτ(2Hβ 0 ^ Γ ) , and JΓ*' = Kw' + F = (α - l)fl"β - (w - 1 ) ^ by
(2.2). On the other hand KM' = KM + (n — 1)C. Combining them we see
KM = (2a - n - l)Z on Λf'. Thus we prove (1).

(2) follows from (2.2) and Hq(M, tL) Ξ; H9(M', tL). (3) is a conse-
quence of (2). In fact, it is easy to calculate Z(Λf, tL).

Next we will prove (5). Since H\W, H) = H\M, L), Y is the pull-
back of a general hyperplane section U of W. Then U = T ̂  PjΓ1 and
D Π U is a non-singular hypersurface in U = Pβ of degree 2(2α + 1).
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Clearly Y = RDf]U(U) and L is the pull-back of έ?σ(ϊ) = 2Hβ. Hence
(Y, Z) is of type (I?-1).

Applying [F3; (2.1) and (2.2)], we infer from (5) and (3.1.4) that (M, Z)
is globally Macaulay. Thus we prove (4).

In order to show (6) we use the following:

LEMMA (4.7). Let Γ be a general member of \Hβ\ on W. Then
Γ Π A is non-singular.

PROOF. Recall that D is isomorphic to the divisor A on W, which
is a /^-bundle over T. So we have a natural homomorphism φ: ΘD —>
(ΘT)D, where Θ's denote tangent bundles of the given manifolds. Let
Σ be the set of points on D at which φ is not surjective. We claim that
ΣΦΏ.

Assume that Σ = D and let R be the image of φ. In view of the
restriction of the exact sequence 0 —> θWΊT —> θw, —> θτ —> 0 to A, we infer
that Ker (φ) = (ΘWΊT)D ^ [2Ha - 2 ^ ] ^ and that R is a subbundle of
(θτ)D of corank one. Moreover we see (ΘT)D/R ̂  (ΘW>)D/ΘD = [A] =
(2a + ΐ)Ha by 9-lemma. Therefore c^iβ^^-A]) = 0. On the other
hand, using [Ha — 2Hβ]A = EA = 0 and the exact sequence 0 —> ^ ->
fl", θ θ Hβ -> βΓ -> 0, we obtain c(βΓ[-A]) = (1 + c x(^) - ^([A]))"

On A we have [A] = (2a + l)ίΓβ = (4α + 2)Hβ. So
= H$-ι{A) (1 - (-4α - l)n)/(4α + 2) by an easy calculation.

Clearly this is not zero. This contradiction proves the claim.
Thus we see dim I7 < dimZ? = n — 1. On the other hand, for any

point x on Σ, there exists only one member of the linear system A = \Hβ\A

which is singular at x, because rank (φx) = n — 2. Clearly any member
of A is non-singular outside Σ. Hence the dimension of the family of
singular members of A is at most n — 2. So a general member of A is
non-singular, proving the lemma.

REMARK. If char (β) — 0, this lemma is obvious by Bertini's
theorem.

(4.8) PROOF OF (4.6), CONTINUED. Let A' be the linear system
C + \Hβ\ on M'. Since hΌ(M, Z) = n, one easily sees that A' is the pull-
back of \Z\. So a general member X of \Z\ determines a general
member Γ of \Hβ\w>. The image of Γ on W is a cone over a Veronese
manifold (Pβ~

2, 2Hβ) and ΓΠ A is non-singular by (4.7). This observation
shows (6).

We prove (7) by induction on n. When n = 1, M is a hyperelliptic
curve of genus a and Z = [C], C being a Weierstrass point of M. Hence
(7) is valid in this case. When n ^ 2, we apply [F3; (3.2)] since
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H°(M, tZ) -> H\X, tZx) is surjective for every integer t by virtue of (4).
To show (8) we embed T = Pβ'1 in P ^ Pp as a hyperplane and we

consider W to be a subspace of the cone V over the Veronese manifold
(P, 2Hβ). We claim that |(2α + 1)JΪF| contains a non-singular member <?
such that Gw—D. Indeed, the linear subsystem of |(2α+l)J5ΓF| consisting
of the member containing D is very ample outside W. Therefore, simi-
larly as in (3.8), any general member G of this subsystem is non-singular
and Gw = D, as claimed. Starting from V and G, we construct a polarized
manifold (N, ZN) as in (4.5) in such a way that M is a member of \ZN\.
Let Y be a general member of \2ZN\. Then F(Y) = F(Pn) by (5) and
(3.9). Moreover we have F(Y) = F(N) = F(M). Thus we obtain (8).

REMARK (4.9). Of course, the analogues of (3.10) ~ (3.13) are valid
in this case, too. In particular, Pic (Λf) is generated by Z if n ^ 3
(this follows also from (7) and [M]).

(4.10) Any polarized manifold (Λf, Z) with d(M, Z) = Δ(M, Z) = 1
and g(M9 Z) — a can be constructed as in (4.5) if a ^ 2 and % > α + 1.
This will be proved in [F4-3].

5. Type (Σ). (5.1) In this section we consider the case in which
(M,L) is of type (Σ) and άimM=n^2 (cf. (2.9)). So (W, H) =
(P(E), HE) for an ample vector bundle E on P1, where (W, H) is as in
(1.1). As is well-known, E is a direct sum of line bundles.

(5.2) Notations and Definitions. Given a sequence δ = (δlf •• ,5J
of positive integers such that δx ;> ^ δn9 we denote δ19 δn and
δλ+ + δn by δm a x, δm i n and | δ \ respectively. By E(δ) or Eδ we denote
the vector bundle φ?= 1 [ δ ^ ] on P\. W(δ) or T73 denotes P(Eδ), and the
tautological line bundle on Wδ is denoted by H(δ) or £Γδ. (Wδf Hδ) is
called a rational scroll of type (δ). The following facts can be easily
proved.

(5.3; 1) mWδ, tHδ + sHβ) ^ #*(P;, S ^ ) <g) [siϊ,]) for any t ^ 0,

(5.3; 2) Z(W,, iff, + 8^) = (ί + 1) (t + n - l){t|δ| + w(β +
for any integers ί, s.

(5.3; 3) if17 = -nH9 + (|δ| - 2)ff̂ .
(5.4) If (W, JH") is a rational scroll of type (3), then (M, L) is said

to be of type ( I 7 ^ , -- ,δj) or (^n |δ|). For example, (Λf, L) is of type
(Σ2A) if it is either of type (2X2,2)) or (J(3,1)). Clearly we have
d(M, L) = 2d(TΓ, i ϊ) = 2|δ| and z/(M, L) = |δ | .

By virtue of (2.6), Jkf ^ J?5(ΐ7) for the branch locus B of p: M->W.
We consider the following cases separately:
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(a) B is connected.
(b) B consists of several fibers of π: W—>Pβ.
(c) All the other cases.
(5.5) For a while, until (5.20), we consider the case (a) above. In

view of (2.6) we set B = 2aHδ + 2bHβ in Pic (IF), where α, 6 are
integers. In this case (Λf, L) is said to be of type (Σn(δ)ith), and also
of type (Σ*\δ\i,h).

REMARK. In the case of type (2X1, l)+6), we have W = Pa x Pβ and
H = Ha + Hβ. So the choice of the two rulings of W is completely
optional, and hence this can be viewed to be of type (Σ(l, l)++6>_6), too.

(5.6) By virtue of (2.2), we have:

(1) H>(M, tL) = HP(W, tH) ®Hp(W,(t~ a)H- bHβ) for any integers

V> t.
( 2 ) K* = (a - n)L + (6 + \δ\ - 2)Hβ.

Furthermore, using (5.3), we obtain an explicit formula for X(M, tL).
In particular we have:

(3) g(M,L) = a\δ\ + & - 1, Zn_2(Λf, L) - ( α - l ) ( α | δ | + 26 - 2)/2 + 1
and 1{M, 0>M) = 1 + {n\)~\a - 1) - - (α - n + l)(α|δ| + bn - n).

(5.7) We easily see that a polarized manifold (Λf, L) of type
(Σn(d)t,b) exists if and only if b is greater than a constant which depends
on (δ) and a. If (8) and a are fixed, we can determine this constant
without any essential trouble. However, at present, no explicit "formula"
for this purpose is found. We have only the following partial results,
which are enough for many purposes.

(1) We should have H°(W, H) = H\M, L), and hence H°(W,
(1 - a)Hδ - bHβ) = 0 by (5.6; 1). This implies a = 1 and b > 0, or a ^ 2.

(2) <5max + (2a - ί)δmln + 26 ^ 0. This is a consequence of Reid's
lemma (cf. [Is; (7.4)]). This inequality follows also from the observa-
tion below.

Let C be the section of W —• PI corresponding to the quotient bundle
δnHβ. Then HC = δn and BC = 2αδn + 26. So the assertion is obvious
if C ςt B. Suppose CaB. Then we have a surjection from the normal
bundle JV of C in W onto [B]c. Since N is isomorphic to E(δn — δu ,
δn - «»_!), we have JBC ^ Min (3n - δy) = δmin - δm a x. This implies the
desired inequality.

(3) Let j be the largest integer such that aδj + 6 ^ 0 . Then
2j 2̂  n. Or equivalently, aδt + 6 ^ 0 for any i with 2i -^ n + 1.

To see this, let Y be the subspace of W corresponding to the
quotient bundle δj+1Hβ 0 © δnHβ of Eδ. Then 7 c B by Reid's
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lemma. Clearly Y= W(δί+1, •• , δ j and the normal bundle N of Y in
W is φ / = 1 [Hδ — δiHβ], Since we have a surjective homomorphism
iSΓ—> [B]γ, we have divisors Dl9 , D, on Γ such that A e \B — Hδ + δiHβ |
for each i and that Dx Π Π Ds = 0 . This is impossible unless
i > dim Γ - l = w - i - l . So 2i ^ w.

( 4 ) When w = 2, we have αδ m i n + 6 ^ 0 . Indeed, in this case, B
is an irreducible curve, and hence cannot contain the curve C as in (2).

( 5) On the other hand, for any (α, b) with a ^ 2 and αδ m i n + 6 ^ 0 ,
there exists a non-singular member B of |2αiίδ + 2 6 ^ 1 , and hence we
have a hyperelliptic polarized manifold (M, L) of type (Σn(δ)itb).

Indeed, the assertion is clear if αδ m i n + b > 0, because then B is very
ample. So we consider the case in which aδn + 6 = 0. Let j be the
largest integer such that aδj + b > 0. Then δj+1 = = <5n = δ m i n . Let
Y be the subspace of W =Wδ corresponding to the quotient bundle
E(δi+U , δn) of £?(§). Clearly we have Bs | J ΪJ = 0 on PΓ, where i ί σ =
Hδ — δminHβ. Let p be the induced rational mapping into Pσ and let
Wr = p(W) and S = p(Y). Then TΓ' is a generalized cone over a base
= W(δλ — δn, , δj — δJ with the vertex set S, which is a linear sub-
space of dimension n — j — 1. From the converse viewpoint, W is the
blowing-up of W with center S. Now, let J3' be a general member of
\2aHσ\ on TΓ'. Since if, is very ample on W'f the singular locus of B'
must be contained in Sing(W') = S. Moreover, we can take B' to be
transverse to S. Then, we easily see that B = p*B' is a non-singular
divisor on W, and Be \2aHδ + 2bHβ\, as required.

Of course, (Λf, L) is obtained if we set M = RB(W).

PROPOSITION (5.8). Suppose (M, L) is of type (Σn(δ)tb). Then
HV(M, έ?M) = 0 for 0 < p < n, except when δ, = = δn, W= Pι

β x PΓ\
Be \2aHa\, M = Pj x RA(PΓι) for a hyper surface A of PΓ1 of degree
2α, a ^ n ^ 3 αwd p = ^ — 1.

PROOF. Suppose HP(M, έ?M) Φ 0. Then, using (5.3) and (5.6), we
infer t h a t 0 Φ hp(W, -aHδ - bHβ) = hn~p(W, (α - ri)Hδ + (5 + \δ\ - 2)Hβ).
This implies p = n — 1, α ^ w and (α — n)δn + b + | 3 | ^ 0. Combining
this wi th (5.7; 2), we obtain 0 ^ (2w - l )δ n + δ1 - 2\δ\ = (δn - δ,) +
Σ / = 2 2 ( δ n - δy). Hence Sx = = δn. This implies W= Pβ x P ^ " 1 and
Hδ = Ha + δnHβ- Moreover we have aδn + 6 - 0, hence £ e |2αiϊ δ + 2bHβ\ =
2aHa. The res t of t h e assertion is now obvious.

COROLLARY (5.9). pg(M) = {(6 - ΐ)n + a\δ\}(a - 1) (α - w + l)/w!
except when hn~\M, έ?M) Φ 0, as described in (5.8).

For a proof, use (5.6; 3).
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PROPOSITION (5.10). A hyperelliptic polarized manifold of type
(Σn(δ)i>b) is globally Macaulay if and only if 1 — \δ\ ^ 6 <; 1.

PROOF. For 0 < p < n, we have h*(M, tL) = hp(W, (ί - a)H - bHβ) =
hn~p(W, (a-n-t)H9 + (6 + | δ | - 2)i^). If (Λf, L) is globally Macaulay,
substituting t = a and £ = a — w and using (5.3; 1), we obtain 6 ^ 1 and
b + \δ\ > 0. Conversely, suppose 1 - \δ\ <: b <: 1. Then, by virtue of
(5.3; 1), hp(M, tL) = 0 follows from b ^ 1 for t ^ α, or from 6 + | δ | > 0
for £ <; a — w, or is true automatically for a — n < t < a. Thus (Λf, L)
is globally Macaulay.

COROLLARY (5.11). (Λf, L) is globally Gorenstein if and only if
b = 2- \δ\.

For a proof, use (5.10) and (5.6; 2).

REMARK. This can happen only when a Ξ> 2, provided w ^ 2. Indeed,
if a = 1, then & ̂  1 by (5.7; 1). So |S | ^ 1, which is possible only when
n = l.

PROPOSITION (5.12). —KM is ample only in the following cases:
( 1 ) δ, = δn + 1, <S2 = - = δnf aδn + b = 0 αwώ α < w.
( 2 ) <5i = = δn, aδn + b = 0 α^d α < w.
( 3) δi = = Sn, αδra + 6 = 1 αm£ a < n.

PROOF. By (5.6; 2), (α - w)fl", + (6 + | δ | - 2)Hβ is a negative line
bundle on W. So we have a < n and (#): (α - ^)δn + 6 + \δ\ ^ 1. Sub-
tracting 2(#) from (5.7; 2), we get (2w - l)δn + δ1-2\δ\^ -2. Hence
2 ^ δx - δn + 2 Σ?=2 (δy - δ j . So we infer that δ2 = = δn and
δ±- δn^ 2. Suppose that δ, = δn + 2. Then α<52 + 6 ^ - 1 by (#), which
contradicts (5.7; 3 or 4). Therefore δ, - δn = 0 or 1.

Suppose <5X = δ. + 1. Then 2{aδn + 6) + 1 ^ 0 by (5.7; 2). So
aδn + b ^ 0. Together with (#), this implies αδπ + b = 0. This is the
case (1).

Suppose δ, = δn. Then aδn + b = 0 or 1 by (5.7; 2) and (#). So we
are in case (2) or (3).

(5.13) We study further the above three cases.
In case (1), W = W(l, 0, , 0), which is isomorphic to the blowing-

up of P? with center C being a linear subspace of codimension two.
Moreover, under this isomorphism, we have Hβ = Ha — Ec and Hδ = Ha +
δnHβ. Be \2aHa\, which means, B is the total transform of a hypersurface
A on Pa. Since B is non-singular, A must be non-singular and intersect
C transversally. From this we infer that M = RB(W) is isomorphic to
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the blowing-up ofN = RA(Pa) with center being the full inverse image
of C on N. By (3.10), Pic (N) is generated by Ha if n ^ 3. Consequently,
Pic (Λf) is generated by L and Hβ.

In case (2), W = Pj x PΓ1, H = Ha + δnHβ and Be\2aHa\, that
means, B is of the form Pj x A for a hypersurface A on P^"1. % ̂  3
since B is connected. Λf is isomorphic to Pβ x RA(P%~1), and Pic (Λf) =
Pic (17). Furthermore, an analogue of (3.9) holds for the morphism
M->W.

In case (3), W~ Pj x Pr\ H = Ha + δnHβ and Be \2aHa + 2Hβ\.
In particular, B is ample on W. If n ^ 4, we have Pic (Λf) = Pic (2?) =
Pic(W).

COROLLARY (5.14). Suppose that KM = —mL for some positive
integer m. Then one of the following conditions is satisfied:

( 1 ) m = 1, δi — 2, <52 — * — S n = 1, <z = % — 1, 6 = 1 — w and
n^S.

( 3 ) m = 2, δ ! = = δ n = l, α = w — 2, & = 2 — w αwcϊ n ^ 4.
( 4 ) m = 1, δx = = δn = 2, α = w —• 1, 6 = 2 — 2w αwd % ̂  3.

PROOF. By (5.6; 2), we have α = n — m and 6 = 2 — | δ | . In case
(5.12; 1), aδn + 6 = 0 implies mδn = 1. So m = δn = 1 and we verify the
condition (1). Similarly, in case (5.12; 3), we obtain the condition (2).
Here n ^ 3 follows from (5.7; 1). In case (5.12; 2), we have mδn = 2
and obtain the condition (3) or (4).

REMARK. This argument is a generalization of that in [Is; §7].

(5.15) For the sake of comparison, we consider what happens when
KM = 0. By virture of (5.6: 2), we have a=n and 6 = 2 - | δ | . But there
are infinitely many possible δ's even if we impose the stronger condition
aδn + δ ^ 0 in (5.7; 5), which guarantees the existence of (Λf, L) of type
(Σn(δ)ith). In particular, there is no bound for \δ\. However, there are
only finitely many possible isomorphism types for the manifold W itself.

Similarly, for any fixed positive integer m, there are infinitely many
types of (Λf, L) such that KM = mL. Moreover, there are infinitely
many possible isomorphism classes for W.

PROPOSITION (5.16). Let (Λf, L) be of type (Σn(δ)tb). Then, for a
general member D of L, (D, LD) is of type (Σn~1(δf)i>b) and there is an
exact sequence 0 -> [0] -> E(δ) -> E(δ') -> 0 of vector bundles on P\ In
particular, \δ'\ = \δ\, δ'min ^ <5min and δ'mΆX ^ δ m a x .

PROOF. We have Λf = RB(W). Let H be the hyperplane section of
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W corresponding to D. Since D is general, H is non-singular and meets
B transversally. Therefore D = RBf]H(H) is non-singular. B Π H is con-
nected because it is ample on B. Moreover, letting E(δ') = π*έ?H(l)
where π is the morphism H->P\ we see H= W(δ'). So (D, L) is of type
(Σn~~\δ')ϊ>b). Furthermore, by the definition of (<?'), we have an exact
sequence 0 -> [0] -> 2£(δ) -> #(<?') -> 0. It is easy to see the rest of the
assertion.

COROLLARY (5.17). Let (Af, L) δe o/ί^/pβ (Σn(δ)+). Then π[p)(M) = {1}
/or p = char (ί£). Moreover, M is topologically simply connected in case
ύt = C/.

A proof will be given in §8 by means of a deformation theory of
(M, L) (cf. (8.15)).

PROPOSITION (5.18). Let (Λf, L) δe of type (Σn(δ)ih). Then

( 1 ) g(M, L) ^ Δ(M, L) in general,
(2) g(M,L) = Δ(M9L) if and only if (ikf, L) is of type (Σ^δ)^),

(Σ\l, 1, l)ί_2), {Σ\μ + 1, μ)t_2μ) or {Σ\μ, μ)iΛ_w).
( 3 ) g(M, L) = A(M, L) + 1 if and only if {M, L) is of type (Σn(δ)t2),

(^(1,1,1,1)2%), {Σ\2, 2, 2)+_4), (P(2, 1, l)ί_2), (J 8(l, 1, l)ί_x), (^2(^ +
e, μ)Zι—w) with μ ^ 1, ε - 0, 1, 2, or (^2(1, 1)£_2).

PROOF. We first prove (2). By (5.6; 3), g(M, L) - A(M, L) if and
only if (α - 1)|<5| + b = 1. If α = 1, then 6 = 1. Suppose α = 2. Then
I δ I = l _ b and Zδn + 26 + 8X ^ 0 by (5.7; 2). Hence 2 ^ δx + 2δ2 + +
2<5n_1 — 3n. This is impossible unless n ^ 3. If w = 3, we have 2 ^ δx +
2δ2 - <53 ̂  δx + δ2, so 1 = δ, = δ2 = δs and 6 = - 2 . Thus (AT, L) is of
type (^(l , 1, l)+_2). If n = 2, we have 2<52 + 6 ^ 0 by (5.7; 4). Since
6 = 1 - 5 ! - ^ , we infer ε = δt - δ2 = 0 or 1. Thus (ilf, L) is of type
(J2(j« + 1, μ)t_2μ) or (^(jw, μ)ΐΛ-2μ) Finally we consider the case a *> 3.
Then (2α - l)5n + 2 - 2(α - 1) | δ | + ^ ^ 0. So 2 ^ 2(α - 1) | 5 | - δ, -
(2a - l)δn ^ (2a - 3)δx + {2(a - l)(n - 1) - (2a - l)}δn. From this we
obtain n = 2. Then, by (5.7; 4), we have 0 <: aδ2 + 6 = aδ2 + 1 -
(α - 1) I<51. So 1 ^ (α - 1)^ - δ2 ^ (a - 2)δ1. Hence α = 3 and δ, = <52 = 1.
So 6 = - 3 . But then W= Pβ x Fi and δ e |6£ΓJ cannot be connected.
Thus we exclude this possibility.

The assertion (3) is proved by a similar elementary argument.
(1) is proved by a similar method, or by the following observation:

By virtue of (5.16), we can find a ladder M = F n z) F n _ x 3 D VΊ of
(M,L) such that (Vs, L) is of type (Σj\δ\itb) for each j ^ 2, and F x is
a non-singular hyperelliptic curve. H\Vί9 &Ύ) = 0 by (5.8). Therefore,
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this ladder is regular (cf. [F6; (1.5)]). So we have g(M9 L) = g(Vu L) ^

Δ(VU L) = Δ(M, L).

PROPOSITION (5.19). Let {M, L) be of type (Σn(δ)ib). Then H\M, L) =
0 except in the following cases: (1) a = 1. (2) n = 2 and (a — 2)δ2 +
δ, + b ^ 0.

For a proof, use (5.6) and (5.3). These results (5.18) and (5.19) will
be used in the study of deformations of (M, L).

(5.20) The Kodaira dimension tc(M) is calculated as follows. In view
of (5.6; 2), we set D = (a - n)Hδ + (b + \δ\ - 2)Hβ and V = (α - n)δm&lc +

b + \δ\ - 2. Of course, we have Λ ( M ) = tc(D, W) by (5.6; 2) and [F5;
(3.17)].

( 1 ) ιc(M) < 0 if a < n.
( 2 ) When a^n, we have tc{M) < 0 if and only if V < 0. We

further analyse this case. Together with (5.7; 2), bf < 0 implies 2 ^
(2(α - n) + l)(δx - δn) + 2 Σ i ^ 2 (S; - «„)- So δ2 = 3W. Hence aδn + b ^ 0 by
(5.7; 3 or 4). From this we obtain 1 ^ (α - n + l)(δx - <5J. So ^ = δn

or a — n — δt — δn — 1 = 0. Thus there are following three possibilities:
(2a) δ, = δn + 1, δ2 = δn, a = n and b = -wδ n . In this case (JkΓ, L)

has a structure similar to those in (5.13; 1).
(2b) <?i = δn, aδn + & = 0. In this case (M, L) is similar to those in

(5.13; 2). In particular, M = P1 x RA{PΓλ) for a hypersurface A in PΓ1

of degree 2α.
(2c) <?! = δn, αδn + b = 1. In this case (Jkf, L) is similar to those in

(5.13; 3).
( 3 ) K(M) = 0 if a = w and δ' = 0. In this case iί J / = 0. By a

method similar to above, one can show δ3 = δn in this case, and (δλ — δn,
δ2 - δn) = (0, 0), (1, 0), (2, 0), (1, 1) or (2, 1).

( 4 ) tc(M) = 1 if a = w and 6' > 0.
( 5 ) Λ (Af) = ^ if α > n and &' > 0. Indeed, since \H — δjlβ\ Φ 0 ,

we have tc(D, W) = κ((t + 1)£>, W) ^ /c(i) + WHh W) = n for t > 0.
( 6 ) It remains to consider the case a > n and 6' = 0. By (5.7; 2)

we obtain 4 ^ (2(α - n) + 1)(^ - δn) + 2 Σ i ^ 2 (^ ~ δn). From this we
infer δ2 = δn. So aδn + 6 ^ 0 by (5.7; 3 or 4). Hence 2 ^ (α - n + 1)
(δi — δ»), which implies δx = δn or α — ^ = δx — δra = 1. Thus there are
the following two possibilities:

(6a) δ, = δn + 1, δ2 = δnf a = n + 1, b = -(n + ΐ)δn. In this case,
as in (5.13; 1), W is a blowing-up of Pn and 2) turns out to be the
exceptional divisor on it. So κ(M) = 0.

(6b) δ, = δn, b = 2- aδn. In this case, as in (5.13; 2), W ^ Pι

β x



22 T. FUJITA

Pΐ~ι and D = (α — w)iϊα. Hence ιc(M) = n — 1. Note that n ^ 3, because
otherwise 5 is not connected.

REMARK. When n = 2 and yc(ikf) < 0, Af is a rational surface since
we have q(M) = 0 by (5.8).

(5.21) Now we consider the case (5.4; b). Clearly Be\2bHβ\ for
some positive integer 6. In this case (M, L) is said to be of type (Σn(δ)°b).

The image Y of B on Pβ is a divisor of degree 26. Clearly C =
Rγ(Pβ) is a hyperelliptic curve of genus 6 — 1 and ikf is isomorphic to
the P^-bundle P(EC) over C. In particular, q(M) = 6 — 1 and
hp(M, <?M) = 0 for p > 1.

THEOREM (5.22). Lei (Λf, L) be of type (Σn{δ)l). Then
( 1 ) H'(M, tL) = HP(W, tH) φ HP(W, tH - bHβ) for every t, p.
( 2 ) 6 > δ m a x .
( 3 ) Xj(M, L) = 2 — 6 for j = 0, 1, , n — 1. /^ particular

g(M, L) = 6 - 1.
( 4 ) iΓ¥ = — wL + (6 + | δ | — 2)H^. So, ίMs cannot be a multiple

of L.

PROOF. (1) follows from (2.2). (2) is a consequence of (1) and
H\W, H) = H\M, L). By calculation using (5.3), we get a formula for
X(M,tL), which yields (3). (4) follows from (2.2; 3). 6 = 2 - | δ | is
impossible by (2).

(5.23) Now we consider the remaining case (5.4; c). Because (b) is
not the case, we must have a component Bx of B such that π{B^ = Pι

β.
Moreover, we claim that π{Bό) — Pβ for any component Bd of B. Indeed,
otherwise, B, would be a fiber of π, and hence B± Π Bά Φ 0 , contradict-
ing the smoothness of B.

Furthermore, we claim n = dim M = 2. To see this, let ί 7 be a
general fiber of π. Then F = Pn~\ F Π Bx and F Π Bs are hypersurfaces
in F not intersecting each other. This is impossible if n ^ 3.

Thus, W= W(δlf δ2), which is isomorphic to the Hirzebruch surface
Σk with k = δ, - δ2.

(5.24) Suppose that k = 0. Then W ^ Pβ x Pι

a and H = Ha + δ.Hβ.
We have J5e |2αfία + 26'JE |̂ for some integers α, 6'. If 6' > 0, then B
is ample and hence connected. So 6' = 0 and B consists of 2α horizontal
components. In this case (M, L) is said to be of type (Σ\μ, μ)t), where
μ = δλ = δ2.

REMARK. The type (Σ(l, 1)7) is the same as (Σ(l, l)°a). Compare the
Remark to (5.5).
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(5.25) If k > 0, then Σk has a unique section X such that X2 < 0.
Moreover, setting Ha = H - δ2Hβf we have H2 = k, HaX = 0, [X] = Ha -
kHβ = H — δJKβ and X2 = — fc. For each component 2?,. of JS, we set
[By] = ^ iϊα + VjHβ. Since π(β, ) = P\ we have &y > 0. Moreover, yd =
XB3> ̂  0 unless B3 = X. Suppose that there are two components B19 B2

different from X Then xlf x2 > 0 and y19 y2 ^ 0, hence BλB2 = kxλx2 +
%iVz + x%Vi > 0. This contradicts Bx Π B2 = 0 . Thus we conclude: There
is only one component of B other than X

So X must be a component of 2?, since B is not connected. Let Br

be the component other than X and set [Bf] = ccfî  + yJHΓ̂ . Then 2/ = 0
because B'X = 0. Thus we have [B] = (a + l)iία - fci^, which is 2F
for some i^e Pic (W). Therefore x = 2α — 1 and & = 27 for some integer
α, 7. Thus, in this case, (Λf, L) is said to be of type (Σ(du δ2)~).

THEOREM (5.26). Suppose (M, L) is of type (Σ(μ, μ)=). Then
(1) W=Pι

a x Pβ, H = Ha + μHβ and Be\2aHa\.
(2) Hp(M, tL) = Hp(W, tH) 0 H*(W, tH - aHa).
(3) a ^ 2.
(4) flr(M, L) = aμ- 1, g(Λf) = α - l α ώ pg(M) = 0.
( 5 ) KM=(a- 2)Ha - 2Hβ = (α - 2)L - ((α - 2)jt£ + 2 ) ^ . So

- 8 α + 16.

For a proof, use (2.2) and (5.3).

THEOREM (5.27). Suppose that (Λf, L) is o/ type (Σ(μ + 27,
where 7 > 0. Γfeew

(1) W=Σ2r and B = Bί + B2, B,e \Ha - 27Hβ\, B2e |(2α
where Ha = H — μHβ. Bλ is the unique curve on W with negative self
intesection number.

(2) Hp(M, tL) = Hp( W, tH) 0 1 P ( TF, iff - 2ίfα + ΎHβ). This implies
α ^ 2 .

(3) g(M, L) = aμ + 2α7 - 7 - 1, g(Λf) = 0 and pg(M) = (α - 1)
(α7 - 7 - 1).

(4) if* = (α - 2)ίfα + (7 - 2 ) ^ = (α - 2)L - ((α - 2)^ - 7 + 2 ) ^
ατιd cx(M)2 = 4(α - 2)(α7 - 7 - 2 ) .

(5) (Λf, L) is globally Macaulay if and only if (α — 2)/£ ^ 7 — 1.
(6) (Λf, L) is globally Gorenstein if and only if (a — 2)μ = 7 — 2.
(7) g(M, L) Ξ> J(M, L) in general, g — Δ if and only if 7 = 1 and

α = 2. g — Δ + 1 if and only if 7 = a = 2.
(8) fP(M, L) Φ 0 if and only if a > 2 and μ^Ύ.

These are proved similarly as the preceding results.
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6. Summary. (6.1) Now we can give a classification table of
hyperelliptic polarized manifolds. See Tables I and II.

TABLE I Hyperelliptic polarized surfaces,

type d(M, L) g(M, L) q(M) pg(M) Cl(M)2

(Iα)

(IV a)

(*Πα)
(Σ(δltδ2)l,b)
(Σ(δι, <52)δ)

2
8
4

2|δ|
201

a
2α+l

2α

6-1

0
0
0
0

6-1

α(α-l)/2
α(α-l)/2
a(a-l)

(a-l)(a\δ\+2b-2)l2
0

2(α-2) 2

2(α-2) 2

(2α-3) 2

2(α-2)(α|δ|+2&-4)
-86 + 16

(Σ(μ,μ)=) Aμ aμ-1 a-1 0 - 8 α + 1 6
(Σ(μ+2T,μ)-) 4(μ+r) aμ+2aϊ-ϊ-l 0 (a-D(aϊ-r-l) A(a-2)(aϊ-ϊ-2)

TABLE II Hyperelliptic polarized manifolds with dim M ^ 3.

type d(M,L) g(M, L) q(M) b2(M) Xn-2(M, L)

(12)
(IIS)
(*IVα)
(Σn(δ)i,b)

(Σn(δ)ϊ)

2
4
8

2\δ\

2\δ\ 6-1

0
0
0
0

6-1

1
1
1

;>2
2

>0
>0
>0
>0
<0

REMARK. (IΓα) is the same type as (Σ(l, l)ί+ l i0) and hence is omitted
in Table I. Note also that (Σ(l, l)i>>b) - (Σ(l, l)ΐ+b,_b) (cf. (5.5)) and that
(Σ(l, 1)1) - (Σ(l, 1):) (cf. (5.24)).

(6.2) q(M) = 0 unless (M, L) is of type (Σn(δ)°) or (Σ\δ)=). These
two types are characterized by the property Xn_2(M, L) ^ 0.

(6.3) H\M, L) = 0 unless (M, L) is of type (Σn(δ)°), (Σ(β, μ)=),
{Σn{δ)U) with 6 ^ 2 , {Σ\δ)ih) with (α - 2)δmiΏ + b + δ m a x ^ 0, or {Σ\μ +
27, μ)-) with a ̂  3, μ ^ 7.

(6.4) (Λf, L) is globally Macaulay if and only if it is of type (I),
(II), (IV), (*), (Σ(δ)tb) with l - | δ | ^ 6 ^ 1 or (Σ*(μ + 2Ύ, μ)7) with
(α - 2)μ ^ 7 - 1.

(6.5) (M, L) is globally Gorenstein in all the cases where KM is a
multiple of L, namely, the cases (Iσ + 1), (II,), (IVJ, (*IVJ, (Σn(δ)σ+1>2_lδ])
and (Σ\μ + 2(σ — l)/i + 4, μ)~+1), where σ is the sectional index.

(6.6) If (M, L) is globally Gorenstein with negative index, then
(M, L) is either of type (I;) with 1 ̂  a < n, (II;) with l<>a<>n-2,
(*IVi), or the types described in (5.14). In particular, d(M, L) — 2, 4,
2n, 2n + 2 or 4^.

(6.7) flr(AΓ, L) ^Δ(M, L) except when qr(ikf) > 0 (cf. (6.2)). When
q(M) = 0, we have g ^ Δ + 2 except in the following cases: g = Δ: (If),
(*Πi), W + 2, ^)r) and those in (5.18; 2). g = Δ + 1: (I?), (Π»), (IV2),
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("TO, (Σ(μ + 4, /ί)2") and those in (5.18; 3).
(6.8) The canonical bundle K* of Λf cannot be very ample.
In fact, if (Λf, L) is not of type (*), we have M = RB,F(W). SO, by

(2.2), H\M, KM) = H\W, Kw + F) 0 H\W, Kw). On the other hand, we
have pg(W) = 0 since J(W, fΓ) = 0 (recall (2.8)). Hence H\W, Kw + F) ^
H°(M, KM). This implies that the rational mapping defined by iΓ* factors
through W, and hence cannot be birational. If in addition Kw + F is
very ample on ΫF, the canonical mapping of Λf is nothing but the
morphism M-+W.

When (Λf, L) is of type (*), let Λf' and TF' be as in (4.3). Then,
similarly as above, the rational mapping defined by the canonical bundle
of Λf' must factor through W. Hence it is not birational, and so pικuι

is not birational.
(6.9) The calculation of the Kodaira dimension of M is easy except

possibly in the case of type (J?n(3)+6), which was treated in (5.20). The
results are summarized in Table III.

REMARK. In all the cases where tc(M) = 0, Λf is birationally equi-
valent to a manifold with trivial canonical bundle, and q(M) = 0. There-
fore, if n = 2, Λf is (birationally) a i^3-surface.

TABLE III Kodaira dimension of M.

value of κ(M)

an

a)
aw
(IVJ
(*Πα)
(*IVα)
(2*(δ)i,6) (cf. (5.20))
(Σn(δ)l)

(Σ(μ, μ)Z)
{Σ(μ + 2Ϊ, μ)ά)

n

a>n
a>n—l

a>2
a>\
a>2

case (5)
—
—

α>2

n-1

—

—
—
—
—

case (βb)
—
—
- a

1 0

— a = n
— a—n—1
— α=2
— —
- a=2

case (4) case (3) & (6a)
— —
— —

=2 & ϊ>2 a = ϊ=2

— oo

a<n
a<n — l

—

a = l

case (1) & (2)
any b
any a

α=2 & r = l

7. Small deformations.

DEFINITION (7.1). A deformation family of prepolarized manifolds
consists of a quadruple ( ^ X, π, Sf) of manifolds ^ and X both of
which are connected but may not be complete, a proper smooth morphism
π: ^£ -> X and a line bundle eSf on ^ £

Given a point a? 6 X, we set Λfβ = π~\x) and let Lx be the restriction
of & to Λfβ. This prepolarized manifold (Mx, Lx) is said to be a member
of the above deformation family.

We say that any small deformation of a given prepolarized manifold
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(Λf, L) has a certain property (#) if, for any deformation family ( ^ X,
π, £?) as above and any oeX such that (Λfβ, Lo) = (ikf, L), there exists
a neighborhood U of o in X such that (Λf,., Lx) has the property (#) for
every xeU. We use the terminology "small deformation" for various
objects in a similar sense.

(7.2) The purpose of this section is to consider the following:

PROBLEM. Let (Λf, L) be a hyperelliptic polarized manifold of
certain type. Then, is any small deformation of (Λf, L) hyperellipticl

REMARK (7.3). If H2(M, έ?M) = 0, then any small deformation {M9}XBZ

of M carries a family of line bundles {Lx}, and thus can be made a
family of prepolarized manifolds.

When n = dim Λf ^ 3, this condition is satisfied except when (Λf, L)
is of type (Σ(u, u, u)t_au). For a proof, use (5.8) and (5.22; 1) (compare
also Table II in §6).

REMARK (7.4). If H\M, L) — 0, then any small deformation of
(Λf, L) satisfies d(Mx, Lx) = 2Δ(MXJ Lβ).

Indeed, we have h\Mx, Lx) = 0 by the semicontinuity theorem.
Applying the theory of Grothendieck [EGA; Chap. Ill] (or see [Ha 2;
Corollary 12.6]), we infer that π^Jz? is locally free of rank fc°(Λf, L).
So h°(M9, Lx) = h\M, L), which implies the assertion.

When n ^ 2, we have H\M, L) = 0 unless (Λf, L) is of type (Σn(δ)°),
(Σ(u, uY), (Σn(δ)ΐ,b) with 6 ^ 2 , (Σ\d)ib) with (α - 2)δmin + b + Smax ^ 0, or
(^2(u + 27, u)-) with α ̂  3, u ^ 7. For a proof, see (6.4), (5.19) and
(5.27; 8).

(7.5) Assume d(Mx, Lx) = 24(Λfβ, LJ in the question (7.2). Then
any small deformation of (Λf, L) is hyperelliptic if g(M, L) > A(My L)
and if (Λf, L) is not a Fano-iΓ3 variety.

Indeed, taking a smaller neighborhood of o if necessary, we may
assume that Lx is ample and Bs|LJ = 0 for any x in U. Moreover,
we have &°(Λf, F) = 0 or λ°(Λf, -F) = 0 for F = KM + {n - 2)L since
(Λf, L) is not Fano-E:3. So we may assume h\Mx, Fx) = 0 or A°(Λfβ - F.) = 0
for any xe U. Hence (Λfβ, Lx) is not Fano-1£3. So (1.4) applies.

REMARK (7.6). We have g(M, L) ̂  Δ{M9 L) + 2 except when (Λf, L)
is of the types given in (6.7). Clearly this condition implies that (Λf, L)
is not Fano-JK"3.

(7.7) Combining the above observations we obtain the following:

THEOREM. Let (Λf, L) be a hyperelliptic polarized manifold with
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n = dim M ^ 2. Then any small deformation of (M, L) is a hyperelliptic
polarized manifold if (M, L) is of one of the following types: (I;) with
a ^ 3, (IK) with a ^ 2, (IVJ wίίΛ α ^ 3, (*Πβ) mέΛ, α ^ 2, (*IVβ) with
a ^ 2, (^n(5)ίi6) wiίΛ α ^ 2 and (α - 2)δmin + δm a x + 6 > 0, (J(w + 27, n)7)
with 7 ^ 3 , (£(M + 27, u)~) with a ^ 3 cmcί w < 7.

REMARK. The same is true for the type (Ij), too. In this case we
have g(M, L) = J(M, L) + 1, but Lx cannot be simply generated because
h\Mx, Lx) = n + 1. Hence (1.4) applies.

COROLLARY (7.8). Let (M, L) be a hyperelliptic polarized manifold
of dimension n ^ 3. Then any small deformation of M carries a
structure of a hyperelliptic polarized manifold if (M, L) is of one of the
following types: (I;) with a ^ 2, (II;) with a ^ 2, (*IVβ) with a ^ 2,
(^n(δ)ίf6) ^iίfe α ^ 2 α̂ cZ (α - 2)δmiπ + δm a x + b > 0.

(7.9) Now we consider the same problem (7.2) from an entirely
different viewpoint by the aid of the theory of Kodaira-Spencer-Horikawa.

Let things be as in (2.1) and suppose that W and B (and hence
V = RB>F(W) also) are non-singular. Then we have a natural homomor-
phism Θv —> π*Θw on V, where Θ denotes the sheaf of vector fields.
Taking direct images we obtain θ: π*θv —• θw (g) π^v. The involution %
of V over W acts on these sheaves equivariantly. Let π*Θv = Θγ φ Θ^
be the decomposition such that the action of i is the identity on Θt and
is ( — l)-times the identity on Θ^. Then Θ induces an isomorphism θ: ΘΫ =
Θw ®π*έ?v = ®PF[ — ί7] ancl an injective homomorphism ^+: Θγ —> Θ^ such
that Coker(^+)=^B[£], the normal sheaf of B in W. Taking cohomologies
and setting τt = H\W, Θt) and τ> =H\W9 Θγ)> we obtain τv = τ\@τγ
and an exact sequence H\W, Θw) -> H\Bf [B]) -*τ\-*τw-+ H\B, [B]) -+
H\Θ$) -> H\ΘW) where τM denotes H\M, ΘM) for any manifold ikf. The
meanings of these mappings may be interpreted roughly as follows.

In general, τM is the Zariski tangent space of the formal moduli
space for the deformation functor of M. τ$ corresponds to the subspace
of τv along which the structure of a double covering is preserved.
Similarly, H%B, [B]) parametrizes infinitesimal displacements of B in W.
A family {Bx} gives rise to a family {Vx = RBX,FX(W)} of double coverings
of W. This assignment corresponds to the mapping H°(B, [B]) —> τ?.
Moreover we can show the following:

THEOREM (7.10). Let things be as above and suppose that τ> = 0.
Then any formal deformation of V turns out to be a double covering of
a formal deformation of W. This means that, for any proper smooth
morphism /: S3 —• S of formal schemes such that S has only one closed
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point o and that the fiber Vo over o is isomorphic to V, there exists a
formal scheme 2S over S together with a morphism Π: 33 —> 2B which
makes 33 a double covering of SB such that Πo: Vo—> Wo is isomorphic to
TΓ: V-+W.

For a proof, it is enough to show the following:

LEMMA (7.11). Let R be an Artinian ^-algebra with the maximal
ideal m and let I be an ideal of R such that I nt = 0. Let f: V—>
Spec (R) and gz: Wx —> Spec (12//) be proper smooth morphisms and suppose
that there is a morphism /77: F 7 —• Wτ which makes VΣ = V xSpec (Λ)

Spec (22//) a double covering of TΓ7. Suppose in addition that the re-
striction of Πj over the closed point of Spec (12) is isomorphic to π:V-+
W (where we have ZΫ = 0 by assumption). Then there exists an R-scheme
g:W-+Svec(R) and a morphism Π:V-^W such that their restrictions
over Spec (R/I) is isomorphic to WΣ and Πj.

This is proved by the same argument as that in [Ho 2; Lemma in
p. 276]. Indeed, the injectivity of H\Wf ΘW)^>H\V, π*Θw) ^H\W, Θw®
π*<?v) is clear and the surjectivity of H\W, Θw)-* H\V,π*Θw) =
H\W, Θw®π*έ?v) follows from z> = H\W, θw[-F]) = 0.

COROLLARY (7.12). Let (M, L) be a hyper elliptic polarized manifold
and let (TΓ, H) be as in (1.1). Suppose that W is non-singular and
that TM = 0. Then any small deformation Mx of M carries a line
bundle Lx such that (MXf Lx) is a hyperelliptic polarized manifold.

PROOF. Given any deformation family ^ —> X with Mo = M for
some point o on X, by (7.10) we can find a formal deformation 2B —> 36
of W over the formal completion of X at o together with a double
covering Π: Wl —> 2B whose restriction over o is π:M—>W, where 2K is
the formal completion of ^t along Mo. Since H\W9 <?w) = 0, there is
a line bundle φ on SB whose restriction to TΓ0 = W is H. φ is ample
on 2β since so is H on TΓ. Hence its pull-back to 2ft is ample. From
this we infer that the morphism 9ft —> 2B is algebraisable. So, there is
a neighborhood U of o in X (with respect to the etale topology) over
which we have a morphism ^£O —> W~ of families as an extension of
9ft —> 353. Shrinking U further if necessary, we see that πx: MX->WX is
a finite double covering and 4(WX, Hx) = 0 for any xeU. Thus we
obtain the conclusion.

PROPOSITION (7.13). Let (M, L) be a hyperelliptic polarized manifold
with n = dim M ^ 2. Then ZM = 0 if (Λf, L) is of one of the following
types:
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(1) (l;) with n ^ 3 or a ^ 3.
(1') (IVJ with a ^ 3.
( 2 ) (Π;) with a ^ 2.
(3) (2'n(δ)ί>6) -wnίfc α ^ 2 and w ^ 3, except when n = a = 3, (̂  =

<52 = <53, b = —δ3 and M = P1 x RA(P2) for a hypersurface A of degree 6

cm P 2 .

( 4 ) (Σ(δlf δz)i,b) with a ^ 3 a n d a<52 + 6 + δ, - δ2 ^ 3.

( 5 ) (Σ(u + 27, u)~) wΐέft a ^ 3 and 7 ^ 3 .

PROOF. In case (1) we have W = Pn and F = (α + l)iϊ. There is
an exact sequence 0 —> ^V -» -4 (x) [ίί] —• θ^ —> 0 on IF where Λ is the
dual space of H\W, H) (cf., e.g., [Ha 2; p. 182]). This yields an exact
sequence 0-+H\W, Θw[-F]) -+H\W, -(a + l)H)-* Λ® H\W, -aH).
So TM = 0 unless w = 2. When n = 2, the last mapping is the dual of the
natural mappingH\W,H)®H\W,Kw + aH)^H\W,Kw + (a + l)H), which
is surjective unless α = 2. So TM = 0 if α ^ 3 . Case (1') follows from (1).

In case (2), W is a hyperquadric in P = Pn+1 and F= (α + l)iϊ. Using
the exact sequence 0 -• έ?w -+ H%W, HY (x) [H] -> (ΘPV -^ 0, we infer
that H\W, ΘP[ — F]w) = 0 by the same argument as above. Using the
exact sequence 0 -• Θw -• (ΘP)^ -> 2£T-^ 0, we obtain τ^ = H\ W, Θw[ - F]) = 0.

In case (3), let Tw/P denote the relative tangent bundle of W—>P}.
Then we have two natural exact sequences: (#) 0 —> Tw/P -^Θw-+ 2Hβ —> 0
and (##) 0 -> ̂ V -> -ffa (8) E? -> Γψ / P -> 0, where the notation is as in (5.2).
Since w ^ 3, H\W, —tHδ + ŜΓ̂ ) = 0 for any t > 0 and any integer u
by (5.3; 1) and the Serre duality. In particular H\W, 2Hβ - F) = 0.
Therefore, by virtue of (#), it suffices to show H\W, Tw/P[-F]) = 0.
We have H\ W, Hδ - δ5Hβ - F) = 0 because α ^ 2. In view of (##), we
infer that τv = 0 if H\W, -F) = 0. If this is not the case, then
0<^~ 2(TF, Kw + F) £ hn~2(M, KM) = h\M). By (5.8), this is possible
only when n = 3, <5X = δ2 = δ3, αδ3 + b = 0, TF = P\ x P 2 and l ί = Pβ x
RA(PI) for a hypersurface A on P 2 of degree 2α with α ^ 3. Moreover,
if α ^ 4 , the mapping H\W9 -F) -> H\W, Hδ(& E?[-F]) is injective,
because it is the dual of the surjective mapping H\Pl, (α — 4)JBΓβ) (x)
H\Pl, Ha) - , H\Pl (α - 3)Hβ). So α - 3 if τ ; ^ 0.

In case (4), W is isomorphic to the Hirzebruch surface Σk with
k = δ, - δ2. We use the exact sequence 0 -> [2Hδ - Jiί^] -> Θ^ -> 2 ^ -> 0,
where z/ = δt + <52. Using the Serre duality and (5.3), we obtain
H\W, 2Hδ- JHβ - F) = 0 and H\W, 2Hβ - F) = 0 by assumption.
Hence 2Γ(17, Θw[-F]) = 0.

In case (5), we have TΓ = J?2r and F = αiϊα — ΎHβ where Ha = Hδ —
uHβ. So we get iί^TF, β^[ — F]) = 0 by the same argument as above.
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COROLLARY (7.14). Let (Λf, L) be a globally Gorenstein hyperelliptic
polarized manifold with n = dim Λf ^ 2. If (Λf, L) is not of type (*),
then any small deformation of M admits a structure of a hyperelliptic
polarized manifold unless M is a KS-surface or (Λf, L) is of type (IlΓ).

PROOF. In view of (6.5), we infer TM = 0 by (7.13). So (7.12)
applies.

REMARK. AS a matter of fact, the conclusion is true even if (Λf, L)
is of type (*). Compare (7.8).

EXAMPLE (7.15). Let (Λf, L) be a hyperelliptic polarized manifold of
type (II?). Then (Λf, L) is a weighted complete intersection of type
(2, 4) in P(2, 1, , 1) (see (3.4; 5)). But a general complete intersection
of this type is a hypersurface of degree four in Pn+1, and hence not
hyperelliptic.

In this case the conditions in (7.3) and (7.4) are satisfied when n ^ 3,
but (7.5) does not apply because (Λf, L) is Fano-if3. We see also τ ; Φ 0.
In fact, dim (r;) = 1 when n ^ 3 and dim (ΓΪ) = 2 when n — 2 (in this
case M is a l£3-surface).

REMARK (7.16). In case If is a i£3-surface, we must have τϋ Φ 0
because any general small deformation of M is non-algebraic. In fact,
(7.3) is not true. Moreover, usually, a small deformation (MXf Lx) of
(Λf, L) is not hyperelliptic, because Lx turns out to be very ample.

REMARK (7.17). We have τ~M Φ 0 if (Λf, L) is of type (Σn($)ΐth). Note
that b ^ 1 by (5.7; 1). When 6 ^ 2 , the condition (7.4) does not hold.
When 6 = 1, (7.5) does not apply because g(M, L) = A(M, L) (see (5.18; 2)).

We have r ; ^ 0 in case (Λf, L) is of the exceptional type described
in (7.13; 3). In this case (7.3) is not true. Indeed, the product factor
RA(P2) of Λf is a JO-surface.

Thus, the assertions (7.13; 1, 2 and 3) are the best possible. Perhaps,
however, (4) and (5) may not be so. Compare (7.7).

8. Deformation equivalence.

DEFINITION (8.1). Prepolarized manifolds (Λf, L) and (Λf', L') are
said to be deformation equivalent if there exist prepolarized manifolds
(Λf0, Lo) = (Λf, L), (Mlf LJ, , (Λfr, Lr) = (Λf', U) such that (Mjf Ls) and
(Λf,.!, Ly_i) are members of one and the same deformation family for
each j = 1, 2, , r. In this case we write (Λf, L) — (Λf', I/).

In this section we will study deformation equivalences among
hyperelliptic polarized manifolds. When (Λf, L) is of a certain type (#),
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we write (Λf, L) e (#). If in addition (Λf, L) ~ (ΛΓ, U), we write
(Λf', U) ~ (#). If (AT, 27) e (#'), then we write (#) - (#').

(8.2) For any fixed integers n and α, all the hyperelliptic polarized
manifolds of type (I;) form a single deformation family. Indeed, they
correspond to non-singular members of |(2α + 2).ff| on Pn, which are
parametrized by a Zariski open (hence connected) subset of the projective
space |(2α + 2)H\.

Similarly, if (#) = (II;), (IVJ, (*Πα), (*IVα), (Σ*(δ)i,h), (Σn(δ)l), (Σ(u, u)~)
or (Σ(u + 27, u)~) with indices such as a, n, (<?), 7, 6 being fixed, all the
hyperelliptic polarized manifolds of type (#) form a single deformation
family. Therefore, for any types (#) and (#') as above, (#) — (#') implies
(AT, L) - (ΛP, L') for any (ΛΓ, L) e (#) and (Λf', L') e (#').

(8.3) An invariant i of a prepolarized manifold (Λf, L) is called a
deformation invariant if (ΛΓ, L) — (Λf', L') implies i(M, L) = i(Λf', L')
In this case i(#) is well-defined for any types (#) as in (8.2).

(8.4) Examples of deformation invariants. (1) The Hubert poly-
nomial Z(Λf, tL) is a deformation invariant. By the formula Z(Λf, £L) =
Σy=o Zi(Λf, L)ί[J']/i! where ί[J'] = ί(ί + 1) (ί + i - 1), we infer that
Zj (Λf, L) is also a deformation invariant for every j . In particular,
d(M, L) = Xn(M, L) and flf(Λf, L) = 1 - Z^Λf, L) are deformation
invariants.

(2) In case $ = (7, all the topological invariants of Λf are deforma-
tion invariants. In particular, so are g(Λf), pg(M) and all the Hodge
numbers hp>q(M). This is not always true when char (β) > 0.

(3) If char(^) = p ^ 0, the tame fundamental group π[p){M) is a
deformation invariant.

( 4 ) The Z-adic cohomology ring H'(M; Qi) is a deformation invariant.
Moreover, if (Λf, L) ~ (Λf', L')f there exists a (non-canonical) isomorphism
H\M\ Qt) -> if "(Λf ' Q^ which maps cx(L) and the total Chern class of M
to d(L') and to total Chern class of Λf', respectively. So, in particular,
all the Chern numbers are deformation invariants.

(8.5) In order to study deformation equivalences within the type
(Σ), we need several preparations.

DEFINITION. Given (δ) = (δ19 δ2, , δn) as in (5.2), we define u(δ) =
δm a x - δmίn and v(δ) - MinOK^Iδ, = Smax}, # ^ 1 ^ = δmin}). For example
v(8, 3, 2, 1,1, 1) = 2 and v(4, 2, 1, 1) = 1.

(δ) is said to be stable if u(δ) ^ 1. We see easily that any stable
integral vector (3) is determined uniquely by |δ | .

DEFINITION (8.6). The vector bundle JE?(δ) is said to be a specializa-
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tion of E(δ') if there exists a deformation family of vector bundles Et

parametrized by t e A1 such that Eo = E(δ) and Et = E(δr) for every
t Φ o. Here notations are as in (5.2). In the above case, we say that
W(δ) is a specialization of W(δ').

REMARK (8.7). If E(δ) is a specialization of E(δ')f then <5max ^ S^ax,
δmίn ^ δ'min, u(δ)^u(δ'), and \δ\ = |<5'| by the semicontinuity theorem.
In particular, (δf) = (3) if (δ) is stable.

LEMMA (8.8). If a — b ̂  2, ίfcew j©(α, 6) is α specialization of some
E(a\ V) with a > a' ^ V > δ.

PROOF. Let Γ be a one dimensional subspace of Ext1 (£?(α), £?(&)) =
H\P\ &(b — α))f which is not trivial by the assumption a — b ̂  2. For
each ί e T, let 2£t be the vector bundle with the natural extension 0 ->
£?(δ) -> JE?t -> £?(α) -^ 0. Clearly £Ό = E(a, b) and £7t = E(a', V) for every
t Φ 0 for some fixed (α', 6') with α' ̂  δ', because t's differ only up to
scalar multiplication. So, it suffices to show 6' > 6.

The image of t under the isomorphism H1(P1, έ?(b — a)) =
Horn (H\P\ ω(a - b)), H\P\ ω)) gives the first mapping of the long
exact sequence H\P\ έ7(a-b-2))->H\P\ έ?(-2))->H\P\ Et(-b-2))->
H\P\ έ?(a - b - 2)) = 0. From this we infer H\P\ Et(-b - 2)) = 0 for
t Φ 0, which implies b' > b.

COROLLARY (8.9). If (<5) is not stable, then E(δ) is a specialization
of another vector bundle E(δ') such that u(δ') < u(δ), or u(δ') = u(δ) and
v(δ') < v(δ).

PROOF. E(δlf δn) is a specialization of some E(a', b') with δ1 > α' ̂
V > $n by (8.8). Then E(δ') = E(a', V) © E(δ2, , δ^) has the required
property.

COROLLARY (8.10). For any (<5), there exists a chain (S)o = (<5), (δ)lf

• ", (δ)k of integral vectors such that Eiδ)^ is a specialization of E(δ)3-
for each j = 1, , k and that {S)h is stable.

LEMMA (8.11). Suppose that E(δ) is a specialization of E(δ'). Then
(Σn(δ)i,b) - (Σ*(δ')ith) if aδmin + 6 ^ 0 .

PROOF. We have vector bundle E on P̂ 1 x A1 such that Eo = E(δ)
and Et = E(δ') for t Φ 0, where the subscript t indicates the restriction
over 16 A1. Set W = P{E) and let H be the tautological line bundle on
W. Set & = έ?w(2aH + 2bHβ) and let /: W->A' be the natural
morphism. H\W0, &) = 0 since aδmin + δ ̂  0. By [Ha 2; Chap. Ill,
§12], we infer that & = f ^ is a locally free sheaf on A1 of rank
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r = h\W0, &0). Let X be the corresponding vector bundle, which we
consider to be an ^lr-bundle over A1. Let W be the fiber product of
W and X over A1. The natural homomorphism ^x —> &x induces a ho-
momorphism έ?% —> 3ί%, while we have 3ί% —> ̂ fc induced by f*3ί —> ^
on TF. Combining them, we get ^τ? —> ̂ fc, which defines a divisor 1?
on W such that [JB] = [2aH + 2ftjffjs?. Set M = RB(W). Then, over
each point x on X, we have a double covering M, —> Wp{x) with branch
locus J5β, where p is the projection X-+A1.

Now, thanks to (5.7; 5), we find an open set U of X such that
p(U) = A1 and 1^ is non-singular for every xeU. Thus we have a
family {Λfβ} of hyperelliptic polarized manifolds over U. (Mx, Hx) is of
type (Σn(δ)ifb) if p(x) = o and of type (^n(δ')ίf6) if p(x) Φ o. Therefore
(Σn(δ)itb) - ( Σ n ( δ ' ) i t b ) , s i n c e ?7 i s c o n n e c t e d .

T H E O R E M ( 8 . 1 2 ) . (Σn(δ)ith) - (Σ*(δ')i,h) if\δ\ = \δ'\, aδmiΏ + 6 ^ 0 and
ad'min + 6 ^ 0 .

For a proof, use (8.10) and (8.11).

QUESTION (8.13). Is the above assertion true even if aδmiΏ + b < 0?

According to Horikawa, there is an example where the answer is
affirmative. But we do not know the answer in general.

T H E O R E M ( 8 . 1 4 ) . (Σn(δ)l) - (Σn(δ')l) if\δ\ = \δ'\.

The proof is almost identical to that of (8.12).
(8.15) Now, as an application of (8.12), we will prove (5.17).

However, since the same method works for π[p) in case p = char (β), we
show only π^Σ^δ)^) = {1} in case ί£ = C. Our proof consists of several
steps.

Step 1, the case in which n ^ 3 and αδm i n + b > 0. In this case B
is ample on W(δ) and the ramification locus R of M —> W is ample on M.
Therefore, by the Lefschetz theorem, we infer πx(M) = πx(R) = π^B) =
π^W) = {1}.

Step 2, πί(Σ(2f 2)ί,6) = {1}. Since the assertion has nothing to do
with L, it suffices to show ^(^(1, l)ί,β+6) = {1}. If a + b = 0, (3.12)
applies. So, thanks to Remark to (5.5), we may assume that a + & > 0.
Then there exists (M, L) of type (J(2,1, l)α

+,&) by (5.7; 5). By (5.16), we
have (S,L)e(Σ(2,2)+b) for a general member S of \L\. Then πt(S) =
π^M) = {1} by the Lefschetz theorem and Step 1. This completes Step
2.

Step 3, π,{Σ{291)+6) = {1}. We have a + b ^ 0 by (5.7; 4). So there
exists (AT, L) of type (2(1,1,1)£&). Then (S, Ls) e {Σ{2, l)α

+,6) for a general
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member S of \L\. So it suffices to show πλ(M) = {1}. If a + b > 0,
Step 1 applies. If a + b = 0, then Λf = P 1 x RA(P2) similarly as in
(5.13; 2). Hence πλ(M) = {1} by (3.12) and the Kϋnneth formula.

Step 4, the case w = 2. We have aδmin + 6 ^ 0 by (5.7; 4). So, by
(8.12), we may assume (<5) to be stable. Then, replacing L if necessary,
we reduce the problem to either Step 2 or Step 3.

Step 5, the general case. Using (5.16) and the Lefschetz theorem,
we prove the assertion by induction on n.

(8.16) So far, we have seen that (Λf, L) ~ (Λf', L') if they are of
the (almost) same type. From now on, we consider the converse problem.
In the following, (Λf, L) is always a hyperelliptic polarized manifold.

THEOREM (8.17). (Λf, L) ~ (K) implies (Λf, L) e (K).

Indeed, d(M, L) = 2 and g(M, L) = a imply (Λf, L) e (I;). See Tables
I and II.

COROLLARY (8 18). Any small deformation of type (K) is a hyperel-
liptic polarized manifold of type (K).

For a proof, use (7.7) and (8.17).

THEOREM (8.19). (Λf, L) - (IK) implies (Λf, L) e (IK) if n^%.

THEOREM (8.20). (Λf, L) - (*IVβ) implies (Λf, L) e (*IVJ.

THEOREM (8.21). (Λf, L) - (Σn(d)l) implies (Λf, L) e (Σn(δ')ΐ) for some

(δf) with \δ'\ = \δ\.

PROOF. If n ^ 3, consult Table II. If n = 2, from %0(Λf, L) ^ 0 we
infer (Λf, L) e (Σ(δ')l) or (J(%, ^)=). Comparing ^(Λf)2 and g(M, L), we
get x = b in the former case, ov y = b and w = 1 in the latter case. In
view of Remark to (5.24), we finish the proof.

LEMMA (8.22). (Λf, L) - (Σn(δ)ith) and (Λf, L) e (ΣTOI δ |+) imply (Λf, L) e
( Σ n ( δ % b ) for some (δ') with \δ'\ = \δ\.

PROOF. Comparing d, g, %n_2 and (KM + (n - 2)L)2Ln~2 (cf. (8.4; 4)), we
o b t a i n ( 1 ) : \δ'\ = \δ\, ( 2 ) : x \ δ \ + y = a \ δ \ + 6, ( 3 ) : (x - l ) ( x \ δ \ + 2y - 2 ) =
( α - l ) ( α | δ | + 2 δ - 2 ) and (4): (a?- 2){x\δ\ + 2y - 4) = (a - 2)(a\δ\ + 2 6 - 4 ) ,
where we assume (Λf, L) e (Σn(δ')itV). Using (2), we get from (3) - (4) the
equality (5): 2x + y = 2a + 6. Together with (2), this implies x = α and
7/ = 6 unless 181 = 2. If | δ \ = 2, we must have n = 2, and (<5) = (δ') =
(1,1). We easily see that there are two possible solutions: (x, y) = (α, b)
or (α + &, — b). Recalling the Remark to (5.5), we obtain the conclusion.

THEOREM (8.23). (Λf, L) - (Σn(δ)i,b) implies (Λf, L) e (Σn(δ')itb) for some
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(δ') with \d'\ = \δ\, ifn^Z.

PROOF. In view of Table II, we see that (8.22) applies.

(8.24) The preceding results altogether determine the deformation
equivalences among hyperelliptic polarized manifolds of dimension ^ 3 ,
except the question (8.13).

To study the case of surfaces, we need a couple of results.

PROPOSITION (8.25). Let ( ^ X, /, ^f) be a deformation family of
prepolarized manifolds. Suppose that there exists a point o on X such
that π[v)(M0) = {1} and Lo = mF0 for some FoeFic(Mo), where m is a
positive integer prime to p — char ($£). Then for every x e X, there is
Fx e Pic (Mx) such that Lx = mFx.

PROOF (due to A. Ogus). Consider the exact sequence 0 —> μm —>
έ?M -> #2 -» 0, where ^ —> Λ? is the m-power homomorphism and μm

is the constant sheaf of m-th roots of unity. This gives rise to an ex-
act sequence P i c ( ^ ^ ) - ^ P i c ( ^ ^ ) — > J Ϊ 2 ( ^ ^ ; ^ m ) , the second homomorphism
of which will be denoted by c (m). Clearly the difinition of c(m) is func-
torial, and cx

m): Pic (Mx) -* H2(MX; μm) and c(m) are compatible with respect
to restrictions. So, we have c{m)(^f)0 = c{

o

m)(Lo) = 0. What we should
show is c{m){Sf)x = 0 for every xeX.

We have Λ1/*/^ = 0 since π[p){M0) = {1}. So, by the Leray spectral
sequence, we get a natural exact sequence 0 —> H\X, f*μm) -> Ή.\^, μm) —>
H\X, R2f^μm) —> 0. Since R2f*μm is a locally constant sheaf (with respect
to the etale topology), c(m)(=S^)0 = 0 implies that the image of clm)(J*f) in
H\X, R2f*μm) vanishes. Hence c{m\^f) comes from H2(X, f*μm), which
implies c{m)(Sf)x = 0 for every xeX.

PROPOSITION (8.26). // (If, L) e (Σ2(δ)+), then L is not divisible by 2
in Pic (M).

PROOF. By virtue of (8.12), (8.15) and (8.25), we may assume that
(3) is stable. If L is divisible by 2, then If = 2 |δ | is divisible by 4.
Hence we may assume 13 \ is even and δx = δ2. So TΓ = P] x P«, J ϊ =
Ha + ί̂sΓ ,̂ Λf = RB(W) and J5e |2αfl"α + 2 6 ^ 1 for some positive integers
α, 6. Note that Z i ¥ = (α — 2)α + (6 — 2)̂ 3, where α and /3 denote the
pull-backs of Ha and ίί*̂  on M respectively. Set e — 0 if 82 is even, and
e = 1 if δ2 is odd. Then, if L is divisible by two, we have a + eβ = 2 F
for some i^ePic(M). We will derive a contradiction from this.

CLAIM. 1/ \F + #α + ?//3| Φ 0, then 2x + 1 > a and 2y + e > b.

To prove this claim, we may assume (cc, #) to be a minimal pair
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among those such that | F + xa + yβ\ Φ 0 . So, for any D e | F + xa + yβ|,
there is no non-trivial effective divisor Df such that D — D' is effective
and that [D'] comes from Pic(TF). In particular, the ramification locus
R of M-+W, which is member of \aa + bβ\t is not a component of D.
Furthermore, if i is the involution of M covering W, D and i*D have
no common component C, because then C + i*C would be a part of D
and come from Pic(W). Therefore N = D f) R is a O-dimensional sub-
scheme of M. i*N = N since the restriction of i to R is the identity.
On the other hand we have i*N=ί*Df)R So NcDf)i*D. From this
we obtain D-i*D^DR. We have [2i*JD] = ϊ*[2I>] = 2I> in Pic (AT) because
2D comes from Pic(W). Now, calculating the intersection numbers on
both sides, we get: Axy + 2y + 2e# + e ̂  6(2# + l) + α(2# + β), which yields:
(2a? + 1 — α)(2τ/ + e — 6) ^ αδ > 0. Therefore, if our claim were not true,
both factors of the left hand side would be negative. On the other hand
we have 2x + l = aD^O and 2y + e = βD^O. Combining them we infer
2x + 1 = 2y + e = 0, but this is impossible unless D = 0. If D = 0, then
F is an integral combination of a and β, and we get a non-trivial relation
for a and β in Pic (Λf). This is absurd. Thus we prove the claim.

Returning to the proof of the proposition, we note that F2 — e and
FKM = b - 2 + e(a - 2). Since F2 = FKM (mod 2), there are four possible
cases: (1) α, 6 and e are even. (2) a and e are odd, 6 is even. (3) 6
and e are even, a is odd. (4) b and e are odd, a is even.

Case (1), a = 2α', 6 = 26' and e = 0. Set Z = .F+ (α' - 2)α + (V - l)β.
Then KM-Z = JP+(a'-l)a + (6'-l)/S. So λ°(Λf, Z) = 0 = λ°(Jtf, JSΓ'-^) =
Λ,2(ikf, Z) by the above claim. Hence Z(Af, Z) = -^(ilί, Z) ^ 0. On the
other hand, by the Riemann-Roch theorem, we have X(M, Z) —
(Z2 - KMZ)/2 + 1{M9 έ?M) = 2a'V > 0. Thus we get a contradiction.

Case (2), a = 2α' + 1, 6 = 26' and e = 1. Set Z = F + (α' - l)α +
(6' - 2)/3. Then iίJ/ - Z = F + (α' - l)α + (6' - l)/3. Similarly as above,
we obtain X(M, Z) ^ 0 using the claim. On the other hand, we have
X(M, Z) = {2a' + 1)6' > 0 by the Riemann-Roch theorem.

Case (3), a = 2a' + 1, 6 = 26', e = 0. Set Z = F + (α' - l)α + (6' - ΐ)β.
Then Z(M, Z) ^ 0 by the claim, while we have X(M, Z) = δ'(2α' + 1) > 0
by the Riemann-Roch theorem.

Case (4). The situation is the same as in case (2), except that the
role of the two rulings of W are interchanged.

Thus, in any case, we derive a contradiction, as desired.
(8.27) We come back to the problem of deformation equivalences

among hyperelliptic polarized surfaces.

THEOREM. (M, L) - (IVJ implies (M, L) e (IVβ).
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PROOF. Using (8.25), we infer that L is divisible by two. Hence
(Λf, L) is not of type (Σ(δ)+) by (8.26). (Λf, L) is neither of type (Σ(δ)°)
nor of type (J(δ)=), because X(M, <?M) > 0. If (Λf, L) is of type
(Σ(u + 27, u)ϊ)f then w = 7 = 1 because d(Λf, L) = 8. Comparing #, Z
and c2, we get (1): 3x - 2 = 2a + 1, (2): 2(a? - l)(a? - 2) = α(α - 1), (3):
2{x - 2){x - 3) = (α - 2)2. (2) - (3) yields A(x - 1) = 3α. Together with
(1), this implies a = x — 1 = 0, which is absurd. Now, in view of
Table I, we conclude that (Λf, L) is of type (IV). Comparing g(M, L)
we see (ΛΓ, L) e (IVJ.

THEOREM (8.28). (Λf, Z#) - (*Πβ) ί m p t o (Λf, L) e (*Πα).

PROOF. C^M)2 = (2α — 3)2 is odd. So, in view of Table I, we infer
(M, L) e (*ΠJ.

THEOREM (8.29). (Λf, L) ~ (Σ(u, u)7) implies (Λf, L) e (Σ(u, u)7).

PROOF. Since X(M) = 2 - a ^ 0, (Λf, L) is either of type (Σ(δf)o

b) or
of type (Σ(v9 v)7). In the former case, as we saw in (8.21), we have
(Λf, L) e (Σ(l, l)°α) = (^(1, 1)«). So we need not worry about this possibility.
In the latter case, we obtain v = u and x = a by the comparison of
d(M, L) and (̂Λf, L).

THEOREM (8.30). (Λf, L) — (Σ2Jitb) implies either
( 1 ) (M,L)e (Σ\δ)ib) for some (δ) with \δ\ = Δ, or
( 2 ) (Λf, L) e (Σ(u + 27, u)~), Δ = 2{u + 7), u is odd, 7 = (α - 2)u + 2
δ = 2 — J.

PROOF. If (Λf, L) is of type (Σ(δ)+) for some (δ), then (8.22) applies.
Otherwise, in view of Table I and the preceding results altogether, we
infer that (Λf, L) e (Σ(u + 27, u)~) for some u, 7 and x. Comparing d,
g, X and c2, we get 2(u + 7) = Δ, x = a and b = —an — 7. Furthermore,
using (8.25) and (8.26), we infer that L is not divisible by two. This
implies that u is odd. Indeed, by (5.27; 1), we have Λf = RB(W), B =
B, + B2 and B, e \L - (u + 2Ύ)Hβ|. So L = 2Rι + (u + 27)ίfp, where i^
is the component of the ramification locus lying over Bλ. Thus, if u
were even, L would be divisible by two.

We should further show that b + Δ-2 = Ύ-(a-2)u-2 = 0.
Assuming 9^0, we set & + Δ — 2 = pem, where e is a non-negative
integer and m is an integer prime to p = char ($) (if p = 0, we let p e = 1).
Note that KM - (α - 2)L = p e m ^ and that ίΓ' - (α - 2)L' - pemβ\
where (Λf, L) - (Λf', V) e (JMXJ, ίΓ' is the canonical bundle of ΛΓ, and
/3' is the pull-back of Hβ on Λf'. Therefore we have KM — (α — 2 — m)L =
m(L + p'iϊ^) = m(2#x + (u + p e + 2Ί)Hβ), which is divisible by 2m because
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pe is odd. So, by virtue of (8.25), K' - (α - 2 - m)V = m{U + peβf)
is divisible by 2m in Pic (Λf'). Hence L' + pe/3' = L" is divisible by 2,
because Pic(ΛP) has no torsion prime to p (cf. (5.17) and (8.15)). This
contradicts (8.26) since (Λf', L") e (Σ2(d")+) for some (δ") Thus we com-
plete the proof.

REMARK. The last condition of the above case (2) is equivalent to
saying that KM = (a - 2)L.

THEOREM (8.31). (M, L)~(Σ(U + 2Ύ, U)~) implies (M, L) e (Σ(U + 2Ύ, U)~)

except in the case (8.30; 2), where u is odd and 7 — (a — 2)u + 2.

PROOF. In view of Table I and the preceding results, we infer
(Λf, L) 6 (Σ(uf + 27', u')~) except in the case (8.30; 2). In the former case
we obtain x = a, uf = u and 7' = 7 by comparison of cί, <7, Z and c?.

(8.32) The results in this section may be summarized as follows.

THEOREM. Aside from the problem (8.13), hyper elliptic polarized
manifolds of the same type such as (β), (IIS), (IVJ, (*Πβ), (*IVβ), {ΣnΔith),
{ΣnΔl)y (Σ(u, u)a), (Σ(u + 27, u)~) are deformation equivalent to each other.
Conversely, these classes are stable under deformation equivalence, but
for the exceptional possibility (8.30; 2).

(8.33) It is a delicate problem whether the case (8.30; 2) does really
happen or not.

When a — 2, M is a jRΓ3-surface. We show that the surjectivity of
the period mapping for polarized l£3-surfaces implies (Σ(u + 4, u)ϊ) ~
(Σ2\2u + 4|2

+,_2u_2) for any odd positive integer u. To see this, let
(Mlf Lx) 6 {Σ{u + 4, u)r) and (M2, L2) e (Σ2\2u + 4|+_2ΐί_2). We claim that
both polarizations are primitive, that means, there is no ample line
bundle F such that Lt = mF for some m > 1. Indeed, for i = 1, this
follows from L^ = u and LJϊa = 2(u + 8), where the notations are as
in (5.27) and Rλ is the ramification divisor lying over Bt. As for the
case i = 2, we use (8.26) and LHβ = 2.

Now, by the results in the Appendix of [PS], it follows that there
is a bisection /: H\Mγ\ Z) -> H\M2; Z) such that /(^(LJ) = c,(L2) and /
is compatible with the intersection pairings. So they define the same
marked lattice Λ. Let D(A) be the period domain for polarized iΓ3-
surfaces with lattice A. One easily sees that the connectedness of D(Λ)
and the surjectivity of the period mapping imply (Mu Lt) ~ (M2, L2).

On the other hand, in case $ = C and a = 3 (this implies KM = L),
Horikawa [Ho 1] showed that (Σ(Zu + 4, u)ϊ) and (Σ2\4u + 4|3̂ _4ίt_2) are
not deformation equivalent to each other. His method involves the
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study of all the possible deformations of such surfaces, where the
canonical bundles may not be ample. He classified them into two
species, and then showed that both are stable under small deformations
(cf. [Ho 1; §7]).

His method seems to be generalized in case a ^ 3. Indeed, for any
deformation (M, L) of such polarized surfaces, M is a minimal surface
of general type. So L is semiample, i.e., there is a positive integer
m such that Bs | mL | = 0 . If in addition Bs | L | = 0 , we can show,
by the techniques in [F6; §3], that M is a double covering of a polar-
ized variety of J-genus zero. Although the covering may not be a
finite morphism and the branch locus may have certain singularities,
it is not very difficult to transplant the techniques of Horikawa. When
a is odd, we can actually prove Bs | L \ = 0 as Horikawa did in case
a = 3. When a is even, the problem seems a little subtler.

The author hopes to carry out the above plan in detail in a future
paper.

Appendix. The main purpose of this appendix is to prove the
following:

THEOREM (Al). Let K be the canonical line bundle of a locally
Gorenstein curve C. Suppose that the rational mapping defined by K
is birational. Then K is simply generated and hence very ample.

This was proved by Max Noether when C is a non-singular curve
defined over the complex number field. Saint-Donat [Sa 1] showed that
this is valid in positive characteristic cases, too. There it was assumed
that C is non-singular, but this assumption can be omitted. Indeed,
the crucial lemma on p. 162 is proved by the same argument since the
Jacobian variety of C is non-singular even if C is singular. Moreover,
it is easy to generalize Clifford's theorem on singular curves (see (1.9)).
Here we provide a different proof.

(A2) From now on, we fix an irreducible reduced curve C with
h\C, έ?c) = g. C is locally Macaulay and the dualizing sheaf will be
denoted by ω.

(A3) A shaf ^~ on C is said to be quasi-invertible if it is torsion
free and of rank one. If so, we define d(^~) = Ί(^~) — 1 + g and
j ( ^ r ) = l + d ( ^ ) - h\J>r) = g- h\jr) as in [F2]. When &~ is
invertible, we have d{^) = deg ( ^ ) by the Riemann-Roch theorem.

PROPOSITION (A4). Let D be an effective divisor, L be a line bundle
and ^ be a quasi-invertible sheaf on C. Let a e Horn ( ^ έ?\L — D])
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and β 6 Horn (<?, ̂ [-D]) such that Supp (Coker (α)) Π Supp (Coker (/3)) = 0 .
Then h\^r) + h\L) ^ h\^r\L - D]) + h\D).

PROOF. Consider the homomorphism μ: HXJ^)@HXL)->H\J?~[L-D])
defined by μ(φ 0 f ) = <M?>) - βL(ψ), where α^ e Horn ( J ^ J^[L - £>])
and βL e Horn (L, ^\L — Z)]) are induced by a and /3 respectively. By
assumption we infer that ajriφ) = /3z,(ψO implies the existence of δ e H\D)
such that ψ = aD(δ) and φ = βD(δ), where α^ 6 Horn (^[D], ^[L]) and
/SD 6 Horn (έ7[D], ^~) are the induced homomorphisms. Therefore
h\jr[L -D])^ dim (Im (μ)) = Λ°(^-) + Λ°(L) - dim (Ker (^)) ̂  Λ°(^-) + λ°(L) -
h\D), which proves the assertion.

PROPOSITION (A5). Let L be a line bundle with Bs \L\ = 0 and let
j ^ ~ be a quasi-invertible sheaf such that 2h\J?~) ̂  h\^~[L]) + h°(Jf[-L]).
Then the natural homomorphism H\^~) ® H\L) —> H\^[L\) is surjec-
tive.

PROOF. Take a,βe H\L) = Horn ( ^ ^[L]) in such a way that the
supports of their cokernels do not meet. Consider the homomorphism
μ:H\^)@H\^)^H\^[L\) induced by a and β. Similarly as in
(A4), we infer dim (Ker (μ)) ̂  h\^^[—L]). Hence, by assumption, we
get dim (Im (μ)) = 2h\J>r) - dim (Ker (μ)) ̂  h\^[L\). Thus μ is surjec-
tive, hence so is H\J^) (g) H\L) -* H\^[L\).

LEMMA (A6). Lei Lbe a line bundle and let ^ be a quasi-invertible
sheaf. Let p be a simple point on C such that p £ Bs | L \ and φ(p) Φ 0
for some φ e H\^r). Suppose that H\jr) 0 H\L - p) -> H\^r\L - p])
is surjective. Then the natural mapping H\^) (x) H\L) —> H\^ΊL\)
is surjective.

Proof is almost identical to that of [F2; Lemma 1.8, (b)].
(A7) Clearly (Al) follows from the result below.

THEOREM. Let L be a line bundle such that Bs | L \ = 0 . //
dim \L\ ^ 2 , assume in addition that plL] is birational. Then the natural
mapping μ: H\ω) ® H\L) -> H\ω[L]) is surjective.

PROOF. We use the induction on h\L). If h\L) = 2, (A5) applies
by virtue of the Riemann-Roch theorem. If h\L) ^ 3, then Bs \L — x\ = 0
for a general point x on C because plLl is assumed to be birational. So
(A6) applies if h\L) = 3. Thus it suffices to consider the case h\L) ^ 4.

Let C" c Ph be the image of C via ρlLl, where h = dim \L\ = h\L) — 1.
If a general secant of C is not a multiscant, then pΪL_x\ is birational
for any general point x on C. Hence our assertion follows from (A6)
and the induction hypothesis. So we may assume that any secant of C
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is a multi-secant.
Let H be a general hyperplane in Ph. Then the divisor D = H C) C

on C is a non-singular scheme. Since dim (Im (H°(Ph, H) = H%C, L) ->
H°(D, LD))) — h\L) — 1 = h, we infer that D is not contained in any
hyperplane of H = Ph~\ Hence we can find h — 1 points of D which
span Ph~2. Let B be the divisor on C consisting of the points on this
Ph~\ Then h\L - B) = 2 and Bs \L - B\ = 0 . However, unlike the
previous cases, deg JB > ft, — 1 and hence H°(C, L) —> i2"°(i?, Lΰ) is not
surjective. Instead we claim h\C, B) = 1.

To prove the claim it suffices to show that any hyperplane S of Ph

containing D — B must contain B, too. Take a point x of D not in
Span(B) = Ph~2. For any point q of B we have a third point y oi D
on the line # * g, because any secant of C is a multi-secant. # g Span (B)
because otherwise xe y * qcSpan (J5). Hence x, y eD — BaS. So
qex *y czS, as required.

Now we have /^[- .B]) = 1 by the Serre duality. So H\ω[~B]) ->
iP(<*)) is injective and H°(ω)-^H°(B, ωB) is surjective. Therefore ίZ"°(ft>[L])
and Im(μ) have the same image in H\B, ω[L]B). So H\ω[L])dim (μ) +
Im(/3), where β is the natural mapping H\ω[L - S])® iϊ°(β)-^iϊo(6t)[L]).

On the other hand, H\ώ) ® iίo(L - β) -> H°(o)[L - B]) is surjective
by (A5) (or by the induction hypothesis in case h\L) = 2). So Im (β)
comes from H\ω) (g) H\L - B) ® H°(B), hence Im (β) c Im (μ). Putting
things together we obtain jff°(ω[L]) c Im (μ).

REMARK (A8). It is actually possible that any general secant of C
is a multi-secant.

Let CQ be the affine curve in A3 given parametrically by x = ί,
y = t9, z = (tq)9, where g is a power of p = char (β). Let C be its
closure in P 3. Then C is a complete intersection of type (q, q) with one
singular point at infinity. One can easily check that any general secant
line of C is a tf-secant, that means, passes exactly q points on C.

Of course, however, such a phenomenon is impossible if char (Jϊ) = 0
(cf., e.g., [Ha 2; p. 312]). Correspondingly we can improve the result
(A7) in the following way.

LEMMA (A9). (In the sequel we assume char (®) = 0.) Let L be a
line bundle such that Bs |L | = 0 and that the morphism pΪL] defined by
\L\ is birational. Then, for any general point p on C, we have
Bs|L — p | = 0 . Moreover, the morphism P\L_P\ is birational unless
dim|L| ^ 2.

This is clear because any general secant of C = plLl(C)c:Ph is not
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a multi-secant.

THEOREM (AlO). Let L be a line bundle such that Bs |L | = 0 . If
dim ILI ^ 2 , assume in addition that P\L\ is birational. Let ^ be a
quasi-invertible sheaf such that h\^~) > 0 and 2h\^) + h\L) - 2 ^

+ h\&~[-L\). Then the natural mapping
is surjective.

PROOF. Similarly as in (A7), we use the induction on h\L). By-
virtue of (A6) and (A9), it suffices to show the following inequality (#)
for any general point p on C.

( # ) 2fc°(jn + h\L -p)-2^ h\^r\L - p]) + h\^[-L + p]) .

To show this, we first consider the case in which h1{^'[—L]) = 0.
Then h\^~\ —L + p]) = 0 by [F2; Lemma 1.4], and similarly we have

= h\^~[L - p\) = 0 since |L - j>| ̂  0 . Hence 2h\J>r) =
p]) + hX^-[-L + p\). So h\L-p)^2 implies (#) unless

fc°(L) = 2.
If h\Jtr[-L\) > 0, then ^ ( ^ ^ [ - L + p]) = dim Horn ( J ^ ω[L - p\) =

dim Horn (^7 <o[L]) — 1 = h\^~[—L]) — 1 since p is general. So
h°(J?~[-L + p]) = h°(J^[-L]). On the other hand h\^r\L - p]) =
h\J?~[L\) - 1 and Λ°(L - p) = fc°(L) - 1. Combining them with the
assumed inequality, we obtain (#).

REMARK (All). The assumed inequality in (AlO) is true in the
following cases.

(1) j r = α>.
(2) deg (jr-) ^ 2J(^-) and h\^[-L]) = 0.
( 3) deg (_ -̂) ^ 2J(^") and deg (L) ^ 2flr + 1.

PROOF. (1) The left hand side is h\L) + 2g — 2, while the right
hand side is equal to X(ω[L]) + h\L) = h\L) - 1 + d(L) + g. They are
equal by the Riemann-Roch theorem.

( 2 ) rf(^r) ^ 2J(^") implies 2Λ°(^') ^ d(^") + 2. On the other
hand h\L) ̂  h\^[L\) - rf(^-) because h\^[L\) ^ fcx(L) by [F2; Lemma
1.4]. Combining them we get the inequality.

(3) We may assume h\^\-L\) > 0 by (2). So d{J?~) ̂  d{L) ^
2g + 1, and Λ°(^) ^ g + 2. Take an effective divisor D such that
deg (I>) = g + 1 and h\jr[-D}) = h\jr) - g - 1. Then H\L - D) > 0
since Λ°(L) = 1 + d(L) - g ^ g + 2. So ho(^[-L]) ^ h\^\

— g — 1. Combining them we obtain the desired inequality.

QUESTION (A12). Is (AlO) ίrue m case char (B) > 0 ?
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Note that (All) is valid in positive characteristic cases too.

REFERENCES

[EGA] A. GROTHENDIECK, Elements de geometrie algebrique, Publ. Math. I.H.E.S. 4 (1960),
8 (1961), 11 (1961) and 17 (1963).

[Fl] T. FUJITA, On the structure of polarized varieties with ^-genera zero, J. Fac. Sci. Univ.
Tokyo 22 (1975), 103-115.

[F2] T. FUJITA, Defining equations for certain types of polarized varieties, in Complex
Analysis and Algebraic Geometry (Baily and Shioda, eds.), Iwanami, Tokyo, 1977,
165-173.

[F3] T. FUJITA, On the hyperplane section principle of Lefschetz, J. Math. Soc. Japan 32
(1980), 153-169.

[F4] T. FUJITA, On the structure of polarized manifolds with total deficiency one, I, J. Math.
Soc. Japan 32 (1980), 709-725.

[F4-3] T. FUJITA, ibid, part III, preprint.
[F5] T. FUJITA, On L-dimension of coherent sheaves, J. Fac. Sci. Univ. of Tokyo 28 (1981),

215-236.
[F6] T. FUJITA, On polarized varieties of small J-genera, Tόhoku Math. J. 34 (1982), 319-341.
[Gl] A. GROTHENDIECK, Revetements Etales et Groupe Fundamental, SGA 1, Lecture Notes

in Math. 224, Springer-Verlag, Berlin, 1971.
[G2] A. GROTHENDIECK, (Notes by R. Hartshorne), Local Cohomology, Lecture Notes in Math.

41, Springer-Verlag, Berlin, 1966.
[Ha 1] R. HARTSHORNE, Ample Subvarieties of Algebraic Varieties, Lecture Notes in Math.

156, Springer-Verlag, Berlin, 1970.
[Ha 2] R. HARTSHORNE, Algebraic Geometry, Graduate Texts in Math. 52, Springer-Verlag,

Berlin, 1977.
[Hi] F. HIRZEBRUCH, Uber eine Klasse von einfach zusammenhangenden komplexen Mannig-

faltigkeiten, Math. Ann. 124 (1951), 77-86.
[Ho 1] E. HORIKAWA, Algebraic surfaces of general type with small cf, I, Annals of Math.

104 (1976), 357-387.
[Ho 2] E. HORIKAWA, On deformations of holomorphic maps, III, Math. Ann. 222 (1976),

275-282.
[Ii] S. IITAKA, On jD-dimensions of algebraic varieties, J. Math. Soc. Japan 23 (1971), 356-373.
[Is] V. A. ISKOVSKIH, Fano 3-folds, I (Russian), Izv. Akad. Nauk SSSR 41 (1977); English

translation: Math. USSR Izvestija 11 (1977), 485-527.
[KS] K. KODAIRA AND D. C. SPENCER, A theorem of completeness for complex analytic fiber

spaces, Acta Math. 100 (1958), 281-294.
[M] S. MORI, On a generalization of complete intersections, J. Math. Kyoto Univ. 15 (1975),

619-646.
[PS] I. I. PJATECKIH-SAPIRO AND I. R. SAFAREVIC, Torelli's theorem for algebraic surfaces of

type KS, Izv. Akad. Nauk SSSR, Ser. Mat. 35 (1971), 530-572.
[R] M. RAYNAUD, Profondeur et theoremes de Lefschetz en cohomloogie etale, SGA 2, Expose

XIV, North-Holland, Amsterdam, 1968.
[Sa 1] B. SAINT-DONAT, On Petri's analysis of the linear system of quadrics through a

canonical curve, Math. Ann. 206 (1973), 157-175.
[Sa 2] B. SAINT-DONAT, Projective models of iΓ3-surfaces, Amer. J. Math. 96 (1974), 602-639.
[Se] J. P. SERRE, Faisceaux algebriques coherents, Ann. of Math. 61 (1955), 197-278.
[W] J. WAVRIK, Deformations of branched coverings of complex manifolds, Amer. J. Math.

90 (1968), 926-960.



44 T. FUJITA

DEPARTMENT OF MATHEMATICS

COLLEGE OP GENERAL EDUCATION

UNIVERSITY OP TOKYO

KOMABA, MEGURO, TOKYO 153

JAPAN




